f71c4ad425c652cbbb7362fc650904697ad0f6fe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
72 */
73
74 DEFINE_RAW_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 if (pfn_valid(pfn)) {
107 int reserved;
108 struct page *tail = pfn_to_page(pfn);
109 struct page *head = compound_head(tail);
110 reserved = PageReserved(head);
111 if (head != tail) {
112 /*
113 * "head" is not a dangling pointer
114 * (compound_head takes care of that)
115 * but the hugepage may have been splitted
116 * from under us (and we may not hold a
117 * reference count on the head page so it can
118 * be reused before we run PageReferenced), so
119 * we've to check PageTail before returning
120 * what we just read.
121 */
122 smp_rmb();
123 if (PageTail(tail))
124 return reserved;
125 }
126 return PageReserved(tail);
127 }
128
129 return true;
130 }
131
132 /*
133 * Switches to specified vcpu, until a matching vcpu_put()
134 */
135 int vcpu_load(struct kvm_vcpu *vcpu)
136 {
137 int cpu;
138
139 if (mutex_lock_killable(&vcpu->mutex))
140 return -EINTR;
141 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
142 /* The thread running this VCPU changed. */
143 struct pid *oldpid = vcpu->pid;
144 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
145 rcu_assign_pointer(vcpu->pid, newpid);
146 synchronize_rcu();
147 put_pid(oldpid);
148 }
149 cpu = get_cpu();
150 preempt_notifier_register(&vcpu->preempt_notifier);
151 kvm_arch_vcpu_load(vcpu, cpu);
152 put_cpu();
153 return 0;
154 }
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 preempt_disable();
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 preempt_enable();
162 mutex_unlock(&vcpu->mutex);
163 }
164
165 static void ack_flush(void *_completed)
166 {
167 }
168
169 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
170 {
171 int i, cpu, me;
172 cpumask_var_t cpus;
173 bool called = true;
174 struct kvm_vcpu *vcpu;
175
176 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
177
178 me = get_cpu();
179 kvm_for_each_vcpu(i, vcpu, kvm) {
180 kvm_make_request(req, vcpu);
181 cpu = vcpu->cpu;
182
183 /* Set ->requests bit before we read ->mode */
184 smp_mb();
185
186 if (cpus != NULL && cpu != -1 && cpu != me &&
187 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
188 cpumask_set_cpu(cpu, cpus);
189 }
190 if (unlikely(cpus == NULL))
191 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
192 else if (!cpumask_empty(cpus))
193 smp_call_function_many(cpus, ack_flush, NULL, 1);
194 else
195 called = false;
196 put_cpu();
197 free_cpumask_var(cpus);
198 return called;
199 }
200
201 void kvm_flush_remote_tlbs(struct kvm *kvm)
202 {
203 long dirty_count = kvm->tlbs_dirty;
204
205 smp_mb();
206 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
207 ++kvm->stat.remote_tlb_flush;
208 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
209 }
210
211 void kvm_reload_remote_mmus(struct kvm *kvm)
212 {
213 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
214 }
215
216 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
217 {
218 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
219 }
220
221 void kvm_make_scan_ioapic_request(struct kvm *kvm)
222 {
223 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
224 }
225
226 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
227 {
228 struct page *page;
229 int r;
230
231 mutex_init(&vcpu->mutex);
232 vcpu->cpu = -1;
233 vcpu->kvm = kvm;
234 vcpu->vcpu_id = id;
235 vcpu->pid = NULL;
236 init_waitqueue_head(&vcpu->wq);
237 kvm_async_pf_vcpu_init(vcpu);
238
239 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
240 if (!page) {
241 r = -ENOMEM;
242 goto fail;
243 }
244 vcpu->run = page_address(page);
245
246 kvm_vcpu_set_in_spin_loop(vcpu, false);
247 kvm_vcpu_set_dy_eligible(vcpu, false);
248 vcpu->preempted = false;
249
250 r = kvm_arch_vcpu_init(vcpu);
251 if (r < 0)
252 goto fail_free_run;
253 return 0;
254
255 fail_free_run:
256 free_page((unsigned long)vcpu->run);
257 fail:
258 return r;
259 }
260 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
261
262 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
263 {
264 put_pid(vcpu->pid);
265 kvm_arch_vcpu_uninit(vcpu);
266 free_page((unsigned long)vcpu->run);
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
269
270 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
271 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
272 {
273 return container_of(mn, struct kvm, mmu_notifier);
274 }
275
276 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long address)
279 {
280 struct kvm *kvm = mmu_notifier_to_kvm(mn);
281 int need_tlb_flush, idx;
282
283 /*
284 * When ->invalidate_page runs, the linux pte has been zapped
285 * already but the page is still allocated until
286 * ->invalidate_page returns. So if we increase the sequence
287 * here the kvm page fault will notice if the spte can't be
288 * established because the page is going to be freed. If
289 * instead the kvm page fault establishes the spte before
290 * ->invalidate_page runs, kvm_unmap_hva will release it
291 * before returning.
292 *
293 * The sequence increase only need to be seen at spin_unlock
294 * time, and not at spin_lock time.
295 *
296 * Increasing the sequence after the spin_unlock would be
297 * unsafe because the kvm page fault could then establish the
298 * pte after kvm_unmap_hva returned, without noticing the page
299 * is going to be freed.
300 */
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303
304 kvm->mmu_notifier_seq++;
305 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
306 /* we've to flush the tlb before the pages can be freed */
307 if (need_tlb_flush)
308 kvm_flush_remote_tlbs(kvm);
309
310 spin_unlock(&kvm->mmu_lock);
311 srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 struct mm_struct *mm,
316 unsigned long address,
317 pte_t pte)
318 {
319 struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 int idx;
321
322 idx = srcu_read_lock(&kvm->srcu);
323 spin_lock(&kvm->mmu_lock);
324 kvm->mmu_notifier_seq++;
325 kvm_set_spte_hva(kvm, address, pte);
326 spin_unlock(&kvm->mmu_lock);
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long start,
333 unsigned long end)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int need_tlb_flush = 0, idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 /*
341 * The count increase must become visible at unlock time as no
342 * spte can be established without taking the mmu_lock and
343 * count is also read inside the mmu_lock critical section.
344 */
345 kvm->mmu_notifier_count++;
346 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 need_tlb_flush |= kvm->tlbs_dirty;
348 /* we've to flush the tlb before the pages can be freed */
349 if (need_tlb_flush)
350 kvm_flush_remote_tlbs(kvm);
351
352 spin_unlock(&kvm->mmu_lock);
353 srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 struct mm_struct *mm,
358 unsigned long start,
359 unsigned long end)
360 {
361 struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363 spin_lock(&kvm->mmu_lock);
364 /*
365 * This sequence increase will notify the kvm page fault that
366 * the page that is going to be mapped in the spte could have
367 * been freed.
368 */
369 kvm->mmu_notifier_seq++;
370 smp_wmb();
371 /*
372 * The above sequence increase must be visible before the
373 * below count decrease, which is ensured by the smp_wmb above
374 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 */
376 kvm->mmu_notifier_count--;
377 spin_unlock(&kvm->mmu_lock);
378
379 BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long address)
385 {
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 int young, idx;
388
389 idx = srcu_read_lock(&kvm->srcu);
390 spin_lock(&kvm->mmu_lock);
391
392 young = kvm_age_hva(kvm, address);
393 if (young)
394 kvm_flush_remote_tlbs(kvm);
395
396 spin_unlock(&kvm->mmu_lock);
397 srcu_read_unlock(&kvm->srcu, idx);
398
399 return young;
400 }
401
402 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
403 struct mm_struct *mm,
404 unsigned long address)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
408
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
411 young = kvm_test_age_hva(kvm, address);
412 spin_unlock(&kvm->mmu_lock);
413 srcu_read_unlock(&kvm->srcu, idx);
414
415 return young;
416 }
417
418 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
419 struct mm_struct *mm)
420 {
421 struct kvm *kvm = mmu_notifier_to_kvm(mn);
422 int idx;
423
424 idx = srcu_read_lock(&kvm->srcu);
425 kvm_arch_flush_shadow_all(kvm);
426 srcu_read_unlock(&kvm->srcu, idx);
427 }
428
429 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
430 .invalidate_page = kvm_mmu_notifier_invalidate_page,
431 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
432 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
433 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
434 .test_young = kvm_mmu_notifier_test_young,
435 .change_pte = kvm_mmu_notifier_change_pte,
436 .release = kvm_mmu_notifier_release,
437 };
438
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
442 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
443 }
444
445 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
446
447 static int kvm_init_mmu_notifier(struct kvm *kvm)
448 {
449 return 0;
450 }
451
452 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
453
454 static void kvm_init_memslots_id(struct kvm *kvm)
455 {
456 int i;
457 struct kvm_memslots *slots = kvm->memslots;
458
459 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
460 slots->id_to_index[i] = slots->memslots[i].id = i;
461 }
462
463 static struct kvm *kvm_create_vm(unsigned long type)
464 {
465 int r, i;
466 struct kvm *kvm = kvm_arch_alloc_vm();
467
468 if (!kvm)
469 return ERR_PTR(-ENOMEM);
470
471 spin_lock_init(&kvm->mmu_lock);
472 atomic_inc(&current->mm->mm_count);
473 kvm->mm = current->mm;
474 kvm_eventfd_init(kvm);
475 mutex_init(&kvm->lock);
476 mutex_init(&kvm->irq_lock);
477 mutex_init(&kvm->slots_lock);
478 atomic_set(&kvm->users_count, 1);
479 INIT_LIST_HEAD(&kvm->devices);
480
481 r = kvm_arch_init_vm(kvm, type);
482 if (r)
483 goto out_err_nodisable;
484
485 r = hardware_enable_all();
486 if (r)
487 goto out_err_nodisable;
488
489 #ifdef CONFIG_HAVE_KVM_IRQCHIP
490 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
491 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
492 #endif
493
494 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
495
496 r = -ENOMEM;
497 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
498 if (!kvm->memslots)
499 goto out_err_nosrcu;
500 kvm_init_memslots_id(kvm);
501 if (init_srcu_struct(&kvm->srcu))
502 goto out_err_nosrcu;
503 for (i = 0; i < KVM_NR_BUSES; i++) {
504 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
505 GFP_KERNEL);
506 if (!kvm->buses[i])
507 goto out_err;
508 }
509
510 r = kvm_init_mmu_notifier(kvm);
511 if (r)
512 goto out_err;
513
514 raw_spin_lock(&kvm_lock);
515 list_add(&kvm->vm_list, &vm_list);
516 raw_spin_unlock(&kvm_lock);
517
518 return kvm;
519
520 out_err:
521 cleanup_srcu_struct(&kvm->srcu);
522 out_err_nosrcu:
523 hardware_disable_all();
524 out_err_nodisable:
525 for (i = 0; i < KVM_NR_BUSES; i++)
526 kfree(kvm->buses[i]);
527 kfree(kvm->memslots);
528 kvm_arch_free_vm(kvm);
529 mmdrop(current->mm);
530 return ERR_PTR(r);
531 }
532
533 /*
534 * Avoid using vmalloc for a small buffer.
