x86/numa: Check for nonsensical topologies on real hw as well
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
83static LIST_HEAD(task_groups);
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
204 unsigned long nr_running, h_nr_running;
205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
029632fb
PZ
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240#ifdef CONFIG_SMP
029632fb
PZ
241 /*
242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261#endif /* CONFIG_SMP */
262#ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270#endif /* CONFIG_CFS_BANDWIDTH */
271#endif /* CONFIG_FAIR_GROUP_SCHED */
272};
273
274static inline int rt_bandwidth_enabled(void)
275{
276 return sysctl_sched_rt_runtime >= 0;
277}
278
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
282 unsigned long rt_nr_running;
283#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286#ifdef CONFIG_SMP
287 int next; /* next highest */
288#endif
289 } highest_prio;
290#endif
291#ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296#endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303#ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309#endif
310};
311
312#ifdef CONFIG_SMP
313
314/*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335};
336
337extern struct root_domain def_root_domain;
338
339#endif /* CONFIG_SMP */
340
341/*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
356 unsigned long nr_running;
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360#ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
1c792db7 362 unsigned long nohz_flags;
029632fb
PZ
363#endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
377#endif
378#ifdef CONFIG_RT_GROUP_SCHED
379 struct list_head leaf_rt_rq_list;
380#endif
381
382 /*
383 * This is part of a global counter where only the total sum
384 * over all CPUs matters. A task can increase this counter on
385 * one CPU and if it got migrated afterwards it may decrease
386 * it on another CPU. Always updated under the runqueue lock:
387 */
388 unsigned long nr_uninterruptible;
389
390 struct task_struct *curr, *idle, *stop;
391 unsigned long next_balance;
392 struct mm_struct *prev_mm;
393
394 u64 clock;
395 u64 clock_task;
396
397 atomic_t nr_iowait;
398
399#ifdef CONFIG_SMP
400 struct root_domain *rd;
401 struct sched_domain *sd;
402
403 unsigned long cpu_power;
404
405 unsigned char idle_balance;
406 /* For active balancing */
407 int post_schedule;
408 int active_balance;
409 int push_cpu;
410 struct cpu_stop_work active_balance_work;
411 /* cpu of this runqueue: */
412 int cpu;
413 int online;
414
367456c7
PZ
415 struct list_head cfs_tasks;
416
029632fb
PZ
417 u64 rt_avg;
418 u64 age_stamp;
419 u64 idle_stamp;
420 u64 avg_idle;
421#endif
422
423#ifdef CONFIG_IRQ_TIME_ACCOUNTING
424 u64 prev_irq_time;
425#endif
426#ifdef CONFIG_PARAVIRT
427 u64 prev_steal_time;
428#endif
429#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
430 u64 prev_steal_time_rq;
431#endif
432
433 /* calc_load related fields */
434 unsigned long calc_load_update;
435 long calc_load_active;
436
437#ifdef CONFIG_SCHED_HRTICK
438#ifdef CONFIG_SMP
439 int hrtick_csd_pending;
440 struct call_single_data hrtick_csd;
441#endif
442 struct hrtimer hrtick_timer;
443#endif
444
445#ifdef CONFIG_SCHEDSTATS
446 /* latency stats */
447 struct sched_info rq_sched_info;
448 unsigned long long rq_cpu_time;
449 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
450
451 /* sys_sched_yield() stats */
452 unsigned int yld_count;
453
454 /* schedule() stats */
029632fb
PZ
455 unsigned int sched_count;
456 unsigned int sched_goidle;
457
458 /* try_to_wake_up() stats */
459 unsigned int ttwu_count;
460 unsigned int ttwu_local;
461#endif
462
463#ifdef CONFIG_SMP
464 struct llist_head wake_list;
465#endif
466};
467
468static inline int cpu_of(struct rq *rq)
469{
470#ifdef CONFIG_SMP
471 return rq->cpu;
472#else
473 return 0;
474#endif
475}
476
477DECLARE_PER_CPU(struct rq, runqueues);
478
518cd623
PZ
479#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
480#define this_rq() (&__get_cpu_var(runqueues))
481#define task_rq(p) cpu_rq(task_cpu(p))
482#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
483#define raw_rq() (&__raw_get_cpu_var(runqueues))
484
485#ifdef CONFIG_SMP
486
029632fb
PZ
487#define rcu_dereference_check_sched_domain(p) \
488 rcu_dereference_check((p), \
489 lockdep_is_held(&sched_domains_mutex))
490
491/*
492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
493 * See detach_destroy_domains: synchronize_sched for details.
