sched: Move wake flags to kernel/sched/sched.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
8
391e43da 9#include "cpupri.h"
029632fb
PZ
10
11extern __read_mostly int scheduler_running;
12
13/*
14 * Convert user-nice values [ -20 ... 0 ... 19 ]
15 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
16 * and back.
17 */
18#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
19#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
20#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
21
22/*
23 * 'User priority' is the nice value converted to something we
24 * can work with better when scaling various scheduler parameters,
25 * it's a [ 0 ... 39 ] range.
26 */
27#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
28#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
29#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
30
31/*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
cc1f4b1f
LZ
36/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
029632fb
PZ
61#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64/*
65 * These are the 'tuning knobs' of the scheduler:
029632fb 66 */
029632fb
PZ
67
68/*
69 * single value that denotes runtime == period, ie unlimited time.
70 */
71#define RUNTIME_INF ((u64)~0ULL)
72
73static inline int rt_policy(int policy)
74{
75 if (policy == SCHED_FIFO || policy == SCHED_RR)
76 return 1;
77 return 0;
78}
79
80static inline int task_has_rt_policy(struct task_struct *p)
81{
82 return rt_policy(p->policy);
83}
84
85/*
86 * This is the priority-queue data structure of the RT scheduling class:
87 */
88struct rt_prio_array {
89 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
90 struct list_head queue[MAX_RT_PRIO];
91};
92
93struct rt_bandwidth {
94 /* nests inside the rq lock: */
95 raw_spinlock_t rt_runtime_lock;
96 ktime_t rt_period;
97 u64 rt_runtime;
98 struct hrtimer rt_period_timer;
99};
100
101extern struct mutex sched_domains_mutex;
102
103#ifdef CONFIG_CGROUP_SCHED
104
105#include <linux/cgroup.h>
106
107struct cfs_rq;
108struct rt_rq;
109
35cf4e50 110extern struct list_head task_groups;
029632fb
PZ
111
112struct cfs_bandwidth {
113#ifdef CONFIG_CFS_BANDWIDTH
114 raw_spinlock_t lock;
115 ktime_t period;
116 u64 quota, runtime;
117 s64 hierarchal_quota;
118 u64 runtime_expires;
119
120 int idle, timer_active;
121 struct hrtimer period_timer, slack_timer;
122 struct list_head throttled_cfs_rq;
123
124 /* statistics */
125 int nr_periods, nr_throttled;
126 u64 throttled_time;
127#endif
128};
129
130/* task group related information */
131struct task_group {
132 struct cgroup_subsys_state css;
133
134#ifdef CONFIG_FAIR_GROUP_SCHED
135 /* schedulable entities of this group on each cpu */
136 struct sched_entity **se;
137 /* runqueue "owned" by this group on each cpu */
138 struct cfs_rq **cfs_rq;
139 unsigned long shares;
140
141 atomic_t load_weight;
c566e8e9 142 atomic64_t load_avg;
bb17f655 143 atomic_t runnable_avg;
029632fb
PZ
144#endif
145
146#ifdef CONFIG_RT_GROUP_SCHED
147 struct sched_rt_entity **rt_se;
148 struct rt_rq **rt_rq;
149
150 struct rt_bandwidth rt_bandwidth;
151#endif
152
153 struct rcu_head rcu;
154 struct list_head list;
155
156 struct task_group *parent;
157 struct list_head siblings;
158 struct list_head children;
159
160#ifdef CONFIG_SCHED_AUTOGROUP
161 struct autogroup *autogroup;
162#endif
163
164 struct cfs_bandwidth cfs_bandwidth;
165};
166
167#ifdef CONFIG_FAIR_GROUP_SCHED
168#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
169
170/*
171 * A weight of 0 or 1 can cause arithmetics problems.
172 * A weight of a cfs_rq is the sum of weights of which entities
173 * are queued on this cfs_rq, so a weight of a entity should not be
174 * too large, so as the shares value of a task group.
175 * (The default weight is 1024 - so there's no practical
176 * limitation from this.)
177 */
178#define MIN_SHARES (1UL << 1)
179#define MAX_SHARES (1UL << 18)
180#endif
181
182/* Default task group.
183 * Every task in system belong to this group at bootup.
184 */
185extern struct task_group root_task_group;
186
187typedef int (*tg_visitor)(struct task_group *, void *);
188
189extern int walk_tg_tree_from(struct task_group *from,
190 tg_visitor down, tg_visitor up, void *data);
191
192/*
193 * Iterate the full tree, calling @down when first entering a node and @up when
194 * leaving it for the final time.
195 *
196 * Caller must hold rcu_lock or sufficient equivalent.