535 * Should not be used when the size is statically known.
536 */
537 void *kvm_kvzalloc(unsigned long size)
538 {
539 if (size > PAGE_SIZE)
540 return vzalloc(size);
541 else
542 return kzalloc(size, GFP_KERNEL);
543 }
544
545 void kvm_kvfree(const void *addr)
546 {
547 if (is_vmalloc_addr(addr))
548 vfree(addr);
549 else
550 kfree(addr);
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555 if (!memslot->dirty_bitmap)
556 return;
557
558 kvm_kvfree(memslot->dirty_bitmap);
559 memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563 * Free any memory in @free but not in @dont.
564 */
565 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
566 struct kvm_memory_slot *dont)
567 {
568 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569 kvm_destroy_dirty_bitmap(free);
570
571 kvm_arch_free_memslot(free, dont);
572
573 free->npages = 0;
574 }
575
576 void kvm_free_physmem(struct kvm *kvm)
577 {
578 struct kvm_memslots *slots = kvm->memslots;
579 struct kvm_memory_slot *memslot;
580
581 kvm_for_each_memslot(memslot, slots)
582 kvm_free_physmem_slot(memslot, NULL);
583
584 kfree(kvm->memslots);
585 }
586
587 static void kvm_destroy_devices(struct kvm *kvm)
588 {
589 struct list_head *node, *tmp;
590
591 list_for_each_safe(node, tmp, &kvm->devices) {
592 struct kvm_device *dev =
593 list_entry(node, struct kvm_device, vm_node);
594
595 list_del(node);
596 dev->ops->destroy(dev);
597 }
598 }
599
600 static void kvm_destroy_vm(struct kvm *kvm)
601 {
602 int i;
603 struct mm_struct *mm = kvm->mm;
604
605 kvm_arch_sync_events(kvm);
606 raw_spin_lock(&kvm_lock);
607 list_del(&kvm->vm_list);
608 raw_spin_unlock(&kvm_lock);
609 kvm_free_irq_routing(kvm);
610 for (i = 0; i < KVM_NR_BUSES; i++)
611 kvm_io_bus_destroy(kvm->buses[i]);
612 kvm_coalesced_mmio_free(kvm);
613 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
614 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
615 #else
616 kvm_arch_flush_shadow_all(kvm);
617 #endif
618 kvm_arch_destroy_vm(kvm);
619 kvm_destroy_devices(kvm);
620 kvm_free_physmem(kvm);
621 cleanup_srcu_struct(&kvm->srcu);
622 kvm_arch_free_vm(kvm);
623 hardware_disable_all();
624 mmdrop(mm);
625 }
626
627 void kvm_get_kvm(struct kvm *kvm)
628 {
629 atomic_inc(&kvm->users_count);
630 }
631 EXPORT_SYMBOL_GPL(kvm_get_kvm);
632
633 void kvm_put_kvm(struct kvm *kvm)
634 {
635 if (atomic_dec_and_test(&kvm->users_count))
636 kvm_destroy_vm(kvm);
637 }
638 EXPORT_SYMBOL_GPL(kvm_put_kvm);
639
640
641 static int kvm_vm_release(struct inode *inode, struct file *filp)
642 {
643 struct kvm *kvm = filp->private_data;
644
645 kvm_irqfd_release(kvm);
646
647 kvm_put_kvm(kvm);
648 return 0;
649 }
650
651 /*
652 * Allocation size is twice as large as the actual dirty bitmap size.
653 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
654 */
655 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
656 {
657 #ifndef CONFIG_S390
658 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
659
660 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
661 if (!memslot->dirty_bitmap)
662 return -ENOMEM;
663
664 #endif /* !CONFIG_S390 */
665 return 0;
666 }
667
668 static int cmp_memslot(const void *slot1, const void *slot2)
669 {
670 struct kvm_memory_slot *s1, *s2;
671
672 s1 = (struct kvm_memory_slot *)slot1;
673 s2 = (struct kvm_memory_slot *)slot2;
674
675 if (s1->npages < s2->npages)
676 return 1;
677 if (s1->npages > s2->npages)
678 return -1;
679
680 return 0;
681 }
682
683 /*
684 * Sort the memslots base on its size, so the larger slots
685 * will get better fit.
686 */
687 static void sort_memslots(struct kvm_memslots *slots)
688 {
689 int i;
690
691 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
692 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
693
694 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
695 slots->id_to_index[slots->memslots[i].id] = i;
696 }
697
698 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
699 u64 last_generation)
700 {
701 if (new) {
702 int id = new->id;
703 struct kvm_memory_slot *old = id_to_memslot(slots, id);
704 unsigned long npages = old->npages;
705
706 *old = *new;
707 if (new->npages != npages)
708 sort_memslots(slots);
709 }
710
711 slots->generation = last_generation + 1;
712 }
713
714 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
715 {
716 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
717
718 #ifdef KVM_CAP_READONLY_MEM
719 valid_flags |= KVM_MEM_READONLY;
720 #endif
721
722 if (mem->flags & ~valid_flags)
723 return -EINVAL;
724
725 return 0;
726 }
727
728 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
729 struct kvm_memslots *slots, struct kvm_memory_slot *new)
730 {
731 struct kvm_memslots *old_memslots = kvm->memslots;
732
733 update_memslots(slots, new, kvm->memslots->generation);
734 rcu_assign_pointer(kvm->memslots, slots);
735 synchronize_srcu_expedited(&kvm->srcu);
736 return old_memslots;
737 }
738
739 /*
740 * Allocate some memory and give it an address in the guest physical address
741 * space.
742 *
743 * Discontiguous memory is allowed, mostly for framebuffers.
744 *
745 * Must be called holding mmap_sem for write.
746 */
747 int __kvm_set_memory_region(struct kvm *kvm,
748 struct kvm_userspace_memory_region *mem)
749 {
750 int r;
751 gfn_t base_gfn;
752 unsigned long npages;
753 struct kvm_memory_slot *slot;
754 struct kvm_memory_slot old, new;
755 struct kvm_memslots *slots = NULL, *old_memslots;
756 enum kvm_mr_change change;
757
758 r = check_memory_region_flags(mem);
759 if (r)
760 goto out;
761
762 r = -EINVAL;
763 /* General sanity checks */
764 if (mem->memory_size & (PAGE_SIZE - 1))
765 goto out;
766 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
767 goto out;
768 /* We can read the guest memory with __xxx_user() later on. */
769 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
770 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
771 !access_ok(VERIFY_WRITE,
772 (void __user *)(unsigned long)mem->userspace_addr,
773 mem->memory_size)))
774 goto out;
775 if (mem->slot >= KVM_MEM_SLOTS_NUM)
776 goto out;
777 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
778 goto out;
779
780 slot = id_to_memslot(kvm->memslots, mem->slot);
781 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
782 npages = mem->memory_size >> PAGE_SHIFT;
783
784 r = -EINVAL;
785 if (npages > KVM_MEM_MAX_NR_PAGES)
786 goto out;
787
788 if (!npages)
789 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
790
791 new = old = *slot;
792
793 new.id = mem->slot;
794 new.base_gfn = base_gfn;
795 new.npages = npages;
796 new.flags = mem->flags;
797
798 r = -EINVAL;
799 if (npages) {
800 if (!old.npages)
801 change = KVM_MR_CREATE;
802 else { /* Modify an existing slot. */
803 if ((mem->userspace_addr != old.userspace_addr) ||
804 (npages != old.npages) ||
805 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
806 goto out;
807
808 if (base_gfn != old.base_gfn)
809 change = KVM_MR_MOVE;
810 else if (new.flags != old.flags)
811 change = KVM_MR_FLAGS_ONLY;
812 else { /* Nothing to change. */
813 r = 0;
814 goto out;
815 }
816 }
817 } else if (old.npages) {
818 change = KVM_MR_DELETE;
819 } else /* Modify a non-existent slot: disallowed. */
820 goto out;
821
822 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
823 /* Check for overlaps */
824 r = -EEXIST;
825 kvm_for_each_memslot(slot, kvm->memslots) {
826 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
827 (slot->id == mem->slot))
828 continue;
829 if (!((base_gfn + npages <= slot->base_gfn) ||
830 (base_gfn >= slot->base_gfn + slot->npages)))
831 goto out;
832 }
833 }
834
835 /* Free page dirty bitmap if unneeded */
836 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
837 new.dirty_bitmap = NULL;
838
839 r = -ENOMEM;
840 if (change == KVM_MR_CREATE) {
841 new.userspace_addr = mem->userspace_addr;
842
843 if (kvm_arch_create_memslot(&new, npages))
844 goto out_free;
845 }
846
847 /* Allocate page dirty bitmap if needed */
848 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
849 if (kvm_create_dirty_bitmap(&new) < 0)
850 goto out_free;
851 }
852
853 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
854 r = -ENOMEM;
855 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
856 GFP_KERNEL);
857 if (!slots)
858 goto out_free;
859 slot = id_to_memslot(slots, mem->slot);
860 slot->flags |= KVM_MEMSLOT_INVALID;
861
862 old_memslots = install_new_memslots(kvm, slots, NULL);
863
864 /* slot was deleted or moved, clear iommu mapping */
865 kvm_iommu_unmap_pages(kvm, &old);
866 /* From this point no new shadow pages pointing to a deleted,
867 * or moved, memslot will be created.