494 *
495 * The domain tree of any CPU may only be accessed from within
496 * preempt-disabled sections.
497 */
498#define for_each_domain(cpu, __sd) \
518cd623
PZ
499 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
500 __sd; __sd = __sd->parent)
029632fb 501
77e81365
SS
502#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
503
518cd623
PZ
504/**
505 * highest_flag_domain - Return highest sched_domain containing flag.
506 * @cpu: The cpu whose highest level of sched domain is to
507 * be returned.
508 * @flag: The flag to check for the highest sched_domain
509 * for the given cpu.
510 *
511 * Returns the highest sched_domain of a cpu which contains the given flag.
512 */
513static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
514{
515 struct sched_domain *sd, *hsd = NULL;
516
517 for_each_domain(cpu, sd) {
518 if (!(sd->flags & flag))
519 break;
520 hsd = sd;
521 }
522
523 return hsd;
524}
525
526DECLARE_PER_CPU(struct sched_domain *, sd_llc);
527DECLARE_PER_CPU(int, sd_llc_id);
528
529#endif /* CONFIG_SMP */
029632fb 530
391e43da
PZ
531#include "stats.h"
532#include "auto_group.h"
029632fb
PZ
533
534#ifdef CONFIG_CGROUP_SCHED
535
536/*
537 * Return the group to which this tasks belongs.
538 *
539 * We use task_subsys_state_check() and extend the RCU verification with
540 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
541 * task it moves into the cgroup. Therefore by holding either of those locks,
542 * we pin the task to the current cgroup.
543 */
544static inline struct task_group *task_group(struct task_struct *p)
545{
546 struct task_group *tg;
547 struct cgroup_subsys_state *css;
548
549 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
550 lockdep_is_held(&p->pi_lock) ||
551 lockdep_is_held(&task_rq(p)->lock));
552 tg = container_of(css, struct task_group, css);
553
554 return autogroup_task_group(p, tg);
555}
556
557/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
558static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
559{
560#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
561 struct task_group *tg = task_group(p);
562#endif
563
564#ifdef CONFIG_FAIR_GROUP_SCHED
565 p->se.cfs_rq = tg->cfs_rq[cpu];
566 p->se.parent = tg->se[cpu];
567#endif
568
569#ifdef CONFIG_RT_GROUP_SCHED
570 p->rt.rt_rq = tg->rt_rq[cpu];
571 p->rt.parent = tg->rt_se[cpu];
572#endif
573}
574
575#else /* CONFIG_CGROUP_SCHED */
576
577static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
578static inline struct task_group *task_group(struct task_struct *p)
579{
580 return NULL;
581}
582
583#endif /* CONFIG_CGROUP_SCHED */
584
585static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
586{
587 set_task_rq(p, cpu);
588#ifdef CONFIG_SMP
589 /*
590 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
591 * successfuly executed on another CPU. We must ensure that updates of
592 * per-task data have been completed by this moment.
