Merge tag 'full-dynticks-cputime-for-mingo' of git://git.kernel.org/pub/scm/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
c566e8e9 115 atomic64_t load_avg;
bb17f655 116 atomic_t runnable_avg;
029632fb
PZ
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
c82513e5 206 unsigned int nr_running, h_nr_running;
029632fb
PZ
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
029632fb
PZ
217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
2dac754e 227#ifdef CONFIG_SMP
f4e26b12
PT
228/*
229 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
230 * removed when useful for applications beyond shares distribution (e.g.
231 * load-balance).
232 */
233#ifdef CONFIG_FAIR_GROUP_SCHED
2dac754e
PT
234 /*
235 * CFS Load tracking
236 * Under CFS, load is tracked on a per-entity basis and aggregated up.
237 * This allows for the description of both thread and group usage (in
238 * the FAIR_GROUP_SCHED case).
239 */
9ee474f5 240 u64 runnable_load_avg, blocked_load_avg;
aff3e498 241 atomic64_t decay_counter, removed_load;
9ee474f5 242 u64 last_decay;
f4e26b12
PT
243#endif /* CONFIG_FAIR_GROUP_SCHED */
244/* These always depend on CONFIG_FAIR_GROUP_SCHED */
c566e8e9 245#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 246 u32 tg_runnable_contrib;
c566e8e9 247 u64 tg_load_contrib;
82958366
PT
248#endif /* CONFIG_FAIR_GROUP_SCHED */
249
250 /*
251 * h_load = weight * f(tg)
252 *
253 * Where f(tg) is the recursive weight fraction assigned to
254 * this group.
255 */
256 unsigned long h_load;
257#endif /* CONFIG_SMP */
258
029632fb
PZ
259#ifdef CONFIG_FAIR_GROUP_SCHED
260 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
261
262 /*
263 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
264 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
265 * (like users, containers etc.)
266 *
267 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
268 * list is used during load balance.
269 */
270 int on_list;
271 struct list_head leaf_cfs_rq_list;
272 struct task_group *tg; /* group that "owns" this runqueue */
273
029632fb
PZ
274#ifdef CONFIG_CFS_BANDWIDTH
275 int runtime_enabled;
276 u64 runtime_expires;
277 s64 runtime_remaining;
278
f1b17280
PT
279 u64 throttled_clock, throttled_clock_task;
280 u64 throttled_clock_task_time;
029632fb
PZ
281 int throttled, throttle_count;
282 struct list_head throttled_list;
283#endif /* CONFIG_CFS_BANDWIDTH */
284#endif /* CONFIG_FAIR_GROUP_SCHED */
285};
286
287static inline int rt_bandwidth_enabled(void)
288{
289 return sysctl_sched_rt_runtime >= 0;
290}
291
292/* Real-Time classes' related field in a runqueue: */
293struct rt_rq {
294 struct rt_prio_array active;
c82513e5 295 unsigned int rt_nr_running;
029632fb
PZ
296#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
297 struct {
298 int curr; /* highest queued rt task prio */
299#ifdef CONFIG_SMP
300 int next; /* next highest */
301#endif
302 } highest_prio;
303#endif
304#ifdef CONFIG_SMP
305 unsigned long rt_nr_migratory;
306 unsigned long rt_nr_total;
307 int overloaded;
308 struct plist_head pushable_tasks;
309#endif
310 int rt_throttled;
311 u64 rt_time;
312 u64 rt_runtime;
313 /* Nests inside the rq lock: */
314 raw_spinlock_t rt_runtime_lock;
315
316#ifdef CONFIG_RT_GROUP_SCHED
317 unsigned long rt_nr_boosted;
318
319 struct rq *rq;
320 struct list_head leaf_rt_rq_list;
321 struct task_group *tg;
322#endif
323};
324
325#ifdef CONFIG_SMP
326
327/*
328 * We add the notion of a root-domain which will be used to define per-domain
329 * variables. Each exclusive cpuset essentially defines an island domain by
330 * fully partitioning the member cpus from any other cpuset. Whenever a new
331 * exclusive cpuset is created, we also create and attach a new root-domain
332 * object.
333 *
334 */
335struct root_domain {
336 atomic_t refcount;
337 atomic_t rto_count;
338 struct rcu_head rcu;
339 cpumask_var_t span;
340 cpumask_var_t online;
341
342 /*
343 * The "RT overload" flag: it gets set if a CPU has more than
344 * one runnable RT task.