868 *
869 * validation of sp->gfn happens in:
870 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
871 * - kvm_is_visible_gfn (mmu_check_roots)
872 */
873 kvm_arch_flush_shadow_memslot(kvm, slot);
874 slots = old_memslots;
875 }
876
877 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
878 if (r)
879 goto out_slots;
880
881 r = -ENOMEM;
882 /*
883 * We can re-use the old_memslots from above, the only difference
884 * from the currently installed memslots is the invalid flag. This
885 * will get overwritten by update_memslots anyway.
886 */
887 if (!slots) {
888 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
889 GFP_KERNEL);
890 if (!slots)
891 goto out_free;
892 }
893
894 /*
895 * IOMMU mapping: New slots need to be mapped. Old slots need to be
896 * un-mapped and re-mapped if their base changes. Since base change
897 * unmapping is handled above with slot deletion, mapping alone is
898 * needed here. Anything else the iommu might care about for existing
899 * slots (size changes, userspace addr changes and read-only flag
900 * changes) is disallowed above, so any other attribute changes getting
901 * here can be skipped.
902 */
903 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
904 r = kvm_iommu_map_pages(kvm, &new);
905 if (r)
906 goto out_slots;
907 }
908
909 /* actual memory is freed via old in kvm_free_physmem_slot below */
910 if (change == KVM_MR_DELETE) {
911 new.dirty_bitmap = NULL;
912 memset(&new.arch, 0, sizeof(new.arch));
913 }
914
915 old_memslots = install_new_memslots(kvm, slots, &new);
916
917 kvm_arch_commit_memory_region(kvm, mem, &old, change);
918
919 kvm_free_physmem_slot(&old, &new);
920 kfree(old_memslots);
921
922 return 0;
923
924 out_slots:
925 kfree(slots);
926 out_free:
927 kvm_free_physmem_slot(&new, &old);
928 out:
929 return r;
930 }
931 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
932
933 int kvm_set_memory_region(struct kvm *kvm,
934 struct kvm_userspace_memory_region *mem)
935 {
936 int r;
937
938 mutex_lock(&kvm->slots_lock);
939 r = __kvm_set_memory_region(kvm, mem);
940 mutex_unlock(&kvm->slots_lock);
941 return r;
942 }
943 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
944
945 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
946 struct kvm_userspace_memory_region *mem)
947 {
948 if (mem->slot >= KVM_USER_MEM_SLOTS)
949 return -EINVAL;
950 return kvm_set_memory_region(kvm, mem);
951 }
952
953 int kvm_get_dirty_log(struct kvm *kvm,
954 struct kvm_dirty_log *log, int *is_dirty)
955 {
956 struct kvm_memory_slot *memslot;
957 int r, i;
958 unsigned long n;
959 unsigned long any = 0;
960
961 r = -EINVAL;
962 if (log->slot >= KVM_USER_MEM_SLOTS)
963 goto out;
964
965 memslot = id_to_memslot(kvm->memslots, log->slot);
966 r = -ENOENT;
967 if (!memslot->dirty_bitmap)
968 goto out;
969
970 n = kvm_dirty_bitmap_bytes(memslot);
971
972 for (i = 0; !any && i < n/sizeof(long); ++i)
973 any = memslot->dirty_bitmap[i];
974
975 r = -EFAULT;
976 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
977 goto out;
978
979 if (any)
980 *is_dirty = 1;
981
982 r = 0;
983 out:
984 return r;
985 }
986
987 bool kvm_largepages_enabled(void)
988 {
989 return largepages_enabled;
990 }
991
992 void kvm_disable_largepages(void)
993 {
994 largepages_enabled = false;
995 }
996 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
997
998 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
999 {
1000 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1001 }
1002 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1003
1004 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1005 {
1006 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1007
1008 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1009 memslot->flags & KVM_MEMSLOT_INVALID)
1010 return 0;
1011
1012 return 1;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1015
1016 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1017 {
1018 struct vm_area_struct *vma;
1019 unsigned long addr, size;
1020
1021 size = PAGE_SIZE;
1022
1023 addr = gfn_to_hva(kvm, gfn);
1024 if (kvm_is_error_hva(addr))
1025 return PAGE_SIZE;
1026
1027 down_read(&current->mm->mmap_sem);
1028 vma = find_vma(current->mm, addr);
1029 if (!vma)
1030 goto out;
1031
1032 size = vma_kernel_pagesize(vma);
1033
1034 out:
1035 up_read(&current->mm->mmap_sem);
1036
1037 return size;
1038 }
1039
1040 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1041 {
1042 return slot->flags & KVM_MEM_READONLY;
1043 }
1044
1045 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1046 gfn_t *nr_pages, bool write)
1047 {
1048 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1049 return KVM_HVA_ERR_BAD;
1050
1051 if (memslot_is_readonly(slot) && write)
1052 return KVM_HVA_ERR_RO_BAD;
1053
1054 if (nr_pages)
1055 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1056
1057 return __gfn_to_hva_memslot(slot, gfn);
1058 }
1059
1060 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061 gfn_t *nr_pages)
1062 {
1063 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1064 }
1065
1066 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1067 gfn_t gfn)
1068 {
1069 return gfn_to_hva_many(slot, gfn, NULL);
1070 }
1071 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1072
1073 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1074 {
1075 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1076 }
1077 EXPORT_SYMBOL_GPL(gfn_to_hva);
1078
1079 /*
1080 * The hva returned by this function is only allowed to be read.
1081 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1082 */
1083 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1084 {
1085 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1086 }
1087
1088 static int kvm_read_hva(void *data, void __user *hva, int len)
1089 {
1090 return __copy_from_user(data, hva, len);
1091 }
1092
1093 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1094 {
1095 return __copy_from_user_inatomic(data, hva, len);
1096 }
1097
1098 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1099 unsigned long start, int write, struct page **page)
1100 {
1101 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1102
1103 if (write)
1104 flags |= FOLL_WRITE;
1105
1106 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1107 }
1108
1109 static inline int check_user_page_hwpoison(unsigned long addr)
1110 {
1111 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1112
1113 rc = __get_user_pages(current, current->mm, addr, 1,
1114 flags, NULL, NULL, NULL);
1115 return rc == -EHWPOISON;
1116 }
1117
1118 /*
1119 * The atomic path to get the writable pfn which will be stored in @pfn,
1120 * true indicates success, otherwise false is returned.
1121 */
1122 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1123 bool write_fault, bool *writable, pfn_t *pfn)
1124 {
1125 struct page *page[1];
1126 int npages;
1127
1128 if (!(async || atomic))
1129 return false;
1130
1131 /*
1132 * Fast pin a writable pfn only if it is a write fault request
1133 * or the caller allows to map a writable pfn for a read fault
1134 * request.
1135 */
1136 if (!(write_fault || writable))
1137 return false;
1138
1139 npages = __get_user_pages_fast(addr, 1, 1, page);
1140 if (npages == 1) {
1141 *pfn = page_to_pfn(page[0]);
1142
1143 if (writable)
1144 *writable = true;
1145 return true;
1146 }
1147
1148 return false;
1149 }
1150
1151 /*
1152 * The slow path to get the pfn of the specified host virtual address,
1153 * 1 indicates success, -errno is returned if error is detected.
1154 */
1155 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1156 bool *writable, pfn_t *pfn)
1157 {
1158 struct page *page[1];
1159 int npages = 0;
1160
1161 might_sleep();
1162
1163 if (writable)
1164 *writable = write_fault;
1165
1166 if (async) {
1167 down_read(&current->mm->mmap_sem);
1168 npages = get_user_page_nowait(current, current->mm,
1169 addr, write_fault, page);
1170 up_read(&current->mm->mmap_sem);
1171 } else
1172 npages = get_user_pages_fast(addr, 1, write_fault,
1173 page);
1174 if (npages != 1)
1175 return npages;
1176
1177 /* map read fault as writable if possible */
1178 if (unlikely(!write_fault) && writable) {
1179 struct page *wpage[1];
1180
1181 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1182 if (npages == 1) {
1183 *writable = true;
1184 put_page(page[0]);
1185 page[0] = wpage[0];
1186 }
1187
1188 npages = 1;
1189 }
1190 *pfn = page_to_pfn(page[0]);
1191 return npages;
1192 }
1193
1194 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1195 {
1196 if (unlikely(!(vma->vm_flags & VM_READ)))
1197 return false;
1198
1199 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1200 return false;
1201
1202 return true;
1203 }
1204
1205 /*
1206 * Pin guest page in memory and return its pfn.