593 */
594 smp_wmb();
595 task_thread_info(p)->cpu = cpu;
596#endif
597}
598
599/*
600 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
601 */
602#ifdef CONFIG_SCHED_DEBUG
c5905afb 603# include <linux/static_key.h>
029632fb
PZ
604# define const_debug __read_mostly
605#else
606# define const_debug const
607#endif
608
609extern const_debug unsigned int sysctl_sched_features;
610
611#define SCHED_FEAT(name, enabled) \
612 __SCHED_FEAT_##name ,
613
614enum {
391e43da 615#include "features.h"
f8b6d1cc 616 __SCHED_FEAT_NR,
029632fb
PZ
617};
618
619#undef SCHED_FEAT
620
f8b6d1cc 621#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 622static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 623{
c5905afb 624 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
625}
626
c5905afb 627static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 628{
c5905afb 629 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
630}
631
632#define SCHED_FEAT(name, enabled) \
c5905afb 633static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
634{ \
635 return static_branch__##enabled(key); \
636}
637
638#include "features.h"
639
640#undef SCHED_FEAT
641
c5905afb 642extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
643#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
644#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 645#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 646#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
647
648static inline u64 global_rt_period(void)
649{
650 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
651}
652
653static inline u64 global_rt_runtime(void)
654{
655 if (sysctl_sched_rt_runtime < 0)
656 return RUNTIME_INF;
657
658 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
659}
660
661
662
663static inline int task_current(struct rq *rq, struct task_struct *p)
664{
665 return rq->curr == p;
666}
667
668static inline int task_running(struct rq *rq, struct task_struct *p)
669{
670#ifdef CONFIG_SMP
671 return p->on_cpu;
672#else
673 return task_current(rq, p);
674#endif
675}
676
677
678#ifndef prepare_arch_switch
679# define prepare_arch_switch(next) do { } while (0)
680#endif
681#ifndef finish_arch_switch
682# define finish_arch_switch(prev) do { } while (0)
683#endif
01f23e16
CM
684#ifndef finish_arch_post_lock_switch
685# define finish_arch_post_lock_switch() do { } while (0)
686#endif
029632fb
PZ
687
688#ifndef __ARCH_WANT_UNLOCKED_CTXSW
689static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
690{
691#ifdef CONFIG_SMP
692 /*
693 * We can optimise this out completely for !SMP, because the
694 * SMP rebalancing from interrupt is the only thing that cares
695 * here.
696 */
697 next->on_cpu = 1;
698#endif
699}
700
701static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
702{
703#ifdef CONFIG_SMP
704 /*
705 * After ->on_cpu is cleared, the task can be moved to a different CPU.
706 * We must ensure this doesn't happen until the switch is completely
707 * finished.
708 */
709 smp_wmb();
710 prev->on_cpu = 0;
711#endif
712#ifdef CONFIG_DEBUG_SPINLOCK
713 /* this is a valid case when another task releases the spinlock */
714 rq->lock.owner = current;
715#endif
716 /*
717 * If we are tracking spinlock dependencies then we have to
718 * fix up the runqueue lock - which gets 'carried over' from
719 * prev into current:
720 */
721 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
722
723 raw_spin_unlock_irq(&rq->lock);
724}
725
726#else /* __ARCH_WANT_UNLOCKED_CTXSW */
727static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
728{
729#ifdef CONFIG_SMP
730 /*
731 * We can optimise this out completely for !SMP, because the
732 * SMP rebalancing from interrupt is the only thing that cares
733 * here.
734 */
735 next->on_cpu = 1;
736#endif
737#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
738 raw_spin_unlock_irq(&rq->lock);
739#else
740 raw_spin_unlock(&rq->lock);
741#endif
742}
743
744static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
745{
746#ifdef CONFIG_SMP
747 /*
748 * After ->on_cpu is cleared, the task can be moved to a different CPU.
749 * We must ensure this doesn't happen until the switch is completely
750 * finished.