197 */
198static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
199{
200 return walk_tg_tree_from(&root_task_group, down, up, data);
201}
202
203extern int tg_nop(struct task_group *tg, void *data);
204
205extern void free_fair_sched_group(struct task_group *tg);
206extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
207extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
208extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
209 struct sched_entity *se, int cpu,
210 struct sched_entity *parent);
211extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
212extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
213
214extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
215extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
216extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
217
218extern void free_rt_sched_group(struct task_group *tg);
219extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
220extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
221 struct sched_rt_entity *rt_se, int cpu,
222 struct sched_rt_entity *parent);
223
224#else /* CONFIG_CGROUP_SCHED */
225
226struct cfs_bandwidth { };
227
228#endif /* CONFIG_CGROUP_SCHED */
229
230/* CFS-related fields in a runqueue */
231struct cfs_rq {
232 struct load_weight load;
c82513e5 233 unsigned int nr_running, h_nr_running;
029632fb
PZ
234
235 u64 exec_clock;
236 u64 min_vruntime;
237#ifndef CONFIG_64BIT
238 u64 min_vruntime_copy;
239#endif
240
241 struct rb_root tasks_timeline;
242 struct rb_node *rb_leftmost;
243
029632fb
PZ
244 /*
245 * 'curr' points to currently running entity on this cfs_rq.
246 * It is set to NULL otherwise (i.e when none are currently running).
247 */
248 struct sched_entity *curr, *next, *last, *skip;
249
250#ifdef CONFIG_SCHED_DEBUG
251 unsigned int nr_spread_over;
252#endif
253
2dac754e 254#ifdef CONFIG_SMP
f4e26b12
PT
255/*
256 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
257 * removed when useful for applications beyond shares distribution (e.g.
258 * load-balance).
259 */
260#ifdef CONFIG_FAIR_GROUP_SCHED
2dac754e
PT
261 /*
262 * CFS Load tracking
263 * Under CFS, load is tracked on a per-entity basis and aggregated up.
264 * This allows for the description of both thread and group usage (in
265 * the FAIR_GROUP_SCHED case).
266 */
9ee474f5 267 u64 runnable_load_avg, blocked_load_avg;
aff3e498 268 atomic64_t decay_counter, removed_load;
9ee474f5 269 u64 last_decay;
f4e26b12
PT
270#endif /* CONFIG_FAIR_GROUP_SCHED */
271/* These always depend on CONFIG_FAIR_GROUP_SCHED */
c566e8e9 272#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 273 u32 tg_runnable_contrib;
c566e8e9 274 u64 tg_load_contrib;
82958366
PT
275#endif /* CONFIG_FAIR_GROUP_SCHED */
276
277 /*
278 * h_load = weight * f(tg)
279 *
280 * Where f(tg) is the recursive weight fraction assigned to
281 * this group.
282 */
283 unsigned long h_load;
284#endif /* CONFIG_SMP */
285
029632fb
PZ
286#ifdef CONFIG_FAIR_GROUP_SCHED
287 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
288
289 /*
290 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
291 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
292 * (like users, containers etc.)
293 *
294 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
295 * list is used during load balance.
296 */
297 int on_list;
298 struct list_head leaf_cfs_rq_list;
299 struct task_group *tg; /* group that "owns" this runqueue */
300
029632fb
PZ
301#ifdef CONFIG_CFS_BANDWIDTH
302 int runtime_enabled;
303 u64 runtime_expires;
304 s64 runtime_remaining;
305
f1b17280
PT
306 u64 throttled_clock, throttled_clock_task;
307 u64 throttled_clock_task_time;
029632fb
PZ
308 int throttled, throttle_count;
309 struct list_head throttled_list;
310#endif /* CONFIG_CFS_BANDWIDTH */
311#endif /* CONFIG_FAIR_GROUP_SCHED */
312};
313
314static inline int rt_bandwidth_enabled(void)
315{
316 return sysctl_sched_rt_runtime >= 0;
317}
318
319/* Real-Time classes' related field in a runqueue: */
320struct rt_rq {
321 struct rt_prio_array active;
c82513e5 322 unsigned int rt_nr_running;
029632fb
PZ
323#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
324 struct {
325 int curr; /* highest queued rt task prio */
326#ifdef CONFIG_SMP
327 int next; /* next highest */
328#endif
329 } highest_prio;
330#endif
331#ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 unsigned long rt_nr_total;
334 int overloaded;
335 struct plist_head pushable_tasks;
336#endif
337 int rt_throttled;
338 u64 rt_time;
339 u64 rt_runtime;
340 /* Nests inside the rq lock: */
341 raw_spinlock_t rt_runtime_lock;
342
343#ifdef CONFIG_RT_GROUP_SCHED
344 unsigned long rt_nr_boosted;
345
346 struct rq *rq;
347 struct list_head leaf_rt_rq_list;
348 struct task_group *tg;
349#endif
350};
351
352#ifdef CONFIG_SMP
353
354/*
355 * We add the notion of a root-domain which will be used to define per-domain
356 * variables. Each exclusive cpuset essentially defines an island domain by
357 * fully partitioning the member cpus from any other cpuset. Whenever a new
358 * exclusive cpuset is created, we also create and attach a new root-domain
359 * object.