1207 * @addr: host virtual address which maps memory to the guest
1208 * @atomic: whether this function can sleep
1209 * @async: whether this function need to wait IO complete if the
1210 * host page is not in the memory
1211 * @write_fault: whether we should get a writable host page
1212 * @writable: whether it allows to map a writable host page for !@write_fault
1213 *
1214 * The function will map a writable host page for these two cases:
1215 * 1): @write_fault = true
1216 * 2): @write_fault = false && @writable, @writable will tell the caller
1217 * whether the mapping is writable.
1218 */
1219 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1220 bool write_fault, bool *writable)
1221 {
1222 struct vm_area_struct *vma;
1223 pfn_t pfn = 0;
1224 int npages;
1225
1226 /* we can do it either atomically or asynchronously, not both */
1227 BUG_ON(atomic && async);
1228
1229 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1230 return pfn;
1231
1232 if (atomic)
1233 return KVM_PFN_ERR_FAULT;
1234
1235 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1236 if (npages == 1)
1237 return pfn;
1238
1239 down_read(&current->mm->mmap_sem);
1240 if (npages == -EHWPOISON ||
1241 (!async && check_user_page_hwpoison(addr))) {
1242 pfn = KVM_PFN_ERR_HWPOISON;
1243 goto exit;
1244 }
1245
1246 vma = find_vma_intersection(current->mm, addr, addr + 1);
1247
1248 if (vma == NULL)
1249 pfn = KVM_PFN_ERR_FAULT;
1250 else if ((vma->vm_flags & VM_PFNMAP)) {
1251 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1252 vma->vm_pgoff;
1253 BUG_ON(!kvm_is_mmio_pfn(pfn));
1254 } else {
1255 if (async && vma_is_valid(vma, write_fault))
1256 *async = true;
1257 pfn = KVM_PFN_ERR_FAULT;
1258 }
1259 exit:
1260 up_read(&current->mm->mmap_sem);
1261 return pfn;
1262 }
1263
1264 static pfn_t
1265 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1266 bool *async, bool write_fault, bool *writable)
1267 {
1268 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1269
1270 if (addr == KVM_HVA_ERR_RO_BAD)
1271 return KVM_PFN_ERR_RO_FAULT;
1272
1273 if (kvm_is_error_hva(addr))
1274 return KVM_PFN_NOSLOT;
1275
1276 /* Do not map writable pfn in the readonly memslot. */
1277 if (writable && memslot_is_readonly(slot)) {
1278 *writable = false;
1279 writable = NULL;
1280 }
1281
1282 return hva_to_pfn(addr, atomic, async, write_fault,
1283 writable);
1284 }
1285
1286 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1287 bool write_fault, bool *writable)
1288 {
1289 struct kvm_memory_slot *slot;
1290
1291 if (async)
1292 *async = false;
1293
1294 slot = gfn_to_memslot(kvm, gfn);
1295
1296 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1297 writable);
1298 }
1299
1300 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1301 {
1302 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1303 }
1304 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1305
1306 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1307 bool write_fault, bool *writable)
1308 {
1309 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1312
1313 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1314 {
1315 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1316 }
1317 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1318
1319 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1320 bool *writable)
1321 {
1322 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1323 }
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1325
1326 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1327 {
1328 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1329 }
1330
1331 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1332 {
1333 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1334 }
1335 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1336
1337 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1338 int nr_pages)
1339 {
1340 unsigned long addr;
1341 gfn_t entry;
1342
1343 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1344 if (kvm_is_error_hva(addr))
1345 return -1;
1346
1347 if (entry < nr_pages)
1348 return 0;
1349
1350 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1351 }
1352 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1353
1354 static struct page *kvm_pfn_to_page(pfn_t pfn)
1355 {
1356 if (is_error_noslot_pfn(pfn))
1357 return KVM_ERR_PTR_BAD_PAGE;
1358
1359 if (kvm_is_mmio_pfn(pfn)) {
1360 WARN_ON(1);
1361 return KVM_ERR_PTR_BAD_PAGE;
1362 }
1363
1364 return pfn_to_page(pfn);
1365 }
1366
1367 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1368 {
1369 pfn_t pfn;
1370
1371 pfn = gfn_to_pfn(kvm, gfn);
1372
1373 return kvm_pfn_to_page(pfn);
1374 }
1375
1376 EXPORT_SYMBOL_GPL(gfn_to_page);
1377
1378 void kvm_release_page_clean(struct page *page)
1379 {
1380 WARN_ON(is_error_page(page));
1381
1382 kvm_release_pfn_clean(page_to_pfn(page));
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1385
1386 void kvm_release_pfn_clean(pfn_t pfn)
1387 {
1388 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1389 put_page(pfn_to_page(pfn));
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1392
1393 void kvm_release_page_dirty(struct page *page)
1394 {
1395 WARN_ON(is_error_page(page));
1396
1397 kvm_release_pfn_dirty(page_to_pfn(page));
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1400
1401 void kvm_release_pfn_dirty(pfn_t pfn)
1402 {
1403 kvm_set_pfn_dirty(pfn);
1404 kvm_release_pfn_clean(pfn);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1407
1408 void kvm_set_page_dirty(struct page *page)
1409 {
1410 kvm_set_pfn_dirty(page_to_pfn(page));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1413
1414 void kvm_set_pfn_dirty(pfn_t pfn)
1415 {
1416 if (!kvm_is_mmio_pfn(pfn)) {
1417 struct page *page = pfn_to_page(pfn);
1418 if (!PageReserved(page))
1419 SetPageDirty(page);
1420 }
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1423
1424 void kvm_set_pfn_accessed(pfn_t pfn)
1425 {
1426 if (!kvm_is_mmio_pfn(pfn))
1427 mark_page_accessed(pfn_to_page(pfn));
1428 }
1429 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1430
1431 void kvm_get_pfn(pfn_t pfn)
1432 {
1433 if (!kvm_is_mmio_pfn(pfn))
1434 get_page(pfn_to_page(pfn));
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1437
1438 static int next_segment(unsigned long len, int offset)
1439 {
1440 if (len > PAGE_SIZE - offset)
1441 return PAGE_SIZE - offset;
1442 else
1443 return len;
1444 }
1445
1446 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1447 int len)
1448 {
1449 int r;
1450 unsigned long addr;
1451
1452 addr = gfn_to_hva_read(kvm, gfn);
1453 if (kvm_is_error_hva(addr))
1454 return -EFAULT;
1455 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1456 if (r)
1457 return -EFAULT;
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1461
1462 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1463 {
1464 gfn_t gfn = gpa >> PAGE_SHIFT;
1465 int seg;
1466 int offset = offset_in_page(gpa);
1467 int ret;
1468
1469 while ((seg = next_segment(len, offset)) != 0) {
1470 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1471 if (ret < 0)
1472 return ret;
1473 offset = 0;
1474 len -= seg;
1475 data += seg;
1476 ++gfn;
1477 }
1478 return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_read_guest);
1481
1482 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1483 unsigned long len)
1484 {
1485 int r;
1486 unsigned long addr;
1487 gfn_t gfn = gpa >> PAGE_SHIFT;
1488 int offset = offset_in_page(gpa);
1489
1490 addr = gfn_to_hva_read(kvm, gfn);
1491 if (kvm_is_error_hva(addr))
1492 return -EFAULT;
1493 pagefault_disable();
1494 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1495 pagefault_enable();
1496 if (r)
1497 return -EFAULT;
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(kvm_read_guest_atomic);
1501
1502 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1503 int offset, int len)
1504 {
1505 int r;
1506 unsigned long addr;
1507
1508 addr = gfn_to_hva(kvm, gfn);
1509 if (kvm_is_error_hva(addr))
1510 return -EFAULT;
1511 r = __copy_to_user((void __user *)addr + offset, data, len);
1512 if (r)
1513 return -EFAULT;
1514 mark_page_dirty(kvm, gfn);
1515 return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1518
1519 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1520 unsigned long len)
1521 {
1522 gfn_t gfn = gpa >> PAGE_SHIFT;
1523 int seg;
1524 int offset = offset_in_page(gpa);
1525 int ret;
1526
1527 while ((seg = next_segment(len, offset)) != 0) {
1528 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1529 if (ret < 0)
1530 return ret;
1531 offset = 0;
1532 len -= seg;
1533 data += seg;
1534 ++gfn;
1535 }
1536 return 0;
1537 }
1538
1539 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1540 gpa_t gpa, unsigned long len)
1541 {
1542 struct kvm_memslots *slots = kvm_memslots(kvm);
1543 int offset = offset_in_page(gpa);
1544 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1545 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1546 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1547 gfn_t nr_pages_avail;
1548
1549 ghc->gpa = gpa;
1550 ghc->generation = slots->generation;
1551 ghc->len = len;
1552 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1553 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1554 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1555 ghc->hva += offset;
1556 } else {
1557 /*
1558 * If the requested region crosses two memslots, we still
1559 * verify that the entire region is valid here.
