sched: Fix race on toggling cfs_bandwidth_used
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
029632fb 9
391e43da 10#include "cpupri.h"
60fed789 11#include "cpuacct.h"
029632fb
PZ
12
13extern __read_mostly int scheduler_running;
14
15/*
16 * Convert user-nice values [ -20 ... 0 ... 19 ]
17 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
18 * and back.
19 */
20#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
21#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
22#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
23
24/*
25 * 'User priority' is the nice value converted to something we
26 * can work with better when scaling various scheduler parameters,
27 * it's a [ 0 ... 39 ] range.
28 */
29#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
30#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
31#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
32
33/*
34 * Helpers for converting nanosecond timing to jiffy resolution
35 */
36#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
37
cc1f4b1f
LZ
38/*
39 * Increase resolution of nice-level calculations for 64-bit architectures.
40 * The extra resolution improves shares distribution and load balancing of
41 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
42 * hierarchies, especially on larger systems. This is not a user-visible change
43 * and does not change the user-interface for setting shares/weights.
44 *
45 * We increase resolution only if we have enough bits to allow this increased
46 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
47 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
48 * increased costs.
49 */
50#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
51# define SCHED_LOAD_RESOLUTION 10
52# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
53# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
54#else
55# define SCHED_LOAD_RESOLUTION 0
56# define scale_load(w) (w)
57# define scale_load_down(w) (w)
58#endif
59
60#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
61#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
62
029632fb
PZ
63#define NICE_0_LOAD SCHED_LOAD_SCALE
64#define NICE_0_SHIFT SCHED_LOAD_SHIFT
65
66/*
67 * These are the 'tuning knobs' of the scheduler:
029632fb 68 */
029632fb
PZ
69
70/*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73#define RUNTIME_INF ((u64)~0ULL)
74
75static inline int rt_policy(int policy)
76{
77 if (policy == SCHED_FIFO || policy == SCHED_RR)
78 return 1;
79 return 0;
80}
81
82static inline int task_has_rt_policy(struct task_struct *p)
83{
84 return rt_policy(p->policy);
85}
86
87/*
88 * This is the priority-queue data structure of the RT scheduling class:
89 */
90struct rt_prio_array {
91 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
92 struct list_head queue[MAX_RT_PRIO];
93};
94
95struct rt_bandwidth {
96 /* nests inside the rq lock: */
97 raw_spinlock_t rt_runtime_lock;
98 ktime_t rt_period;
99 u64 rt_runtime;
100 struct hrtimer rt_period_timer;
101};
102
103extern struct mutex sched_domains_mutex;
104
105#ifdef CONFIG_CGROUP_SCHED
106
107#include <linux/cgroup.h>
108
109struct cfs_rq;
110struct rt_rq;
111
35cf4e50 112extern struct list_head task_groups;
029632fb
PZ
113
114struct cfs_bandwidth {
115#ifdef CONFIG_CFS_BANDWIDTH
116 raw_spinlock_t lock;
117 ktime_t period;
118 u64 quota, runtime;
119 s64 hierarchal_quota;
120 u64 runtime_expires;
121
122 int idle, timer_active;
123 struct hrtimer period_timer, slack_timer;
124 struct list_head throttled_cfs_rq;
125
126 /* statistics */
127 int nr_periods, nr_throttled;
128 u64 throttled_time;
129#endif
130};
131
132/* task group related information */
133struct task_group {
134 struct cgroup_subsys_state css;
135
136#ifdef CONFIG_FAIR_GROUP_SCHED
137 /* schedulable entities of this group on each cpu */
138 struct sched_entity **se;
139 /* runqueue "owned" by this group on each cpu */
140 struct cfs_rq **cfs_rq;
141 unsigned long shares;
142
143 atomic_t load_weight;
c566e8e9 144 atomic64_t load_avg;
bb17f655 145 atomic_t runnable_avg;
029632fb
PZ
146#endif
147
148#ifdef CONFIG_RT_GROUP_SCHED
149 struct sched_rt_entity **rt_se;
150 struct rt_rq **rt_rq;
151
152 struct rt_bandwidth rt_bandwidth;
153#endif
154
155 struct rcu_head rcu;
156 struct list_head list;
157
158 struct task_group *parent;
159 struct list_head siblings;
160 struct list_head children;
161
162#ifdef CONFIG_SCHED_AUTOGROUP
163 struct autogroup *autogroup;
164#endif
165
166 struct cfs_bandwidth cfs_bandwidth;
167};
168
169#ifdef CONFIG_FAIR_GROUP_SCHED
170#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
171
172/*
173 * A weight of 0 or 1 can cause arithmetics problems.
174 * A weight of a cfs_rq is the sum of weights of which entities
175 * are queued on this cfs_rq, so a weight of a entity should not be
176 * too large, so as the shares value of a task group.
177 * (The default weight is 1024 - so there's no practical
178 * limitation from this.)
