[PATCH] md: add write-intent-bitmap support to raid5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
32a7627c
N
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
1da177e4
LT
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/module.h>
36#include <linux/config.h>
37#include <linux/linkage.h>
38#include <linux/raid/md.h>
32a7627c 39#include <linux/raid/bitmap.h>
1da177e4
LT
40#include <linux/sysctl.h>
41#include <linux/devfs_fs_kernel.h>
42#include <linux/buffer_head.h> /* for invalidate_bdev */
43#include <linux/suspend.h>
44
45#include <linux/init.h>
46
32a7627c
N
47#include <linux/file.h>
48
1da177e4
LT
49#ifdef CONFIG_KMOD
50#include <linux/kmod.h>
51#endif
52
53#include <asm/unaligned.h>
54
55#define MAJOR_NR MD_MAJOR
56#define MD_DRIVER
57
58/* 63 partitions with the alternate major number (mdp) */
59#define MdpMinorShift 6
60
61#define DEBUG 0
62#define dprintk(x...) ((void)(DEBUG && printk(x)))
63
64
65#ifndef MODULE
66static void autostart_arrays (int part);
67#endif
68
69static mdk_personality_t *pers[MAX_PERSONALITY];
70static DEFINE_SPINLOCK(pers_lock);
71
72/*
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
79 * idle IO detection.
80 *
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82 */
83
84static int sysctl_speed_limit_min = 1000;
85static int sysctl_speed_limit_max = 200000;
86
87static struct ctl_table_header *raid_table_header;
88
89static ctl_table raid_table[] = {
90 {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = &proc_dointvec,
97 },
98 {
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
103 .mode = 0644,
104 .proc_handler = &proc_dointvec,
105 },
106 { .ctl_name = 0 }
107};
108
109static ctl_table raid_dir_table[] = {
110 {
111 .ctl_name = DEV_RAID,
112 .procname = "raid",
113 .maxlen = 0,
114 .mode = 0555,
115 .child = raid_table,
116 },
117 { .ctl_name = 0 }
118};
119
120static ctl_table raid_root_table[] = {
121 {
122 .ctl_name = CTL_DEV,
123 .procname = "dev",
124 .maxlen = 0,
125 .mode = 0555,
126 .child = raid_dir_table,
127 },
128 { .ctl_name = 0 }
129};
130
131static struct block_device_operations md_fops;
132
133/*
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
136 */
137static LIST_HEAD(all_mddevs);
138static DEFINE_SPINLOCK(all_mddevs_lock);
139
140
141/*
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
147 */
148#define ITERATE_MDDEV(mddev,tmp) \
149 \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
152 mddev = NULL;}); \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
160 tmp = tmp->next;}) \
161 )
162
163
164static int md_fail_request (request_queue_t *q, struct bio *bio)
165{
166 bio_io_error(bio, bio->bi_size);
167 return 0;
168}
169
170static inline mddev_t *mddev_get(mddev_t *mddev)
171{
172 atomic_inc(&mddev->active);
173 return mddev;
174}
175
176static void mddev_put(mddev_t *mddev)
177{
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 return;
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
183 kfree(mddev);
184 }
185 spin_unlock(&all_mddevs_lock);
186}
187
188static mddev_t * mddev_find(dev_t unit)
189{
190 mddev_t *mddev, *new = NULL;
191
192 retry:
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
196 mddev_get(mddev);
197 spin_unlock(&all_mddevs_lock);
990a8baf 198 kfree(new);
1da177e4
LT
199 return mddev;
200 }
201
202 if (new) {
203 list_add(&new->all_mddevs, &all_mddevs);
204 spin_unlock(&all_mddevs_lock);
205 return new;
206 }
207 spin_unlock(&all_mddevs_lock);
208
209 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
210 if (!new)
211 return NULL;
212
213 memset(new, 0, sizeof(*new));
214
215 new->unit = unit;
216 if (MAJOR(unit) == MD_MAJOR)
217 new->md_minor = MINOR(unit);
218 else
219 new->md_minor = MINOR(unit) >> MdpMinorShift;
220
221 init_MUTEX(&new->reconfig_sem);
222 INIT_LIST_HEAD(&new->disks);
223 INIT_LIST_HEAD(&new->all_mddevs);
224 init_timer(&new->safemode_timer);
225 atomic_set(&new->active, 1);
06d91a5f 226 spin_lock_init(&new->write_lock);
3d310eb7 227 init_waitqueue_head(&new->sb_wait);
1da177e4
LT
228
229 new->queue = blk_alloc_queue(GFP_KERNEL);
230 if (!new->queue) {
231 kfree(new);
232 return NULL;
233 }
234
235 blk_queue_make_request(new->queue, md_fail_request);
236
237 goto retry;
238}
239
240static inline int mddev_lock(mddev_t * mddev)
241{
242 return down_interruptible(&mddev->reconfig_sem);
243}
244
245static inline void mddev_lock_uninterruptible(mddev_t * mddev)
246{
247 down(&mddev->reconfig_sem);
248}
249
250static inline int mddev_trylock(mddev_t * mddev)
251{
252 return down_trylock(&mddev->reconfig_sem);
253}
254
255static inline void mddev_unlock(mddev_t * mddev)
256{
257 up(&mddev->reconfig_sem);
258
005eca5e 259 md_wakeup_thread(mddev->thread);
1da177e4
LT
260}
261
262mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
263{
264 mdk_rdev_t * rdev;
265 struct list_head *tmp;
266
267 ITERATE_RDEV(mddev,rdev,tmp) {
268 if (rdev->desc_nr == nr)
269 return rdev;
270 }
271 return NULL;
272}
273
274static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
275{
276 struct list_head *tmp;
277 mdk_rdev_t *rdev;
278
279 ITERATE_RDEV(mddev,rdev,tmp) {
280 if (rdev->bdev->bd_dev == dev)
281 return rdev;
282 }
283 return NULL;
284}
285
77933d72 286static inline sector_t calc_dev_sboffset(struct block_device *bdev)
1da177e4
LT
287{
288 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
289 return MD_NEW_SIZE_BLOCKS(size);
290}
291
292static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
293{
294 sector_t size;
295
296 size = rdev->sb_offset;
297
298 if (chunk_size)
299 size &= ~((sector_t)chunk_size/1024 - 1);
300 return size;
301}
302
303static int alloc_disk_sb(mdk_rdev_t * rdev)
304{
305 if (rdev->sb_page)
306 MD_BUG();
307
308 rdev->sb_page = alloc_page(GFP_KERNEL);
309 if (!rdev->sb_page) {
310 printk(KERN_ALERT "md: out of memory.\n");
311 return -EINVAL;
312 }
313
314 return 0;
315}
316
317static void free_disk_sb(mdk_rdev_t * rdev)
318{
319 if (rdev->sb_page) {
320 page_cache_release(rdev->sb_page);
321 rdev->sb_loaded = 0;
322 rdev->sb_page = NULL;
323 rdev->sb_offset = 0;
324 rdev->size = 0;
325 }
326}
327
328
7bfa19f2
N
329static int super_written(struct bio *bio, unsigned int bytes_done, int error)
330{
331 mdk_rdev_t *rdev = bio->bi_private;
332 if (bio->bi_size)
333 return 1;
334
335 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
336 md_error(rdev->mddev, rdev);
337
338 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
339 wake_up(&rdev->mddev->sb_wait);
f8b58edf 340 bio_put(bio);
7bfa19f2
N
341 return 0;
342}
343
344void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
345 sector_t sector, int size, struct page *page)
346{
347 /* write first size bytes of page to sector of rdev
348 * Increment mddev->pending_writes before returning
349 * and decrement it on completion, waking up sb_wait
350 * if zero is reached.
351 * If an error occurred, call md_error
352 */
353 struct bio *bio = bio_alloc(GFP_NOIO, 1);
354
355 bio->bi_bdev = rdev->bdev;
356 bio->bi_sector = sector;
357 bio_add_page(bio, page, size, 0);
358 bio->bi_private = rdev;
359 bio->bi_end_io = super_written;
360 atomic_inc(&mddev->pending_writes);
361 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
362}
363
1da177e4
LT
364static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
365{
366 if (bio->bi_size)
367 return 1;
368
369 complete((struct completion*)bio->bi_private);
370 return 0;
371}
372
a654b9d8 373int sync_page_io(struct block_device *bdev, sector_t sector, int size,
1da177e4
LT
374 struct page *page, int rw)
375{
baaa2c51 376 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
377 struct completion event;
378 int ret;
379
380 rw |= (1 << BIO_RW_SYNC);
381
382 bio->bi_bdev = bdev;
383 bio->bi_sector = sector;
384 bio_add_page(bio, page, size, 0);
385 init_completion(&event);
386 bio->bi_private = &event;
387 bio->bi_end_io = bi_complete;
388 submit_bio(rw, bio);
389 wait_for_completion(&event);
390
391 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
392 bio_put(bio);
393 return ret;
394}
395
0002b271 396static int read_disk_sb(mdk_rdev_t * rdev, int size)
1da177e4
LT
397{
398 char b[BDEVNAME_SIZE];
399 if (!rdev->sb_page) {
400 MD_BUG();
401 return -EINVAL;
402 }
403 if (rdev->sb_loaded)
404 return 0;
405
406
0002b271 407 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
1da177e4
LT
408 goto fail;
409 rdev->sb_loaded = 1;
410 return 0;
411
412fail:
413 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
414 bdevname(rdev->bdev,b));
415 return -EINVAL;
416}
417
418static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
419{
420 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
421 (sb1->set_uuid1 == sb2->set_uuid1) &&
422 (sb1->set_uuid2 == sb2->set_uuid2) &&
423 (sb1->set_uuid3 == sb2->set_uuid3))
424
425 return 1;
426
427 return 0;
428}
429
430
431static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
432{
433 int ret;
434 mdp_super_t *tmp1, *tmp2;
435
436 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
437 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
438
439 if (!tmp1 || !tmp2) {
440 ret = 0;
441 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
442 goto abort;
443 }
444
445 *tmp1 = *sb1;
446 *tmp2 = *sb2;
447
448 /*
449 * nr_disks is not constant
450 */
451 tmp1->nr_disks = 0;
452 tmp2->nr_disks = 0;
453
454 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
455 ret = 0;
456 else
457 ret = 1;
458
459abort:
990a8baf
JJ
460 kfree(tmp1);
461 kfree(tmp2);
1da177e4
LT
462 return ret;
463}
464
465static unsigned int calc_sb_csum(mdp_super_t * sb)
466{
467 unsigned int disk_csum, csum;
468
469 disk_csum = sb->sb_csum;
470 sb->sb_csum = 0;
471 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
472 sb->sb_csum = disk_csum;
473 return csum;
474}
475
476
477/*
478 * Handle superblock details.
479 * We want to be able to handle multiple superblock formats
480 * so we have a common interface to them all, and an array of
481 * different handlers.
482 * We rely on user-space to write the initial superblock, and support
483 * reading and updating of superblocks.
484 * Interface methods are:
485 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
486 * loads and validates a superblock on dev.
487 * if refdev != NULL, compare superblocks on both devices
488 * Return:
489 * 0 - dev has a superblock that is compatible with refdev
490 * 1 - dev has a superblock that is compatible and newer than refdev
491 * so dev should be used as the refdev in future
492 * -EINVAL superblock incompatible or invalid
493 * -othererror e.g. -EIO
494 *
495 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
496 * Verify that dev is acceptable into mddev.
497 * The first time, mddev->raid_disks will be 0, and data from
498 * dev should be merged in. Subsequent calls check that dev
499 * is new enough. Return 0 or -EINVAL
500 *
501 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
502 * Update the superblock for rdev with data in mddev
503 * This does not write to disc.
504 *
505 */
506
507struct super_type {
508 char *name;
509 struct module *owner;
510 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
511 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
512 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513};
514
515/*
516 * load_super for 0.90.0
517 */
518static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
519{
520 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
521 mdp_super_t *sb;
522 int ret;
523 sector_t sb_offset;
524
525 /*
526 * Calculate the position of the superblock,
527 * it's at the end of the disk.
528 *
529 * It also happens to be a multiple of 4Kb.
530 */
531 sb_offset = calc_dev_sboffset(rdev->bdev);
532 rdev->sb_offset = sb_offset;
533
0002b271 534 ret = read_disk_sb(rdev, MD_SB_BYTES);
1da177e4
LT
535 if (ret) return ret;
536
537 ret = -EINVAL;
538
539 bdevname(rdev->bdev, b);
540 sb = (mdp_super_t*)page_address(rdev->sb_page);
541
542 if (sb->md_magic != MD_SB_MAGIC) {
543 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
544 b);
545 goto abort;
546 }
547
548 if (sb->major_version != 0 ||
549 sb->minor_version != 90) {
550 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
551 sb->major_version, sb->minor_version,
552 b);
553 goto abort;
554 }
555
556 if (sb->raid_disks <= 0)
557 goto abort;
558
559 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
560 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
561 b);
562 goto abort;
563 }
564
565 rdev->preferred_minor = sb->md_minor;
566 rdev->data_offset = 0;
0002b271 567 rdev->sb_size = MD_SB_BYTES;
1da177e4
LT
568
569 if (sb->level == LEVEL_MULTIPATH)
570 rdev->desc_nr = -1;
571 else
572 rdev->desc_nr = sb->this_disk.number;
573
574 if (refdev == 0)
575 ret = 1;
576 else {
577 __u64 ev1, ev2;
578 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
579 if (!uuid_equal(refsb, sb)) {
580 printk(KERN_WARNING "md: %s has different UUID to %s\n",
581 b, bdevname(refdev->bdev,b2));
582 goto abort;
583 }
584 if (!sb_equal(refsb, sb)) {
585 printk(KERN_WARNING "md: %s has same UUID"
586 " but different superblock to %s\n",
587 b, bdevname(refdev->bdev, b2));
588 goto abort;
589 }
590 ev1 = md_event(sb);
591 ev2 = md_event(refsb);
592 if (ev1 > ev2)
593 ret = 1;
594 else
595 ret = 0;
596 }
597 rdev->size = calc_dev_size(rdev, sb->chunk_size);
598
599 abort:
600 return ret;
601}
602
603/*
604 * validate_super for 0.90.0
605 */
606static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
607{
608 mdp_disk_t *desc;
609 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
610
41158c7e
N
611 rdev->raid_disk = -1;
612 rdev->in_sync = 0;
1da177e4
LT
613 if (mddev->raid_disks == 0) {
614 mddev->major_version = 0;
615 mddev->minor_version = sb->minor_version;
616 mddev->patch_version = sb->patch_version;
617 mddev->persistent = ! sb->not_persistent;
618 mddev->chunk_size = sb->chunk_size;
619 mddev->ctime = sb->ctime;
620 mddev->utime = sb->utime;
621 mddev->level = sb->level;
622 mddev->layout = sb->layout;
623 mddev->raid_disks = sb->raid_disks;
624 mddev->size = sb->size;
625 mddev->events = md_event(sb);
9223214e 626 mddev->bitmap_offset = 0;
36fa3063 627 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
1da177e4
LT
628
629 if (sb->state & (1<<MD_SB_CLEAN))
630 mddev->recovery_cp = MaxSector;
631 else {
632 if (sb->events_hi == sb->cp_events_hi &&
633 sb->events_lo == sb->cp_events_lo) {
634 mddev->recovery_cp = sb->recovery_cp;
635 } else
636 mddev->recovery_cp = 0;
637 }
638
639 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
640 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
641 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
642 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
643
644 mddev->max_disks = MD_SB_DISKS;
a654b9d8
N
645
646 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
647 mddev->bitmap_file == NULL) {
72626685 648 if (mddev->level != 1 && mddev->level != 5) {
a654b9d8
N
649 /* FIXME use a better test */
650 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
651 return -EINVAL;
652 }
36fa3063 653 mddev->bitmap_offset = mddev->default_bitmap_offset;
a654b9d8
N
654 }
655
41158c7e
N
656 } else if (mddev->pers == NULL) {
657 /* Insist on good event counter while assembling */
658 __u64 ev1 = md_event(sb);
1da177e4
LT
659 ++ev1;
660 if (ev1 < mddev->events)
661 return -EINVAL;
41158c7e
N
662 } else if (mddev->bitmap) {
663 /* if adding to array with a bitmap, then we can accept an
664 * older device ... but not too old.