1560 */
1561 while (start_gfn <= end_gfn) {
1562 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1563 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1564 &nr_pages_avail);
1565 if (kvm_is_error_hva(ghc->hva))
1566 return -EFAULT;
1567 start_gfn += nr_pages_avail;
1568 }
1569 /* Use the slow path for cross page reads and writes. */
1570 ghc->memslot = NULL;
1571 }
1572 return 0;
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1575
1576 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1577 void *data, unsigned long len)
1578 {
1579 struct kvm_memslots *slots = kvm_memslots(kvm);
1580 int r;
1581
1582 BUG_ON(len > ghc->len);
1583
1584 if (slots->generation != ghc->generation)
1585 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1586
1587 if (unlikely(!ghc->memslot))
1588 return kvm_write_guest(kvm, ghc->gpa, data, len);
1589
1590 if (kvm_is_error_hva(ghc->hva))
1591 return -EFAULT;
1592
1593 r = __copy_to_user((void __user *)ghc->hva, data, len);
1594 if (r)
1595 return -EFAULT;
1596 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1597
1598 return 0;
1599 }
1600 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1601
1602 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1603 void *data, unsigned long len)
1604 {
1605 struct kvm_memslots *slots = kvm_memslots(kvm);
1606 int r;
1607
1608 BUG_ON(len > ghc->len);
1609
1610 if (slots->generation != ghc->generation)
1611 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1612
1613 if (unlikely(!ghc->memslot))
1614 return kvm_read_guest(kvm, ghc->gpa, data, len);
1615
1616 if (kvm_is_error_hva(ghc->hva))
1617 return -EFAULT;
1618
1619 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1620 if (r)
1621 return -EFAULT;
1622
1623 return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1626
1627 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1628 {
1629 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1630 offset, len);
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1633
1634 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1635 {
1636 gfn_t gfn = gpa >> PAGE_SHIFT;
1637 int seg;
1638 int offset = offset_in_page(gpa);
1639 int ret;
1640
1641 while ((seg = next_segment(len, offset)) != 0) {
1642 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1643 if (ret < 0)
1644 return ret;
1645 offset = 0;
1646 len -= seg;
1647 ++gfn;
1648 }
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1652
1653 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1654 gfn_t gfn)
1655 {
1656 if (memslot && memslot->dirty_bitmap) {
1657 unsigned long rel_gfn = gfn - memslot->base_gfn;
1658
1659 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1660 }
1661 }
1662
1663 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1664 {
1665 struct kvm_memory_slot *memslot;
1666
1667 memslot = gfn_to_memslot(kvm, gfn);
1668 mark_page_dirty_in_slot(kvm, memslot, gfn);
1669 }
1670
1671 /*
1672 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1673 */
1674 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1675 {
1676 DEFINE_WAIT(wait);
1677
1678 for (;;) {
1679 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1680
1681 if (kvm_arch_vcpu_runnable(vcpu)) {
1682 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1683 break;
1684 }
1685 if (kvm_cpu_has_pending_timer(vcpu))
1686 break;
1687 if (signal_pending(current))
1688 break;
1689
1690 schedule();
1691 }
1692
1693 finish_wait(&vcpu->wq, &wait);
1694 }
1695
1696 #ifndef CONFIG_S390
1697 /*
1698 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1699 */
1700 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1701 {
1702 int me;
1703 int cpu = vcpu->cpu;
1704 wait_queue_head_t *wqp;
1705
1706 wqp = kvm_arch_vcpu_wq(vcpu);
1707 if (waitqueue_active(wqp)) {
1708 wake_up_interruptible(wqp);
1709 ++vcpu->stat.halt_wakeup;
1710 }
1711
1712 me = get_cpu();
1713 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1714 if (kvm_arch_vcpu_should_kick(vcpu))
1715 smp_send_reschedule(cpu);
1716 put_cpu();
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1719 #endif /* !CONFIG_S390 */
1720
1721 void kvm_resched(struct kvm_vcpu *vcpu)
1722 {
1723 if (!need_resched())
1724 return;
1725 cond_resched();
1726 }
1727 EXPORT_SYMBOL_GPL(kvm_resched);
1728
1729 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1730 {
1731 struct pid *pid;
1732 struct task_struct *task = NULL;
1733 bool ret = false;
1734
1735 rcu_read_lock();
1736 pid = rcu_dereference(target->pid);
1737 if (pid)
1738 task = get_pid_task(target->pid, PIDTYPE_PID);
1739 rcu_read_unlock();
1740 if (!task)
1741 return ret;
1742 if (task->flags & PF_VCPU) {
1743 put_task_struct(task);
1744 return ret;
1745 }
1746 ret = yield_to(task, 1);
1747 put_task_struct(task);
1748
1749 return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1752
1753 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1754 /*
1755 * Helper that checks whether a VCPU is eligible for directed yield.
1756 * Most eligible candidate to yield is decided by following heuristics:
1757 *
1758 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1759 * (preempted lock holder), indicated by @in_spin_loop.
1760 * Set at the beiginning and cleared at the end of interception/PLE handler.
1761 *
1762 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1763 * chance last time (mostly it has become eligible now since we have probably
1764 * yielded to lockholder in last iteration. This is done by toggling
1765 * @dy_eligible each time a VCPU checked for eligibility.)
1766 *
1767 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1768 * to preempted lock-holder could result in wrong VCPU selection and CPU
1769 * burning. Giving priority for a potential lock-holder increases lock
1770 * progress.
1771 *
1772 * Since algorithm is based on heuristics, accessing another VCPU data without
1773 * locking does not harm. It may result in trying to yield to same VCPU, fail
1774 * and continue with next VCPU and so on.
1775 */
1776 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1777 {
1778 bool eligible;
1779
1780 eligible = !vcpu->spin_loop.in_spin_loop ||
1781 (vcpu->spin_loop.in_spin_loop &&
1782 vcpu->spin_loop.dy_eligible);
1783
1784 if (vcpu->spin_loop.in_spin_loop)
1785 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1786
1787 return eligible;
1788 }
1789 #endif
1790
1791 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1792 {
1793 struct kvm *kvm = me->kvm;
1794 struct kvm_vcpu *vcpu;
1795 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1796 int yielded = 0;
1797 int try = 3;
1798 int pass;
1799 int i;
1800
1801 kvm_vcpu_set_in_spin_loop(me, true);
1802 /*
1803 * We boost the priority of a VCPU that is runnable but not
1804 * currently running, because it got preempted by something
1805 * else and called schedule in __vcpu_run. Hopefully that
1806 * VCPU is holding the lock that we need and will release it.
1807 * We approximate round-robin by starting at the last boosted VCPU.
1808 */
1809 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1810 kvm_for_each_vcpu(i, vcpu, kvm) {
1811 if (!pass && i <= last_boosted_vcpu) {
1812 i = last_boosted_vcpu;
1813 continue;
1814 } else if (pass && i > last_boosted_vcpu)
1815 break;
1816 if (!ACCESS_ONCE(vcpu->preempted))
1817 continue;
1818 if (vcpu == me)
1819 continue;
1820 if (waitqueue_active(&vcpu->wq))
1821 continue;
1822 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1823 continue;
1824
1825 yielded = kvm_vcpu_yield_to(vcpu);
1826 if (yielded > 0) {
1827 kvm->last_boosted_vcpu = i;
1828 break;
1829 } else if (yielded < 0) {
1830 try--;
1831 if (!try)
1832 break;
1833 }
1834 }
1835 }
1836 kvm_vcpu_set_in_spin_loop(me, false);
1837
1838 /* Ensure vcpu is not eligible during next spinloop */
1839 kvm_vcpu_set_dy_eligible(me, false);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1842
1843 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1844 {
1845 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1846 struct page *page;
1847
1848 if (vmf->pgoff == 0)
1849 page = virt_to_page(vcpu->run);
1850 #ifdef CONFIG_X86
1851 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1852 page = virt_to_page(vcpu->arch.pio_data);
1853 #endif
1854 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1855 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1856 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1857 #endif
1858 else
1859 return kvm_arch_vcpu_fault(vcpu, vmf);
1860 get_page(page);
1861 vmf->page = page;
1862 return 0;
1863 }
1864
1865 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1866 .fault = kvm_vcpu_fault,
1867 };
1868
1869 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1870 {
1871 vma->vm_ops = &kvm_vcpu_vm_ops;
1872 return 0;
1873 }
1874
1875 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1876 {
1877 struct kvm_vcpu *vcpu = filp->private_data;
1878
1879 kvm_put_kvm(vcpu->kvm);
1880 return 0;
1881 }
1882
1883 static struct file_operations kvm_vcpu_fops = {
1884 .release = kvm_vcpu_release,
1885 .unlocked_ioctl = kvm_vcpu_ioctl,
1886 #ifdef CONFIG_COMPAT
1887 .compat_ioctl = kvm_vcpu_compat_ioctl,
1888 #endif
1889 .mmap = kvm_vcpu_mmap,
1890 .llseek = noop_llseek,
1891 };
1892
1893 /*
1894 * Allocates an inode for the vcpu.
1895 */
1896 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1897 {
1898 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1899 }
1900
1901 /*
1902 * Creates some virtual cpus. Good luck creating more than one.
1903 */
1904 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1905 {
1906 int r;
1907 struct kvm_vcpu *vcpu, *v;
1908
1909 if (id >= KVM_MAX_VCPUS)
1910 return -EINVAL;
1911
1912 vcpu = kvm_arch_vcpu_create(kvm, id);
1913 if (IS_ERR(vcpu))
1914 return PTR_ERR(vcpu);
1915
1916 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1917
1918 r = kvm_arch_vcpu_setup(vcpu);
1919 if (r)
1920 goto vcpu_destroy;
1921
1922 mutex_lock(&kvm->lock);
1923 if (!kvm_vcpu_compatible(vcpu)) {
1924 r = -EINVAL;
1925 goto unlock_vcpu_destroy;
1926 }
1927 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1928 r = -EINVAL;
1929 goto unlock_vcpu_destroy;
1930 }
1931
1932 kvm_for_each_vcpu(r, v, kvm)
1933 if (v->vcpu_id == id) {
1934 r = -EEXIST;
1935 goto unlock_vcpu_destroy;
1936 }
1937
1938 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1939
1940 /* Now it's all set up, let userspace reach it */
1941 kvm_get_kvm(kvm);
1942 r = create_vcpu_fd(vcpu);
1943 if (r < 0) {
1944 kvm_put_kvm(kvm);
1945 goto unlock_vcpu_destroy;
1946 }
1947
1948 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1949 smp_wmb();
1950 atomic_inc(&kvm->online_vcpus);
1951
1952 mutex_unlock(&kvm->lock);
1953 kvm_arch_vcpu_postcreate(vcpu);
1954 return r;
1955
1956 unlock_vcpu_destroy:
1957 mutex_unlock(&kvm->lock);
1958 vcpu_destroy:
1959 kvm_arch_vcpu_destroy(vcpu);
1960 return r;
1961 }
1962
1963 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1964 {
1965 if (sigset) {
1966 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1967 vcpu->sigset_active = 1;
1968 vcpu->sigset = *sigset;
1969 } else
1970 vcpu->sigset_active = 0;
1971 return 0;
1972 }
1973
1974 static long kvm_vcpu_ioctl(struct file *filp,
1975 unsigned int ioctl, unsigned long arg)
1976 {
1977 struct kvm_vcpu *vcpu = filp->private_data;
1978 void __user *argp = (void __user *)arg;
1979 int r;
1980 struct kvm_fpu *fpu = NULL;
1981 struct kvm_sregs *kvm_sregs = NULL;
1982
1983 if (vcpu->kvm->mm != current->mm)
1984 return -EIO;
1985
1986 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
1987 return -EINVAL;
1988
1989 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1990 /*
1991 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1992 * so vcpu_load() would break it.