179 */
180#define MIN_SHARES (1UL << 1)
181#define MAX_SHARES (1UL << 18)
182#endif
183
029632fb
PZ
184typedef int (*tg_visitor)(struct task_group *, void *);
185
186extern int walk_tg_tree_from(struct task_group *from,
187 tg_visitor down, tg_visitor up, void *data);
188
189/*
190 * Iterate the full tree, calling @down when first entering a node and @up when
191 * leaving it for the final time.
192 *
193 * Caller must hold rcu_lock or sufficient equivalent.
194 */
195static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
196{
197 return walk_tg_tree_from(&root_task_group, down, up, data);
198}
199
200extern int tg_nop(struct task_group *tg, void *data);
201
202extern void free_fair_sched_group(struct task_group *tg);
203extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
204extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
205extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
206 struct sched_entity *se, int cpu,
207 struct sched_entity *parent);
208extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
209extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
210
211extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
212extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
213extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
214
215extern void free_rt_sched_group(struct task_group *tg);
216extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
217extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218 struct sched_rt_entity *rt_se, int cpu,
219 struct sched_rt_entity *parent);
220
25cc7da7
LZ
221extern struct task_group *sched_create_group(struct task_group *parent);
222extern void sched_online_group(struct task_group *tg,
223 struct task_group *parent);
224extern void sched_destroy_group(struct task_group *tg);
225extern void sched_offline_group(struct task_group *tg);
226
227extern void sched_move_task(struct task_struct *tsk);
228
229#ifdef CONFIG_FAIR_GROUP_SCHED
230extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
231#endif
232
029632fb
PZ
233#else /* CONFIG_CGROUP_SCHED */
234
235struct cfs_bandwidth { };
236
237#endif /* CONFIG_CGROUP_SCHED */
238
239/* CFS-related fields in a runqueue */
240struct cfs_rq {
241 struct load_weight load;
c82513e5 242 unsigned int nr_running, h_nr_running;
029632fb
PZ
243
244 u64 exec_clock;
245 u64 min_vruntime;
246#ifndef CONFIG_64BIT
247 u64 min_vruntime_copy;
248#endif
249
250 struct rb_root tasks_timeline;
251 struct rb_node *rb_leftmost;
252
029632fb
PZ
253 /*
254 * 'curr' points to currently running entity on this cfs_rq.
255 * It is set to NULL otherwise (i.e when none are currently running).
256 */
257 struct sched_entity *curr, *next, *last, *skip;
258
259#ifdef CONFIG_SCHED_DEBUG
260 unsigned int nr_spread_over;
261#endif
262
2dac754e 263#ifdef CONFIG_SMP
f4e26b12
PT
264/*
265 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
266 * removed when useful for applications beyond shares distribution (e.g.
267 * load-balance).
268 */
269#ifdef CONFIG_FAIR_GROUP_SCHED
2dac754e
PT
270 /*
271 * CFS Load tracking
272 * Under CFS, load is tracked on a per-entity basis and aggregated up.
273 * This allows for the description of both thread and group usage (in
274 * the FAIR_GROUP_SCHED case).
275 */
9ee474f5 276 u64 runnable_load_avg, blocked_load_avg;
aff3e498 277 atomic64_t decay_counter, removed_load;
9ee474f5 278 u64 last_decay;
f4e26b12
PT
279#endif /* CONFIG_FAIR_GROUP_SCHED */
280/* These always depend on CONFIG_FAIR_GROUP_SCHED */
c566e8e9 281#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 282 u32 tg_runnable_contrib;
c566e8e9 283 u64 tg_load_contrib;
82958366
PT
284#endif /* CONFIG_FAIR_GROUP_SCHED */
285
286 /*
287 * h_load = weight * f(tg)
288 *
289 * Where f(tg) is the recursive weight fraction assigned to
290 * this group.
291 */
292 unsigned long h_load;
293#endif /* CONFIG_SMP */
294
029632fb
PZ
295#ifdef CONFIG_FAIR_GROUP_SCHED
296 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
297
298 /*
299 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
300 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
301 * (like users, containers etc.)
302 *
303 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
304 * list is used during load balance.
305 */
306 int on_list;
307 struct list_head leaf_cfs_rq_list;
308 struct task_group *tg; /* group that "owns" this runqueue */
309
029632fb
PZ
310#ifdef CONFIG_CFS_BANDWIDTH
311 int runtime_enabled;
312 u64 runtime_expires;
313 s64 runtime_remaining;
314
f1b17280
PT
315 u64 throttled_clock, throttled_clock_task;
316 u64 throttled_clock_task_time;
029632fb
PZ
317 int throttled, throttle_count;
318 struct list_head throttled_list;
319#endif /* CONFIG_CFS_BANDWIDTH */
320#endif /* CONFIG_FAIR_GROUP_SCHED */
321};
322
323static inline int rt_bandwidth_enabled(void)
324{
325 return sysctl_sched_rt_runtime >= 0;
326}
327
328/* Real-Time classes' related field in a runqueue: */
329struct rt_rq {
330 struct rt_prio_array active;
c82513e5 331 unsigned int rt_nr_running;
029632fb
PZ
332#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
333 struct {
334 int curr; /* highest queued rt task prio */
335#ifdef CONFIG_SMP
336 int next; /* next highest */
337#endif
338 } highest_prio;
339#endif
340#ifdef CONFIG_SMP
341 unsigned long rt_nr_migratory;
342 unsigned long rt_nr_total;
343 int overloaded;
344 struct plist_head pushable_tasks;
345#endif
346 int rt_throttled;
347 u64 rt_time;
348 u64 rt_runtime;
349 /* Nests inside the rq lock: */
350 raw_spinlock_t rt_runtime_lock;
351
352#ifdef CONFIG_RT_GROUP_SCHED
353 unsigned long rt_nr_boosted;
354
355 struct rq *rq;
356 struct list_head leaf_rt_rq_list;
357 struct task_group *tg;
358#endif
359};
360
361#ifdef CONFIG_SMP
362
363/*
364 * We add the notion of a root-domain which will be used to define per-domain
365 * variables. Each exclusive cpuset essentially defines an island domain by
366 * fully partitioning the member cpus from any other cpuset. Whenever a new
367 * exclusive cpuset is created, we also create and attach a new root-domain
368 * object.