360 *
361 */
362struct root_domain {
363 atomic_t refcount;
364 atomic_t rto_count;
365 struct rcu_head rcu;
366 cpumask_var_t span;
367 cpumask_var_t online;
368
369 /*
370 * The "RT overload" flag: it gets set if a CPU has more than
371 * one runnable RT task.
372 */
373 cpumask_var_t rto_mask;
374 struct cpupri cpupri;
375};
376
377extern struct root_domain def_root_domain;
378
379#endif /* CONFIG_SMP */
380
381/*
382 * This is the main, per-CPU runqueue data structure.
383 *
384 * Locking rule: those places that want to lock multiple runqueues
385 * (such as the load balancing or the thread migration code), lock
386 * acquire operations must be ordered by ascending &runqueue.
387 */
388struct rq {
389 /* runqueue lock: */
390 raw_spinlock_t lock;
391
392 /*
393 * nr_running and cpu_load should be in the same cacheline because
394 * remote CPUs use both these fields when doing load calculation.
395 */
c82513e5 396 unsigned int nr_running;
029632fb
PZ
397 #define CPU_LOAD_IDX_MAX 5
398 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
399 unsigned long last_load_update_tick;
400#ifdef CONFIG_NO_HZ
401 u64 nohz_stamp;
1c792db7 402 unsigned long nohz_flags;
029632fb
PZ
403#endif
404 int skip_clock_update;
405
406 /* capture load from *all* tasks on this cpu: */
407 struct load_weight load;
408 unsigned long nr_load_updates;
409 u64 nr_switches;
410
411 struct cfs_rq cfs;
412 struct rt_rq rt;
413
414#ifdef CONFIG_FAIR_GROUP_SCHED
415 /* list of leaf cfs_rq on this cpu: */
416 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
417#ifdef CONFIG_SMP
418 unsigned long h_load_throttle;
419#endif /* CONFIG_SMP */
420#endif /* CONFIG_FAIR_GROUP_SCHED */
421
029632fb
PZ
422#ifdef CONFIG_RT_GROUP_SCHED
423 struct list_head leaf_rt_rq_list;
424#endif
425
426 /*
427 * This is part of a global counter where only the total sum
428 * over all CPUs matters. A task can increase this counter on
429 * one CPU and if it got migrated afterwards it may decrease
430 * it on another CPU. Always updated under the runqueue lock:
431 */
432 unsigned long nr_uninterruptible;
433
434 struct task_struct *curr, *idle, *stop;
435 unsigned long next_balance;
436 struct mm_struct *prev_mm;
437
438 u64 clock;
439 u64 clock_task;
440
441 atomic_t nr_iowait;
442
443#ifdef CONFIG_SMP
444 struct root_domain *rd;
445 struct sched_domain *sd;
446
447 unsigned long cpu_power;
448
449 unsigned char idle_balance;
450 /* For active balancing */
451 int post_schedule;
452 int active_balance;
453 int push_cpu;
454 struct cpu_stop_work active_balance_work;
455 /* cpu of this runqueue: */
456 int cpu;
457 int online;
458
367456c7
PZ
459 struct list_head cfs_tasks;
460
029632fb
PZ
461 u64 rt_avg;
462 u64 age_stamp;
463 u64 idle_stamp;
464 u64 avg_idle;
465#endif
466
467#ifdef CONFIG_IRQ_TIME_ACCOUNTING
468 u64 prev_irq_time;
469#endif
470#ifdef CONFIG_PARAVIRT
471 u64 prev_steal_time;
472#endif
473#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
474 u64 prev_steal_time_rq;
475#endif
476
477 /* calc_load related fields */
478 unsigned long calc_load_update;
479 long calc_load_active;
480
481#ifdef CONFIG_SCHED_HRTICK
482#ifdef CONFIG_SMP
483 int hrtick_csd_pending;
484 struct call_single_data hrtick_csd;
485#endif
486 struct hrtimer hrtick_timer;
487#endif
488
489#ifdef CONFIG_SCHEDSTATS
490 /* latency stats */
491 struct sched_info rq_sched_info;
492 unsigned long long rq_cpu_time;
493 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
494
495 /* sys_sched_yield() stats */
496 unsigned int yld_count;
497
498 /* schedule() stats */
029632fb
PZ
499 unsigned int sched_count;
500 unsigned int sched_goidle;
501
502 /* try_to_wake_up() stats */
503 unsigned int ttwu_count;
504 unsigned int ttwu_local;
505#endif
506
507#ifdef CONFIG_SMP
508 struct llist_head wake_list;
509#endif
18bf2805
BS
510
511 struct sched_avg avg;
029632fb
PZ
512};
513
514static inline int cpu_of(struct rq *rq)
515{
516#ifdef CONFIG_SMP
517 return rq->cpu;
518#else
519 return 0;
520#endif
521}
522
523DECLARE_PER_CPU(struct rq, runqueues);
524
518cd623
PZ
525#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
526#define this_rq() (&__get_cpu_var(runqueues))
527#define task_rq(p) cpu_rq(task_cpu(p))
528#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
529#define raw_rq() (&__raw_get_cpu_var(runqueues))
530
531#ifdef CONFIG_SMP
532
029632fb
PZ
533#define rcu_dereference_check_sched_domain(p) \
534 rcu_dereference_check((p), \
535 lockdep_is_held(&sched_domains_mutex))
536
537/*
538 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
539 * See detach_destroy_domains: synchronize_sched for details.