345 */
346 cpumask_var_t rto_mask;
347 struct cpupri cpupri;
348};
349
350extern struct root_domain def_root_domain;
351
352#endif /* CONFIG_SMP */
353
354/*
355 * This is the main, per-CPU runqueue data structure.
356 *
357 * Locking rule: those places that want to lock multiple runqueues
358 * (such as the load balancing or the thread migration code), lock
359 * acquire operations must be ordered by ascending &runqueue.
360 */
361struct rq {
362 /* runqueue lock: */
363 raw_spinlock_t lock;
364
365 /*
366 * nr_running and cpu_load should be in the same cacheline because
367 * remote CPUs use both these fields when doing load calculation.
368 */
c82513e5 369 unsigned int nr_running;
029632fb
PZ
370 #define CPU_LOAD_IDX_MAX 5
371 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
372 unsigned long last_load_update_tick;
373#ifdef CONFIG_NO_HZ
374 u64 nohz_stamp;
1c792db7 375 unsigned long nohz_flags;
029632fb
PZ
376#endif
377 int skip_clock_update;
378
379 /* capture load from *all* tasks on this cpu: */
380 struct load_weight load;
381 unsigned long nr_load_updates;
382 u64 nr_switches;
383
384 struct cfs_rq cfs;
385 struct rt_rq rt;
386
387#ifdef CONFIG_FAIR_GROUP_SCHED
388 /* list of leaf cfs_rq on this cpu: */
389 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
390#ifdef CONFIG_SMP
391 unsigned long h_load_throttle;
392#endif /* CONFIG_SMP */
393#endif /* CONFIG_FAIR_GROUP_SCHED */
394
029632fb
PZ
395#ifdef CONFIG_RT_GROUP_SCHED
396 struct list_head leaf_rt_rq_list;
397#endif
398
399 /*
400 * This is part of a global counter where only the total sum
401 * over all CPUs matters. A task can increase this counter on
402 * one CPU and if it got migrated afterwards it may decrease
403 * it on another CPU. Always updated under the runqueue lock:
404 */
405 unsigned long nr_uninterruptible;
406
407 struct task_struct *curr, *idle, *stop;
408 unsigned long next_balance;
409 struct mm_struct *prev_mm;
410
411 u64 clock;
412 u64 clock_task;
413
414 atomic_t nr_iowait;
415
416#ifdef CONFIG_SMP
417 struct root_domain *rd;
418 struct sched_domain *sd;
419
420 unsigned long cpu_power;
421
422 unsigned char idle_balance;
423 /* For active balancing */
424 int post_schedule;
425 int active_balance;
426 int push_cpu;
427 struct cpu_stop_work active_balance_work;
428 /* cpu of this runqueue: */
429 int cpu;
430 int online;
431
367456c7
PZ
432 struct list_head cfs_tasks;
433
029632fb
PZ
434 u64 rt_avg;
435 u64 age_stamp;
436 u64 idle_stamp;
437 u64 avg_idle;
438#endif
439
440#ifdef CONFIG_IRQ_TIME_ACCOUNTING
441 u64 prev_irq_time;
442#endif
443#ifdef CONFIG_PARAVIRT
444 u64 prev_steal_time;
445#endif
446#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
447 u64 prev_steal_time_rq;
448#endif
449
450 /* calc_load related fields */
451 unsigned long calc_load_update;
452 long calc_load_active;
453
454#ifdef CONFIG_SCHED_HRTICK
455#ifdef CONFIG_SMP
456 int hrtick_csd_pending;
457 struct call_single_data hrtick_csd;
458#endif
459 struct hrtimer hrtick_timer;
460#endif
461
462#ifdef CONFIG_SCHEDSTATS
463 /* latency stats */
464 struct sched_info rq_sched_info;
465 unsigned long long rq_cpu_time;
466 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
467
468 /* sys_sched_yield() stats */
469 unsigned int yld_count;
470
471 /* schedule() stats */
029632fb
PZ
472 unsigned int sched_count;
473 unsigned int sched_goidle;
474
475 /* try_to_wake_up() stats */
476 unsigned int ttwu_count;
477 unsigned int ttwu_local;
478#endif
479
480#ifdef CONFIG_SMP
481 struct llist_head wake_list;
482#endif
18bf2805
BS
483
484 struct sched_avg avg;
029632fb
PZ
485};
486
487static inline int cpu_of(struct rq *rq)
488{
489#ifdef CONFIG_SMP
490 return rq->cpu;
491#else
492 return 0;
493#endif
494}
495
496DECLARE_PER_CPU(struct rq, runqueues);
497
518cd623
PZ
498#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
499#define this_rq() (&__get_cpu_var(runqueues))
500#define task_rq(p) cpu_rq(task_cpu(p))
501#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
502#define raw_rq() (&__raw_get_cpu_var(runqueues))
503
504#ifdef CONFIG_SMP
505
029632fb
PZ
506#define rcu_dereference_check_sched_domain(p) \
507 rcu_dereference_check((p), \
508 lockdep_is_held(&sched_domains_mutex))
509
510/*
511 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
512 * See detach_destroy_domains: synchronize_sched for details.