369 *
370 */
371struct root_domain {
372 atomic_t refcount;
373 atomic_t rto_count;
374 struct rcu_head rcu;
375 cpumask_var_t span;
376 cpumask_var_t online;
377
378 /*
379 * The "RT overload" flag: it gets set if a CPU has more than
380 * one runnable RT task.
381 */
382 cpumask_var_t rto_mask;
383 struct cpupri cpupri;
384};
385
386extern struct root_domain def_root_domain;
387
388#endif /* CONFIG_SMP */
389
390/*
391 * This is the main, per-CPU runqueue data structure.
392 *
393 * Locking rule: those places that want to lock multiple runqueues
394 * (such as the load balancing or the thread migration code), lock
395 * acquire operations must be ordered by ascending &runqueue.
396 */
397struct rq {
398 /* runqueue lock: */
399 raw_spinlock_t lock;
400
401 /*
402 * nr_running and cpu_load should be in the same cacheline because
403 * remote CPUs use both these fields when doing load calculation.
404 */
c82513e5 405 unsigned int nr_running;
029632fb
PZ
406 #define CPU_LOAD_IDX_MAX 5
407 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
408 unsigned long last_load_update_tick;
3451d024 409#ifdef CONFIG_NO_HZ_COMMON
029632fb 410 u64 nohz_stamp;
1c792db7 411 unsigned long nohz_flags;
265f22a9
FW
412#endif
413#ifdef CONFIG_NO_HZ_FULL
414 unsigned long last_sched_tick;
029632fb
PZ
415#endif
416 int skip_clock_update;
417
418 /* capture load from *all* tasks on this cpu: */
419 struct load_weight load;
420 unsigned long nr_load_updates;
421 u64 nr_switches;
422
423 struct cfs_rq cfs;
424 struct rt_rq rt;
425
426#ifdef CONFIG_FAIR_GROUP_SCHED
427 /* list of leaf cfs_rq on this cpu: */
428 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
429#ifdef CONFIG_SMP
430 unsigned long h_load_throttle;
431#endif /* CONFIG_SMP */
432#endif /* CONFIG_FAIR_GROUP_SCHED */
433
029632fb
PZ
434#ifdef CONFIG_RT_GROUP_SCHED
435 struct list_head leaf_rt_rq_list;
436#endif
437
438 /*
439 * This is part of a global counter where only the total sum
440 * over all CPUs matters. A task can increase this counter on
441 * one CPU and if it got migrated afterwards it may decrease
442 * it on another CPU. Always updated under the runqueue lock:
443 */
444 unsigned long nr_uninterruptible;
445
446 struct task_struct *curr, *idle, *stop;
447 unsigned long next_balance;
448 struct mm_struct *prev_mm;
449
450 u64 clock;
451 u64 clock_task;
452
453 atomic_t nr_iowait;
454
455#ifdef CONFIG_SMP
456 struct root_domain *rd;
457 struct sched_domain *sd;
458
459 unsigned long cpu_power;
460
461 unsigned char idle_balance;
462 /* For active balancing */
463 int post_schedule;
464 int active_balance;
465 int push_cpu;
466 struct cpu_stop_work active_balance_work;
467 /* cpu of this runqueue: */
468 int cpu;
469 int online;
470
367456c7
PZ
471 struct list_head cfs_tasks;
472
029632fb
PZ
473 u64 rt_avg;
474 u64 age_stamp;
475 u64 idle_stamp;
476 u64 avg_idle;
477#endif
478
479#ifdef CONFIG_IRQ_TIME_ACCOUNTING
480 u64 prev_irq_time;
481#endif
482#ifdef CONFIG_PARAVIRT
483 u64 prev_steal_time;
484#endif
485#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
486 u64 prev_steal_time_rq;
487#endif
488
489 /* calc_load related fields */
490 unsigned long calc_load_update;
491 long calc_load_active;
492
493#ifdef CONFIG_SCHED_HRTICK
494#ifdef CONFIG_SMP
495 int hrtick_csd_pending;
496 struct call_single_data hrtick_csd;
497#endif
498 struct hrtimer hrtick_timer;
499#endif
500
501#ifdef CONFIG_SCHEDSTATS
502 /* latency stats */
503 struct sched_info rq_sched_info;
504 unsigned long long rq_cpu_time;
505 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
506
507 /* sys_sched_yield() stats */
508 unsigned int yld_count;
509
510 /* schedule() stats */
029632fb
PZ
511 unsigned int sched_count;
512 unsigned int sched_goidle;
513
514 /* try_to_wake_up() stats */
515 unsigned int ttwu_count;
516 unsigned int ttwu_local;