540 *
541 * The domain tree of any CPU may only be accessed from within
542 * preempt-disabled sections.
543 */
544#define for_each_domain(cpu, __sd) \
518cd623
PZ
545 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
546 __sd; __sd = __sd->parent)
029632fb 547
77e81365
SS
548#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
549
518cd623
PZ
550/**
551 * highest_flag_domain - Return highest sched_domain containing flag.
552 * @cpu: The cpu whose highest level of sched domain is to
553 * be returned.
554 * @flag: The flag to check for the highest sched_domain
555 * for the given cpu.
556 *
557 * Returns the highest sched_domain of a cpu which contains the given flag.
558 */
559static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
560{
561 struct sched_domain *sd, *hsd = NULL;
562
563 for_each_domain(cpu, sd) {
564 if (!(sd->flags & flag))
565 break;
566 hsd = sd;
567 }
568
569 return hsd;
570}
571
572DECLARE_PER_CPU(struct sched_domain *, sd_llc);
573DECLARE_PER_CPU(int, sd_llc_id);
574
5e6521ea
LZ
575struct sched_group_power {
576 atomic_t ref;
577 /*
578 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
579 * single CPU.
580 */
581 unsigned int power, power_orig;
582 unsigned long next_update;
583 /*
584 * Number of busy cpus in this group.
585 */
586 atomic_t nr_busy_cpus;
587
588 unsigned long cpumask[0]; /* iteration mask */
589};
590
591struct sched_group {
592 struct sched_group *next; /* Must be a circular list */
593 atomic_t ref;
594
595 unsigned int group_weight;
596 struct sched_group_power *sgp;
597
598 /*
599 * The CPUs this group covers.
600 *
601 * NOTE: this field is variable length. (Allocated dynamically
602 * by attaching extra space to the end of the structure,
603 * depending on how many CPUs the kernel has booted up with)
604 */
605 unsigned long cpumask[0];
606};
607
608static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
609{
610 return to_cpumask(sg->cpumask);
611}
612
613/*
614 * cpumask masking which cpus in the group are allowed to iterate up the domain
615 * tree.
616 */
617static inline struct cpumask *sched_group_mask(struct sched_group *sg)
618{
619 return to_cpumask(sg->sgp->cpumask);
620}
621
622/**
623 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
624 * @group: The group whose first cpu is to be returned.
625 */
626static inline unsigned int group_first_cpu(struct sched_group *group)
627{
628 return cpumask_first(sched_group_cpus(group));
629}
630
c1174876
PZ
631extern int group_balance_cpu(struct sched_group *sg);
632
518cd623 633#endif /* CONFIG_SMP */
029632fb 634
391e43da
PZ
635#include "stats.h"
636#include "auto_group.h"
029632fb
PZ
637
638#ifdef CONFIG_CGROUP_SCHED
639
640/*
641 * Return the group to which this tasks belongs.
642 *
8323f26c
PZ
643 * We cannot use task_subsys_state() and friends because the cgroup
644 * subsystem changes that value before the cgroup_subsys::attach() method
645 * is called, therefore we cannot pin it and might observe the wrong value.
646 *
647 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
648 * core changes this before calling sched_move_task().