513 *
514 * The domain tree of any CPU may only be accessed from within
515 * preempt-disabled sections.
516 */
517#define for_each_domain(cpu, __sd) \
518cd623
PZ
518 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
519 __sd; __sd = __sd->parent)
029632fb 520
77e81365
SS
521#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
522
518cd623
PZ
523/**
524 * highest_flag_domain - Return highest sched_domain containing flag.
525 * @cpu: The cpu whose highest level of sched domain is to
526 * be returned.
527 * @flag: The flag to check for the highest sched_domain
528 * for the given cpu.
529 *
530 * Returns the highest sched_domain of a cpu which contains the given flag.
531 */
532static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
533{
534 struct sched_domain *sd, *hsd = NULL;
535
536 for_each_domain(cpu, sd) {
537 if (!(sd->flags & flag))
538 break;
539 hsd = sd;
540 }
541
542 return hsd;
543}
544
545DECLARE_PER_CPU(struct sched_domain *, sd_llc);
546DECLARE_PER_CPU(int, sd_llc_id);
547
c1174876
PZ
548extern int group_balance_cpu(struct sched_group *sg);
549
518cd623 550#endif /* CONFIG_SMP */
029632fb 551
391e43da
PZ
552#include "stats.h"
553#include "auto_group.h"
029632fb
PZ
554
555#ifdef CONFIG_CGROUP_SCHED
556
557/*
558 * Return the group to which this tasks belongs.
559 *
8323f26c
PZ
560 * We cannot use task_subsys_state() and friends because the cgroup
561 * subsystem changes that value before the cgroup_subsys::attach() method
562 * is called, therefore we cannot pin it and might observe the wrong value.
563 *
564 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
565 * core changes this before calling sched_move_task().
566 *
567 * Instead we use a 'copy' which is updated from sched_move_task() while
568 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
569 */
570static inline struct task_group *task_group(struct task_struct *p)
571{
8323f26c 572 return p->sched_task_group;
029632fb
PZ
573}
574
575/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
576static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
577{
578#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
579 struct task_group *tg = task_group(p);
580#endif
581
582#ifdef CONFIG_FAIR_GROUP_SCHED
583 p->se.cfs_rq = tg->cfs_rq[cpu];
584 p->se.parent = tg->se[cpu];
585#endif
586
587#ifdef CONFIG_RT_GROUP_SCHED
588 p->rt.rt_rq = tg->rt_rq[cpu];
589 p->rt.parent = tg->rt_se[cpu];
590#endif
591}
592
593#else /* CONFIG_CGROUP_SCHED */
594
595static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
596static inline struct task_group *task_group(struct task_struct *p)
597{
598 return NULL;
599}
600
601#endif /* CONFIG_CGROUP_SCHED */
602
603static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
604{
605 set_task_rq(p, cpu);
606#ifdef CONFIG_SMP
607 /*
608 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
609 * successfuly executed on another CPU. We must ensure that updates of
610 * per-task data have been completed by this moment.