1993 */
1994 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1995 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1996 #endif
1997
1998
1999 r = vcpu_load(vcpu);
2000 if (r)
2001 return r;
2002 switch (ioctl) {
2003 case KVM_RUN:
2004 r = -EINVAL;
2005 if (arg)
2006 goto out;
2007 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2008 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2009 break;
2010 case KVM_GET_REGS: {
2011 struct kvm_regs *kvm_regs;
2012
2013 r = -ENOMEM;
2014 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2015 if (!kvm_regs)
2016 goto out;
2017 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2018 if (r)
2019 goto out_free1;
2020 r = -EFAULT;
2021 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2022 goto out_free1;
2023 r = 0;
2024 out_free1:
2025 kfree(kvm_regs);
2026 break;
2027 }
2028 case KVM_SET_REGS: {
2029 struct kvm_regs *kvm_regs;
2030
2031 r = -ENOMEM;
2032 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2033 if (IS_ERR(kvm_regs)) {
2034 r = PTR_ERR(kvm_regs);
2035 goto out;
2036 }
2037 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2038 kfree(kvm_regs);
2039 break;
2040 }
2041 case KVM_GET_SREGS: {
2042 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2043 r = -ENOMEM;
2044 if (!kvm_sregs)
2045 goto out;
2046 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2047 if (r)
2048 goto out;
2049 r = -EFAULT;
2050 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2051 goto out;
2052 r = 0;
2053 break;
2054 }
2055 case KVM_SET_SREGS: {
2056 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2057 if (IS_ERR(kvm_sregs)) {
2058 r = PTR_ERR(kvm_sregs);
2059 kvm_sregs = NULL;
2060 goto out;
2061 }
2062 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2063 break;
2064 }
2065 case KVM_GET_MP_STATE: {
2066 struct kvm_mp_state mp_state;
2067
2068 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2069 if (r)
2070 goto out;
2071 r = -EFAULT;
2072 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2073 goto out;
2074 r = 0;
2075 break;
2076 }
2077 case KVM_SET_MP_STATE: {
2078 struct kvm_mp_state mp_state;
2079
2080 r = -EFAULT;
2081 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2082 goto out;
2083 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2084 break;
2085 }
2086 case KVM_TRANSLATE: {
2087 struct kvm_translation tr;
2088
2089 r = -EFAULT;
2090 if (copy_from_user(&tr, argp, sizeof tr))
2091 goto out;
2092 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2093 if (r)
2094 goto out;
2095 r = -EFAULT;
2096 if (copy_to_user(argp, &tr, sizeof tr))
2097 goto out;
2098 r = 0;
2099 break;
2100 }
2101 case KVM_SET_GUEST_DEBUG: {
2102 struct kvm_guest_debug dbg;
2103
2104 r = -EFAULT;
2105 if (copy_from_user(&dbg, argp, sizeof dbg))
2106 goto out;
2107 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2108 break;
2109 }
2110 case KVM_SET_SIGNAL_MASK: {
2111 struct kvm_signal_mask __user *sigmask_arg = argp;
2112 struct kvm_signal_mask kvm_sigmask;
2113 sigset_t sigset, *p;
2114
2115 p = NULL;
2116 if (argp) {
2117 r = -EFAULT;
2118 if (copy_from_user(&kvm_sigmask, argp,
2119 sizeof kvm_sigmask))
2120 goto out;
2121 r = -EINVAL;
2122 if (kvm_sigmask.len != sizeof sigset)
2123 goto out;
2124 r = -EFAULT;
2125 if (copy_from_user(&sigset, sigmask_arg->sigset,
2126 sizeof sigset))
2127 goto out;
2128 p = &sigset;
2129 }
2130 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2131 break;
2132 }
2133 case KVM_GET_FPU: {
2134 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2135 r = -ENOMEM;
2136 if (!fpu)
2137 goto out;
2138 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2139 if (r)
2140 goto out;
2141 r = -EFAULT;
2142 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2143 goto out;
2144 r = 0;
2145 break;
2146 }
2147 case KVM_SET_FPU: {
2148 fpu = memdup_user(argp, sizeof(*fpu));
2149 if (IS_ERR(fpu)) {
2150 r = PTR_ERR(fpu);
2151 fpu = NULL;
2152 goto out;
2153 }
2154 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2155 break;
2156 }
2157 default:
2158 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2159 }
2160 out:
2161 vcpu_put(vcpu);
2162 kfree(fpu);
2163 kfree(kvm_sregs);
2164 return r;
2165 }
2166
2167 #ifdef CONFIG_COMPAT
2168 static long kvm_vcpu_compat_ioctl(struct file *filp,
2169 unsigned int ioctl, unsigned long arg)
2170 {
2171 struct kvm_vcpu *vcpu = filp->private_data;
2172 void __user *argp = compat_ptr(arg);
2173 int r;
2174
2175 if (vcpu->kvm->mm != current->mm)
2176 return -EIO;
2177
2178 switch (ioctl) {
2179 case KVM_SET_SIGNAL_MASK: {
2180 struct kvm_signal_mask __user *sigmask_arg = argp;
2181 struct kvm_signal_mask kvm_sigmask;
2182 compat_sigset_t csigset;
2183 sigset_t sigset;
2184
2185 if (argp) {
2186 r = -EFAULT;
2187 if (copy_from_user(&kvm_sigmask, argp,
2188 sizeof kvm_sigmask))
2189 goto out;
2190 r = -EINVAL;
2191 if (kvm_sigmask.len != sizeof csigset)
2192 goto out;
2193 r = -EFAULT;
2194 if (copy_from_user(&csigset, sigmask_arg->sigset,
2195 sizeof csigset))
2196 goto out;
2197 sigset_from_compat(&sigset, &csigset);
2198 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2199 } else
2200 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2201 break;
2202 }
2203 default:
2204 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2205 }
2206
2207 out:
2208 return r;
2209 }
2210 #endif
2211
2212 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2213 int (*accessor)(struct kvm_device *dev,
2214 struct kvm_device_attr *attr),
2215 unsigned long arg)
2216 {
2217 struct kvm_device_attr attr;
2218
2219 if (!accessor)
2220 return -EPERM;
2221
2222 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2223 return -EFAULT;
2224
2225 return accessor(dev, &attr);
2226 }
2227
2228 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2229 unsigned long arg)
2230 {
2231 struct kvm_device *dev = filp->private_data;
2232
2233 switch (ioctl) {
2234 case KVM_SET_DEVICE_ATTR:
2235 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2236 case KVM_GET_DEVICE_ATTR:
2237 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2238 case KVM_HAS_DEVICE_ATTR:
2239 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2240 default:
2241 if (dev->ops->ioctl)
2242 return dev->ops->ioctl(dev, ioctl, arg);
2243
2244 return -ENOTTY;
2245 }
2246 }
2247
2248 static int kvm_device_release(struct inode *inode, struct file *filp)
2249 {
2250 struct kvm_device *dev = filp->private_data;
2251 struct kvm *kvm = dev->kvm;
2252
2253 kvm_put_kvm(kvm);
2254 return 0;
2255 }
2256
2257 static const struct file_operations kvm_device_fops = {
2258 .unlocked_ioctl = kvm_device_ioctl,
2259 #ifdef CONFIG_COMPAT
2260 .compat_ioctl = kvm_device_ioctl,
2261 #endif
2262 .release = kvm_device_release,
2263 };
2264
2265 struct kvm_device *kvm_device_from_filp(struct file *filp)
2266 {
2267 if (filp->f_op != &kvm_device_fops)
2268 return NULL;
2269
2270 return filp->private_data;
2271 }
2272
2273 static int kvm_ioctl_create_device(struct kvm *kvm,
2274 struct kvm_create_device *cd)
2275 {
2276 struct kvm_device_ops *ops = NULL;
2277 struct kvm_device *dev;
2278 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2279 int ret;
2280
2281 switch (cd->type) {
2282 #ifdef CONFIG_KVM_MPIC
2283 case KVM_DEV_TYPE_FSL_MPIC_20:
2284 case KVM_DEV_TYPE_FSL_MPIC_42:
2285 ops = &kvm_mpic_ops;
2286 break;
2287 #endif
2288 #ifdef CONFIG_KVM_XICS
2289 case KVM_DEV_TYPE_XICS:
2290 ops = &kvm_xics_ops;
2291 break;
2292 #endif
2293 default:
2294 return -ENODEV;
2295 }
2296
2297 if (test)
2298 return 0;
2299
2300 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2301 if (!dev)
2302 return -ENOMEM;
2303
2304 dev->ops = ops;
2305 dev->kvm = kvm;
2306
2307 ret = ops->create(dev, cd->type);
2308 if (ret < 0) {
2309 kfree(dev);
2310 return ret;
2311 }
2312
2313 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2314 if (ret < 0) {
2315 ops->destroy(dev);
2316 return ret;
2317 }
2318
2319 list_add(&dev->vm_node, &kvm->devices);
2320 kvm_get_kvm(kvm);
2321 cd->fd = ret;
2322 return 0;
2323 }
2324
2325 static long kvm_vm_ioctl(struct file *filp,
2326 unsigned int ioctl, unsigned long arg)
2327 {
2328 struct kvm *kvm = filp->private_data;
2329 void __user *argp = (void __user *)arg;