649 *
650 * Instead we use a 'copy' which is updated from sched_move_task() while
651 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
652 */
653static inline struct task_group *task_group(struct task_struct *p)
654{
8323f26c 655 return p->sched_task_group;
029632fb
PZ
656}
657
658/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
659static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
660{
661#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
662 struct task_group *tg = task_group(p);
663#endif
664
665#ifdef CONFIG_FAIR_GROUP_SCHED
666 p->se.cfs_rq = tg->cfs_rq[cpu];
667 p->se.parent = tg->se[cpu];
668#endif
669
670#ifdef CONFIG_RT_GROUP_SCHED
671 p->rt.rt_rq = tg->rt_rq[cpu];
672 p->rt.parent = tg->rt_se[cpu];
673#endif
674}
675
676#else /* CONFIG_CGROUP_SCHED */
677
678static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
679static inline struct task_group *task_group(struct task_struct *p)
680{
681 return NULL;
682}
683
684#endif /* CONFIG_CGROUP_SCHED */
685
686static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
687{
688 set_task_rq(p, cpu);
689#ifdef CONFIG_SMP
690 /*
691 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
692 * successfuly executed on another CPU. We must ensure that updates of
693 * per-task data have been completed by this moment.
694 */
695 smp_wmb();
696 task_thread_info(p)->cpu = cpu;
697#endif
698}
699
700/*
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
702 */
703#ifdef CONFIG_SCHED_DEBUG
c5905afb 704# include <linux/static_key.h>
029632fb
PZ
705# define const_debug __read_mostly
706#else
707# define const_debug const
708#endif
709
710extern const_debug unsigned int sysctl_sched_features;
711
712#define SCHED_FEAT(name, enabled) \
713 __SCHED_FEAT_##name ,
714
715enum {
391e43da 716#include "features.h"
f8b6d1cc 717 __SCHED_FEAT_NR,
029632fb
PZ
718};
719
720#undef SCHED_FEAT
721
f8b6d1cc 722#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 723static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 724{
c5905afb 725 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
726}
727
c5905afb 728static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 729{
c5905afb 730 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
731}
732
733#define SCHED_FEAT(name, enabled) \
c5905afb 734static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
735{ \
736 return static_branch__##enabled(key); \
737}
738
739#include "features.h"
740
741#undef SCHED_FEAT
742
c5905afb 743extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
744#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
745#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 746#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 747#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 748
cbee9f88
PZ
749#ifdef CONFIG_NUMA_BALANCING
750#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
751#ifdef CONFIG_SCHED_DEBUG
752#define numabalancing_enabled sched_feat_numa(NUMA)
753#else
754extern bool numabalancing_enabled;
755#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
756#else
757#define sched_feat_numa(x) (0)
3105b86a
MG
758#define numabalancing_enabled (0)
759#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 760
029632fb
PZ
761static inline u64 global_rt_period(void)
762{
763 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
764}
765
766static inline u64 global_rt_runtime(void)
767{
768 if (sysctl_sched_rt_runtime < 0)
769 return RUNTIME_INF;
770
771 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
772}
773
774
775
776static inline int task_current(struct rq *rq, struct task_struct *p)
777{
778 return rq->curr == p;
779}
780
781static inline int task_running(struct rq *rq, struct task_struct *p)
782{
783#ifdef CONFIG_SMP
784 return p->on_cpu;
785#else
786 return task_current(rq, p);
787#endif
788}
789
790
791#ifndef prepare_arch_switch
792# define prepare_arch_switch(next) do { } while (0)
793#endif
794#ifndef finish_arch_switch
795# define finish_arch_switch(prev) do { } while (0)
796#endif
01f23e16
CM
797#ifndef finish_arch_post_lock_switch
798# define finish_arch_post_lock_switch() do { } while (0)
799#endif
029632fb
PZ
800
801#ifndef __ARCH_WANT_UNLOCKED_CTXSW
802static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
803{
804#ifdef CONFIG_SMP
805 /*
806 * We can optimise this out completely for !SMP, because the
807 * SMP rebalancing from interrupt is the only thing that cares
808 * here.
809 */
810 next->on_cpu = 1;
811#endif
812}
813
814static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
815{
816#ifdef CONFIG_SMP
817 /*
818 * After ->on_cpu is cleared, the task can be moved to a different CPU.
819 * We must ensure this doesn't happen until the switch is completely
820 * finished.
821 */
822 smp_wmb();
823 prev->on_cpu = 0;
824#endif
825#ifdef CONFIG_DEBUG_SPINLOCK
826 /* this is a valid case when another task releases the spinlock */
827 rq->lock.owner = current;
828#endif
829 /*
830 * If we are tracking spinlock dependencies then we have to
831 * fix up the runqueue lock - which gets 'carried over' from
832 * prev into current:
833 */
834 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
835
836 raw_spin_unlock_irq(&rq->lock);
837}
838
839#else /* __ARCH_WANT_UNLOCKED_CTXSW */
840static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
841{
842#ifdef CONFIG_SMP
843 /*
844 * We can optimise this out completely for !SMP, because the
845 * SMP rebalancing from interrupt is the only thing that cares
846 * here.
847 */
848 next->on_cpu = 1;
849#endif
029632fb 850 raw_spin_unlock(&rq->lock);
029632fb
PZ
851}
852
853static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
854{
855#ifdef CONFIG_SMP
856 /*
857 * After ->on_cpu is cleared, the task can be moved to a different CPU.