665 */
666 __u64 ev1 = md_event(sb);
667 if (ev1 < mddev->bitmap->events_cleared)
668 return 0;
669 } else /* just a hot-add of a new device, leave raid_disk at -1 */
670 return 0;
671
1da177e4 672 if (mddev->level != LEVEL_MULTIPATH) {
41158c7e 673 rdev->faulty = 0;
8ddf9efe 674 rdev->flags = 0;
1da177e4
LT
675 desc = sb->disks + rdev->desc_nr;
676
677 if (desc->state & (1<<MD_DISK_FAULTY))
678 rdev->faulty = 1;
679 else if (desc->state & (1<<MD_DISK_SYNC) &&
680 desc->raid_disk < mddev->raid_disks) {
681 rdev->in_sync = 1;
682 rdev->raid_disk = desc->raid_disk;
683 }
8ddf9efe
N
684 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
685 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
686 } else /* MULTIPATH are always insync */
687 rdev->in_sync = 1;
1da177e4
LT
688 return 0;
689}
690
691/*
692 * sync_super for 0.90.0
693 */
694static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
695{
696 mdp_super_t *sb;
697 struct list_head *tmp;
698 mdk_rdev_t *rdev2;
699 int next_spare = mddev->raid_disks;
700
701 /* make rdev->sb match mddev data..
702 *
703 * 1/ zero out disks
704 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
705 * 3/ any empty disks < next_spare become removed
706 *
707 * disks[0] gets initialised to REMOVED because
708 * we cannot be sure from other fields if it has
709 * been initialised or not.
710 */
711 int i;
712 int active=0, working=0,failed=0,spare=0,nr_disks=0;
713
714 sb = (mdp_super_t*)page_address(rdev->sb_page);
715
716 memset(sb, 0, sizeof(*sb));
717
718 sb->md_magic = MD_SB_MAGIC;
719 sb->major_version = mddev->major_version;
720 sb->minor_version = mddev->minor_version;
721 sb->patch_version = mddev->patch_version;
722 sb->gvalid_words = 0; /* ignored */
723 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
724 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
725 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
726 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
727
728 sb->ctime = mddev->ctime;
729 sb->level = mddev->level;
730 sb->size = mddev->size;
731 sb->raid_disks = mddev->raid_disks;
732 sb->md_minor = mddev->md_minor;
733 sb->not_persistent = !mddev->persistent;
734 sb->utime = mddev->utime;
735 sb->state = 0;
736 sb->events_hi = (mddev->events>>32);
737 sb->events_lo = (u32)mddev->events;
738
739 if (mddev->in_sync)
740 {
741 sb->recovery_cp = mddev->recovery_cp;
742 sb->cp_events_hi = (mddev->events>>32);
743 sb->cp_events_lo = (u32)mddev->events;
744 if (mddev->recovery_cp == MaxSector)
745 sb->state = (1<< MD_SB_CLEAN);
746 } else
747 sb->recovery_cp = 0;
748
749 sb->layout = mddev->layout;
750 sb->chunk_size = mddev->chunk_size;
751
a654b9d8
N
752 if (mddev->bitmap && mddev->bitmap_file == NULL)
753 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
754
1da177e4
LT
755 sb->disks[0].state = (1<<MD_DISK_REMOVED);
756 ITERATE_RDEV(mddev,rdev2,tmp) {
757 mdp_disk_t *d;
758 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
759 rdev2->desc_nr = rdev2->raid_disk;
760 else
761 rdev2->desc_nr = next_spare++;
762 d = &sb->disks[rdev2->desc_nr];
763 nr_disks++;
764 d->number = rdev2->desc_nr;
765 d->major = MAJOR(rdev2->bdev->bd_dev);
766 d->minor = MINOR(rdev2->bdev->bd_dev);
767 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
768 d->raid_disk = rdev2->raid_disk;
769 else
770 d->raid_disk = rdev2->desc_nr; /* compatibility */
771 if (rdev2->faulty) {
772 d->state = (1<<MD_DISK_FAULTY);
773 failed++;
774 } else if (rdev2->in_sync) {
775 d->state = (1<<MD_DISK_ACTIVE);
776 d->state |= (1<<MD_DISK_SYNC);
777 active++;
778 working++;
779 } else {
780 d->state = 0;
781 spare++;
782 working++;
783 }
8ddf9efe
N
784 if (test_bit(WriteMostly, &rdev2->flags))
785 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4
LT
786 }
787
788 /* now set the "removed" and "faulty" bits on any missing devices */
789 for (i=0 ; i < mddev->raid_disks ; i++) {
790 mdp_disk_t *d = &sb->disks[i];
791 if (d->state == 0 && d->number == 0) {
792 d->number = i;
793 d->raid_disk = i;
794 d->state = (1<<MD_DISK_REMOVED);
795 d->state |= (1<<MD_DISK_FAULTY);
796 failed++;
797 }
798 }
799 sb->nr_disks = nr_disks;
800 sb->active_disks = active;
801 sb->working_disks = working;
802 sb->failed_disks = failed;
803 sb->spare_disks = spare;
804
805 sb->this_disk = sb->disks[rdev->desc_nr];
806 sb->sb_csum = calc_sb_csum(sb);
807}
808
809/*
810 * version 1 superblock
811 */
812
813static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
814{
815 unsigned int disk_csum, csum;
816 unsigned long long newcsum;
817 int size = 256 + le32_to_cpu(sb->max_dev)*2;
818 unsigned int *isuper = (unsigned int*)sb;
819 int i;
820
821 disk_csum = sb->sb_csum;
822 sb->sb_csum = 0;
823 newcsum = 0;
824 for (i=0; size>=4; size -= 4 )
825 newcsum += le32_to_cpu(*isuper++);
826
827 if (size == 2)
828 newcsum += le16_to_cpu(*(unsigned short*) isuper);
829
830 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
831 sb->sb_csum = disk_csum;
832 return cpu_to_le32(csum);
833}
834
835static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
836{
837 struct mdp_superblock_1 *sb;
838 int ret;
839 sector_t sb_offset;
840 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
0002b271 841 int bmask;
1da177e4
LT
842
843 /*
844 * Calculate the position of the superblock.
845 * It is always aligned to a 4K boundary and
846 * depeding on minor_version, it can be:
847 * 0: At least 8K, but less than 12K, from end of device
848 * 1: At start of device
849 * 2: 4K from start of device.
850 */
851 switch(minor_version) {
852 case 0:
853 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
854 sb_offset -= 8*2;
39730960 855 sb_offset &= ~(sector_t)(4*2-1);
1da177e4
LT
856 /* convert from sectors to K */
857 sb_offset /= 2;
858 break;
859 case 1:
860 sb_offset = 0;
861 break;
862 case 2:
863 sb_offset = 4;
864 break;
865 default:
866 return -EINVAL;
867 }
868 rdev->sb_offset = sb_offset;
869
0002b271
N
870 /* superblock is rarely larger than 1K, but it can be larger,
871 * and it is safe to read 4k, so we do that
872 */
873 ret = read_disk_sb(rdev, 4096);
1da177e4
LT
874 if (ret) return ret;
875
876
877 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
878
879 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
880 sb->major_version != cpu_to_le32(1) ||
881 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
882 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
71c0805c 883 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1da177e4
LT
884 return -EINVAL;
885
886 if (calc_sb_1_csum(sb) != sb->sb_csum) {
887 printk("md: invalid superblock checksum on %s\n",
888 bdevname(rdev->bdev,b));
889 return -EINVAL;
890 }
891 if (le64_to_cpu(sb->data_size) < 10) {
892 printk("md: data_size too small on %s\n",
893 bdevname(rdev->bdev,b));
894 return -EINVAL;
895 }
896 rdev->preferred_minor = 0xffff;
897 rdev->data_offset = le64_to_cpu(sb->data_offset);
898
0002b271
N
899 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
900 bmask = block_size(rdev->bdev)-1;
901 if (rdev->sb_size & bmask)
902 rdev-> sb_size = (rdev->sb_size | bmask)+1;
903
1da177e4
LT
904 if (refdev == 0)
905 return 1;
906 else {
907 __u64 ev1, ev2;
908 struct mdp_superblock_1 *refsb =
909 (struct mdp_superblock_1*)page_address(refdev->sb_page);
910
911 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
912 sb->level != refsb->level ||
913 sb->layout != refsb->layout ||
914 sb->chunksize != refsb->chunksize) {
915 printk(KERN_WARNING "md: %s has strangely different"
916 " superblock to %s\n",
917 bdevname(rdev->bdev,b),
918 bdevname(refdev->bdev,b2));
919 return -EINVAL;
920 }
921 ev1 = le64_to_cpu(sb->events);
922 ev2 = le64_to_cpu(refsb->events);
923
924 if (ev1 > ev2)
925 return 1;
926 }
927 if (minor_version)
928 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
929 else
930 rdev->size = rdev->sb_offset;
931 if (rdev->size < le64_to_cpu(sb->data_size)/2)
932 return -EINVAL;
933 rdev->size = le64_to_cpu(sb->data_size)/2;
934 if (le32_to_cpu(sb->chunksize))
935 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
936 return 0;
937}
938
939static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
940{
941 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
942
41158c7e
N
943 rdev->raid_disk = -1;
944 rdev->in_sync = 0;
1da177e4
LT
945 if (mddev->raid_disks == 0) {
946 mddev->major_version = 1;
947 mddev->patch_version = 0;
948 mddev->persistent = 1;
949 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
950 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
951 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
952 mddev->level = le32_to_cpu(sb->level);
953 mddev->layout = le32_to_cpu(sb->layout);
954 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
955 mddev->size = le64_to_cpu(sb->size)/2;
956 mddev->events = le64_to_cpu(sb->events);
9223214e 957 mddev->bitmap_offset = 0;
36fa3063
N
958 mddev->default_bitmap_offset = 0;
959 if (mddev->minor_version == 0)
960 mddev->default_bitmap_offset = -(64*1024)/512;
1da177e4
LT
961
962 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
963 memcpy(mddev->uuid, sb->set_uuid, 16);
964
965 mddev->max_disks = (4096-256)/2;
a654b9d8 966
71c0805c 967 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
a654b9d8
N
968 mddev->bitmap_file == NULL ) {
969 if (mddev->level != 1) {
970 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
971 return -EINVAL;
972 }
973 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
974 }
41158c7e
N
975 } else if (mddev->pers == NULL) {
976 /* Insist of good event counter while assembling */
977 __u64 ev1 = le64_to_cpu(sb->events);
1da177e4
LT
978 ++ev1;
979 if (ev1 < mddev->events)
980 return -EINVAL;
41158c7e
N
981 } else if (mddev->bitmap) {
982 /* If adding to array with a bitmap, then we can accept an
983 * older device, but not too old.
984 */
985 __u64 ev1 = le64_to_cpu(sb->events);
986 if (ev1 < mddev->bitmap->events_cleared)
987 return 0;
988 } else /* just a hot-add of a new device, leave raid_disk at -1 */
989 return 0;
1da177e4
LT
990
991 if (mddev->level != LEVEL_MULTIPATH) {
992 int role;
993 rdev->desc_nr = le32_to_cpu(sb->dev_number);
994 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
995 switch(role) {
996 case 0xffff: /* spare */
1da177e4 997 rdev->faulty = 0;
1da177e4
LT
998 break;
999 case 0xfffe: /* faulty */
1da177e4 1000 rdev->faulty = 1;
1da177e4
LT
1001 break;
1002 default:
1003 rdev->in_sync = 1;
1004 rdev->faulty = 0;
1005 rdev->raid_disk = role;
1006 break;
1007 }
8ddf9efe
N
1008 rdev->flags = 0;
1009 if (sb->devflags & WriteMostly1)
1010 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
1011 } else /* MULTIPATH are always insync */
1012 rdev->in_sync = 1;
1013
1da177e4
LT
1014 return 0;
1015}
1016
1017static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1018{
1019 struct mdp_superblock_1 *sb;
1020 struct list_head *tmp;
1021 mdk_rdev_t *rdev2;
1022 int max_dev, i;
1023 /* make rdev->sb match mddev and rdev data. */
1024
1025 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1026
1027 sb->feature_map = 0;
1028 sb->pad0 = 0;
1029 memset(sb->pad1, 0, sizeof(sb->pad1));
1030 memset(sb->pad2, 0, sizeof(sb->pad2));
1031 memset(sb->pad3, 0, sizeof(sb->pad3));
1032
1033 sb->utime = cpu_to_le64((__u64)mddev->utime);
1034 sb->events = cpu_to_le64(mddev->events);
1035 if (mddev->in_sync)
1036 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1037 else
1038 sb->resync_offset = cpu_to_le64(0);
1039
a654b9d8
N
1040 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1041 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
71c0805c 1042 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
a654b9d8
N
1043 }
1044
1da177e4
LT
1045 max_dev = 0;
1046 ITERATE_RDEV(mddev,rdev2,tmp)
1047 if (rdev2->desc_nr+1 > max_dev)
1048 max_dev = rdev2->desc_nr+1;
1049
1050 sb->max_dev = cpu_to_le32(max_dev);
1051 for (i=0; i<max_dev;i++)
1052 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1053
1054 ITERATE_RDEV(mddev,rdev2,tmp) {
1055 i = rdev2->desc_nr;
1056 if (rdev2->faulty)
1057 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1058 else if (rdev2->in_sync)
1059 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1060 else
1061 sb->dev_roles[i] = cpu_to_le16(0xffff);
1062 }
1063
1064 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1065 sb->sb_csum = calc_sb_1_csum(sb);
1066}
1067
1068
75c96f85 1069static struct super_type super_types[] = {
1da177e4
LT
1070 [0] = {
1071 .name = "0.90.0",
1072 .owner = THIS_MODULE,
1073 .load_super = super_90_load,
1074 .validate_super = super_90_validate,
1075 .sync_super = super_90_sync,
1076 },
1077 [1] = {
1078 .name = "md-1",
1079 .owner = THIS_MODULE,
1080 .load_super = super_1_load,
1081 .validate_super = super_1_validate,
1082 .sync_super = super_1_sync,
1083 },
1084};
1085
1086static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1087{
1088 struct list_head *tmp;
1089 mdk_rdev_t *rdev;
1090
1091 ITERATE_RDEV(mddev,rdev,tmp)
1092 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1093 return rdev;
1094
1095 return NULL;
1096}
1097
1098static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1099{
1100 struct list_head *tmp;
1101 mdk_rdev_t *rdev;
1102
1103 ITERATE_RDEV(mddev1,rdev,tmp)
1104 if (match_dev_unit(mddev2, rdev))
1105 return 1;
1106
1107 return 0;
1108}
1109
1110static LIST_HEAD(pending_raid_disks);
1111
1112static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1113{
1114 mdk_rdev_t *same_pdev;
1115 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1116
1117 if (rdev->mddev) {
1118 MD_BUG();
1119 return -EINVAL;
1120 }
1121 same_pdev = match_dev_unit(mddev, rdev);
1122 if (same_pdev)
1123 printk(KERN_WARNING
1124 "%s: WARNING: %s appears to be on the same physical"
1125 " disk as %s. True\n protection against single-disk"
1126 " failure might be compromised.\n",
1127 mdname(mddev), bdevname(rdev->bdev,b),
1128 bdevname(same_pdev->bdev,b2));
1129
1130 /* Verify rdev->desc_nr is unique.