2330 int r;
2331
2332 if (kvm->mm != current->mm)
2333 return -EIO;
2334 switch (ioctl) {
2335 case KVM_CREATE_VCPU:
2336 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2337 break;
2338 case KVM_SET_USER_MEMORY_REGION: {
2339 struct kvm_userspace_memory_region kvm_userspace_mem;
2340
2341 r = -EFAULT;
2342 if (copy_from_user(&kvm_userspace_mem, argp,
2343 sizeof kvm_userspace_mem))
2344 goto out;
2345
2346 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2347 break;
2348 }
2349 case KVM_GET_DIRTY_LOG: {
2350 struct kvm_dirty_log log;
2351
2352 r = -EFAULT;
2353 if (copy_from_user(&log, argp, sizeof log))
2354 goto out;
2355 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2356 break;
2357 }
2358 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2359 case KVM_REGISTER_COALESCED_MMIO: {
2360 struct kvm_coalesced_mmio_zone zone;
2361 r = -EFAULT;
2362 if (copy_from_user(&zone, argp, sizeof zone))
2363 goto out;
2364 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2365 break;
2366 }
2367 case KVM_UNREGISTER_COALESCED_MMIO: {
2368 struct kvm_coalesced_mmio_zone zone;
2369 r = -EFAULT;
2370 if (copy_from_user(&zone, argp, sizeof zone))
2371 goto out;
2372 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2373 break;
2374 }
2375 #endif
2376 case KVM_IRQFD: {
2377 struct kvm_irqfd data;
2378
2379 r = -EFAULT;
2380 if (copy_from_user(&data, argp, sizeof data))
2381 goto out;
2382 r = kvm_irqfd(kvm, &data);
2383 break;
2384 }
2385 case KVM_IOEVENTFD: {
2386 struct kvm_ioeventfd data;
2387
2388 r = -EFAULT;
2389 if (copy_from_user(&data, argp, sizeof data))
2390 goto out;
2391 r = kvm_ioeventfd(kvm, &data);
2392 break;
2393 }
2394 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2395 case KVM_SET_BOOT_CPU_ID:
2396 r = 0;
2397 mutex_lock(&kvm->lock);
2398 if (atomic_read(&kvm->online_vcpus) != 0)
2399 r = -EBUSY;
2400 else
2401 kvm->bsp_vcpu_id = arg;
2402 mutex_unlock(&kvm->lock);
2403 break;
2404 #endif
2405 #ifdef CONFIG_HAVE_KVM_MSI
2406 case KVM_SIGNAL_MSI: {
2407 struct kvm_msi msi;
2408
2409 r = -EFAULT;
2410 if (copy_from_user(&msi, argp, sizeof msi))
2411 goto out;
2412 r = kvm_send_userspace_msi(kvm, &msi);
2413 break;
2414 }
2415 #endif
2416 #ifdef __KVM_HAVE_IRQ_LINE
2417 case KVM_IRQ_LINE_STATUS:
2418 case KVM_IRQ_LINE: {
2419 struct kvm_irq_level irq_event;
2420
2421 r = -EFAULT;
2422 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2423 goto out;
2424
2425 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2426 ioctl == KVM_IRQ_LINE_STATUS);
2427 if (r)
2428 goto out;
2429
2430 r = -EFAULT;
2431 if (ioctl == KVM_IRQ_LINE_STATUS) {
2432 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2433 goto out;
2434 }
2435
2436 r = 0;
2437 break;
2438 }
2439 #endif
2440 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2441 case KVM_SET_GSI_ROUTING: {
2442 struct kvm_irq_routing routing;
2443 struct kvm_irq_routing __user *urouting;
2444 struct kvm_irq_routing_entry *entries;
2445
2446 r = -EFAULT;
2447 if (copy_from_user(&routing, argp, sizeof(routing)))
2448 goto out;
2449 r = -EINVAL;
2450 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2451 goto out;
2452 if (routing.flags)
2453 goto out;
2454 r = -ENOMEM;
2455 entries = vmalloc(routing.nr * sizeof(*entries));
2456 if (!entries)
2457 goto out;
2458 r = -EFAULT;
2459 urouting = argp;
2460 if (copy_from_user(entries, urouting->entries,
2461 routing.nr * sizeof(*entries)))
2462 goto out_free_irq_routing;
2463 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2464 routing.flags);
2465 out_free_irq_routing:
2466 vfree(entries);
2467 break;
2468 }
2469 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2470 case KVM_CREATE_DEVICE: {
2471 struct kvm_create_device cd;
2472
2473 r = -EFAULT;
2474 if (copy_from_user(&cd, argp, sizeof(cd)))
2475 goto out;
2476
2477 r = kvm_ioctl_create_device(kvm, &cd);
2478 if (r)
2479 goto out;
2480
2481 r = -EFAULT;
2482 if (copy_to_user(argp, &cd, sizeof(cd)))
2483 goto out;
2484
2485 r = 0;
2486 break;
2487 }
2488 default:
2489 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2490 if (r == -ENOTTY)
2491 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2492 }
2493 out:
2494 return r;
2495 }
2496
2497 #ifdef CONFIG_COMPAT
2498 struct compat_kvm_dirty_log {
2499 __u32 slot;
2500 __u32 padding1;
2501 union {
2502 compat_uptr_t dirty_bitmap; /* one bit per page */
2503 __u64 padding2;
2504 };
2505 };
2506
2507 static long kvm_vm_compat_ioctl(struct file *filp,
2508 unsigned int ioctl, unsigned long arg)
2509 {
2510 struct kvm *kvm = filp->private_data;
2511 int r;
2512
2513 if (kvm->mm != current->mm)
2514 return -EIO;
2515 switch (ioctl) {
2516 case KVM_GET_DIRTY_LOG: {
2517 struct compat_kvm_dirty_log compat_log;
2518 struct kvm_dirty_log log;
2519
2520 r = -EFAULT;
2521 if (copy_from_user(&compat_log, (void __user *)arg,
2522 sizeof(compat_log)))
2523 goto out;
2524 log.slot = compat_log.slot;
2525 log.padding1 = compat_log.padding1;
2526 log.padding2 = compat_log.padding2;
2527 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2528
2529 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2530 break;
2531 }
2532 default:
2533 r = kvm_vm_ioctl(filp, ioctl, arg);
2534 }
2535
2536 out:
2537 return r;
2538 }
2539 #endif
2540
2541 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2542 {
2543 struct page *page[1];
2544 unsigned long addr;
2545 int npages;
2546 gfn_t gfn = vmf->pgoff;
2547 struct kvm *kvm = vma->vm_file->private_data;
2548
2549 addr = gfn_to_hva(kvm, gfn);
2550 if (kvm_is_error_hva(addr))
2551 return VM_FAULT_SIGBUS;
2552
2553 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2554 NULL);
2555 if (unlikely(npages != 1))
2556 return VM_FAULT_SIGBUS;
2557
2558 vmf->page = page[0];
2559 return 0;
2560 }
2561
2562 static const struct vm_operations_struct kvm_vm_vm_ops = {
2563 .fault = kvm_vm_fault,
2564 };
2565
2566 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2567 {
2568 vma->vm_ops = &kvm_vm_vm_ops;
2569 return 0;
2570 }
2571
2572 static struct file_operations kvm_vm_fops = {
2573 .release = kvm_vm_release,
2574 .unlocked_ioctl = kvm_vm_ioctl,
2575 #ifdef CONFIG_COMPAT
2576 .compat_ioctl = kvm_vm_compat_ioctl,
2577 #endif
2578 .mmap = kvm_vm_mmap,
2579 .llseek = noop_llseek,
2580 };
2581
2582 static int kvm_dev_ioctl_create_vm(unsigned long type)
2583 {
2584 int r;
2585 struct kvm *kvm;
2586
2587 kvm = kvm_create_vm(type);
2588 if (IS_ERR(kvm))
2589 return PTR_ERR(kvm);
2590 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2591 r = kvm_coalesced_mmio_init(kvm);
2592 if (r < 0) {
2593 kvm_put_kvm(kvm);
2594 return r;
2595 }
2596 #endif
2597 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2598 if (r < 0)
2599 kvm_put_kvm(kvm);
2600
2601 return r;
2602 }
2603
2604 static long kvm_dev_ioctl_check_extension_generic(long arg)
2605 {
2606 switch (arg) {
2607 case KVM_CAP_USER_MEMORY:
2608 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2609 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2610 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2611 case KVM_CAP_SET_BOOT_CPU_ID:
2612 #endif
2613 case KVM_CAP_INTERNAL_ERROR_DATA:
2614 #ifdef CONFIG_HAVE_KVM_MSI
2615 case KVM_CAP_SIGNAL_MSI:
2616 #endif
2617 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2618 case KVM_CAP_IRQFD_RESAMPLE:
2619 #endif
2620 return 1;
2621 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2622 case KVM_CAP_IRQ_ROUTING:
2623 return KVM_MAX_IRQ_ROUTES;
2624 #endif
2625 default:
2626 break;
2627 }
2628 return kvm_dev_ioctl_check_extension(arg);
2629 }
2630
2631 static long kvm_dev_ioctl(struct file *filp,
2632 unsigned int ioctl, unsigned long arg)
2633 {
2634 long r = -EINVAL;
2635
2636 switch (ioctl) {
2637 case KVM_GET_API_VERSION:
2638 r = -EINVAL;
2639 if (arg)
2640 goto out;
2641 r = KVM_API_VERSION;
2642 break;
2643 case KVM_CREATE_VM:
2644 r = kvm_dev_ioctl_create_vm(arg);
2645 break;
2646 case KVM_CHECK_EXTENSION:
2647 r = kvm_dev_ioctl_check_extension_generic(arg);
2648 break;
2649 case KVM_GET_VCPU_MMAP_SIZE:
2650 r = -EINVAL;
2651 if (arg)
2652 goto out;
2653 r = PAGE_SIZE; /* struct kvm_run */
2654 #ifdef CONFIG_X86
2655 r += PAGE_SIZE; /* pio data page */
2656 #endif