858 * We must ensure this doesn't happen until the switch is completely
859 * finished.
860 */
861 smp_wmb();
862 prev->on_cpu = 0;
863#endif
029632fb 864 local_irq_enable();
029632fb
PZ
865}
866#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
867
b13095f0
LZ
868/*
869 * wake flags
870 */
871#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
872#define WF_FORK 0x02 /* child wakeup after fork */
873#define WF_MIGRATED 0x4 /* internal use, task got migrated */
874
029632fb
PZ
875static inline void update_load_add(struct load_weight *lw, unsigned long inc)
876{
877 lw->weight += inc;
878 lw->inv_weight = 0;
879}
880
881static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
882{
883 lw->weight -= dec;
884 lw->inv_weight = 0;
885}
886
887static inline void update_load_set(struct load_weight *lw, unsigned long w)
888{
889 lw->weight = w;
890 lw->inv_weight = 0;
891}
892
893/*
894 * To aid in avoiding the subversion of "niceness" due to uneven distribution
895 * of tasks with abnormal "nice" values across CPUs the contribution that
896 * each task makes to its run queue's load is weighted according to its
897 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
898 * scaled version of the new time slice allocation that they receive on time
899 * slice expiry etc.
900 */
901
902#define WEIGHT_IDLEPRIO 3
903#define WMULT_IDLEPRIO 1431655765
904
905/*
906 * Nice levels are multiplicative, with a gentle 10% change for every
907 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
908 * nice 1, it will get ~10% less CPU time than another CPU-bound task
909 * that remained on nice 0.
910 *
911 * The "10% effect" is relative and cumulative: from _any_ nice level,
912 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
913 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
914 * If a task goes up by ~10% and another task goes down by ~10% then
915 * the relative distance between them is ~25%.)
916 */
917static const int prio_to_weight[40] = {
918 /* -20 */ 88761, 71755, 56483, 46273, 36291,
919 /* -15 */ 29154, 23254, 18705, 14949, 11916,
920 /* -10 */ 9548, 7620, 6100, 4904, 3906,
921 /* -5 */ 3121, 2501, 1991, 1586, 1277,
922 /* 0 */ 1024, 820, 655, 526, 423,
923 /* 5 */ 335, 272, 215, 172, 137,
924 /* 10 */ 110, 87, 70, 56, 45,
925 /* 15 */ 36, 29, 23, 18, 15,
926};
927
928/*
929 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
930 *
931 * In cases where the weight does not change often, we can use the
932 * precalculated inverse to speed up arithmetics by turning divisions
933 * into multiplications:
934 */
935static const u32 prio_to_wmult[40] = {
936 /* -20 */ 48388, 59856, 76040, 92818, 118348,
937 /* -15 */ 147320, 184698, 229616, 287308, 360437,
938 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
939 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
940 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
941 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
942 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
943 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
944};
945
946/* Time spent by the tasks of the cpu accounting group executing in ... */
947enum cpuacct_stat_index {
948 CPUACCT_STAT_USER, /* ... user mode */
949 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
950
951 CPUACCT_STAT_NSTATS,
952};
953
954
955#define sched_class_highest (&stop_sched_class)
956#define for_each_class(class) \
957 for (class = sched_class_highest; class; class = class->next)
958
959extern const struct sched_class stop_sched_class;
960extern const struct sched_class rt_sched_class;
961extern const struct sched_class fair_sched_class;
962extern const struct sched_class idle_sched_class;
963
964
965#ifdef CONFIG_SMP
966
967extern void trigger_load_balance(struct rq *rq, int cpu);
968extern void idle_balance(int this_cpu, struct rq *this_rq);
969
970#else /* CONFIG_SMP */
971
972static inline void idle_balance(int cpu, struct rq *rq)
973{
974}
975
976#endif
977
978extern void sysrq_sched_debug_show(void);
979extern void sched_init_granularity(void);
980extern void update_max_interval(void);
981extern void update_group_power(struct sched_domain *sd, int cpu);
982extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
983extern void init_sched_rt_class(void);
984extern void init_sched_fair_class(void);
985
986extern void resched_task(struct task_struct *p);
987extern void resched_cpu(int cpu);
988
989extern struct rt_bandwidth def_rt_bandwidth;
990extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
991