1131 * If it is -1, assign a free number, else
1132 * check number is not in use
1133 */
1134 if (rdev->desc_nr < 0) {
1135 int choice = 0;
1136 if (mddev->pers) choice = mddev->raid_disks;
1137 while (find_rdev_nr(mddev, choice))
1138 choice++;
1139 rdev->desc_nr = choice;
1140 } else {
1141 if (find_rdev_nr(mddev, rdev->desc_nr))
1142 return -EBUSY;
1143 }
1144
1145 list_add(&rdev->same_set, &mddev->disks);
1146 rdev->mddev = mddev;
1147 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1148 return 0;
1149}
1150
1151static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1152{
1153 char b[BDEVNAME_SIZE];
1154 if (!rdev->mddev) {
1155 MD_BUG();
1156 return;
1157 }
1158 list_del_init(&rdev->same_set);
1159 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1160 rdev->mddev = NULL;
1161}
1162
1163/*
1164 * prevent the device from being mounted, repartitioned or
1165 * otherwise reused by a RAID array (or any other kernel
1166 * subsystem), by bd_claiming the device.
1167 */
1168static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1169{
1170 int err = 0;
1171 struct block_device *bdev;
1172 char b[BDEVNAME_SIZE];
1173
1174 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1175 if (IS_ERR(bdev)) {
1176 printk(KERN_ERR "md: could not open %s.\n",
1177 __bdevname(dev, b));
1178 return PTR_ERR(bdev);
1179 }
1180 err = bd_claim(bdev, rdev);
1181 if (err) {
1182 printk(KERN_ERR "md: could not bd_claim %s.\n",
1183 bdevname(bdev, b));
1184 blkdev_put(bdev);
1185 return err;
1186 }
1187 rdev->bdev = bdev;
1188 return err;
1189}
1190
1191static void unlock_rdev(mdk_rdev_t *rdev)
1192{
1193 struct block_device *bdev = rdev->bdev;
1194 rdev->bdev = NULL;
1195 if (!bdev)
1196 MD_BUG();
1197 bd_release(bdev);
1198 blkdev_put(bdev);
1199}
1200
1201void md_autodetect_dev(dev_t dev);
1202
1203static void export_rdev(mdk_rdev_t * rdev)
1204{
1205 char b[BDEVNAME_SIZE];
1206 printk(KERN_INFO "md: export_rdev(%s)\n",
1207 bdevname(rdev->bdev,b));
1208 if (rdev->mddev)
1209 MD_BUG();
1210 free_disk_sb(rdev);
1211 list_del_init(&rdev->same_set);
1212#ifndef MODULE
1213 md_autodetect_dev(rdev->bdev->bd_dev);
1214#endif
1215 unlock_rdev(rdev);
1216 kfree(rdev);
1217}
1218
1219static void kick_rdev_from_array(mdk_rdev_t * rdev)
1220{
1221 unbind_rdev_from_array(rdev);
1222 export_rdev(rdev);
1223}
1224
1225static void export_array(mddev_t *mddev)
1226{
1227 struct list_head *tmp;
1228 mdk_rdev_t *rdev;
1229
1230 ITERATE_RDEV(mddev,rdev,tmp) {
1231 if (!rdev->mddev) {
1232 MD_BUG();
1233 continue;
1234 }
1235 kick_rdev_from_array(rdev);
1236 }
1237 if (!list_empty(&mddev->disks))
1238 MD_BUG();
1239 mddev->raid_disks = 0;
1240 mddev->major_version = 0;
1241}
1242
1243static void print_desc(mdp_disk_t *desc)
1244{
1245 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1246 desc->major,desc->minor,desc->raid_disk,desc->state);
1247}
1248
1249static void print_sb(mdp_super_t *sb)
1250{
1251 int i;
1252
1253 printk(KERN_INFO
1254 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1255 sb->major_version, sb->minor_version, sb->patch_version,
1256 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1257 sb->ctime);
1258 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1259 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1260 sb->md_minor, sb->layout, sb->chunk_size);
1261 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1262 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1263 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1264 sb->failed_disks, sb->spare_disks,
1265 sb->sb_csum, (unsigned long)sb->events_lo);
1266
1267 printk(KERN_INFO);
1268 for (i = 0; i < MD_SB_DISKS; i++) {
1269 mdp_disk_t *desc;
1270
1271 desc = sb->disks + i;
1272 if (desc->number || desc->major || desc->minor ||
1273 desc->raid_disk || (desc->state && (desc->state != 4))) {
1274 printk(" D %2d: ", i);
1275 print_desc(desc);
1276 }
1277 }
1278 printk(KERN_INFO "md: THIS: ");
1279 print_desc(&sb->this_disk);
1280
1281}
1282
1283static void print_rdev(mdk_rdev_t *rdev)
1284{
1285 char b[BDEVNAME_SIZE];
1286 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1287 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1288 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1289 if (rdev->sb_loaded) {
1290 printk(KERN_INFO "md: rdev superblock:\n");
1291 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1292 } else
1293 printk(KERN_INFO "md: no rdev superblock!\n");
1294}
1295
1296void md_print_devices(void)
1297{
1298 struct list_head *tmp, *tmp2;
1299 mdk_rdev_t *rdev;
1300 mddev_t *mddev;
1301 char b[BDEVNAME_SIZE];
1302
1303 printk("\n");
1304 printk("md: **********************************\n");
1305 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1306 printk("md: **********************************\n");
1307 ITERATE_MDDEV(mddev,tmp) {
1da177e4 1308
32a7627c
N
1309 if (mddev->bitmap)
1310 bitmap_print_sb(mddev->bitmap);
1311 else
1312 printk("%s: ", mdname(mddev));
1da177e4
LT
1313 ITERATE_RDEV(mddev,rdev,tmp2)
1314 printk("<%s>", bdevname(rdev->bdev,b));
1315 printk("\n");
1316
1317 ITERATE_RDEV(mddev,rdev,tmp2)
1318 print_rdev(rdev);
1319 }
1320 printk("md: **********************************\n");
1321 printk("\n");
1322}
1323
1324
1da177e4
LT
1325static void sync_sbs(mddev_t * mddev)
1326{
1327 mdk_rdev_t *rdev;
1328 struct list_head *tmp;
1329
1330 ITERATE_RDEV(mddev,rdev,tmp) {
1331 super_types[mddev->major_version].
1332 sync_super(mddev, rdev);
1333 rdev->sb_loaded = 1;
1334 }
1335}
1336
1337static void md_update_sb(mddev_t * mddev)
1338{
7bfa19f2 1339 int err;
1da177e4
LT
1340 struct list_head *tmp;
1341 mdk_rdev_t *rdev;
06d91a5f 1342 int sync_req;
1da177e4 1343
1da177e4 1344repeat:
06d91a5f
N
1345 spin_lock(&mddev->write_lock);
1346 sync_req = mddev->in_sync;
1da177e4
LT
1347 mddev->utime = get_seconds();
1348 mddev->events ++;
1349
1350 if (!mddev->events) {
1351 /*
1352 * oops, this 64-bit counter should never wrap.
1353 * Either we are in around ~1 trillion A.C., assuming
1354 * 1 reboot per second, or we have a bug:
1355 */
1356 MD_BUG();
1357 mddev->events --;
1358 }
7bfa19f2 1359 mddev->sb_dirty = 2;
1da177e4
LT
1360 sync_sbs(mddev);
1361
1362 /*
1363 * do not write anything to disk if using
1364 * nonpersistent superblocks
1365 */
06d91a5f
N
1366 if (!mddev->persistent) {
1367 mddev->sb_dirty = 0;
1368 spin_unlock(&mddev->write_lock);
3d310eb7 1369 wake_up(&mddev->sb_wait);
1da177e4 1370 return;
06d91a5f
N
1371 }
1372 spin_unlock(&mddev->write_lock);
1da177e4
LT
1373
1374 dprintk(KERN_INFO
1375 "md: updating %s RAID superblock on device (in sync %d)\n",
1376 mdname(mddev),mddev->in_sync);
1377
32a7627c 1378 err = bitmap_update_sb(mddev->bitmap);
1da177e4
LT
1379 ITERATE_RDEV(mddev,rdev,tmp) {
1380 char b[BDEVNAME_SIZE];
1381 dprintk(KERN_INFO "md: ");
1382 if (rdev->faulty)
1383 dprintk("(skipping faulty ");
1384
1385 dprintk("%s ", bdevname(rdev->bdev,b));
1386 if (!rdev->faulty) {
7bfa19f2 1387 md_super_write(mddev,rdev,
0002b271 1388 rdev->sb_offset<<1, rdev->sb_size,
7bfa19f2
N
1389 rdev->sb_page);
1390 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1391 bdevname(rdev->bdev,b),
1392 (unsigned long long)rdev->sb_offset);
1393
1da177e4
LT
1394 } else
1395 dprintk(")\n");
7bfa19f2 1396 if (mddev->level == LEVEL_MULTIPATH)
1da177e4
LT
1397 /* only need to write one superblock... */
1398 break;
1399 }
7bfa19f2
N
1400 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1401 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1402
06d91a5f 1403 spin_lock(&mddev->write_lock);
7bfa19f2 1404 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
06d91a5f
N
1405 /* have to write it out again */
1406 spin_unlock(&mddev->write_lock);
1407 goto repeat;
1408 }
1409 mddev->sb_dirty = 0;
1410 spin_unlock(&mddev->write_lock);
3d310eb7 1411 wake_up(&mddev->sb_wait);
06d91a5f 1412
1da177e4
LT
1413}
1414
1415/*
1416 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1417 *
1418 * mark the device faulty if:
1419 *
1420 * - the device is nonexistent (zero size)
1421 * - the device has no valid superblock
1422 *
1423 * a faulty rdev _never_ has rdev->sb set.
1424 */
1425static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1426{
1427 char b[BDEVNAME_SIZE];
1428 int err;
1429 mdk_rdev_t *rdev;
1430 sector_t size;
1431
1432 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1433 if (!rdev) {
1434 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1435 return ERR_PTR(-ENOMEM);
1436 }
1437 memset(rdev, 0, sizeof(*rdev));
1438
1439 if ((err = alloc_disk_sb(rdev)))
1440 goto abort_free;
1441
1442 err = lock_rdev(rdev, newdev);
1443 if (err)
1444 goto abort_free;
1445
1446 rdev->desc_nr = -1;
1447 rdev->faulty = 0;
1448 rdev->in_sync = 0;
1449 rdev->data_offset = 0;
1450 atomic_set(&rdev->nr_pending, 0);
1451
1452 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1453 if (!size) {
1454 printk(KERN_WARNING
1455 "md: %s has zero or unknown size, marking faulty!\n",
1456 bdevname(rdev->bdev,b));
1457 err = -EINVAL;
1458 goto abort_free;
1459 }
1460
1461 if (super_format >= 0) {
1462 err = super_types[super_format].
1463 load_super(rdev, NULL, super_minor);
1464 if (err == -EINVAL) {
1465 printk(KERN_WARNING
1466 "md: %s has invalid sb, not importing!\n",
1467 bdevname(rdev->bdev,b));
1468 goto abort_free;
1469 }
1470 if (err < 0) {
1471 printk(KERN_WARNING
1472 "md: could not read %s's sb, not importing!\n",
1473 bdevname(rdev->bdev,b));
1474 goto abort_free;
1475 }
1476 }
1477 INIT_LIST_HEAD(&rdev->same_set);
1478
1479 return rdev;
1480
1481abort_free:
1482 if (rdev->sb_page) {
1483 if (rdev->bdev)
1484 unlock_rdev(rdev);
1485 free_disk_sb(rdev);
1486 }
1487 kfree(rdev);
1488 return ERR_PTR(err);
1489}
1490
1491/*
1492 * Check a full RAID array for plausibility
1493 */
1494
1495
a757e64c 1496static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1497{
1498 int i;
1499 struct list_head *tmp;
1500 mdk_rdev_t *rdev, *freshest;
1501 char b[BDEVNAME_SIZE];
1502
1503 freshest = NULL;
1504 ITERATE_RDEV(mddev,rdev,tmp)
1505 switch (super_types[mddev->major_version].
1506 load_super(rdev, freshest, mddev->minor_version)) {
1507 case 1:
1508 freshest = rdev;
1509 break;
1510 case 0:
1511 break;
1512 default:
1513 printk( KERN_ERR \
1514 "md: fatal superblock inconsistency in %s"
1515 " -- removing from array\n",
1516 bdevname(rdev->bdev,b));
1517 kick_rdev_from_array(rdev);
1518 }
1519
1520
1521 super_types[mddev->major_version].
1522 validate_super(mddev, freshest);
1523
1524 i = 0;
1525 ITERATE_RDEV(mddev,rdev,tmp) {
1526 if (rdev != freshest)
1527 if (super_types[mddev->major_version].
1528 validate_super(mddev, rdev)) {
1529 printk(KERN_WARNING "md: kicking non-fresh %s"
1530 " from array!\n",
1531 bdevname(rdev->bdev,b));
1532 kick_rdev_from_array(rdev);
1533 continue;
1534 }
1535 if (mddev->level == LEVEL_MULTIPATH) {
1536 rdev->desc_nr = i++;
1537 rdev->raid_disk = rdev->desc_nr;
1538 rdev->in_sync = 1;
1539 }
1540 }
1541
1542
1543
1544 if (mddev->recovery_cp != MaxSector &&
1545 mddev->level >= 1)
1546 printk(KERN_ERR "md: %s: raid array is not clean"
1547 " -- starting background reconstruction\n",
1548 mdname(mddev));
1549
1da177e4
LT
1550}
1551
1552int mdp_major = 0;
1553
1554static struct kobject *md_probe(dev_t dev, int *part, void *data)
1555{
1556 static DECLARE_MUTEX(disks_sem);
1557 mddev_t *mddev = mddev_find(dev);
1558 struct gendisk *disk;
1559 int partitioned = (MAJOR(dev) != MD_MAJOR);
1560 int shift = partitioned ? MdpMinorShift : 0;
1561 int unit = MINOR(dev) >> shift;
1562
1563 if (!mddev)
1564 return NULL;
1565
1566 down(&disks_sem);
1567 if (mddev->gendisk) {
1568 up(&disks_sem);
1569 mddev_put(mddev);
1570 return NULL;
1571 }
1572 disk = alloc_disk(1 << shift);
1573 if (!disk) {
1574 up(&disks_sem);
1575 mddev_put(mddev);
1576 return NULL;
1577 }
1578 disk->major = MAJOR(dev);
1579 disk->first_minor = unit << shift;
1580 if (partitioned) {
1581 sprintf(disk->disk_name, "md_d%d", unit);
1582 sprintf(disk->devfs_name, "md/d%d", unit);
1583 } else {
1584 sprintf(disk->disk_name, "md%d", unit);
1585 sprintf(disk->devfs_name, "md/%d", unit);
1586 }
1587 disk->fops = &md_fops;
1588 disk->private_data = mddev;
1589 disk->queue = mddev->queue;
1590 add_disk(disk);
1591 mddev->gendisk = disk;
1592 up(&disks_sem);
1593 return NULL;
1594}
1595
1596void md_wakeup_thread(mdk_thread_t *thread);
1597
1598static void md_safemode_timeout(unsigned long data)
1599{
1600 mddev_t *mddev = (mddev_t *) data;
1601
1602 mddev->safemode = 1;
1603 md_wakeup_thread(mddev->thread);
1604}
1605
1606
1607static int do_md_run(mddev_t * mddev)
1608{
1609 int pnum, err;
1610 int chunk_size;
1611 struct list_head *tmp;
1612 mdk_rdev_t *rdev;
1613 struct gendisk *disk;
1614 char b[BDEVNAME_SIZE];
1615
a757e64c
N
1616 if (list_empty(&mddev->disks))
1617 /* cannot run an array with no devices.. */
1da177e4 1618 return -EINVAL;
1da177e4
LT
1619
1620 if (mddev->pers)
1621 return -EBUSY;
1622
1623 /*
1624 * Analyze all RAID superblock(s)
1625 */
a757e64c
N
1626 if (!mddev->raid_disks)
1627 analyze_sbs(mddev);
1da177e4
LT
1628
1629 chunk_size = mddev->chunk_size;
1630 pnum = level_to_pers(mddev->level);
1631
1632 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1633 if (!chunk_size) {
1634 /*
1635 * 'default chunksize' in the old md code used to
1636 * be PAGE_SIZE, baaad.