517#endif
518
519#ifdef CONFIG_SMP
520 struct llist_head wake_list;
521#endif
18bf2805
BS
522
523 struct sched_avg avg;
029632fb
PZ
524};
525
526static inline int cpu_of(struct rq *rq)
527{
528#ifdef CONFIG_SMP
529 return rq->cpu;
530#else
531 return 0;
532#endif
533}
534
535DECLARE_PER_CPU(struct rq, runqueues);
536
518cd623
PZ
537#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
538#define this_rq() (&__get_cpu_var(runqueues))
539#define task_rq(p) cpu_rq(task_cpu(p))
540#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
541#define raw_rq() (&__raw_get_cpu_var(runqueues))
542
543#ifdef CONFIG_SMP
544
029632fb
PZ
545#define rcu_dereference_check_sched_domain(p) \
546 rcu_dereference_check((p), \
547 lockdep_is_held(&sched_domains_mutex))
548
549/*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
556#define for_each_domain(cpu, __sd) \
518cd623
PZ
557 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
558 __sd; __sd = __sd->parent)
029632fb 559
77e81365
SS
560#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
561
518cd623
PZ
562/**
563 * highest_flag_domain - Return highest sched_domain containing flag.
564 * @cpu: The cpu whose highest level of sched domain is to
565 * be returned.
566 * @flag: The flag to check for the highest sched_domain
567 * for the given cpu.
568 *
569 * Returns the highest sched_domain of a cpu which contains the given flag.
570 */
571static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
572{
573 struct sched_domain *sd, *hsd = NULL;
574
575 for_each_domain(cpu, sd) {
576 if (!(sd->flags & flag))
577 break;
578 hsd = sd;
579 }
580
581 return hsd;
582}
583
584DECLARE_PER_CPU(struct sched_domain *, sd_llc);
585DECLARE_PER_CPU(int, sd_llc_id);
586
5e6521ea
LZ
587struct sched_group_power {
588 atomic_t ref;
589 /*
590 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
591 * single CPU.
592 */
593 unsigned int power, power_orig;
594 unsigned long next_update;
595 /*
596 * Number of busy cpus in this group.
597 */
598 atomic_t nr_busy_cpus;
599
600 unsigned long cpumask[0]; /* iteration mask */
601};
602
603struct sched_group {
604 struct sched_group *next; /* Must be a circular list */
605 atomic_t ref;
606
607 unsigned int group_weight;
608 struct sched_group_power *sgp;
609
610 /*
611 * The CPUs this group covers.
612 *
613 * NOTE: this field is variable length. (Allocated dynamically
614 * by attaching extra space to the end of the structure,
615 * depending on how many CPUs the kernel has booted up with)
616 */
617 unsigned long cpumask[0];
618};
619
620static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
621{
622 return to_cpumask(sg->cpumask);
623}
624
625/*
626 * cpumask masking which cpus in the group are allowed to iterate up the domain
627 * tree.
628 */
629static inline struct cpumask *sched_group_mask(struct sched_group *sg)
630{
631 return to_cpumask(sg->sgp->cpumask);
632}
633
634/**
635 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
636 * @group: The group whose first cpu is to be returned.
637 */
638static inline unsigned int group_first_cpu(struct sched_group *group)
639{
640 return cpumask_first(sched_group_cpus(group));
641}
642
c1174876
PZ
643extern int group_balance_cpu(struct sched_group *sg);
644
518cd623 645#endif /* CONFIG_SMP */
029632fb 646
391e43da
PZ
647#include "stats.h"
648#include "auto_group.h"
029632fb
PZ
649
650#ifdef CONFIG_CGROUP_SCHED
651
652/*
653 * Return the group to which this tasks belongs.
654 *
8323f26c
PZ
655 * We cannot use task_subsys_state() and friends because the cgroup
656 * subsystem changes that value before the cgroup_subsys::attach() method
657 * is called, therefore we cannot pin it and might observe the wrong value.
658 *
659 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
660 * core changes this before calling sched_move_task().