751 */
752 smp_wmb();
753 prev->on_cpu = 0;
754#endif
755#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
756 local_irq_enable();
757#endif
758}
759#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
760
761
762static inline void update_load_add(struct load_weight *lw, unsigned long inc)
763{
764 lw->weight += inc;
765 lw->inv_weight = 0;
766}
767
768static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
769{
770 lw->weight -= dec;
771 lw->inv_weight = 0;
772}
773
774static inline void update_load_set(struct load_weight *lw, unsigned long w)
775{
776 lw->weight = w;
777 lw->inv_weight = 0;
778}
779
780/*
781 * To aid in avoiding the subversion of "niceness" due to uneven distribution
782 * of tasks with abnormal "nice" values across CPUs the contribution that
783 * each task makes to its run queue's load is weighted according to its
784 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
785 * scaled version of the new time slice allocation that they receive on time
786 * slice expiry etc.
787 */
788
789#define WEIGHT_IDLEPRIO 3
790#define WMULT_IDLEPRIO 1431655765
791
792/*
793 * Nice levels are multiplicative, with a gentle 10% change for every
794 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
795 * nice 1, it will get ~10% less CPU time than another CPU-bound task
796 * that remained on nice 0.
797 *
798 * The "10% effect" is relative and cumulative: from _any_ nice level,
799 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
800 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
801 * If a task goes up by ~10% and another task goes down by ~10% then
802 * the relative distance between them is ~25%.)
803 */
804static const int prio_to_weight[40] = {
805 /* -20 */ 88761, 71755, 56483, 46273, 36291,
806 /* -15 */ 29154, 23254, 18705, 14949, 11916,
807 /* -10 */ 9548, 7620, 6100, 4904, 3906,
808 /* -5 */ 3121, 2501, 1991, 1586, 1277,
809 /* 0 */ 1024, 820, 655, 526, 423,
810 /* 5 */ 335, 272, 215, 172, 137,
811 /* 10 */ 110, 87, 70, 56, 45,
812 /* 15 */ 36, 29, 23, 18, 15,
813};
814
815/*
816 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
817 *
818 * In cases where the weight does not change often, we can use the
819 * precalculated inverse to speed up arithmetics by turning divisions
820 * into multiplications:
821 */
822static const u32 prio_to_wmult[40] = {
823 /* -20 */ 48388, 59856, 76040, 92818, 118348,
824 /* -15 */ 147320, 184698, 229616, 287308, 360437,
825 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
826 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
827 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
828 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
829 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
830 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831};
832
833/* Time spent by the tasks of the cpu accounting group executing in ... */
834enum cpuacct_stat_index {
835 CPUACCT_STAT_USER, /* ... user mode */
836 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
837
838 CPUACCT_STAT_NSTATS,
839};
840
841
842#define sched_class_highest (&stop_sched_class)
843#define for_each_class(class) \
844 for (class = sched_class_highest; class; class = class->next)
845
846extern const struct sched_class stop_sched_class;
847extern const struct sched_class rt_sched_class;
848extern const struct sched_class fair_sched_class;
849extern const struct sched_class idle_sched_class;
850
851
852#ifdef CONFIG_SMP
853
854extern void trigger_load_balance(struct rq *rq, int cpu);
855extern void idle_balance(int this_cpu, struct rq *this_rq);
856
857#else /* CONFIG_SMP */
858
859static inline void idle_balance(int cpu, struct rq *rq)
860{
861}
862
863#endif
864
865extern void sysrq_sched_debug_show(void);
866extern void sched_init_granularity(void);
867extern void update_max_interval(void);
868extern void update_group_power(struct sched_domain *sd, int cpu);
869extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
870extern void init_sched_rt_class(void);
871extern void init_sched_fair_class(void);
872
873extern void resched_task(struct task_struct *p);
874extern void resched_cpu(int cpu);
875
876extern struct rt_bandwidth def_rt_bandwidth;
877extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
878
879extern void update_cpu_load(struct rq *this_rq);
880
881#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
882#include <linux/cgroup.h>
883/* track cpu usage of a group of tasks and its child groups */
884struct cpuacct {
885 struct cgroup_subsys_state css;
886 /* cpuusage holds pointer to a u64-type object on every cpu */
887 u64 __percpu *cpuusage;
888 struct kernel_cpustat __percpu *cpustat;
889};
890
891/* return cpu accounting group corresponding to this container */
892static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
893{
894 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
895 struct cpuacct, css);
896}
897
898/* return cpu accounting group to which this task belongs */
899static inline struct cpuacct *task_ca(struct task_struct *tsk)
900{
901 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
902 struct cpuacct, css);
903}
904
905static inline struct cpuacct *parent_ca(struct cpuacct *ca)
906{
907 if (!ca || !ca->css.cgroup->parent)
908 return NULL;
909 return cgroup_ca(ca->css.cgroup->parent);
910}
911
029632fb 912extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
913#else
914static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
915#endif
916
917static inline void inc_nr_running(struct rq *rq)
918{
919 rq->nr_running++;
920}
921
922static inline void dec_nr_running(struct rq *rq)
923{
924 rq->nr_running--;
925}
926
927extern void update_rq_clock(struct rq *rq);
928
929extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
930extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
931
932extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
933
934extern const_debug unsigned int sysctl_sched_time_avg;
935extern const_debug unsigned int sysctl_sched_nr_migrate;
936extern const_debug unsigned int sysctl_sched_migration_cost;
937
938static inline u64 sched_avg_period(void)
939{
940 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
941}
942
943void calc_load_account_idle(struct rq *this_rq);
944
945#ifdef CONFIG_SCHED_HRTICK
946
947/*
948 * Use hrtick when:
949 * - enabled by features
950 * - hrtimer is actually high res
951 */
952static inline int hrtick_enabled(struct rq *rq)
953{
954 if (!sched_feat(HRTICK))
955 return 0;
956 if (!cpu_active(cpu_of(rq)))
957 return 0;
958 return hrtimer_is_hres_active(&rq->hrtick_timer);
959}
960
961void hrtick_start(struct rq *rq, u64 delay);
962
b39e66ea
MG
963#else
964
965static inline int hrtick_enabled(struct rq *rq)
966{
967 return 0;
968}
969
029632fb
PZ
970#endif /* CONFIG_SCHED_HRTICK */
971
972#ifdef CONFIG_SMP
973extern void sched_avg_update(struct rq *rq);
974static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
975{
976 rq->rt_avg += rt_delta;
977 sched_avg_update(rq);
978}
979#else
980static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
981static inline void sched_avg_update(struct rq *rq) { }
982#endif
983
984extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
985
986#ifdef CONFIG_SMP
987#ifdef CONFIG_PREEMPT
988
989static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
990
991/*
992 * fair double_lock_balance: Safely acquires both rq->locks in a fair
993 * way at the expense of forcing extra atomic operations in all
994 * invocations. This assures that the double_lock is acquired using the
995 * same underlying policy as the spinlock_t on this architecture, which
996 * reduces latency compared to the unfair variant below. However, it
997 * also adds more overhead and therefore may reduce throughput.
998 */
999static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1000 __releases(this_rq->lock)
1001 __acquires(busiest->lock)
1002 __acquires(this_rq->lock)
1003{
1004 raw_spin_unlock(&this_rq->lock);
1005 double_rq_lock(this_rq, busiest);
1006
1007 return 1;
1008}
1009
1010#else
1011/*
1012 * Unfair double_lock_balance: Optimizes throughput at the expense of
1013 * latency by eliminating extra atomic operations when the locks are
1014 * already in proper order on entry. This favors lower cpu-ids and will
1015 * grant the double lock to lower cpus over higher ids under contention,
1016 * regardless of entry order into the function.