1637 * we abort here to be on the safe side. We don't
1638 * want to continue the bad practice.
1639 */
1640 printk(KERN_ERR
1641 "no chunksize specified, see 'man raidtab'\n");
1642 return -EINVAL;
1643 }
1644 if (chunk_size > MAX_CHUNK_SIZE) {
1645 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1646 chunk_size, MAX_CHUNK_SIZE);
1647 return -EINVAL;
1648 }
1649 /*
1650 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1651 */
1652 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1653 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1654 return -EINVAL;
1655 }
1656 if (chunk_size < PAGE_SIZE) {
1657 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1658 chunk_size, PAGE_SIZE);
1659 return -EINVAL;
1660 }
1661
1662 /* devices must have minimum size of one chunk */
1663 ITERATE_RDEV(mddev,rdev,tmp) {
1664 if (rdev->faulty)
1665 continue;
1666 if (rdev->size < chunk_size / 1024) {
1667 printk(KERN_WARNING
1668 "md: Dev %s smaller than chunk_size:"
1669 " %lluk < %dk\n",
1670 bdevname(rdev->bdev,b),
1671 (unsigned long long)rdev->size,
1672 chunk_size / 1024);
1673 return -EINVAL;
1674 }
1675 }
1676 }
1677
1da177e4
LT
1678#ifdef CONFIG_KMOD
1679 if (!pers[pnum])
1680 {
1681 request_module("md-personality-%d", pnum);
1682 }
1683#endif
1684
1685 /*
1686 * Drop all container device buffers, from now on
1687 * the only valid external interface is through the md
1688 * device.
1689 * Also find largest hardsector size
1690 */
1691 ITERATE_RDEV(mddev,rdev,tmp) {
1692 if (rdev->faulty)
1693 continue;
1694 sync_blockdev(rdev->bdev);
1695 invalidate_bdev(rdev->bdev, 0);
1696 }
1697
1698 md_probe(mddev->unit, NULL, NULL);
1699 disk = mddev->gendisk;
1700 if (!disk)
1701 return -ENOMEM;
1702
1703 spin_lock(&pers_lock);
1704 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1705 spin_unlock(&pers_lock);
1706 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1707 pnum);
1708 return -EINVAL;
1709 }
1710
1711 mddev->pers = pers[pnum];
1712 spin_unlock(&pers_lock);
1713
657390d2 1714 mddev->recovery = 0;
1da177e4
LT
1715 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1716
32a7627c
N
1717 /* before we start the array running, initialise the bitmap */
1718 err = bitmap_create(mddev);
1719 if (err)
1720 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1721 mdname(mddev), err);
1722 else
1723 err = mddev->pers->run(mddev);
1da177e4
LT
1724 if (err) {
1725 printk(KERN_ERR "md: pers->run() failed ...\n");
1726 module_put(mddev->pers->owner);
1727 mddev->pers = NULL;
32a7627c
N
1728 bitmap_destroy(mddev);
1729 return err;
1da177e4
LT
1730 }
1731 atomic_set(&mddev->writes_pending,0);
1732 mddev->safemode = 0;
1733 mddev->safemode_timer.function = md_safemode_timeout;
1734 mddev->safemode_timer.data = (unsigned long) mddev;
1735 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1736 mddev->in_sync = 1;
1737
1738 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 1739 md_wakeup_thread(mddev->thread);
1da177e4
LT
1740
1741 if (mddev->sb_dirty)
1742 md_update_sb(mddev);
1743
1744 set_capacity(disk, mddev->array_size<<1);
1745
1746 /* If we call blk_queue_make_request here, it will
1747 * re-initialise max_sectors etc which may have been
1748 * refined inside -> run. So just set the bits we need to set.
1749 * Most initialisation happended when we called
1750 * blk_queue_make_request(..., md_fail_request)
1751 * earlier.
1752 */
1753 mddev->queue->queuedata = mddev;
1754 mddev->queue->make_request_fn = mddev->pers->make_request;
1755
1756 mddev->changed = 1;
1757 return 0;
1758}
1759
1760static int restart_array(mddev_t *mddev)
1761{
1762 struct gendisk *disk = mddev->gendisk;
1763 int err;
1764
1765 /*
1766 * Complain if it has no devices
1767 */
1768 err = -ENXIO;
1769 if (list_empty(&mddev->disks))
1770 goto out;
1771
1772 if (mddev->pers) {
1773 err = -EBUSY;
1774 if (!mddev->ro)
1775 goto out;
1776
1777 mddev->safemode = 0;
1778 mddev->ro = 0;
1779 set_disk_ro(disk, 0);
1780
1781 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1782 mdname(mddev));
1783 /*
1784 * Kick recovery or resync if necessary
1785 */
1786 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1787 md_wakeup_thread(mddev->thread);
1788 err = 0;
1789 } else {
1790 printk(KERN_ERR "md: %s has no personality assigned.\n",
1791 mdname(mddev));
1792 err = -EINVAL;
1793 }
1794
1795out:
1796 return err;
1797}
1798
1799static int do_md_stop(mddev_t * mddev, int ro)
1800{
1801 int err = 0;
1802 struct gendisk *disk = mddev->gendisk;
1803
1804 if (mddev->pers) {
1805 if (atomic_read(&mddev->active)>2) {
1806 printk("md: %s still in use.\n",mdname(mddev));
1807 return -EBUSY;
1808 }
1809
1810 if (mddev->sync_thread) {
1811 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1812 md_unregister_thread(mddev->sync_thread);
1813 mddev->sync_thread = NULL;
1814 }
1815
1816 del_timer_sync(&mddev->safemode_timer);
1817
1818 invalidate_partition(disk, 0);
1819
1820 if (ro) {
1821 err = -ENXIO;
1822 if (mddev->ro)
1823 goto out;
1824 mddev->ro = 1;
1825 } else {
6b8b3e8a
N
1826 bitmap_flush(mddev);
1827 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1da177e4
LT
1828 if (mddev->ro)
1829 set_disk_ro(disk, 0);
1830 blk_queue_make_request(mddev->queue, md_fail_request);
1831 mddev->pers->stop(mddev);
1832 module_put(mddev->pers->owner);
1833 mddev->pers = NULL;
1834 if (mddev->ro)
1835 mddev->ro = 0;
1836 }
1837 if (!mddev->in_sync) {
1838 /* mark array as shutdown cleanly */
1839 mddev->in_sync = 1;
1840 md_update_sb(mddev);
1841 }
1842 if (ro)
1843 set_disk_ro(disk, 1);
1844 }
32a7627c
N
1845
1846 bitmap_destroy(mddev);
1847 if (mddev->bitmap_file) {
1848 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1849 fput(mddev->bitmap_file);
1850 mddev->bitmap_file = NULL;
1851 }
9223214e 1852 mddev->bitmap_offset = 0;
32a7627c 1853
1da177e4
LT
1854 /*
1855 * Free resources if final stop
1856 */
1857 if (!ro) {
1858 struct gendisk *disk;
1859 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1860
1861 export_array(mddev);
1862
1863 mddev->array_size = 0;
1864 disk = mddev->gendisk;
1865 if (disk)
1866 set_capacity(disk, 0);
1867 mddev->changed = 1;
1868 } else
1869 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1870 mdname(mddev));
1871 err = 0;
1872out:
1873 return err;
1874}
1875
1876static void autorun_array(mddev_t *mddev)
1877{
1878 mdk_rdev_t *rdev;
1879 struct list_head *tmp;
1880 int err;
1881
a757e64c 1882 if (list_empty(&mddev->disks))
1da177e4 1883 return;
1da177e4
LT
1884
1885 printk(KERN_INFO "md: running: ");
1886
1887 ITERATE_RDEV(mddev,rdev,tmp) {
1888 char b[BDEVNAME_SIZE];
1889 printk("<%s>", bdevname(rdev->bdev,b));
1890 }
1891 printk("\n");
1892
1893 err = do_md_run (mddev);
1894 if (err) {
1895 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1896 do_md_stop (mddev, 0);
1897 }
1898}
1899
1900/*
1901 * lets try to run arrays based on all disks that have arrived
1902 * until now. (those are in pending_raid_disks)
1903 *
1904 * the method: pick the first pending disk, collect all disks with
1905 * the same UUID, remove all from the pending list and put them into
1906 * the 'same_array' list. Then order this list based on superblock
1907 * update time (freshest comes first), kick out 'old' disks and
1908 * compare superblocks. If everything's fine then run it.
1909 *
1910 * If "unit" is allocated, then bump its reference count
1911 */
1912static void autorun_devices(int part)
1913{
1914 struct list_head candidates;
1915 struct list_head *tmp;
1916 mdk_rdev_t *rdev0, *rdev;
1917 mddev_t *mddev;
1918 char b[BDEVNAME_SIZE];
1919
1920 printk(KERN_INFO "md: autorun ...\n");
1921 while (!list_empty(&pending_raid_disks)) {
1922 dev_t dev;
1923 rdev0 = list_entry(pending_raid_disks.next,
1924 mdk_rdev_t, same_set);
1925
1926 printk(KERN_INFO "md: considering %s ...\n",
1927 bdevname(rdev0->bdev,b));
1928 INIT_LIST_HEAD(&candidates);
1929 ITERATE_RDEV_PENDING(rdev,tmp)
1930 if (super_90_load(rdev, rdev0, 0) >= 0) {
1931 printk(KERN_INFO "md: adding %s ...\n",
1932 bdevname(rdev->bdev,b));
1933 list_move(&rdev->same_set, &candidates);
1934 }
1935 /*
1936 * now we have a set of devices, with all of them having
1937 * mostly sane superblocks. It's time to allocate the
1938 * mddev.
1939 */
1940 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1941 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1942 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1943 break;
1944 }
1945 if (part)
1946 dev = MKDEV(mdp_major,
1947 rdev0->preferred_minor << MdpMinorShift);
1948 else
1949 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1950
1951 md_probe(dev, NULL, NULL);
1952 mddev = mddev_find(dev);
1953 if (!mddev) {
1954 printk(KERN_ERR
1955 "md: cannot allocate memory for md drive.\n");
1956 break;
1957 }
1958 if (mddev_lock(mddev))
1959 printk(KERN_WARNING "md: %s locked, cannot run\n",
1960 mdname(mddev));
1961 else if (mddev->raid_disks || mddev->major_version
1962 || !list_empty(&mddev->disks)) {
1963 printk(KERN_WARNING
1964 "md: %s already running, cannot run %s\n",
1965 mdname(mddev), bdevname(rdev0->bdev,b));
1966 mddev_unlock(mddev);
1967 } else {
1968 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1969 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1970 list_del_init(&rdev->same_set);
1971 if (bind_rdev_to_array(rdev, mddev))
1972 export_rdev(rdev);
1973 }
1974 autorun_array(mddev);
1975 mddev_unlock(mddev);
1976 }
1977 /* on success, candidates will be empty, on error
1978 * it won't...
1979 */
1980 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1981 export_rdev(rdev);
1982 mddev_put(mddev);
1983 }
1984 printk(KERN_INFO "md: ... autorun DONE.\n");
1985}
1986
1987/*
1988 * import RAID devices based on one partition
1989 * if possible, the array gets run as well.
1990 */
1991
1992static int autostart_array(dev_t startdev)
1993{
1994 char b[BDEVNAME_SIZE];
1995 int err = -EINVAL, i;
1996 mdp_super_t *sb = NULL;
1997 mdk_rdev_t *start_rdev = NULL, *rdev;
1998
1999 start_rdev = md_import_device(startdev, 0, 0);
2000 if (IS_ERR(start_rdev))
2001 return err;
2002
2003
2004 /* NOTE: this can only work for 0.90.0 superblocks */
2005 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2006 if (sb->major_version != 0 ||
2007 sb->minor_version != 90 ) {
2008 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2009 export_rdev(start_rdev);
2010 return err;
2011 }
2012
2013 if (start_rdev->faulty) {
2014 printk(KERN_WARNING
2015 "md: can not autostart based on faulty %s!\n",
2016 bdevname(start_rdev->bdev,b));
2017 export_rdev(start_rdev);
2018 return err;
2019 }
2020 list_add(&start_rdev->same_set, &pending_raid_disks);
2021
2022 for (i = 0; i < MD_SB_DISKS; i++) {
2023 mdp_disk_t *desc = sb->disks + i;
2024 dev_t dev = MKDEV(desc->major, desc->minor);
2025
2026 if (!dev)
2027 continue;
2028 if (dev == startdev)
2029 continue;
2030 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2031 continue;
2032 rdev = md_import_device(dev, 0, 0);
2033 if (IS_ERR(rdev))
2034 continue;
2035
2036 list_add(&rdev->same_set, &pending_raid_disks);
2037 }
2038
2039 /*
2040 * possibly return codes
2041 */
2042 autorun_devices(0);
2043 return 0;
2044
2045}
2046
2047
2048static int get_version(void __user * arg)
2049{
2050 mdu_version_t ver;
2051
2052 ver.major = MD_MAJOR_VERSION;
2053 ver.minor = MD_MINOR_VERSION;
2054 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2055
2056 if (copy_to_user(arg, &ver, sizeof(ver)))
2057 return -EFAULT;
2058
2059 return 0;
2060}
2061
2062static int get_array_info(mddev_t * mddev, void __user * arg)
2063{
2064 mdu_array_info_t info;
2065 int nr,working,active,failed,spare;
2066 mdk_rdev_t *rdev;
2067 struct list_head *tmp;
2068
2069 nr=working=active=failed=spare=0;
2070 ITERATE_RDEV(mddev,rdev,tmp) {
2071 nr++;
2072 if (rdev->faulty)
2073 failed++;
2074 else {
2075 working++;
2076 if (rdev->in_sync)
2077 active++;
2078 else
2079 spare++;
2080 }
2081 }
2082
2083 info.major_version = mddev->major_version;
2084 info.minor_version = mddev->minor_version;
2085 info.patch_version = MD_PATCHLEVEL_VERSION;
2086 info.ctime = mddev->ctime;
2087 info.level = mddev->level;
2088 info.size = mddev->size;
2089 info.nr_disks = nr;
2090 info.raid_disks = mddev->raid_disks;
2091 info.md_minor = mddev->md_minor;
2092 info.not_persistent= !mddev->persistent;
2093
2094 info.utime = mddev->utime;
2095 info.state = 0;
2096 if (mddev->in_sync)
2097 info.state = (1<<MD_SB_CLEAN);
36fa3063
N
2098 if (mddev->bitmap && mddev->bitmap_offset)
2099 info.state = (1<<MD_SB_BITMAP_PRESENT);
1da177e4
LT
2100 info.active_disks = active;
2101 info.working_disks = working;
2102 info.failed_disks = failed;
2103 info.spare_disks = spare;
2104
2105 info.layout = mddev->layout;
2106 info.chunk_size = mddev->chunk_size;
2107
2108 if (copy_to_user(arg, &info, sizeof(info)))
2109 return -EFAULT;
2110
2111 return 0;
2112}
2113
87162a28 2114static int get_bitmap_file(mddev_t * mddev, void __user * arg)
32a7627c
N
2115{
2116 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2117 char *ptr, *buf = NULL;
2118 int err = -ENOMEM;
2119
2120 file = kmalloc(sizeof(*file), GFP_KERNEL);
2121 if (!file)
2122 goto out;
2123
2124 /* bitmap disabled, zero the first byte and copy out */
2125 if (!mddev->bitmap || !mddev->bitmap->file) {
2126 file->pathname[0] = '\0';
2127 goto copy_out;
2128 }
2129
2130 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2131 if (!buf)
2132 goto out;
2133
2134 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2135 if (!ptr)
2136 goto out;
2137
2138 strcpy(file->pathname, ptr);
2139
2140copy_out:
2141 err = 0;
2142 if (copy_to_user(arg, file, sizeof(*file)))
2143 err = -EFAULT;
2144out:
2145 kfree(buf);
2146 kfree(file);
2147 return err;
2148}
2149
1da177e4
LT
2150static int get_disk_info(mddev_t * mddev, void __user * arg)
2151{
2152 mdu_disk_info_t info;
2153 unsigned int nr;
2154 mdk_rdev_t *rdev;
2155
2156 if (copy_from_user(&info, arg, sizeof(info)))
2157 return -EFAULT;
2158
2159 nr = info.number;
2160
2161 rdev = find_rdev_nr(mddev, nr);
2162 if (rdev) {
2163 info.major = MAJOR(rdev->bdev->bd_dev);
2164 info.minor = MINOR(rdev->bdev->bd_dev);
2165 info.raid_disk = rdev->raid_disk;
2166 info.state = 0;
2167 if (rdev->faulty)
2168 info.state |= (1<<MD_DISK_FAULTY);
2169 else if (rdev->in_sync) {
2170 info.state |= (1<<MD_DISK_ACTIVE);
2171 info.state |= (1<<MD_DISK_SYNC);
2172 }
8ddf9efe
N
2173 if (test_bit(WriteMostly, &rdev->flags))
2174 info.state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4
LT
2175 } else {
2176 info.major = info.minor = 0;
2177 info.raid_disk = -1;
2178 info.state = (1<<MD_DISK_REMOVED);
2179 }
2180
2181 if (copy_to_user(arg, &info, sizeof(info)))
2182 return -EFAULT;
2183
2184 return 0;
2185}
2186
2187static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2188{
2189 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2190 mdk_rdev_t *rdev;
2191 dev_t dev = MKDEV(info->major,info->minor);
2192
2193 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2194 return -EOVERFLOW;
2195
2196 if (!mddev->raid_disks) {
2197 int err;
2198 /* expecting a device which has a superblock */
2199 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2200 if (IS_ERR(rdev)) {
2201 printk(KERN_WARNING
2202 "md: md_import_device returned %ld\n",
2203 PTR_ERR(rdev));
2204 return PTR_ERR(rdev);
2205 }
2206 if (!list_empty(&mddev->disks)) {
2207 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2208 mdk_rdev_t, same_set);
2209 int err = super_types[mddev->major_version]
2210 .load_super(rdev, rdev0, mddev->minor_version);
2211 if (err < 0) {
2212 printk(KERN_WARNING
2213 "md: %s has different UUID to %s\n",
2214 bdevname(rdev->bdev,b),
2215 bdevname(rdev0->bdev,b2));
2216 export_rdev(rdev);
2217 return -EINVAL;
2218 }
2219 }
2220 err = bind_rdev_to_array(rdev, mddev);
2221 if (err)
2222 export_rdev(rdev);
2223 return err;
2224 }
2225
2226 /*
2227 * add_new_disk can be used once the array is assembled
2228 * to add "hot spares". They must already have a superblock
2229 * written
2230 */
2231 if (mddev->pers) {
2232 int err;
2233 if (!mddev->pers->hot_add_disk) {
2234 printk(KERN_WARNING
2235 "%s: personality does not support diskops!\n",
2236 mdname(mddev));
2237 return -EINVAL;
2238 }
7b1e35f6
N
2239 if (mddev->persistent)
2240 rdev = md_import_device(dev, mddev->major_version,
2241 mddev->minor_version);
2242 else
2243 rdev = md_import_device(dev, -1, -1);
1da177e4
LT
2244 if (IS_ERR(rdev)) {
2245 printk(KERN_WARNING
2246 "md: md_import_device returned %ld\n",
2247 PTR_ERR(rdev));
2248 return PTR_ERR(rdev);
2249 }
41158c7e
N
2250 /* set save_raid_disk if appropriate */
2251 if (!mddev->persistent) {
2252 if (info->state & (1<<MD_DISK_SYNC) &&
2253 info->raid_disk < mddev->raid_disks)
2254 rdev->raid_disk = info->raid_disk;
2255 else
2256 rdev->raid_disk = -1;
2257 } else
2258 super_types[mddev->major_version].