611 */
612 smp_wmb();
613 task_thread_info(p)->cpu = cpu;
614#endif
615}
616
617/*
618 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
619 */
620#ifdef CONFIG_SCHED_DEBUG
c5905afb 621# include <linux/static_key.h>
029632fb
PZ
622# define const_debug __read_mostly
623#else
624# define const_debug const
625#endif
626
627extern const_debug unsigned int sysctl_sched_features;
628
629#define SCHED_FEAT(name, enabled) \
630 __SCHED_FEAT_##name ,
631
632enum {
391e43da 633#include "features.h"
f8b6d1cc 634 __SCHED_FEAT_NR,
029632fb
PZ
635};
636
637#undef SCHED_FEAT
638
f8b6d1cc 639#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 640static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 641{
c5905afb 642 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
643}
644
c5905afb 645static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 646{
c5905afb 647 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
648}
649
650#define SCHED_FEAT(name, enabled) \
c5905afb 651static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
652{ \
653 return static_branch__##enabled(key); \
654}
655
656#include "features.h"
657
658#undef SCHED_FEAT
659
c5905afb 660extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
661#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
662#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 663#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 664#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 665
cbee9f88
PZ
666#ifdef CONFIG_NUMA_BALANCING
667#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
668#ifdef CONFIG_SCHED_DEBUG
669#define numabalancing_enabled sched_feat_numa(NUMA)
670#else
671extern bool numabalancing_enabled;
672#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
673#else
674#define sched_feat_numa(x) (0)
3105b86a
MG
675#define numabalancing_enabled (0)
676#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 677
029632fb
PZ
678static inline u64 global_rt_period(void)
679{
680 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
681}
682
683static inline u64 global_rt_runtime(void)
684{
685 if (sysctl_sched_rt_runtime < 0)
686 return RUNTIME_INF;
687
688 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
689}
690
691
692
693static inline int task_current(struct rq *rq, struct task_struct *p)
694{
695 return rq->curr == p;
696}
697
698static inline int task_running(struct rq *rq, struct task_struct *p)
699{
700#ifdef CONFIG_SMP
701 return p->on_cpu;
702#else
703 return task_current(rq, p);
704#endif
705}
706
707
708#ifndef prepare_arch_switch
709# define prepare_arch_switch(next) do { } while (0)
710#endif
711#ifndef finish_arch_switch
712# define finish_arch_switch(prev) do { } while (0)
713#endif
01f23e16
CM
714#ifndef finish_arch_post_lock_switch
715# define finish_arch_post_lock_switch() do { } while (0)
716#endif
029632fb
PZ
717
718#ifndef __ARCH_WANT_UNLOCKED_CTXSW
719static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
720{
721#ifdef CONFIG_SMP
722 /*
723 * We can optimise this out completely for !SMP, because the
724 * SMP rebalancing from interrupt is the only thing that cares
725 * here.
726 */
727 next->on_cpu = 1;
728#endif
729}
730
731static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732{
733#ifdef CONFIG_SMP
734 /*
735 * After ->on_cpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->on_cpu = 0;
741#endif
742#ifdef CONFIG_DEBUG_SPINLOCK
743 /* this is a valid case when another task releases the spinlock */
744 rq->lock.owner = current;
745#endif
746 /*
747 * If we are tracking spinlock dependencies then we have to
748 * fix up the runqueue lock - which gets 'carried over' from
749 * prev into current:
750 */
751 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
752
753 raw_spin_unlock_irq(&rq->lock);
754}
755
756#else /* __ARCH_WANT_UNLOCKED_CTXSW */
757static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
758{
759#ifdef CONFIG_SMP
760 /*
761 * We can optimise this out completely for !SMP, because the
762 * SMP rebalancing from interrupt is the only thing that cares
763 * here.
764 */
765 next->on_cpu = 1;
766#endif
029632fb 767 raw_spin_unlock(&rq->lock);
029632fb
PZ
768}
769
770static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
771{
772#ifdef CONFIG_SMP
773 /*
774 * After ->on_cpu is cleared, the task can be moved to a different CPU.
775 * We must ensure this doesn't happen until the switch is completely
776 * finished.
777 */
778 smp_wmb();
779 prev->on_cpu = 0;
780#endif
029632fb 781 local_irq_enable();
029632fb
PZ
782}
783#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
784
785
786static inline void update_load_add(struct load_weight *lw, unsigned long inc)
787{
788 lw->weight += inc;
789 lw->inv_weight = 0;
790}
791
792static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
793{
794 lw->weight -= dec;
795 lw->inv_weight = 0;
796}
797
798static inline void update_load_set(struct load_weight *lw, unsigned long w)
799{
800 lw->weight = w;
801 lw->inv_weight = 0;
802}
803
804/*
805 * To aid in avoiding the subversion of "niceness" due to uneven distribution
806 * of tasks with abnormal "nice" values across CPUs the contribution that
807 * each task makes to its run queue's load is weighted according to its
808 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
809 * scaled version of the new time slice allocation that they receive on time
810 * slice expiry etc.