556061b0 992extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
993
994#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
995#include <linux/cgroup.h>
996/* track cpu usage of a group of tasks and its child groups */
997struct cpuacct {
998 struct cgroup_subsys_state css;
999 /* cpuusage holds pointer to a u64-type object on every cpu */
1000 u64 __percpu *cpuusage;
1001 struct kernel_cpustat __percpu *cpustat;
1002};
1003
73fbec60
FW
1004extern struct cgroup_subsys cpuacct_subsys;
1005extern struct cpuacct root_cpuacct;
1006
54c707e9
GC
1007/* return cpu accounting group corresponding to this container */
1008static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
1009{
1010 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
1011 struct cpuacct, css);
1012}
1013
1014/* return cpu accounting group to which this task belongs */
1015static inline struct cpuacct *task_ca(struct task_struct *tsk)
1016{
1017 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
1018 struct cpuacct, css);
1019}
1020
1021static inline struct cpuacct *parent_ca(struct cpuacct *ca)
1022{
1023 if (!ca || !ca->css.cgroup->parent)
1024 return NULL;
1025 return cgroup_ca(ca->css.cgroup->parent);
1026}
1027
029632fb 1028extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
1029#else
1030static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
1031#endif
1032
73fbec60
FW
1033#ifdef CONFIG_PARAVIRT
1034static inline u64 steal_ticks(u64 steal)
1035{
1036 if (unlikely(steal > NSEC_PER_SEC))
1037 return div_u64(steal, TICK_NSEC);
1038
1039 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1040}
1041#endif
1042
029632fb
PZ
1043static inline void inc_nr_running(struct rq *rq)
1044{
1045 rq->nr_running++;
1046}
1047
1048static inline void dec_nr_running(struct rq *rq)
1049{
1050 rq->nr_running--;
1051}
1052
1053extern void update_rq_clock(struct rq *rq);
1054
1055extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1056extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1057
1058extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1059
1060extern const_debug unsigned int sysctl_sched_time_avg;
1061extern const_debug unsigned int sysctl_sched_nr_migrate;
1062extern const_debug unsigned int sysctl_sched_migration_cost;
1063
1064static inline u64 sched_avg_period(void)
1065{
1066 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1067}
1068
029632fb
PZ
1069#ifdef CONFIG_SCHED_HRTICK
1070
1071/*
1072 * Use hrtick when:
1073 * - enabled by features
1074 * - hrtimer is actually high res
1075 */
1076static inline int hrtick_enabled(struct rq *rq)
1077{
1078 if (!sched_feat(HRTICK))
1079 return 0;
1080 if (!cpu_active(cpu_of(rq)))
1081 return 0;
1082 return hrtimer_is_hres_active(&rq->hrtick_timer);
1083}
1084
1085void hrtick_start(struct rq *rq, u64 delay);
1086
b39e66ea
MG
1087#else
1088
1089static inline int hrtick_enabled(struct rq *rq)
1090{
1091 return 0;
1092}
1093
029632fb
PZ
1094#endif /* CONFIG_SCHED_HRTICK */
1095
1096#ifdef CONFIG_SMP
1097extern void sched_avg_update(struct rq *rq);
1098static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1099{
1100 rq->rt_avg += rt_delta;
1101 sched_avg_update(rq);
1102}
1103#else
1104static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1105static inline void sched_avg_update(struct rq *rq) { }
1106#endif
1107
1108extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1109
1110#ifdef CONFIG_SMP
1111#ifdef CONFIG_PREEMPT
1112
1113static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1114
1115/*
1116 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1117 * way at the expense of forcing extra atomic operations in all
1118 * invocations. This assures that the double_lock is acquired using the
1119 * same underlying policy as the spinlock_t on this architecture, which
1120 * reduces latency compared to the unfair variant below. However, it
1121 * also adds more overhead and therefore may reduce throughput.
1122 */
1123static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1124 __releases(this_rq->lock)
1125 __acquires(busiest->lock)
1126 __acquires(this_rq->lock)
1127{
1128 raw_spin_unlock(&this_rq->lock);
1129 double_rq_lock(this_rq, busiest);
1130
1131 return 1;
1132}
1133
1134#else
1135/*
1136 * Unfair double_lock_balance: Optimizes throughput at the expense of
1137 * latency by eliminating extra atomic operations when the locks are
1138 * already in proper order on entry. This favors lower cpu-ids and will
1139 * grant the double lock to lower cpus over higher ids under contention,
1140 * regardless of entry order into the function.