2259 validate_super(mddev, rdev);
2260 rdev->saved_raid_disk = rdev->raid_disk;
2261
1da177e4 2262 rdev->in_sync = 0; /* just to be sure */
8ddf9efe
N
2263 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2264 set_bit(WriteMostly, &rdev->flags);
2265
1da177e4
LT
2266 rdev->raid_disk = -1;
2267 err = bind_rdev_to_array(rdev, mddev);
2268 if (err)
2269 export_rdev(rdev);
c361777f
N
2270
2271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 2272 md_wakeup_thread(mddev->thread);
1da177e4
LT
2273 return err;
2274 }
2275
2276 /* otherwise, add_new_disk is only allowed
2277 * for major_version==0 superblocks
2278 */
2279 if (mddev->major_version != 0) {
2280 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2281 mdname(mddev));
2282 return -EINVAL;
2283 }
2284
2285 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2286 int err;
2287 rdev = md_import_device (dev, -1, 0);
2288 if (IS_ERR(rdev)) {
2289 printk(KERN_WARNING
2290 "md: error, md_import_device() returned %ld\n",
2291 PTR_ERR(rdev));
2292 return PTR_ERR(rdev);
2293 }
2294 rdev->desc_nr = info->number;
2295 if (info->raid_disk < mddev->raid_disks)
2296 rdev->raid_disk = info->raid_disk;
2297 else
2298 rdev->raid_disk = -1;
2299
2300 rdev->faulty = 0;
2301 if (rdev->raid_disk < mddev->raid_disks)
2302 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2303 else
2304 rdev->in_sync = 0;
2305
8ddf9efe
N
2306 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2307 set_bit(WriteMostly, &rdev->flags);
2308
1da177e4
LT
2309 err = bind_rdev_to_array(rdev, mddev);
2310 if (err) {
2311 export_rdev(rdev);
2312 return err;
2313 }
2314
2315 if (!mddev->persistent) {
2316 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2317 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2318 } else
2319 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2320 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2321
2322 if (!mddev->size || (mddev->size > rdev->size))
2323 mddev->size = rdev->size;
2324 }
2325
2326 return 0;
2327}
2328
2329static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2330{
2331 char b[BDEVNAME_SIZE];
2332 mdk_rdev_t *rdev;
2333
2334 if (!mddev->pers)
2335 return -ENODEV;
2336
2337 rdev = find_rdev(mddev, dev);
2338 if (!rdev)
2339 return -ENXIO;
2340
2341 if (rdev->raid_disk >= 0)
2342 goto busy;
2343
2344 kick_rdev_from_array(rdev);
2345 md_update_sb(mddev);
2346
2347 return 0;
2348busy:
2349 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2350 bdevname(rdev->bdev,b), mdname(mddev));
2351 return -EBUSY;
2352}
2353
2354static int hot_add_disk(mddev_t * mddev, dev_t dev)
2355{
2356 char b[BDEVNAME_SIZE];
2357 int err;
2358 unsigned int size;
2359 mdk_rdev_t *rdev;
2360
2361 if (!mddev->pers)
2362 return -ENODEV;
2363
2364 if (mddev->major_version != 0) {
2365 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2366 " version-0 superblocks.\n",
2367 mdname(mddev));
2368 return -EINVAL;
2369 }
2370 if (!mddev->pers->hot_add_disk) {
2371 printk(KERN_WARNING
2372 "%s: personality does not support diskops!\n",
2373 mdname(mddev));
2374 return -EINVAL;
2375 }
2376
2377 rdev = md_import_device (dev, -1, 0);
2378 if (IS_ERR(rdev)) {
2379 printk(KERN_WARNING
2380 "md: error, md_import_device() returned %ld\n",
2381 PTR_ERR(rdev));
2382 return -EINVAL;
2383 }
2384
2385 if (mddev->persistent)
2386 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2387 else
2388 rdev->sb_offset =
2389 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2390
2391 size = calc_dev_size(rdev, mddev->chunk_size);
2392 rdev->size = size;
2393
2394 if (size < mddev->size) {
2395 printk(KERN_WARNING
2396 "%s: disk size %llu blocks < array size %llu\n",
2397 mdname(mddev), (unsigned long long)size,
2398 (unsigned long long)mddev->size);
2399 err = -ENOSPC;
2400 goto abort_export;
2401 }
2402
2403 if (rdev->faulty) {
2404 printk(KERN_WARNING
2405 "md: can not hot-add faulty %s disk to %s!\n",
2406 bdevname(rdev->bdev,b), mdname(mddev));
2407 err = -EINVAL;
2408 goto abort_export;
2409 }
2410 rdev->in_sync = 0;
2411 rdev->desc_nr = -1;
2412 bind_rdev_to_array(rdev, mddev);
2413
2414 /*
2415 * The rest should better be atomic, we can have disk failures
2416 * noticed in interrupt contexts ...
2417 */
2418
2419 if (rdev->desc_nr == mddev->max_disks) {
2420 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2421 mdname(mddev));
2422 err = -EBUSY;
2423 goto abort_unbind_export;
2424 }
2425
2426 rdev->raid_disk = -1;
2427
2428 md_update_sb(mddev);
2429
2430 /*
2431 * Kick recovery, maybe this spare has to be added to the
2432 * array immediately.
2433 */
2434 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2435 md_wakeup_thread(mddev->thread);
2436
2437 return 0;
2438
2439abort_unbind_export:
2440 unbind_rdev_from_array(rdev);
2441
2442abort_export:
2443 export_rdev(rdev);
2444 return err;
2445}
2446
32a7627c
N
2447/* similar to deny_write_access, but accounts for our holding a reference
2448 * to the file ourselves */
2449static int deny_bitmap_write_access(struct file * file)
2450{
2451 struct inode *inode = file->f_mapping->host;
2452
2453 spin_lock(&inode->i_lock);
2454 if (atomic_read(&inode->i_writecount) > 1) {
2455 spin_unlock(&inode->i_lock);
2456 return -ETXTBSY;
2457 }
2458 atomic_set(&inode->i_writecount, -1);
2459 spin_unlock(&inode->i_lock);
2460
2461 return 0;
2462}
2463
2464static int set_bitmap_file(mddev_t *mddev, int fd)
2465{
2466 int err;
2467
36fa3063
N
2468 if (mddev->pers) {
2469 if (!mddev->pers->quiesce)
2470 return -EBUSY;
2471 if (mddev->recovery || mddev->sync_thread)
2472 return -EBUSY;
2473 /* we should be able to change the bitmap.. */
2474 }
32a7627c 2475
32a7627c 2476
36fa3063
N
2477 if (fd >= 0) {
2478 if (mddev->bitmap)
2479 return -EEXIST; /* cannot add when bitmap is present */
2480 mddev->bitmap_file = fget(fd);
32a7627c 2481
36fa3063
N
2482 if (mddev->bitmap_file == NULL) {
2483 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2484 mdname(mddev));
2485 return -EBADF;
2486 }
2487
2488 err = deny_bitmap_write_access(mddev->bitmap_file);
2489 if (err) {
2490 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2491 mdname(mddev));
2492 fput(mddev->bitmap_file);
2493 mddev->bitmap_file = NULL;
2494 return err;
2495 }
a654b9d8 2496 mddev->bitmap_offset = 0; /* file overrides offset */
36fa3063
N
2497 } else if (mddev->bitmap == NULL)
2498 return -ENOENT; /* cannot remove what isn't there */
2499 err = 0;
2500 if (mddev->pers) {
2501 mddev->pers->quiesce(mddev, 1);
2502 if (fd >= 0)
2503 err = bitmap_create(mddev);
2504 if (fd < 0 || err)
2505 bitmap_destroy(mddev);
2506 mddev->pers->quiesce(mddev, 0);
2507 } else if (fd < 0) {
2508 if (mddev->bitmap_file)
2509 fput(mddev->bitmap_file);
2510 mddev->bitmap_file = NULL;
2511 }
2512
32a7627c
N
2513 return err;
2514}
2515
1da177e4
LT
2516/*
2517 * set_array_info is used two different ways
2518 * The original usage is when creating a new array.
2519 * In this usage, raid_disks is > 0 and it together with
2520 * level, size, not_persistent,layout,chunksize determine the
2521 * shape of the array.
2522 * This will always create an array with a type-0.90.0 superblock.
2523 * The newer usage is when assembling an array.
2524 * In this case raid_disks will be 0, and the major_version field is
2525 * use to determine which style super-blocks are to be found on the devices.
2526 * The minor and patch _version numbers are also kept incase the
2527 * super_block handler wishes to interpret them.
2528 */
2529static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2530{
2531
2532 if (info->raid_disks == 0) {
2533 /* just setting version number for superblock loading */
2534 if (info->major_version < 0 ||
2535 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2536 super_types[info->major_version].name == NULL) {
2537 /* maybe try to auto-load a module? */
2538 printk(KERN_INFO
2539 "md: superblock version %d not known\n",
2540 info->major_version);
2541 return -EINVAL;
2542 }
2543 mddev->major_version = info->major_version;
2544 mddev->minor_version = info->minor_version;
2545 mddev->patch_version = info->patch_version;
2546 return 0;
2547 }
2548 mddev->major_version = MD_MAJOR_VERSION;
2549 mddev->minor_version = MD_MINOR_VERSION;
2550 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2551 mddev->ctime = get_seconds();
2552
2553 mddev->level = info->level;
2554 mddev->size = info->size;
2555 mddev->raid_disks = info->raid_disks;
2556 /* don't set md_minor, it is determined by which /dev/md* was
2557 * openned
2558 */
2559 if (info->state & (1<<MD_SB_CLEAN))
2560 mddev->recovery_cp = MaxSector;
2561 else
2562 mddev->recovery_cp = 0;
2563 mddev->persistent = ! info->not_persistent;
2564
2565 mddev->layout = info->layout;
2566 mddev->chunk_size = info->chunk_size;
2567
2568 mddev->max_disks = MD_SB_DISKS;
2569
2570 mddev->sb_dirty = 1;
2571
2572 /*
2573 * Generate a 128 bit UUID
2574 */
2575 get_random_bytes(mddev->uuid, 16);
2576
2577 return 0;
2578}
2579
2580/*
2581 * update_array_info is used to change the configuration of an
2582 * on-line array.
2583 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2584 * fields in the info are checked against the array.
2585 * Any differences that cannot be handled will cause an error.
2586 * Normally, only one change can be managed at a time.
2587 */
2588static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2589{
2590 int rv = 0;
2591 int cnt = 0;
36fa3063
N
2592 int state = 0;
2593
2594 /* calculate expected state,ignoring low bits */
2595 if (mddev->bitmap && mddev->bitmap_offset)
2596 state |= (1 << MD_SB_BITMAP_PRESENT);
1da177e4
LT
2597
2598 if (mddev->major_version != info->major_version ||
2599 mddev->minor_version != info->minor_version ||
2600/* mddev->patch_version != info->patch_version || */
2601 mddev->ctime != info->ctime ||
2602 mddev->level != info->level ||
2603/* mddev->layout != info->layout || */
2604 !mddev->persistent != info->not_persistent||
36fa3063
N
2605 mddev->chunk_size != info->chunk_size ||
2606 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2607 ((state^info->state) & 0xfffffe00)
2608 )
1da177e4
LT
2609 return -EINVAL;
2610 /* Check there is only one change */
2611 if (mddev->size != info->size) cnt++;
2612 if (mddev->raid_disks != info->raid_disks) cnt++;
2613 if (mddev->layout != info->layout) cnt++;
36fa3063 2614 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
1da177e4
LT
2615 if (cnt == 0) return 0;
2616 if (cnt > 1) return -EINVAL;
2617
2618 if (mddev->layout != info->layout) {
2619 /* Change layout
2620 * we don't need to do anything at the md level, the
2621 * personality will take care of it all.