811 */
812
813#define WEIGHT_IDLEPRIO 3
814#define WMULT_IDLEPRIO 1431655765
815
816/*
817 * Nice levels are multiplicative, with a gentle 10% change for every
818 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
819 * nice 1, it will get ~10% less CPU time than another CPU-bound task
820 * that remained on nice 0.
821 *
822 * The "10% effect" is relative and cumulative: from _any_ nice level,
823 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
824 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
825 * If a task goes up by ~10% and another task goes down by ~10% then
826 * the relative distance between them is ~25%.)
827 */
828static const int prio_to_weight[40] = {
829 /* -20 */ 88761, 71755, 56483, 46273, 36291,
830 /* -15 */ 29154, 23254, 18705, 14949, 11916,
831 /* -10 */ 9548, 7620, 6100, 4904, 3906,
832 /* -5 */ 3121, 2501, 1991, 1586, 1277,
833 /* 0 */ 1024, 820, 655, 526, 423,
834 /* 5 */ 335, 272, 215, 172, 137,
835 /* 10 */ 110, 87, 70, 56, 45,
836 /* 15 */ 36, 29, 23, 18, 15,
837};
838
839/*
840 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
841 *
842 * In cases where the weight does not change often, we can use the
843 * precalculated inverse to speed up arithmetics by turning divisions
844 * into multiplications:
845 */
846static const u32 prio_to_wmult[40] = {
847 /* -20 */ 48388, 59856, 76040, 92818, 118348,
848 /* -15 */ 147320, 184698, 229616, 287308, 360437,
849 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
850 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
851 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
852 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
853 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
854 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
855};
856
857/* Time spent by the tasks of the cpu accounting group executing in ... */
858enum cpuacct_stat_index {
859 CPUACCT_STAT_USER, /* ... user mode */
860 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
861
862 CPUACCT_STAT_NSTATS,
863};
864
865
866#define sched_class_highest (&stop_sched_class)
867#define for_each_class(class) \
868 for (class = sched_class_highest; class; class = class->next)
869
870extern const struct sched_class stop_sched_class;
871extern const struct sched_class rt_sched_class;
872extern const struct sched_class fair_sched_class;
873extern const struct sched_class idle_sched_class;
874
875
876#ifdef CONFIG_SMP
877
878extern void trigger_load_balance(struct rq *rq, int cpu);
879extern void idle_balance(int this_cpu, struct rq *this_rq);
880
881#else /* CONFIG_SMP */
882
883static inline void idle_balance(int cpu, struct rq *rq)
884{
885}
886
887#endif
888
889extern void sysrq_sched_debug_show(void);
890extern void sched_init_granularity(void);
891extern void update_max_interval(void);
892extern void update_group_power(struct sched_domain *sd, int cpu);
893extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
894extern void init_sched_rt_class(void);
895extern void init_sched_fair_class(void);
896
897extern void resched_task(struct task_struct *p);
898extern void resched_cpu(int cpu);
899
900extern struct rt_bandwidth def_rt_bandwidth;
901extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
902
556061b0 903extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
904
905#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
906#include <linux/cgroup.h>
907/* track cpu usage of a group of tasks and its child groups */
908struct cpuacct {
909 struct cgroup_subsys_state css;
910 /* cpuusage holds pointer to a u64-type object on every cpu */
911 u64 __percpu *cpuusage;
912 struct kernel_cpustat __percpu *cpustat;
913};
914
73fbec60
FW
915extern struct cgroup_subsys cpuacct_subsys;
916extern struct cpuacct root_cpuacct;
917
54c707e9
GC
918/* return cpu accounting group corresponding to this container */
919static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
920{
921 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
922 struct cpuacct, css);
923}
924
925/* return cpu accounting group to which this task belongs */
926static inline struct cpuacct *task_ca(struct task_struct *tsk)
927{
928 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
929 struct cpuacct, css);
930}
931
932static inline struct cpuacct *parent_ca(struct cpuacct *ca)
933{
934 if (!ca || !ca->css.cgroup->parent)
935 return NULL;
936 return cgroup_ca(ca->css.cgroup->parent);
937}
938
029632fb 939extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
940#else
941static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