661 *
662 * Instead we use a 'copy' which is updated from sched_move_task() while
663 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
664 */
665static inline struct task_group *task_group(struct task_struct *p)
666{
8323f26c 667 return p->sched_task_group;
029632fb
PZ
668}
669
670/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
671static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
672{
673#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
674 struct task_group *tg = task_group(p);
675#endif
676
677#ifdef CONFIG_FAIR_GROUP_SCHED
678 p->se.cfs_rq = tg->cfs_rq[cpu];
679 p->se.parent = tg->se[cpu];
680#endif
681
682#ifdef CONFIG_RT_GROUP_SCHED
683 p->rt.rt_rq = tg->rt_rq[cpu];
684 p->rt.parent = tg->rt_se[cpu];
685#endif
686}
687
688#else /* CONFIG_CGROUP_SCHED */
689
690static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
691static inline struct task_group *task_group(struct task_struct *p)
692{
693 return NULL;
694}
695
696#endif /* CONFIG_CGROUP_SCHED */
697
698static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
699{
700 set_task_rq(p, cpu);
701#ifdef CONFIG_SMP
702 /*
703 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
704 * successfuly executed on another CPU. We must ensure that updates of
705 * per-task data have been completed by this moment.
706 */
707 smp_wmb();
708 task_thread_info(p)->cpu = cpu;
709#endif
710}
711
712/*
713 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
714 */
715#ifdef CONFIG_SCHED_DEBUG
c5905afb 716# include <linux/static_key.h>
029632fb
PZ
717# define const_debug __read_mostly
718#else
719# define const_debug const
720#endif
721
722extern const_debug unsigned int sysctl_sched_features;
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
727enum {
391e43da 728#include "features.h"
f8b6d1cc 729 __SCHED_FEAT_NR,
029632fb
PZ
730};
731
732#undef SCHED_FEAT
733
f8b6d1cc 734#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 735static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 736{
c5905afb 737 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
738}
739
c5905afb 740static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 741{
c5905afb 742 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
743}
744
745#define SCHED_FEAT(name, enabled) \
c5905afb 746static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
747{ \
748 return static_branch__##enabled(key); \
749}
750
751#include "features.h"
752
753#undef SCHED_FEAT
754
c5905afb 755extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
756#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
757#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 758#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 759#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 760
cbee9f88
PZ
761#ifdef CONFIG_NUMA_BALANCING
762#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
763#ifdef CONFIG_SCHED_DEBUG
764#define numabalancing_enabled sched_feat_numa(NUMA)
765#else
766extern bool numabalancing_enabled;
767#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
768#else
769#define sched_feat_numa(x) (0)
3105b86a
MG
770#define numabalancing_enabled (0)
771#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 772
029632fb
PZ
773static inline u64 global_rt_period(void)
774{
775 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
776}
777
778static inline u64 global_rt_runtime(void)
779{
780 if (sysctl_sched_rt_runtime < 0)
781 return RUNTIME_INF;
782
783 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
784}
785
786
787
788static inline int task_current(struct rq *rq, struct task_struct *p)
789{
790 return rq->curr == p;
791}
792
793static inline int task_running(struct rq *rq, struct task_struct *p)
794{
795#ifdef CONFIG_SMP
796 return p->on_cpu;
797#else
798 return task_current(rq, p);
799#endif
800}
801
802
803#ifndef prepare_arch_switch
804# define prepare_arch_switch(next) do { } while (0)
805#endif
806#ifndef finish_arch_switch
807# define finish_arch_switch(prev) do { } while (0)
808#endif
01f23e16
CM
809#ifndef finish_arch_post_lock_switch
810# define finish_arch_post_lock_switch() do { } while (0)
811#endif
029632fb
PZ
812
813#ifndef __ARCH_WANT_UNLOCKED_CTXSW
814static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
815{
816#ifdef CONFIG_SMP
817 /*
818 * We can optimise this out completely for !SMP, because the
819 * SMP rebalancing from interrupt is the only thing that cares
820 * here.
821 */
822 next->on_cpu = 1;
823#endif
824}
825
826static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
827{
828#ifdef CONFIG_SMP
829 /*
830 * After ->on_cpu is cleared, the task can be moved to a different CPU.
831 * We must ensure this doesn't happen until the switch is completely
832 * finished.
833 */
834 smp_wmb();
835 prev->on_cpu = 0;
836#endif
837#ifdef CONFIG_DEBUG_SPINLOCK
838 /* this is a valid case when another task releases the spinlock */
839 rq->lock.owner = current;
840#endif
841 /*
842 * If we are tracking spinlock dependencies then we have to
843 * fix up the runqueue lock - which gets 'carried over' from
844 * prev into current:
845 */
846 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
847
848 raw_spin_unlock_irq(&rq->lock);
849}
850
851#else /* __ARCH_WANT_UNLOCKED_CTXSW */
852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853{
854#ifdef CONFIG_SMP
855 /*
856 * We can optimise this out completely for !SMP, because the
857 * SMP rebalancing from interrupt is the only thing that cares
858 * here.
859 */
860 next->on_cpu = 1;
861#endif
029632fb 862 raw_spin_unlock(&rq->lock);
029632fb
PZ
863}
864
865static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866{
867#ifdef CONFIG_SMP
868 /*
869 * After ->on_cpu is cleared, the task can be moved to a different CPU.
870 * We must ensure this doesn't happen until the switch is completely
871 * finished.