2622 */
2623 if (mddev->pers->reconfig == NULL)
2624 return -EINVAL;
2625 else
2626 return mddev->pers->reconfig(mddev, info->layout, -1);
2627 }
2628 if (mddev->size != info->size) {
2629 mdk_rdev_t * rdev;
2630 struct list_head *tmp;
2631 if (mddev->pers->resize == NULL)
2632 return -EINVAL;
2633 /* The "size" is the amount of each device that is used.
2634 * This can only make sense for arrays with redundancy.
2635 * linear and raid0 always use whatever space is available
2636 * We can only consider changing the size if no resync
2637 * or reconstruction is happening, and if the new size
2638 * is acceptable. It must fit before the sb_offset or,
2639 * if that is <data_offset, it must fit before the
2640 * size of each device.
2641 * If size is zero, we find the largest size that fits.
2642 */
2643 if (mddev->sync_thread)
2644 return -EBUSY;
2645 ITERATE_RDEV(mddev,rdev,tmp) {
2646 sector_t avail;
2647 int fit = (info->size == 0);
2648 if (rdev->sb_offset > rdev->data_offset)
2649 avail = (rdev->sb_offset*2) - rdev->data_offset;
2650 else
2651 avail = get_capacity(rdev->bdev->bd_disk)
2652 - rdev->data_offset;
2653 if (fit && (info->size == 0 || info->size > avail/2))
2654 info->size = avail/2;
2655 if (avail < ((sector_t)info->size << 1))
2656 return -ENOSPC;
2657 }
2658 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2659 if (!rv) {
2660 struct block_device *bdev;
2661
2662 bdev = bdget_disk(mddev->gendisk, 0);
2663 if (bdev) {
2664 down(&bdev->bd_inode->i_sem);
2665 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2666 up(&bdev->bd_inode->i_sem);
2667 bdput(bdev);
2668 }
2669 }
2670 }
2671 if (mddev->raid_disks != info->raid_disks) {
2672 /* change the number of raid disks */
2673 if (mddev->pers->reshape == NULL)
2674 return -EINVAL;
2675 if (info->raid_disks <= 0 ||
2676 info->raid_disks >= mddev->max_disks)
2677 return -EINVAL;
2678 if (mddev->sync_thread)
2679 return -EBUSY;
2680 rv = mddev->pers->reshape(mddev, info->raid_disks);
2681 if (!rv) {
2682 struct block_device *bdev;
2683
2684 bdev = bdget_disk(mddev->gendisk, 0);
2685 if (bdev) {
2686 down(&bdev->bd_inode->i_sem);
2687 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2688 up(&bdev->bd_inode->i_sem);
2689 bdput(bdev);
2690 }
2691 }
2692 }
36fa3063
N
2693 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2694 if (mddev->pers->quiesce == NULL)
2695 return -EINVAL;
2696 if (mddev->recovery || mddev->sync_thread)
2697 return -EBUSY;
2698 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2699 /* add the bitmap */
2700 if (mddev->bitmap)
2701 return -EEXIST;
2702 if (mddev->default_bitmap_offset == 0)
2703 return -EINVAL;
2704 mddev->bitmap_offset = mddev->default_bitmap_offset;
2705 mddev->pers->quiesce(mddev, 1);
2706 rv = bitmap_create(mddev);
2707 if (rv)
2708 bitmap_destroy(mddev);
2709 mddev->pers->quiesce(mddev, 0);
2710 } else {
2711 /* remove the bitmap */
2712 if (!mddev->bitmap)
2713 return -ENOENT;
2714 if (mddev->bitmap->file)
2715 return -EINVAL;
2716 mddev->pers->quiesce(mddev, 1);
2717 bitmap_destroy(mddev);
2718 mddev->pers->quiesce(mddev, 0);
2719 mddev->bitmap_offset = 0;
2720 }
2721 }
1da177e4
LT
2722 md_update_sb(mddev);
2723 return rv;
2724}
2725
2726static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2727{
2728 mdk_rdev_t *rdev;
2729
2730 if (mddev->pers == NULL)
2731 return -ENODEV;
2732
2733 rdev = find_rdev(mddev, dev);
2734 if (!rdev)
2735 return -ENODEV;
2736
2737 md_error(mddev, rdev);
2738 return 0;
2739}
2740
2741static int md_ioctl(struct inode *inode, struct file *file,
2742 unsigned int cmd, unsigned long arg)
2743{
2744 int err = 0;
2745 void __user *argp = (void __user *)arg;
2746 struct hd_geometry __user *loc = argp;
2747 mddev_t *mddev = NULL;
2748
2749 if (!capable(CAP_SYS_ADMIN))
2750 return -EACCES;
2751
2752 /*
2753 * Commands dealing with the RAID driver but not any
2754 * particular array:
2755 */
2756 switch (cmd)
2757 {
2758 case RAID_VERSION:
2759 err = get_version(argp);
2760 goto done;
2761
2762 case PRINT_RAID_DEBUG:
2763 err = 0;
2764 md_print_devices();
2765 goto done;
2766
2767#ifndef MODULE
2768 case RAID_AUTORUN:
2769 err = 0;
2770 autostart_arrays(arg);
2771 goto done;
2772#endif
2773 default:;
2774 }
2775
2776 /*
2777 * Commands creating/starting a new array:
2778 */
2779
2780 mddev = inode->i_bdev->bd_disk->private_data;
2781
2782 if (!mddev) {
2783 BUG();
2784 goto abort;
2785 }
2786
2787
2788 if (cmd == START_ARRAY) {
2789 /* START_ARRAY doesn't need to lock the array as autostart_array
2790 * does the locking, and it could even be a different array
2791 */
2792 static int cnt = 3;
2793 if (cnt > 0 ) {
2794 printk(KERN_WARNING
2795 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2796 "This will not be supported beyond 2.6\n",
2797 current->comm, current->pid);
2798 cnt--;
2799 }
2800 err = autostart_array(new_decode_dev(arg));
2801 if (err) {
2802 printk(KERN_WARNING "md: autostart failed!\n");
2803 goto abort;
2804 }
2805 goto done;
2806 }
2807
2808 err = mddev_lock(mddev);
2809 if (err) {
2810 printk(KERN_INFO
2811 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2812 err, cmd);
2813 goto abort;
2814 }
2815
2816 switch (cmd)
2817 {
2818 case SET_ARRAY_INFO:
2819 {
2820 mdu_array_info_t info;
2821 if (!arg)
2822 memset(&info, 0, sizeof(info));
2823 else if (copy_from_user(&info, argp, sizeof(info))) {
2824 err = -EFAULT;
2825 goto abort_unlock;
2826 }
2827 if (mddev->pers) {
2828 err = update_array_info(mddev, &info);
2829 if (err) {
2830 printk(KERN_WARNING "md: couldn't update"
2831 " array info. %d\n", err);
2832 goto abort_unlock;
2833 }
2834 goto done_unlock;
2835 }
2836 if (!list_empty(&mddev->disks)) {
2837 printk(KERN_WARNING
2838 "md: array %s already has disks!\n",
2839 mdname(mddev));
2840 err = -EBUSY;
2841 goto abort_unlock;
2842 }
2843 if (mddev->raid_disks) {
2844 printk(KERN_WARNING
2845 "md: array %s already initialised!\n",
2846 mdname(mddev));
2847 err = -EBUSY;
2848 goto abort_unlock;
2849 }
2850 err = set_array_info(mddev, &info);
2851 if (err) {
2852 printk(KERN_WARNING "md: couldn't set"
2853 " array info. %d\n", err);
2854 goto abort_unlock;
2855 }
2856 }
2857 goto done_unlock;
2858
2859 default:;
2860 }
2861
2862 /*
2863 * Commands querying/configuring an existing array:
2864 */
32a7627c
N
2865 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2866 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2867 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2868 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
1da177e4
LT
2869 err = -ENODEV;
2870 goto abort_unlock;
2871 }
2872
2873 /*
2874 * Commands even a read-only array can execute:
2875 */
2876 switch (cmd)
2877 {
2878 case GET_ARRAY_INFO:
2879 err = get_array_info(mddev, argp);
2880 goto done_unlock;
2881
32a7627c 2882 case GET_BITMAP_FILE:
87162a28 2883 err = get_bitmap_file(mddev, argp);
32a7627c
N
2884 goto done_unlock;
2885
1da177e4
LT
2886 case GET_DISK_INFO:
2887 err = get_disk_info(mddev, argp);
2888 goto done_unlock;
2889
2890 case RESTART_ARRAY_RW:
2891 err = restart_array(mddev);
2892 goto done_unlock;
2893
2894 case STOP_ARRAY:
2895 err = do_md_stop (mddev, 0);
2896 goto done_unlock;
2897
2898 case STOP_ARRAY_RO:
2899 err = do_md_stop (mddev, 1);
2900 goto done_unlock;
2901
2902 /*
2903 * We have a problem here : there is no easy way to give a CHS
2904 * virtual geometry. We currently pretend that we have a 2 heads
2905 * 4 sectors (with a BIG number of cylinders...). This drives
2906 * dosfs just mad... ;-)
2907 */
2908 case HDIO_GETGEO:
2909 if (!loc) {
2910 err = -EINVAL;
2911 goto abort_unlock;
2912 }
2913 err = put_user (2, (char __user *) &loc->heads);
2914 if (err)
2915 goto abort_unlock;
2916 err = put_user (4, (char __user *) &loc->sectors);
2917 if (err)
2918 goto abort_unlock;
2919 err = put_user(get_capacity(mddev->gendisk)/8,
2920 (short __user *) &loc->cylinders);
2921 if (err)
2922 goto abort_unlock;
2923 err = put_user (get_start_sect(inode->i_bdev),
2924 (long __user *) &loc->start);
2925 goto done_unlock;
2926 }
2927
2928 /*
2929 * The remaining ioctls are changing the state of the
2930 * superblock, so we do not allow read-only arrays
2931 * here:
2932 */
2933 if (mddev->ro) {
2934 err = -EROFS;
2935 goto abort_unlock;
2936 }
2937
2938 switch (cmd)
2939 {
2940 case ADD_NEW_DISK:
2941 {
2942 mdu_disk_info_t info;
2943 if (copy_from_user(&info, argp, sizeof(info)))
2944 err = -EFAULT;
2945 else
2946 err = add_new_disk(mddev, &info);
2947 goto done_unlock;
2948 }
2949
2950 case HOT_REMOVE_DISK:
2951 err = hot_remove_disk(mddev, new_decode_dev(arg));
2952 goto done_unlock;
2953
2954 case HOT_ADD_DISK:
2955 err = hot_add_disk(mddev, new_decode_dev(arg));
2956 goto done_unlock;
2957
2958 case SET_DISK_FAULTY:
2959 err = set_disk_faulty(mddev, new_decode_dev(arg));
2960 goto done_unlock;
2961
2962 case RUN_ARRAY:
2963 err = do_md_run (mddev);
2964 goto done_unlock;
2965
32a7627c
N
2966 case SET_BITMAP_FILE:
2967 err = set_bitmap_file(mddev, (int)arg);
2968 goto done_unlock;
2969
1da177e4
LT
2970 default:
2971 if (_IOC_TYPE(cmd) == MD_MAJOR)
2972 printk(KERN_WARNING "md: %s(pid %d) used"
2973 " obsolete MD ioctl, upgrade your"
2974 " software to use new ictls.\n",
2975 current->comm, current->pid);
2976 err = -EINVAL;
2977 goto abort_unlock;
2978 }
2979
2980done_unlock:
2981abort_unlock:
2982 mddev_unlock(mddev);
2983
2984 return err;
2985done:
2986 if (err)
2987 MD_BUG();
2988abort:
2989 return err;
2990}
2991
2992static int md_open(struct inode *inode, struct file *file)
2993{
2994 /*
2995 * Succeed if we can lock the mddev, which confirms that
2996 * it isn't being stopped right now.
2997 */
2998 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2999 int err;
3000
3001 if ((err = mddev_lock(mddev)))
3002 goto out;
3003
3004 err = 0;
3005 mddev_get(mddev);
3006 mddev_unlock(mddev);
3007
3008 check_disk_change(inode->i_bdev);
3009 out:
3010 return err;
3011}
3012
3013static int md_release(struct inode *inode, struct file * file)
3014{
3015 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3016
3017 if (!mddev)
3018 BUG();
3019 mddev_put(mddev);
3020
3021 return 0;
3022}
3023
3024static int md_media_changed(struct gendisk *disk)
3025{
3026 mddev_t *mddev = disk->private_data;
3027
3028 return mddev->changed;
3029}
3030
3031static int md_revalidate(struct gendisk *disk)
3032{
3033 mddev_t *mddev = disk->private_data;
3034
3035 mddev->changed = 0;
3036 return 0;
3037}
3038static struct block_device_operations md_fops =
3039{
3040 .owner = THIS_MODULE,
3041 .open = md_open,
3042 .release = md_release,
3043 .ioctl = md_ioctl,
3044 .media_changed = md_media_changed,
3045 .revalidate_disk= md_revalidate,
3046};
3047
75c96f85 3048static int md_thread(void * arg)
1da177e4
LT
3049{
3050 mdk_thread_t *thread = arg;
3051
3052 lock_kernel();
3053
3054 /*
3055 * Detach thread
3056 */
3057
3058 daemonize(thread->name, mdname(thread->mddev));
3059
3060 current->exit_signal = SIGCHLD;
3061 allow_signal(SIGKILL);
3062 thread->tsk = current;
3063
3064 /*
3065 * md_thread is a 'system-thread', it's priority should be very
3066 * high. We avoid resource deadlocks individually in each
3067 * raid personality. (RAID5 does preallocation) We also use RR and
3068 * the very same RT priority as kswapd, thus we will never get
3069 * into a priority inversion deadlock.
3070 *
3071 * we definitely have to have equal or higher priority than
3072 * bdflush, otherwise bdflush will deadlock if there are too
3073 * many dirty RAID5 blocks.