942#endif
943
73fbec60
FW
944#ifdef CONFIG_PARAVIRT
945static inline u64 steal_ticks(u64 steal)
946{
947 if (unlikely(steal > NSEC_PER_SEC))
948 return div_u64(steal, TICK_NSEC);
949
950 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
951}
952#endif
953
029632fb
PZ
954static inline void inc_nr_running(struct rq *rq)
955{
956 rq->nr_running++;
957}
958
959static inline void dec_nr_running(struct rq *rq)
960{
961 rq->nr_running--;
962}
963
964extern void update_rq_clock(struct rq *rq);
965
966extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
967extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
968
969extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
970
971extern const_debug unsigned int sysctl_sched_time_avg;
972extern const_debug unsigned int sysctl_sched_nr_migrate;
973extern const_debug unsigned int sysctl_sched_migration_cost;
974
975static inline u64 sched_avg_period(void)
976{
977 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
978}
979
029632fb
PZ
980#ifdef CONFIG_SCHED_HRTICK
981
982/*
983 * Use hrtick when:
984 * - enabled by features
985 * - hrtimer is actually high res
986 */
987static inline int hrtick_enabled(struct rq *rq)
988{
989 if (!sched_feat(HRTICK))
990 return 0;
991 if (!cpu_active(cpu_of(rq)))
992 return 0;
993 return hrtimer_is_hres_active(&rq->hrtick_timer);
994}
995
996void hrtick_start(struct rq *rq, u64 delay);
997
b39e66ea
MG
998#else
999
1000static inline int hrtick_enabled(struct rq *rq)
1001{
1002 return 0;
1003}
1004
029632fb
PZ
1005#endif /* CONFIG_SCHED_HRTICK */
1006
1007#ifdef CONFIG_SMP
1008extern void sched_avg_update(struct rq *rq);
1009static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1010{
1011 rq->rt_avg += rt_delta;
1012 sched_avg_update(rq);
1013}
1014#else
1015static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1016static inline void sched_avg_update(struct rq *rq) { }
1017#endif
1018
1019extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1020
1021#ifdef CONFIG_SMP
1022#ifdef CONFIG_PREEMPT
1023
1024static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1025
1026/*
1027 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1028 * way at the expense of forcing extra atomic operations in all
1029 * invocations. This assures that the double_lock is acquired using the
1030 * same underlying policy as the spinlock_t on this architecture, which
1031 * reduces latency compared to the unfair variant below. However, it
1032 * also adds more overhead and therefore may reduce throughput.
1033 */
1034static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1035 __releases(this_rq->lock)
1036 __acquires(busiest->lock)
1037 __acquires(this_rq->lock)
1038{
1039 raw_spin_unlock(&this_rq->lock);
1040 double_rq_lock(this_rq, busiest);
1041
1042 return 1;
1043}
1044
1045#else
1046/*
1047 * Unfair double_lock_balance: Optimizes throughput at the expense of
1048 * latency by eliminating extra atomic operations when the locks are
1049 * already in proper order on entry. This favors lower cpu-ids and will
1050 * grant the double lock to lower cpus over higher ids under contention,
1051 * regardless of entry order into the function.
1052 */
1053static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1054 __releases(this_rq->lock)
1055 __acquires(busiest->lock)
1056 __acquires(this_rq->lock)
1057{
1058 int ret = 0;
1059
1060 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1061 if (busiest < this_rq) {
1062 raw_spin_unlock(&this_rq->lock);
1063 raw_spin_lock(&busiest->lock);
1064 raw_spin_lock_nested(&this_rq->lock,
1065 SINGLE_DEPTH_NESTING);
1066 ret = 1;
1067 } else
1068 raw_spin_lock_nested(&busiest->lock,
1069 SINGLE_DEPTH_NESTING);
1070 }
1071 return ret;
1072}
1073
1074#endif /* CONFIG_PREEMPT */
1075
1076/*
1077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1078 */
1079static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1080{
1081 if (unlikely(!irqs_disabled())) {
1082 /* printk() doesn't work good under rq->lock */
1083 raw_spin_unlock(&this_rq->lock);
1084 BUG_ON(1);
1085 }
1086
1087 return _double_lock_balance(this_rq, busiest);
1088}
1089
1090static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1091 __releases(busiest->lock)
1092{
1093 raw_spin_unlock(&busiest->lock);
1094 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1095}
1096
1097/*
1098 * double_rq_lock - safely lock two runqueues
1099 *
1100 * Note this does not disable interrupts like task_rq_lock,
1101 * you need to do so manually before calling.