872 */
873 smp_wmb();
874 prev->on_cpu = 0;
875#endif
029632fb 876 local_irq_enable();
029632fb
PZ
877}
878#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
879
b13095f0
LZ
880/*
881 * wake flags
882 */
883#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
884#define WF_FORK 0x02 /* child wakeup after fork */
885#define WF_MIGRATED 0x4 /* internal use, task got migrated */
886
029632fb
PZ
887static inline void update_load_add(struct load_weight *lw, unsigned long inc)
888{
889 lw->weight += inc;
890 lw->inv_weight = 0;
891}
892
893static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
894{
895 lw->weight -= dec;
896 lw->inv_weight = 0;
897}
898
899static inline void update_load_set(struct load_weight *lw, unsigned long w)
900{
901 lw->weight = w;
902 lw->inv_weight = 0;
903}
904
905/*
906 * To aid in avoiding the subversion of "niceness" due to uneven distribution
907 * of tasks with abnormal "nice" values across CPUs the contribution that
908 * each task makes to its run queue's load is weighted according to its
909 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
910 * scaled version of the new time slice allocation that they receive on time
911 * slice expiry etc.
912 */
913
914#define WEIGHT_IDLEPRIO 3
915#define WMULT_IDLEPRIO 1431655765
916
917/*
918 * Nice levels are multiplicative, with a gentle 10% change for every
919 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
920 * nice 1, it will get ~10% less CPU time than another CPU-bound task
921 * that remained on nice 0.
922 *
923 * The "10% effect" is relative and cumulative: from _any_ nice level,
924 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
925 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
926 * If a task goes up by ~10% and another task goes down by ~10% then
927 * the relative distance between them is ~25%.)
928 */
929static const int prio_to_weight[40] = {
930 /* -20 */ 88761, 71755, 56483, 46273, 36291,
931 /* -15 */ 29154, 23254, 18705, 14949, 11916,
932 /* -10 */ 9548, 7620, 6100, 4904, 3906,
933 /* -5 */ 3121, 2501, 1991, 1586, 1277,
934 /* 0 */ 1024, 820, 655, 526, 423,
935 /* 5 */ 335, 272, 215, 172, 137,
936 /* 10 */ 110, 87, 70, 56, 45,
937 /* 15 */ 36, 29, 23, 18, 15,
938};
939
940/*
941 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
942 *
943 * In cases where the weight does not change often, we can use the
944 * precalculated inverse to speed up arithmetics by turning divisions
945 * into multiplications:
946 */
947static const u32 prio_to_wmult[40] = {
948 /* -20 */ 48388, 59856, 76040, 92818, 118348,
949 /* -15 */ 147320, 184698, 229616, 287308, 360437,
950 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
951 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
952 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
953 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
954 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
955 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
956};
957
c82ba9fa
LZ
958#define ENQUEUE_WAKEUP 1
959#define ENQUEUE_HEAD 2
960#ifdef CONFIG_SMP
961#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
962#else
963#define ENQUEUE_WAKING 0
964#endif
965
966#define DEQUEUE_SLEEP 1
967
968struct sched_class {
969 const struct sched_class *next;
970
971 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
972 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
973 void (*yield_task) (struct rq *rq);
974 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
975
976 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
977
978 struct task_struct * (*pick_next_task) (struct rq *rq);
979 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
980
981#ifdef CONFIG_SMP
982 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
983 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
984
985 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
986 void (*post_schedule) (struct rq *this_rq);
987 void (*task_waking) (struct task_struct *task);
988 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
989
990 void (*set_cpus_allowed)(struct task_struct *p,
991 const struct cpumask *newmask);
992
993 void (*rq_online)(struct rq *rq);
994 void (*rq_offline)(struct rq *rq);
995#endif
996
997 void (*set_curr_task) (struct rq *rq);
998 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
999 void (*task_fork) (struct task_struct *p);
1000
1001 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1002 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1003 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1004 int oldprio);
1005
1006 unsigned int (*get_rr_interval) (struct rq *rq,
1007 struct task_struct *task);
1008
1009#ifdef CONFIG_FAIR_GROUP_SCHED
1010 void (*task_move_group) (struct task_struct *p, int on_rq);
1011#endif
1012};
029632fb
PZ
1013
1014#define sched_class_highest (&stop_sched_class)
1015#define for_each_class(class) \
1016 for (class = sched_class_highest; class; class = class->next)
1017
1018extern const struct sched_class stop_sched_class;
1019extern const struct sched_class rt_sched_class;
1020extern const struct sched_class fair_sched_class;