3074 */
3075 unlock_kernel();
3076
3077 complete(thread->event);
3078 while (thread->run) {
3079 void (*run)(mddev_t *);
3080
32a7627c
N
3081 wait_event_interruptible_timeout(thread->wqueue,
3082 test_bit(THREAD_WAKEUP, &thread->flags),
3083 thread->timeout);
3e1d1d28 3084 try_to_freeze();
1da177e4
LT
3085
3086 clear_bit(THREAD_WAKEUP, &thread->flags);
3087
3088 run = thread->run;
3089 if (run)
3090 run(thread->mddev);
3091
3092 if (signal_pending(current))
3093 flush_signals(current);
3094 }
3095 complete(thread->event);
3096 return 0;
3097}
3098
3099void md_wakeup_thread(mdk_thread_t *thread)
3100{
3101 if (thread) {
3102 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3103 set_bit(THREAD_WAKEUP, &thread->flags);
3104 wake_up(&thread->wqueue);
3105 }
3106}
3107
3108mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3109 const char *name)
3110{
3111 mdk_thread_t *thread;
3112 int ret;
3113 struct completion event;
3114
3115 thread = (mdk_thread_t *) kmalloc
3116 (sizeof(mdk_thread_t), GFP_KERNEL);
3117 if (!thread)
3118 return NULL;
3119
3120 memset(thread, 0, sizeof(mdk_thread_t));
3121 init_waitqueue_head(&thread->wqueue);
3122
3123 init_completion(&event);
3124 thread->event = &event;
3125 thread->run = run;
3126 thread->mddev = mddev;
3127 thread->name = name;
32a7627c 3128 thread->timeout = MAX_SCHEDULE_TIMEOUT;
1da177e4
LT
3129 ret = kernel_thread(md_thread, thread, 0);
3130 if (ret < 0) {
3131 kfree(thread);
3132 return NULL;
3133 }
3134 wait_for_completion(&event);
3135 return thread;
3136}
3137
1da177e4
LT
3138void md_unregister_thread(mdk_thread_t *thread)
3139{
3140 struct completion event;
3141
3142 init_completion(&event);
3143
3144 thread->event = &event;
d28446fe
N
3145
3146 /* As soon as ->run is set to NULL, the task could disappear,
3147 * so we need to hold tasklist_lock until we have sent the signal
3148 */
3149 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3150 read_lock(&tasklist_lock);
1da177e4 3151 thread->run = NULL;
d28446fe
N
3152 send_sig(SIGKILL, thread->tsk, 1);
3153 read_unlock(&tasklist_lock);
1da177e4
LT
3154 wait_for_completion(&event);
3155 kfree(thread);
3156}
3157
3158void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3159{
3160 if (!mddev) {
3161 MD_BUG();
3162 return;
3163 }
3164
3165 if (!rdev || rdev->faulty)
3166 return;
32a7627c 3167/*
1da177e4
LT
3168 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3169 mdname(mddev),
3170 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3171 __builtin_return_address(0),__builtin_return_address(1),
3172 __builtin_return_address(2),__builtin_return_address(3));
32a7627c 3173*/
1da177e4
LT
3174 if (!mddev->pers->error_handler)
3175 return;
3176 mddev->pers->error_handler(mddev,rdev);
3177 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3179 md_wakeup_thread(mddev->thread);
3180}
3181
3182/* seq_file implementation /proc/mdstat */
3183
3184static void status_unused(struct seq_file *seq)
3185{
3186 int i = 0;
3187 mdk_rdev_t *rdev;
3188 struct list_head *tmp;
3189
3190 seq_printf(seq, "unused devices: ");
3191
3192 ITERATE_RDEV_PENDING(rdev,tmp) {
3193 char b[BDEVNAME_SIZE];
3194 i++;
3195 seq_printf(seq, "%s ",
3196 bdevname(rdev->bdev,b));
3197 }
3198 if (!i)
3199 seq_printf(seq, "<none>");
3200
3201 seq_printf(seq, "\n");
3202}
3203
3204
3205static void status_resync(struct seq_file *seq, mddev_t * mddev)
3206{
3207 unsigned long max_blocks, resync, res, dt, db, rt;
3208
3209 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3210
3211 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3212 max_blocks = mddev->resync_max_sectors >> 1;
3213 else
3214 max_blocks = mddev->size;
3215
3216 /*
3217 * Should not happen.
3218 */
3219 if (!max_blocks) {
3220 MD_BUG();
3221 return;
3222 }
3223 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3224 {
3225 int i, x = res/50, y = 20-x;
3226 seq_printf(seq, "[");
3227 for (i = 0; i < x; i++)
3228 seq_printf(seq, "=");
3229 seq_printf(seq, ">");
3230 for (i = 0; i < y; i++)
3231 seq_printf(seq, ".");
3232 seq_printf(seq, "] ");
3233 }
3234 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3235 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3236 "resync" : "recovery"),
3237 res/10, res % 10, resync, max_blocks);
3238
3239 /*
3240 * We do not want to overflow, so the order of operands and
3241 * the * 100 / 100 trick are important. We do a +1 to be
3242 * safe against division by zero. We only estimate anyway.
3243 *
3244 * dt: time from mark until now
3245 * db: blocks written from mark until now
3246 * rt: remaining time
3247 */
3248 dt = ((jiffies - mddev->resync_mark) / HZ);
3249 if (!dt) dt++;
3250 db = resync - (mddev->resync_mark_cnt/2);
3251 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3252
3253 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3254
3255 seq_printf(seq, " speed=%ldK/sec", db/dt);
3256}
3257
3258static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3259{
3260 struct list_head *tmp;
3261 loff_t l = *pos;
3262 mddev_t *mddev;
3263
3264 if (l >= 0x10000)
3265 return NULL;
3266 if (!l--)
3267 /* header */
3268 return (void*)1;
3269
3270 spin_lock(&all_mddevs_lock);
3271 list_for_each(tmp,&all_mddevs)
3272 if (!l--) {
3273 mddev = list_entry(tmp, mddev_t, all_mddevs);
3274 mddev_get(mddev);
3275 spin_unlock(&all_mddevs_lock);
3276 return mddev;
3277 }
3278 spin_unlock(&all_mddevs_lock);
3279 if (!l--)
3280 return (void*)2;/* tail */
3281 return NULL;
3282}
3283
3284static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3285{
3286 struct list_head *tmp;
3287 mddev_t *next_mddev, *mddev = v;
3288
3289 ++*pos;
3290 if (v == (void*)2)
3291 return NULL;
3292
3293 spin_lock(&all_mddevs_lock);
3294 if (v == (void*)1)
3295 tmp = all_mddevs.next;
3296 else
3297 tmp = mddev->all_mddevs.next;
3298 if (tmp != &all_mddevs)
3299 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3300 else {
3301 next_mddev = (void*)2;
3302 *pos = 0x10000;
3303 }
3304 spin_unlock(&all_mddevs_lock);
3305
3306 if (v != (void*)1)
3307 mddev_put(mddev);
3308 return next_mddev;
3309
3310}
3311
3312static void md_seq_stop(struct seq_file *seq, void *v)
3313{
3314 mddev_t *mddev = v;
3315
3316 if (mddev && v != (void*)1 && v != (void*)2)
3317 mddev_put(mddev);
3318}
3319
3320static int md_seq_show(struct seq_file *seq, void *v)
3321{
3322 mddev_t *mddev = v;
3323 sector_t size;
3324 struct list_head *tmp2;
3325 mdk_rdev_t *rdev;
3326 int i;
32a7627c 3327 struct bitmap *bitmap;
1da177e4
LT
3328
3329 if (v == (void*)1) {
3330 seq_printf(seq, "Personalities : ");
3331 spin_lock(&pers_lock);
3332 for (i = 0; i < MAX_PERSONALITY; i++)
3333 if (pers[i])
3334 seq_printf(seq, "[%s] ", pers[i]->name);
3335
3336 spin_unlock(&pers_lock);
3337 seq_printf(seq, "\n");
3338 return 0;
3339 }
3340 if (v == (void*)2) {
3341 status_unused(seq);
3342 return 0;
3343 }
3344
3345 if (mddev_lock(mddev)!=0)
3346 return -EINTR;
3347 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3348 seq_printf(seq, "%s : %sactive", mdname(mddev),
3349 mddev->pers ? "" : "in");
3350 if (mddev->pers) {
3351 if (mddev->ro)
3352 seq_printf(seq, " (read-only)");
3353 seq_printf(seq, " %s", mddev->pers->name);
3354 }
3355
3356 size = 0;
3357 ITERATE_RDEV(mddev,rdev,tmp2) {
3358 char b[BDEVNAME_SIZE];
3359 seq_printf(seq, " %s[%d]",
3360 bdevname(rdev->bdev,b), rdev->desc_nr);
8ddf9efe
N
3361 if (test_bit(WriteMostly, &rdev->flags))
3362 seq_printf(seq, "(W)");
1da177e4
LT
3363 if (rdev->faulty) {
3364 seq_printf(seq, "(F)");
3365 continue;
3366 }
3367 size += rdev->size;
3368 }
3369
3370 if (!list_empty(&mddev->disks)) {
3371 if (mddev->pers)
3372 seq_printf(seq, "\n %llu blocks",
3373 (unsigned long long)mddev->array_size);
3374 else
3375 seq_printf(seq, "\n %llu blocks",
3376 (unsigned long long)size);
3377 }
3378
3379 if (mddev->pers) {
3380 mddev->pers->status (seq, mddev);
3381 seq_printf(seq, "\n ");
32a7627c 3382 if (mddev->curr_resync > 2) {
1da177e4 3383 status_resync (seq, mddev);
32a7627c
N
3384 seq_printf(seq, "\n ");
3385 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3386 seq_printf(seq, " resync=DELAYED\n ");
3387 } else
3388 seq_printf(seq, "\n ");
3389
3390 if ((bitmap = mddev->bitmap)) {
32a7627c
N
3391 unsigned long chunk_kb;
3392 unsigned long flags;
32a7627c
N
3393 spin_lock_irqsave(&bitmap->lock, flags);
3394 chunk_kb = bitmap->chunksize >> 10;
3395 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3396 "%lu%s chunk",
3397 bitmap->pages - bitmap->missing_pages,
3398 bitmap->pages,
3399 (bitmap->pages - bitmap->missing_pages)
3400 << (PAGE_SHIFT - 10),
3401 chunk_kb ? chunk_kb : bitmap->chunksize,
3402 chunk_kb ? "KB" : "B");
78d742d8
N
3403 if (bitmap->file) {
3404 seq_printf(seq, ", file: ");
3405 seq_path(seq, bitmap->file->f_vfsmnt,
3406 bitmap->file->f_dentry," \t\n");
32a7627c 3407 }
78d742d8 3408
32a7627c
N
3409 seq_printf(seq, "\n");
3410 spin_unlock_irqrestore(&bitmap->lock, flags);
1da177e4
LT
3411 }
3412
3413 seq_printf(seq, "\n");
3414 }
3415 mddev_unlock(mddev);
3416
3417 return 0;
3418}
3419
3420static struct seq_operations md_seq_ops = {
3421 .start = md_seq_start,
3422 .next = md_seq_next,
3423 .stop = md_seq_stop,
3424 .show = md_seq_show,
3425};
3426
3427static int md_seq_open(struct inode *inode, struct file *file)
3428{
3429 int error;
3430
3431 error = seq_open(file, &md_seq_ops);
3432 return error;
3433}
3434
3435static struct file_operations md_seq_fops = {
3436 .open = md_seq_open,
3437 .read = seq_read,
3438 .llseek = seq_lseek,
3439 .release = seq_release,
3440};
3441
3442int register_md_personality(int pnum, mdk_personality_t *p)
3443{
3444 if (pnum >= MAX_PERSONALITY) {
3445 printk(KERN_ERR
3446 "md: tried to install personality %s as nr %d, but max is %lu\n",
3447 p->name, pnum, MAX_PERSONALITY-1);
3448 return -EINVAL;
3449 }
3450
3451 spin_lock(&pers_lock);
3452 if (pers[pnum]) {
3453 spin_unlock(&pers_lock);
1da177e4
LT
3454 return -EBUSY;
3455 }
3456
3457 pers[pnum] = p;
3458 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3459 spin_unlock(&pers_lock);
3460 return 0;
3461}
3462
3463int unregister_md_personality(int pnum)
3464{
a757e64c 3465 if (pnum >= MAX_PERSONALITY)
1da177e4 3466 return -EINVAL;
1da177e4
LT
3467
3468 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3469 spin_lock(&pers_lock);
3470 pers[pnum] = NULL;
3471 spin_unlock(&pers_lock);
3472 return 0;
3473}
3474
3475static int is_mddev_idle(mddev_t *mddev)
3476{
3477 mdk_rdev_t * rdev;
3478 struct list_head *tmp;
3479 int idle;
3480 unsigned long curr_events;
3481
3482 idle = 1;
3483 ITERATE_RDEV(mddev,rdev,tmp) {
3484 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3485 curr_events = disk_stat_read(disk, read_sectors) +
3486 disk_stat_read(disk, write_sectors) -
3487 atomic_read(&disk->sync_io);
3488 /* Allow some slack between valud of curr_events and last_events,
3489 * as there are some uninteresting races.
3490 * Note: the following is an unsigned comparison.
3491 */
3492 if ((curr_events - rdev->last_events + 32) > 64) {
3493 rdev->last_events = curr_events;
3494 idle = 0;
3495 }
3496 }
3497 return idle;
3498}
3499
3500void md_done_sync(mddev_t *mddev, int blocks, int ok)
3501{
3502 /* another "blocks" (512byte) blocks have been synced */
3503 atomic_sub(blocks, &mddev->recovery_active);
3504 wake_up(&mddev->recovery_wait);
3505 if (!ok) {
3506 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3507 md_wakeup_thread(mddev->thread);
3508 // stop recovery, signal do_sync ....
3509 }
3510}
3511
3512
06d91a5f
N
3513/* md_write_start(mddev, bi)
3514 * If we need to update some array metadata (e.g. 'active' flag
3d310eb7
N
3515 * in superblock) before writing, schedule a superblock update
3516 * and wait for it to complete.
06d91a5f 3517 */
3d310eb7 3518void md_write_start(mddev_t *mddev, struct bio *bi)
1da177e4 3519{
06d91a5f 3520 if (bio_data_dir(bi) != WRITE)
3d310eb7 3521 return;
06d91a5f
N
3522
3523 atomic_inc(&mddev->writes_pending);
06d91a5f 3524 if (mddev->in_sync) {
3d310eb7
N
3525 spin_lock(&mddev->write_lock);
3526 if (mddev->in_sync) {
3527 mddev->in_sync = 0;
3528 mddev->sb_dirty = 1;
3529 md_wakeup_thread(mddev->thread);
3530 }
3531 spin_unlock(&mddev->write_lock);
06d91a5f 3532 }
3d310eb7 3533 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
1da177e4
LT
3534}
3535
3536void md_write_end(mddev_t *mddev)
3537{
3538 if (atomic_dec_and_test(&mddev->writes_pending)) {
3539 if (mddev->safemode == 2)
3540 md_wakeup_thread(mddev->thread);
3541 else
3542 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3543 }
3544}
3545
75c96f85 3546static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3547
3548#define SYNC_MARKS 10
3549#define SYNC_MARK_STEP (3*HZ)
3550static void md_do_sync(mddev_t *mddev)
3551{
3552 mddev_t *mddev2;
3553 unsigned int currspeed = 0,
3554 window;
57afd89f 3555 sector_t max_sectors,j, io_sectors;
1da177e4
LT
3556 unsigned long mark[SYNC_MARKS];
3557 sector_t mark_cnt[SYNC_MARKS];
3558 int last_mark,m;
3559 struct list_head *tmp;
3560 sector_t last_check;
57afd89f 3561 int skipped = 0;
1da177e4
LT
3562
3563 /* just incase thread restarts... */
3564 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3565 return;
3566
3567 /* we overload curr_resync somewhat here.
3568 * 0 == not engaged in resync at all
3569 * 2 == checking that there is no conflict with another sync
3570 * 1 == like 2, but have yielded to allow conflicting resync to
3571 * commense
3572 * other == active in resync - this many blocks
3573 *
3574 * Before starting a resync we must have set curr_resync to
3575 * 2, and then checked that every "conflicting" array has curr_resync
3576 * less than ours. When we find one that is the same or higher
3577 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3578 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3579 * This will mean we have to start checking from the beginning again.