1102 */
1103static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1104 __acquires(rq1->lock)
1105 __acquires(rq2->lock)
1106{
1107 BUG_ON(!irqs_disabled());
1108 if (rq1 == rq2) {
1109 raw_spin_lock(&rq1->lock);
1110 __acquire(rq2->lock); /* Fake it out ;) */
1111 } else {
1112 if (rq1 < rq2) {
1113 raw_spin_lock(&rq1->lock);
1114 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1115 } else {
1116 raw_spin_lock(&rq2->lock);
1117 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1118 }
1119 }
1120}
1121
1122/*
1123 * double_rq_unlock - safely unlock two runqueues
1124 *
1125 * Note this does not restore interrupts like task_rq_unlock,
1126 * you need to do so manually after calling.
1127 */
1128static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1129 __releases(rq1->lock)
1130 __releases(rq2->lock)
1131{
1132 raw_spin_unlock(&rq1->lock);
1133 if (rq1 != rq2)
1134 raw_spin_unlock(&rq2->lock);
1135 else
1136 __release(rq2->lock);
1137}
1138
1139#else /* CONFIG_SMP */
1140
1141/*
1142 * double_rq_lock - safely lock two runqueues
1143 *
1144 * Note this does not disable interrupts like task_rq_lock,
1145 * you need to do so manually before calling.
1146 */
1147static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1148 __acquires(rq1->lock)
1149 __acquires(rq2->lock)
1150{
1151 BUG_ON(!irqs_disabled());
1152 BUG_ON(rq1 != rq2);
1153 raw_spin_lock(&rq1->lock);
1154 __acquire(rq2->lock); /* Fake it out ;) */
1155}
1156
1157/*
1158 * double_rq_unlock - safely unlock two runqueues
1159 *
1160 * Note this does not restore interrupts like task_rq_unlock,
1161 * you need to do so manually after calling.
1162 */
1163static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1164 __releases(rq1->lock)
1165 __releases(rq2->lock)
1166{
1167 BUG_ON(rq1 != rq2);
1168 raw_spin_unlock(&rq1->lock);
1169 __release(rq2->lock);
1170}
1171
1172#endif
1173
1174extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1175extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1176extern void print_cfs_stats(struct seq_file *m, int cpu);
1177extern void print_rt_stats(struct seq_file *m, int cpu);
1178
1179extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1180extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1181
1182extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1183
1184#ifdef CONFIG_NO_HZ
1185enum rq_nohz_flag_bits {
1186 NOHZ_TICK_STOPPED,
1187 NOHZ_BALANCE_KICK,
69e1e811 1188 NOHZ_IDLE,
1c792db7
SS
1189};
1190
1191#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1192#endif
73fbec60
FW
1193
1194#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1195
1196DECLARE_PER_CPU(u64, cpu_hardirq_time);
1197DECLARE_PER_CPU(u64, cpu_softirq_time);
1198
1199#ifndef CONFIG_64BIT
1200DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1201
1202static inline void irq_time_write_begin(void)
1203{
1204 __this_cpu_inc(irq_time_seq.sequence);
1205 smp_wmb();
1206}
1207
1208static inline void irq_time_write_end(void)
1209{
1210 smp_wmb();
1211 __this_cpu_inc(irq_time_seq.sequence);
1212}
1213
1214static inline u64 irq_time_read(int cpu)
1215{
1216 u64 irq_time;
1217 unsigned seq;
1218
1219 do {
1220 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1221 irq_time = per_cpu(cpu_softirq_time, cpu) +
1222 per_cpu(cpu_hardirq_time, cpu);
1223 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1224
1225 return irq_time;
1226}
1227#else /* CONFIG_64BIT */
1228static inline void irq_time_write_begin(void)
1229{
1230}
1231
1232static inline void irq_time_write_end(void)
1233{
1234}
1235
1236static inline u64 irq_time_read(int cpu)
1237{
1238 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1239}
1240#endif /* CONFIG_64BIT */
1241#endif /* CONFIG_IRQ_TIME_ACCOUNTING */