1021extern const struct sched_class idle_sched_class;
1022
1023
1024#ifdef CONFIG_SMP
1025
b719203b
LZ
1026extern void update_group_power(struct sched_domain *sd, int cpu);
1027
029632fb
PZ
1028extern void trigger_load_balance(struct rq *rq, int cpu);
1029extern void idle_balance(int this_cpu, struct rq *this_rq);
1030
642dbc39
VG
1031/*
1032 * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1033 * becomes useful in lb
1034 */
1035#if defined(CONFIG_FAIR_GROUP_SCHED)
1036extern void idle_enter_fair(struct rq *this_rq);
1037extern void idle_exit_fair(struct rq *this_rq);
1038#else
1039static inline void idle_enter_fair(struct rq *this_rq) {}
1040static inline void idle_exit_fair(struct rq *this_rq) {}
1041#endif
1042
029632fb
PZ
1043#else /* CONFIG_SMP */
1044
1045static inline void idle_balance(int cpu, struct rq *rq)
1046{
1047}
1048
1049#endif
1050
1051extern void sysrq_sched_debug_show(void);
1052extern void sched_init_granularity(void);
1053extern void update_max_interval(void);
029632fb
PZ
1054extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1055extern void init_sched_rt_class(void);
1056extern void init_sched_fair_class(void);
1057
1058extern void resched_task(struct task_struct *p);
1059extern void resched_cpu(int cpu);
1060
1061extern struct rt_bandwidth def_rt_bandwidth;
1062extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1063
556061b0 1064extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1065
73fbec60
FW
1066#ifdef CONFIG_PARAVIRT
1067static inline u64 steal_ticks(u64 steal)
1068{
1069 if (unlikely(steal > NSEC_PER_SEC))
1070 return div_u64(steal, TICK_NSEC);
1071
1072 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1073}
1074#endif
1075
029632fb
PZ
1076static inline void inc_nr_running(struct rq *rq)
1077{
1078 rq->nr_running++;
9f3660c2
FW
1079
1080#ifdef CONFIG_NO_HZ_FULL
1081 if (rq->nr_running == 2) {
1082 if (tick_nohz_full_cpu(rq->cpu)) {
1083 /* Order rq->nr_running write against the IPI */
1084 smp_wmb();
1085 smp_send_reschedule(rq->cpu);
1086 }
1087 }
1088#endif
029632fb
PZ
1089}
1090
1091static inline void dec_nr_running(struct rq *rq)
1092{
1093 rq->nr_running--;
1094}
1095
265f22a9
FW
1096static inline void rq_last_tick_reset(struct rq *rq)
1097{
1098#ifdef CONFIG_NO_HZ_FULL
1099 rq->last_sched_tick = jiffies;
1100#endif
1101}
1102
029632fb
PZ
1103extern void update_rq_clock(struct rq *rq);
1104
1105extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1106extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1107
1108extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1109
1110extern const_debug unsigned int sysctl_sched_time_avg;
1111extern const_debug unsigned int sysctl_sched_nr_migrate;
1112extern const_debug unsigned int sysctl_sched_migration_cost;
1113
1114static inline u64 sched_avg_period(void)
1115{
1116 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1117}
1118
029632fb
PZ
1119#ifdef CONFIG_SCHED_HRTICK
1120
1121/*
1122 * Use hrtick when:
1123 * - enabled by features
1124 * - hrtimer is actually high res
1125 */
1126static inline int hrtick_enabled(struct rq *rq)
1127{
1128 if (!sched_feat(HRTICK))
1129 return 0;
1130 if (!cpu_active(cpu_of(rq)))
1131 return 0;
1132 return hrtimer_is_hres_active(&rq->hrtick_timer);
1133}
1134
1135void hrtick_start(struct rq *rq, u64 delay);
1136
b39e66ea
MG
1137#else
1138
1139static inline int hrtick_enabled(struct rq *rq)
1140{
1141 return 0;
1142}
1143
029632fb
PZ
1144#endif /* CONFIG_SCHED_HRTICK */
1145
1146#ifdef CONFIG_SMP
1147extern void sched_avg_update(struct rq *rq);
1148static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1149{
1150 rq->rt_avg += rt_delta;
1151 sched_avg_update(rq);
1152}
1153#else
1154static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1155static inline void sched_avg_update(struct rq *rq) { }
1156#endif
1157
1158extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1159
1160#ifdef CONFIG_SMP
1161#ifdef CONFIG_PREEMPT
1162
1163static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1164
1165/*
1166 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1167 * way at the expense of forcing extra atomic operations in all
1168 * invocations. This assures that the double_lock is acquired using the
1169 * same underlying policy as the spinlock_t on this architecture, which
1170 * reduces latency compared to the unfair variant below. However, it
1171 * also adds more overhead and therefore may reduce throughput.
1172 */
1173static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1174 __releases(this_rq->lock)
1175 __acquires(busiest->lock)
1176 __acquires(this_rq->lock)
1177{
1178 raw_spin_unlock(&this_rq->lock);
1179 double_rq_lock(this_rq, busiest);
1180
1181 return 1;
1182}
1183
1184#else
1185/*
1186 * Unfair double_lock_balance: Optimizes throughput at the expense of
1187 * latency by eliminating extra atomic operations when the locks are
1188 * already in proper order on entry. This favors lower cpu-ids and will
1189 * grant the double lock to lower cpus over higher ids under contention,
1190 * regardless of entry order into the function.