1141 */
1142static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1143 __releases(this_rq->lock)
1144 __acquires(busiest->lock)
1145 __acquires(this_rq->lock)
1146{
1147 int ret = 0;
1148
1149 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1150 if (busiest < this_rq) {
1151 raw_spin_unlock(&this_rq->lock);
1152 raw_spin_lock(&busiest->lock);
1153 raw_spin_lock_nested(&this_rq->lock,
1154 SINGLE_DEPTH_NESTING);
1155 ret = 1;
1156 } else
1157 raw_spin_lock_nested(&busiest->lock,
1158 SINGLE_DEPTH_NESTING);
1159 }
1160 return ret;
1161}
1162
1163#endif /* CONFIG_PREEMPT */
1164
1165/*
1166 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1167 */
1168static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1169{
1170 if (unlikely(!irqs_disabled())) {
1171 /* printk() doesn't work good under rq->lock */
1172 raw_spin_unlock(&this_rq->lock);
1173 BUG_ON(1);
1174 }
1175
1176 return _double_lock_balance(this_rq, busiest);
1177}
1178
1179static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1180 __releases(busiest->lock)
1181{
1182 raw_spin_unlock(&busiest->lock);
1183 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1184}
1185
1186/*
1187 * double_rq_lock - safely lock two runqueues
1188 *
1189 * Note this does not disable interrupts like task_rq_lock,
1190 * you need to do so manually before calling.
1191 */
1192static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1193 __acquires(rq1->lock)
1194 __acquires(rq2->lock)
1195{
1196 BUG_ON(!irqs_disabled());
1197 if (rq1 == rq2) {
1198 raw_spin_lock(&rq1->lock);
1199 __acquire(rq2->lock); /* Fake it out ;) */
1200 } else {
1201 if (rq1 < rq2) {
1202 raw_spin_lock(&rq1->lock);
1203 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1204 } else {
1205 raw_spin_lock(&rq2->lock);
1206 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1207 }
1208 }
1209}
1210
1211/*
1212 * double_rq_unlock - safely unlock two runqueues
1213 *
1214 * Note this does not restore interrupts like task_rq_unlock,
1215 * you need to do so manually after calling.
1216 */
1217static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1218 __releases(rq1->lock)
1219 __releases(rq2->lock)
1220{
1221 raw_spin_unlock(&rq1->lock);
1222 if (rq1 != rq2)
1223 raw_spin_unlock(&rq2->lock);
1224 else
1225 __release(rq2->lock);
1226}
1227
1228#else /* CONFIG_SMP */
1229
1230/*
1231 * double_rq_lock - safely lock two runqueues
1232 *
1233 * Note this does not disable interrupts like task_rq_lock,
1234 * you need to do so manually before calling.
1235 */
1236static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1237 __acquires(rq1->lock)
1238 __acquires(rq2->lock)
1239{
1240 BUG_ON(!irqs_disabled());
1241 BUG_ON(rq1 != rq2);
1242 raw_spin_lock(&rq1->lock);
1243 __acquire(rq2->lock); /* Fake it out ;) */
1244}
1245
1246/*
1247 * double_rq_unlock - safely unlock two runqueues
1248 *
1249 * Note this does not restore interrupts like task_rq_unlock,
1250 * you need to do so manually after calling.
1251 */
1252static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1253 __releases(rq1->lock)
1254 __releases(rq2->lock)
1255{
1256 BUG_ON(rq1 != rq2);
1257 raw_spin_unlock(&rq1->lock);
1258 __release(rq2->lock);
1259}
1260
1261#endif
1262
1263extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1264extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1265extern void print_cfs_stats(struct seq_file *m, int cpu);
1266extern void print_rt_stats(struct seq_file *m, int cpu);
1267
1268extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1269extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1270
1271extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1272
1273#ifdef CONFIG_NO_HZ
1274enum rq_nohz_flag_bits {
1275 NOHZ_TICK_STOPPED,
1276 NOHZ_BALANCE_KICK,
69e1e811 1277 NOHZ_IDLE,
1c792db7
SS
1278};
1279
1280#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1281#endif
73fbec60
FW
1282
1283#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1284
1285DECLARE_PER_CPU(u64, cpu_hardirq_time);
1286DECLARE_PER_CPU(u64, cpu_softirq_time);
1287
1288#ifndef CONFIG_64BIT
1289DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1290
1291static inline void irq_time_write_begin(void)
1292{
1293 __this_cpu_inc(irq_time_seq.sequence);
1294 smp_wmb();
1295}
1296
1297static inline void irq_time_write_end(void)
1298{
1299 smp_wmb();
1300 __this_cpu_inc(irq_time_seq.sequence);
1301}
1302
1303static inline u64 irq_time_read(int cpu)
1304{
1305 u64 irq_time;
1306 unsigned seq;
1307
1308 do {
1309 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1310 irq_time = per_cpu(cpu_softirq_time, cpu) +
1311 per_cpu(cpu_hardirq_time, cpu);
1312 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1313
1314 return irq_time;
1315}
1316#else /* CONFIG_64BIT */
1317static inline void irq_time_write_begin(void)
1318{
1319}
1320
1321static inline void irq_time_write_end(void)
1322{
1323}
1324
1325static inline u64 irq_time_read(int cpu)
1326{
1327 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1328}
1329#endif /* CONFIG_64BIT */
1330#endif /* CONFIG_IRQ_TIME_ACCOUNTING */