1017 */
1018static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1019 __releases(this_rq->lock)
1020 __acquires(busiest->lock)
1021 __acquires(this_rq->lock)
1022{
1023 int ret = 0;
1024
1025 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1026 if (busiest < this_rq) {
1027 raw_spin_unlock(&this_rq->lock);
1028 raw_spin_lock(&busiest->lock);
1029 raw_spin_lock_nested(&this_rq->lock,
1030 SINGLE_DEPTH_NESTING);
1031 ret = 1;
1032 } else
1033 raw_spin_lock_nested(&busiest->lock,
1034 SINGLE_DEPTH_NESTING);
1035 }
1036 return ret;
1037}
1038
1039#endif /* CONFIG_PREEMPT */
1040
1041/*
1042 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1043 */
1044static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1045{
1046 if (unlikely(!irqs_disabled())) {
1047 /* printk() doesn't work good under rq->lock */
1048 raw_spin_unlock(&this_rq->lock);
1049 BUG_ON(1);
1050 }
1051
1052 return _double_lock_balance(this_rq, busiest);
1053}
1054
1055static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1056 __releases(busiest->lock)
1057{
1058 raw_spin_unlock(&busiest->lock);
1059 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1060}
1061
1062/*
1063 * double_rq_lock - safely lock two runqueues
1064 *
1065 * Note this does not disable interrupts like task_rq_lock,
1066 * you need to do so manually before calling.
1067 */
1068static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1069 __acquires(rq1->lock)
1070 __acquires(rq2->lock)
1071{
1072 BUG_ON(!irqs_disabled());
1073 if (rq1 == rq2) {
1074 raw_spin_lock(&rq1->lock);
1075 __acquire(rq2->lock); /* Fake it out ;) */
1076 } else {
1077 if (rq1 < rq2) {
1078 raw_spin_lock(&rq1->lock);
1079 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1080 } else {
1081 raw_spin_lock(&rq2->lock);
1082 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1083 }
1084 }
1085}
1086
1087/*
1088 * double_rq_unlock - safely unlock two runqueues
1089 *
1090 * Note this does not restore interrupts like task_rq_unlock,
1091 * you need to do so manually after calling.
1092 */
1093static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1094 __releases(rq1->lock)
1095 __releases(rq2->lock)
1096{
1097 raw_spin_unlock(&rq1->lock);
1098 if (rq1 != rq2)
1099 raw_spin_unlock(&rq2->lock);
1100 else
1101 __release(rq2->lock);
1102}
1103
1104#else /* CONFIG_SMP */
1105
1106/*
1107 * double_rq_lock - safely lock two runqueues
1108 *
1109 * Note this does not disable interrupts like task_rq_lock,
1110 * you need to do so manually before calling.
1111 */
1112static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1113 __acquires(rq1->lock)
1114 __acquires(rq2->lock)
1115{
1116 BUG_ON(!irqs_disabled());
1117 BUG_ON(rq1 != rq2);
1118 raw_spin_lock(&rq1->lock);
1119 __acquire(rq2->lock); /* Fake it out ;) */
1120}
1121
1122/*
1123 * double_rq_unlock - safely unlock two runqueues
1124 *
1125 * Note this does not restore interrupts like task_rq_unlock,
1126 * you need to do so manually after calling.
1127 */
1128static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1129 __releases(rq1->lock)
1130 __releases(rq2->lock)
1131{
1132 BUG_ON(rq1 != rq2);
1133 raw_spin_unlock(&rq1->lock);
1134 __release(rq2->lock);
1135}
1136
1137#endif
1138
1139extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1140extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1141extern void print_cfs_stats(struct seq_file *m, int cpu);
1142extern void print_rt_stats(struct seq_file *m, int cpu);
1143
1144extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1145extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1146extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1147
1148extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1149
1150#ifdef CONFIG_NO_HZ
1151enum rq_nohz_flag_bits {
1152 NOHZ_TICK_STOPPED,
1153 NOHZ_BALANCE_KICK,
69e1e811 1154 NOHZ_IDLE,
1c792db7
SS
1155};
1156
1157#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1158#endif