3580 *
3581 */
3582
3583 do {
3584 mddev->curr_resync = 2;
3585
3586 try_again:
3587 if (signal_pending(current)) {
3588 flush_signals(current);
3589 goto skip;
3590 }
3591 ITERATE_MDDEV(mddev2,tmp) {
1da177e4
LT
3592 if (mddev2 == mddev)
3593 continue;
3594 if (mddev2->curr_resync &&
3595 match_mddev_units(mddev,mddev2)) {
3596 DEFINE_WAIT(wq);
3597 if (mddev < mddev2 && mddev->curr_resync == 2) {
3598 /* arbitrarily yield */
3599 mddev->curr_resync = 1;
3600 wake_up(&resync_wait);
3601 }
3602 if (mddev > mddev2 && mddev->curr_resync == 1)
3603 /* no need to wait here, we can wait the next
3604 * time 'round when curr_resync == 2
3605 */
3606 continue;
3607 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3608 if (!signal_pending(current)
3609 && mddev2->curr_resync >= mddev->curr_resync) {
3610 printk(KERN_INFO "md: delaying resync of %s"
3611 " until %s has finished resync (they"
3612 " share one or more physical units)\n",
3613 mdname(mddev), mdname(mddev2));
3614 mddev_put(mddev2);
3615 schedule();
3616 finish_wait(&resync_wait, &wq);
3617 goto try_again;
3618 }
3619 finish_wait(&resync_wait, &wq);
3620 }
3621 }
3622 } while (mddev->curr_resync < 2);
3623
3624 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3625 /* resync follows the size requested by the personality,
57afd89f 3626 * which defaults to physical size, but can be virtual size
1da177e4
LT
3627 */
3628 max_sectors = mddev->resync_max_sectors;
3629 else
3630 /* recovery follows the physical size of devices */
3631 max_sectors = mddev->size << 1;
3632
3633 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3634 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3635 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3636 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3637 "(but not more than %d KB/sec) for reconstruction.\n",
3638 sysctl_speed_limit_max);
3639
3640 is_mddev_idle(mddev); /* this also initializes IO event counters */
32a7627c
N
3641 /* we don't use the checkpoint if there's a bitmap */
3642 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
1da177e4
LT
3643 j = mddev->recovery_cp;
3644 else
3645 j = 0;
57afd89f 3646 io_sectors = 0;
1da177e4
LT
3647 for (m = 0; m < SYNC_MARKS; m++) {
3648 mark[m] = jiffies;
57afd89f 3649 mark_cnt[m] = io_sectors;
1da177e4
LT
3650 }
3651 last_mark = 0;
3652 mddev->resync_mark = mark[last_mark];
3653 mddev->resync_mark_cnt = mark_cnt[last_mark];
3654
3655 /*
3656 * Tune reconstruction:
3657 */
3658 window = 32*(PAGE_SIZE/512);
3659 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3660 window/2,(unsigned long long) max_sectors/2);
3661
3662 atomic_set(&mddev->recovery_active, 0);
3663 init_waitqueue_head(&mddev->recovery_wait);
3664 last_check = 0;
3665
3666 if (j>2) {
3667 printk(KERN_INFO
3668 "md: resuming recovery of %s from checkpoint.\n",
3669 mdname(mddev));
3670 mddev->curr_resync = j;
3671 }
3672
3673 while (j < max_sectors) {
57afd89f 3674 sector_t sectors;
1da177e4 3675
57afd89f
N
3676 skipped = 0;
3677 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3678 currspeed < sysctl_speed_limit_min);
3679 if (sectors == 0) {
1da177e4
LT
3680 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3681 goto out;
3682 }
57afd89f
N
3683
3684 if (!skipped) { /* actual IO requested */
3685 io_sectors += sectors;
3686 atomic_add(sectors, &mddev->recovery_active);
3687 }
3688
1da177e4
LT
3689 j += sectors;
3690 if (j>1) mddev->curr_resync = j;
3691
57afd89f
N
3692
3693 if (last_check + window > io_sectors || j == max_sectors)
1da177e4
LT
3694 continue;
3695
57afd89f 3696 last_check = io_sectors;
1da177e4
LT
3697
3698 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3699 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3700 break;
3701
3702 repeat:
3703 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3704 /* step marks */
3705 int next = (last_mark+1) % SYNC_MARKS;
3706
3707 mddev->resync_mark = mark[next];
3708 mddev->resync_mark_cnt = mark_cnt[next];
3709 mark[next] = jiffies;
57afd89f 3710 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
1da177e4
LT
3711 last_mark = next;
3712 }
3713
3714
3715 if (signal_pending(current)) {
3716 /*
3717 * got a signal, exit.
3718 */
3719 printk(KERN_INFO
3720 "md: md_do_sync() got signal ... exiting\n");
3721 flush_signals(current);
3722 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3723 goto out;
3724 }
3725
3726 /*
3727 * this loop exits only if either when we are slower than
3728 * the 'hard' speed limit, or the system was IO-idle for
3729 * a jiffy.
3730 * the system might be non-idle CPU-wise, but we only care
3731 * about not overloading the IO subsystem. (things like an
3732 * e2fsck being done on the RAID array should execute fast)
3733 */
3734 mddev->queue->unplug_fn(mddev->queue);
3735 cond_resched();
3736
57afd89f
N
3737 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3738 /((jiffies-mddev->resync_mark)/HZ +1) +1;
1da177e4
LT
3739
3740 if (currspeed > sysctl_speed_limit_min) {
3741 if ((currspeed > sysctl_speed_limit_max) ||
3742 !is_mddev_idle(mddev)) {
3743 msleep_interruptible(250);
3744 goto repeat;
3745 }
3746 }
3747 }
3748 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3749 /*
3750 * this also signals 'finished resyncing' to md_stop
3751 */
3752 out:
3753 mddev->queue->unplug_fn(mddev->queue);
3754
3755 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3756
3757 /* tell personality that we are finished */
57afd89f 3758 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
1da177e4
LT
3759
3760 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3761 mddev->curr_resync > 2 &&
3762 mddev->curr_resync >= mddev->recovery_cp) {
3763 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3764 printk(KERN_INFO
3765 "md: checkpointing recovery of %s.\n",
3766 mdname(mddev));
3767 mddev->recovery_cp = mddev->curr_resync;
3768 } else
3769 mddev->recovery_cp = MaxSector;
3770 }
3771
1da177e4
LT
3772 skip:
3773 mddev->curr_resync = 0;
3774 wake_up(&resync_wait);
3775 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3776 md_wakeup_thread(mddev->thread);
3777}
3778
3779
3780/*
3781 * This routine is regularly called by all per-raid-array threads to
3782 * deal with generic issues like resync and super-block update.
3783 * Raid personalities that don't have a thread (linear/raid0) do not
3784 * need this as they never do any recovery or update the superblock.
3785 *
3786 * It does not do any resync itself, but rather "forks" off other threads
3787 * to do that as needed.
3788 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3789 * "->recovery" and create a thread at ->sync_thread.
3790 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3791 * and wakeups up this thread which will reap the thread and finish up.
3792 * This thread also removes any faulty devices (with nr_pending == 0).
3793 *
3794 * The overall approach is:
3795 * 1/ if the superblock needs updating, update it.
3796 * 2/ If a recovery thread is running, don't do anything else.
3797 * 3/ If recovery has finished, clean up, possibly marking spares active.
3798 * 4/ If there are any faulty devices, remove them.
3799 * 5/ If array is degraded, try to add spares devices
3800 * 6/ If array has spares or is not in-sync, start a resync thread.
3801 */
3802void md_check_recovery(mddev_t *mddev)
3803{
3804 mdk_rdev_t *rdev;
3805 struct list_head *rtmp;
3806
3807
5f40402d
N
3808 if (mddev->bitmap)
3809 bitmap_daemon_work(mddev->bitmap);
1da177e4
LT
3810
3811 if (mddev->ro)
3812 return;
fca4d848
N
3813
3814 if (signal_pending(current)) {
3815 if (mddev->pers->sync_request) {
3816 printk(KERN_INFO "md: %s in immediate safe mode\n",
3817 mdname(mddev));
3818 mddev->safemode = 2;
3819 }
3820 flush_signals(current);
3821 }
3822
1da177e4
LT
3823 if ( ! (
3824 mddev->sb_dirty ||
3825 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
fca4d848
N
3826 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3827 (mddev->safemode == 1) ||
3828 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3829 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
1da177e4
LT
3830 ))
3831 return;
fca4d848 3832
1da177e4
LT
3833 if (mddev_trylock(mddev)==0) {
3834 int spares =0;
fca4d848 3835
06d91a5f 3836 spin_lock(&mddev->write_lock);
fca4d848
N
3837 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3838 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3839 mddev->in_sync = 1;
3840 mddev->sb_dirty = 1;
3841 }
3842 if (mddev->safemode == 1)
3843 mddev->safemode = 0;
06d91a5f 3844 spin_unlock(&mddev->write_lock);
fca4d848 3845
1da177e4
LT
3846 if (mddev->sb_dirty)
3847 md_update_sb(mddev);
06d91a5f 3848
06d91a5f 3849
1da177e4
LT
3850 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3851 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3852 /* resync/recovery still happening */
3853 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3854 goto unlock;
3855 }
3856 if (mddev->sync_thread) {
3857 /* resync has finished, collect result */
3858 md_unregister_thread(mddev->sync_thread);
3859 mddev->sync_thread = NULL;
3860 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3861 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3862 /* success...*/
3863 /* activate any spares */
3864 mddev->pers->spare_active(mddev);
3865 }
3866 md_update_sb(mddev);
41158c7e
N
3867
3868 /* if array is no-longer degraded, then any saved_raid_disk
3869 * information must be scrapped
3870 */
3871 if (!mddev->degraded)
3872 ITERATE_RDEV(mddev,rdev,rtmp)
3873 rdev->saved_raid_disk = -1;
3874
1da177e4
LT
3875 mddev->recovery = 0;
3876 /* flag recovery needed just to double check */
3877 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3878 goto unlock;
3879 }
3880 if (mddev->recovery)
3881 /* probably just the RECOVERY_NEEDED flag */
3882 mddev->recovery = 0;
3883
3884 /* no recovery is running.
3885 * remove any failed drives, then
3886 * add spares if possible.
3887 * Spare are also removed and re-added, to allow
3888 * the personality to fail the re-add.
3889 */
3890 ITERATE_RDEV(mddev,rdev,rtmp)
3891 if (rdev->raid_disk >= 0 &&
3892 (rdev->faulty || ! rdev->in_sync) &&
3893 atomic_read(&rdev->nr_pending)==0) {
3894 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3895 rdev->raid_disk = -1;
3896 }
3897
3898 if (mddev->degraded) {
3899 ITERATE_RDEV(mddev,rdev,rtmp)
3900 if (rdev->raid_disk < 0
3901 && !rdev->faulty) {
3902 if (mddev->pers->hot_add_disk(mddev,rdev))
3903 spares++;
3904 else
3905 break;
3906 }
3907 }
3908
3909 if (!spares && (mddev->recovery_cp == MaxSector )) {
3910 /* nothing we can do ... */
3911 goto unlock;
3912 }
3913 if (mddev->pers->sync_request) {
3914 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3915 if (!spares)
3916 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
a654b9d8
N
3917 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3918 /* We are adding a device or devices to an array
3919 * which has the bitmap stored on all devices.
3920 * So make sure all bitmap pages get written
3921 */
3922 bitmap_write_all(mddev->bitmap);
3923 }
1da177e4
LT
3924 mddev->sync_thread = md_register_thread(md_do_sync,
3925 mddev,
3926 "%s_resync");
3927 if (!mddev->sync_thread) {
3928 printk(KERN_ERR "%s: could not start resync"
3929 " thread...\n",
3930 mdname(mddev));
3931 /* leave the spares where they are, it shouldn't hurt */
3932 mddev->recovery = 0;
3933 } else {
3934 md_wakeup_thread(mddev->sync_thread);
3935 }
3936 }
3937 unlock:
3938 mddev_unlock(mddev);
3939 }
3940}
3941
75c96f85
AB
3942static int md_notify_reboot(struct notifier_block *this,
3943 unsigned long code, void *x)
1da177e4
LT
3944{
3945 struct list_head *tmp;
3946 mddev_t *mddev;
3947
3948 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3949
3950 printk(KERN_INFO "md: stopping all md devices.\n");
3951
3952 ITERATE_MDDEV(mddev,tmp)
3953 if (mddev_trylock(mddev)==0)
3954 do_md_stop (mddev, 1);
3955 /*
3956 * certain more exotic SCSI devices are known to be
3957 * volatile wrt too early system reboots. While the
3958 * right place to handle this issue is the given
3959 * driver, we do want to have a safe RAID driver ...
3960 */
3961 mdelay(1000*1);
3962 }
3963 return NOTIFY_DONE;
3964}
3965
75c96f85 3966static struct notifier_block md_notifier = {
1da177e4
LT
3967 .notifier_call = md_notify_reboot,
3968 .next = NULL,
3969 .priority = INT_MAX, /* before any real devices */
3970};
3971
3972static void md_geninit(void)
3973{
3974 struct proc_dir_entry *p;
3975
3976 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3977
3978 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3979 if (p)
3980 p->proc_fops = &md_seq_fops;
3981}
3982
75c96f85 3983static int __init md_init(void)
1da177e4
LT
3984{
3985 int minor;
3986
3987 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3988 " MD_SB_DISKS=%d\n",
3989 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3990 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
32a7627c
N
3991 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3992 BITMAP_MINOR);
1da177e4
LT
3993
3994 if (register_blkdev(MAJOR_NR, "md"))
3995 return -1;
3996 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3997 unregister_blkdev(MAJOR_NR, "md");
3998 return -1;
3999 }
4000 devfs_mk_dir("md");
4001 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4002 md_probe, NULL, NULL);
4003 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4004 md_probe, NULL, NULL);
4005
4006 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4007 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4008 S_IFBLK|S_IRUSR|S_IWUSR,
4009 "md/%d", minor);
4010
4011 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4012 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4013 S_IFBLK|S_IRUSR|S_IWUSR,
4014 "md/mdp%d", minor);
4015
4016
4017 register_reboot_notifier(&md_notifier);
4018 raid_table_header = register_sysctl_table(raid_root_table, 1);
4019
4020 md_geninit();
4021 return (0);
4022}
4023
4024
4025#ifndef MODULE
4026
4027/*
4028 * Searches all registered partitions for autorun RAID arrays
4029 * at boot time.
4030 */
4031static dev_t detected_devices[128];
4032static int dev_cnt;
4033
4034void md_autodetect_dev(dev_t dev)
4035{
4036 if (dev_cnt >= 0 && dev_cnt < 127)
4037 detected_devices[dev_cnt++] = dev;
4038}
4039
4040
4041static void autostart_arrays(int part)
4042{
4043 mdk_rdev_t *rdev;
4044 int i;
4045
4046 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4047
4048 for (i = 0; i < dev_cnt; i++) {
4049 dev_t dev = detected_devices[i];
4050
4051 rdev = md_import_device(dev,0, 0);
4052 if (IS_ERR(rdev))
4053 continue;
4054
4055 if (rdev->faulty) {
4056 MD_BUG();
4057 continue;
4058 }
4059 list_add(&rdev->same_set, &pending_raid_disks);
4060 }
4061 dev_cnt = 0;
4062
4063 autorun_devices(part);
4064}
4065
4066#endif
4067
4068static __exit void md_exit(void)
4069{
4070 mddev_t *mddev;
4071 struct list_head *tmp;
4072 int i;
4073 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4074 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4075 for (i=0; i < MAX_MD_DEVS; i++)
4076 devfs_remove("md/%d", i);
4077 for (i=0; i < MAX_MD_DEVS; i++)
4078 devfs_remove("md/d%d", i);
4079
4080 devfs_remove("md");
4081
4082 unregister_blkdev(MAJOR_NR,"md");
4083 unregister_blkdev(mdp_major, "mdp");
4084 unregister_reboot_notifier(&md_notifier);
4085 unregister_sysctl_table(raid_table_header);
4086 remove_proc_entry("mdstat", NULL);
4087 ITERATE_MDDEV(mddev,tmp) {
4088 struct gendisk *disk = mddev->gendisk;
4089 if (!disk)
4090 continue;
4091 export_array(mddev);
4092 del_gendisk(disk);
4093 put_disk(disk);
4094 mddev->gendisk = NULL;
4095 mddev_put(mddev);
4096 }
4097}
4098
4099module_init(md_init)
4100module_exit(md_exit)
4101
4102EXPORT_SYMBOL(register_md_personality);
4103EXPORT_SYMBOL(unregister_md_personality);
4104EXPORT_SYMBOL(md_error);
4105EXPORT_SYMBOL(md_done_sync);
4106EXPORT_SYMBOL(md_write_start);
4107EXPORT_SYMBOL(md_write_end);
1da177e4
LT
4108EXPORT_SYMBOL(md_register_thread);
4109EXPORT_SYMBOL(md_unregister_thread);
4110EXPORT_SYMBOL(md_wakeup_thread);
4111EXPORT_SYMBOL(md_print_devices);
4112EXPORT_SYMBOL(md_check_recovery);
4113MODULE_LICENSE("GPL");
aa1595e9 4114MODULE_ALIAS("md");
72008652 4115MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);