1191 */
1192static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1193 __releases(this_rq->lock)
1194 __acquires(busiest->lock)
1195 __acquires(this_rq->lock)
1196{
1197 int ret = 0;
1198
1199 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1200 if (busiest < this_rq) {
1201 raw_spin_unlock(&this_rq->lock);
1202 raw_spin_lock(&busiest->lock);
1203 raw_spin_lock_nested(&this_rq->lock,
1204 SINGLE_DEPTH_NESTING);
1205 ret = 1;
1206 } else
1207 raw_spin_lock_nested(&busiest->lock,
1208 SINGLE_DEPTH_NESTING);
1209 }
1210 return ret;
1211}
1212
1213#endif /* CONFIG_PREEMPT */
1214
1215/*
1216 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1217 */
1218static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1219{
1220 if (unlikely(!irqs_disabled())) {
1221 /* printk() doesn't work good under rq->lock */
1222 raw_spin_unlock(&this_rq->lock);
1223 BUG_ON(1);
1224 }
1225
1226 return _double_lock_balance(this_rq, busiest);
1227}
1228
1229static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1230 __releases(busiest->lock)
1231{
1232 raw_spin_unlock(&busiest->lock);
1233 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1234}
1235
1236/*
1237 * double_rq_lock - safely lock two runqueues
1238 *
1239 * Note this does not disable interrupts like task_rq_lock,
1240 * you need to do so manually before calling.
1241 */
1242static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1243 __acquires(rq1->lock)
1244 __acquires(rq2->lock)
1245{
1246 BUG_ON(!irqs_disabled());
1247 if (rq1 == rq2) {
1248 raw_spin_lock(&rq1->lock);
1249 __acquire(rq2->lock); /* Fake it out ;) */
1250 } else {
1251 if (rq1 < rq2) {
1252 raw_spin_lock(&rq1->lock);
1253 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1254 } else {
1255 raw_spin_lock(&rq2->lock);
1256 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1257 }
1258 }
1259}
1260
1261/*
1262 * double_rq_unlock - safely unlock two runqueues
1263 *
1264 * Note this does not restore interrupts like task_rq_unlock,
1265 * you need to do so manually after calling.
1266 */
1267static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1268 __releases(rq1->lock)
1269 __releases(rq2->lock)
1270{
1271 raw_spin_unlock(&rq1->lock);
1272 if (rq1 != rq2)
1273 raw_spin_unlock(&rq2->lock);
1274 else
1275 __release(rq2->lock);
1276}
1277
1278#else /* CONFIG_SMP */
1279
1280/*
1281 * double_rq_lock - safely lock two runqueues
1282 *
1283 * Note this does not disable interrupts like task_rq_lock,
1284 * you need to do so manually before calling.
1285 */
1286static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1287 __acquires(rq1->lock)
1288 __acquires(rq2->lock)
1289{
1290 BUG_ON(!irqs_disabled());
1291 BUG_ON(rq1 != rq2);
1292 raw_spin_lock(&rq1->lock);
1293 __acquire(rq2->lock); /* Fake it out ;) */
1294}
1295
1296/*
1297 * double_rq_unlock - safely unlock two runqueues
1298 *
1299 * Note this does not restore interrupts like task_rq_unlock,
1300 * you need to do so manually after calling.
1301 */
1302static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1303 __releases(rq1->lock)
1304 __releases(rq2->lock)
1305{
1306 BUG_ON(rq1 != rq2);
1307 raw_spin_unlock(&rq1->lock);
1308 __release(rq2->lock);
1309}
1310
1311#endif
1312
1313extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1314extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1315extern void print_cfs_stats(struct seq_file *m, int cpu);
1316extern void print_rt_stats(struct seq_file *m, int cpu);
1317
1318extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1319extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb 1320
9d80092f
BS
1321extern void cfs_bandwidth_usage_inc(void);
1322extern void cfs_bandwidth_usage_dec(void);
1c792db7 1323
3451d024 1324#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1325enum rq_nohz_flag_bits {
1326 NOHZ_TICK_STOPPED,
1327 NOHZ_BALANCE_KICK,
1328};
1329
1330#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1331#endif
73fbec60
FW
1332
1333#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1334
1335DECLARE_PER_CPU(u64, cpu_hardirq_time);
1336DECLARE_PER_CPU(u64, cpu_softirq_time);
1337
1338#ifndef CONFIG_64BIT
1339DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1340
1341static inline void irq_time_write_begin(void)
1342{
1343 __this_cpu_inc(irq_time_seq.sequence);
1344 smp_wmb();
1345}
1346
1347static inline void irq_time_write_end(void)
1348{
1349 smp_wmb();
1350 __this_cpu_inc(irq_time_seq.sequence);
1351}
1352
1353static inline u64 irq_time_read(int cpu)
1354{
1355 u64 irq_time;
1356 unsigned seq;
1357
1358 do {
1359 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1360 irq_time = per_cpu(cpu_softirq_time, cpu) +
1361 per_cpu(cpu_hardirq_time, cpu);
1362 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1363
1364 return irq_time;
1365}
1366#else /* CONFIG_64BIT */
1367static inline void irq_time_write_begin(void)
1368{
1369}
1370
1371static inline void irq_time_write_end(void)
1372{
1373}
1374
1375static inline u64 irq_time_read(int cpu)
1376{
1377 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1378}
1379#endif /* CONFIG_64BIT */
1380#endif /* CONFIG_IRQ_TIME_ACCOUNTING */