2657 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2658 r += PAGE_SIZE; /* coalesced mmio ring page */
2659 #endif
2660 break;
2661 case KVM_TRACE_ENABLE:
2662 case KVM_TRACE_PAUSE:
2663 case KVM_TRACE_DISABLE:
2664 r = -EOPNOTSUPP;
2665 break;
2666 default:
2667 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2668 }
2669 out:
2670 return r;
2671 }
2672
2673 static struct file_operations kvm_chardev_ops = {
2674 .unlocked_ioctl = kvm_dev_ioctl,
2675 .compat_ioctl = kvm_dev_ioctl,
2676 .llseek = noop_llseek,
2677 };
2678
2679 static struct miscdevice kvm_dev = {
2680 KVM_MINOR,
2681 "kvm",
2682 &kvm_chardev_ops,
2683 };
2684
2685 static void hardware_enable_nolock(void *junk)
2686 {
2687 int cpu = raw_smp_processor_id();
2688 int r;
2689
2690 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2691 return;
2692
2693 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2694
2695 r = kvm_arch_hardware_enable(NULL);
2696
2697 if (r) {
2698 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2699 atomic_inc(&hardware_enable_failed);
2700 printk(KERN_INFO "kvm: enabling virtualization on "
2701 "CPU%d failed\n", cpu);
2702 }
2703 }
2704
2705 static void hardware_enable(void *junk)
2706 {
2707 raw_spin_lock(&kvm_lock);
2708 hardware_enable_nolock(junk);
2709 raw_spin_unlock(&kvm_lock);
2710 }
2711
2712 static void hardware_disable_nolock(void *junk)
2713 {
2714 int cpu = raw_smp_processor_id();
2715
2716 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2717 return;
2718 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2719 kvm_arch_hardware_disable(NULL);
2720 }
2721
2722 static void hardware_disable(void *junk)
2723 {
2724 raw_spin_lock(&kvm_lock);
2725 hardware_disable_nolock(junk);
2726 raw_spin_unlock(&kvm_lock);
2727 }
2728
2729 static void hardware_disable_all_nolock(void)
2730 {
2731 BUG_ON(!kvm_usage_count);
2732
2733 kvm_usage_count--;
2734 if (!kvm_usage_count)
2735 on_each_cpu(hardware_disable_nolock, NULL, 1);
2736 }
2737
2738 static void hardware_disable_all(void)
2739 {
2740 raw_spin_lock(&kvm_lock);
2741 hardware_disable_all_nolock();
2742 raw_spin_unlock(&kvm_lock);
2743 }
2744
2745 static int hardware_enable_all(void)
2746 {
2747 int r = 0;
2748
2749 raw_spin_lock(&kvm_lock);
2750
2751 kvm_usage_count++;
2752 if (kvm_usage_count == 1) {
2753 atomic_set(&hardware_enable_failed, 0);
2754 on_each_cpu(hardware_enable_nolock, NULL, 1);
2755
2756 if (atomic_read(&hardware_enable_failed)) {
2757 hardware_disable_all_nolock();
2758 r = -EBUSY;
2759 }
2760 }
2761
2762 raw_spin_unlock(&kvm_lock);
2763
2764 return r;
2765 }
2766
2767 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2768 void *v)
2769 {
2770 int cpu = (long)v;
2771
2772 if (!kvm_usage_count)
2773 return NOTIFY_OK;
2774
2775 val &= ~CPU_TASKS_FROZEN;
2776 switch (val) {
2777 case CPU_DYING:
2778 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2779 cpu);
2780 hardware_disable(NULL);
2781 break;
2782 case CPU_STARTING:
2783 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2784 cpu);
2785 hardware_enable(NULL);
2786 break;
2787 }
2788 return NOTIFY_OK;
2789 }
2790
2791 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2792 void *v)
2793 {
2794 /*
2795 * Some (well, at least mine) BIOSes hang on reboot if
2796 * in vmx root mode.
2797 *
2798 * And Intel TXT required VMX off for all cpu when system shutdown.
2799 */
2800 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2801 kvm_rebooting = true;
2802 on_each_cpu(hardware_disable_nolock, NULL, 1);
2803 return NOTIFY_OK;
2804 }
2805
2806 static struct notifier_block kvm_reboot_notifier = {
2807 .notifier_call = kvm_reboot,
2808 .priority = 0,
2809 };
2810
2811 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2812 {
2813 int i;
2814
2815 for (i = 0; i < bus->dev_count; i++) {
2816 struct kvm_io_device *pos = bus->range[i].dev;
2817
2818 kvm_iodevice_destructor(pos);
2819 }
2820 kfree(bus);
2821 }
2822
2823 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2824 {
2825 const struct kvm_io_range *r1 = p1;
2826 const struct kvm_io_range *r2 = p2;
2827
2828 if (r1->addr < r2->addr)
2829 return -1;
2830 if (r1->addr + r1->len > r2->addr + r2->len)
2831 return 1;
2832 return 0;
2833 }
2834
2835 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2836 gpa_t addr, int len)
2837 {
2838 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2839 .addr = addr,
2840 .len = len,
2841 .dev = dev,
2842 };
2843
2844 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2845 kvm_io_bus_sort_cmp, NULL);
2846
2847 return 0;
2848 }
2849
2850 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2851 gpa_t addr, int len)
2852 {
2853 struct kvm_io_range *range, key;
2854 int off;
2855
2856 key = (struct kvm_io_range) {
2857 .addr = addr,
2858 .len = len,
2859 };
2860
2861 range = bsearch(&key, bus->range, bus->dev_count,
2862 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2863 if (range == NULL)
2864 return -ENOENT;
2865
2866 off = range - bus->range;
2867
2868 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2869 off--;
2870
2871 return off;
2872 }
2873
2874 /* kvm_io_bus_write - called under kvm->slots_lock */
2875 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2876 int len, const void *val)
2877 {
2878 int idx;
2879 struct kvm_io_bus *bus;
2880 struct kvm_io_range range;
2881
2882 range = (struct kvm_io_range) {
2883 .addr = addr,
2884 .len = len,
2885 };
2886
2887 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2888 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2889 if (idx < 0)
2890 return -EOPNOTSUPP;
2891
2892 while (idx < bus->dev_count &&
2893 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2894 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2895 return 0;
2896 idx++;
2897 }
2898
2899 return -EOPNOTSUPP;
2900 }
2901
2902 /* kvm_io_bus_read - called under kvm->slots_lock */
2903 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2904 int len, void *val)
2905 {
2906 int idx;
2907 struct kvm_io_bus *bus;
2908 struct kvm_io_range range;
2909
2910 range = (struct kvm_io_range) {
2911 .addr = addr,
2912 .len = len,
2913 };
2914
2915 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2916 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2917 if (idx < 0)
2918 return -EOPNOTSUPP;
2919
2920 while (idx < bus->dev_count &&
2921 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2922 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2923 return 0;
2924 idx++;
2925 }
2926
2927 return -EOPNOTSUPP;
2928 }
2929
2930 /* Caller must hold slots_lock. */
2931 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2932 int len, struct kvm_io_device *dev)
2933 {
2934 struct kvm_io_bus *new_bus, *bus;
2935
2936 bus = kvm->buses[bus_idx];
2937 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2938 return -ENOSPC;
2939
2940 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2941 sizeof(struct kvm_io_range)), GFP_KERNEL);
2942 if (!new_bus)
2943 return -ENOMEM;
2944 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2945 sizeof(struct kvm_io_range)));
2946 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2947 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2948 synchronize_srcu_expedited(&kvm->srcu);
2949 kfree(bus);
2950
2951 return 0;
2952 }
2953
2954 /* Caller must hold slots_lock. */
2955 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2956 struct kvm_io_device *dev)
2957 {
2958 int i, r;
2959 struct kvm_io_bus *new_bus, *bus;
2960
2961 bus = kvm->buses[bus_idx];
2962 r = -ENOENT;
2963 for (i = 0; i < bus->dev_count; i++)
2964 if (bus->range[i].dev == dev) {
2965 r = 0;
2966 break;
2967 }
2968
2969 if (r)
2970 return r;
2971
2972 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2973 sizeof(struct kvm_io_range)), GFP_KERNEL);
2974 if (!new_bus)
2975 return -ENOMEM;
2976
2977 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2978 new_bus->dev_count--;
2979 memcpy(new_bus->range + i, bus->range + i + 1,
2980 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2981
2982 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2983 synchronize_srcu_expedited(&kvm->srcu);
2984 kfree(bus);
2985 return r;
2986 }
2987
2988 static struct notifier_block kvm_cpu_notifier = {
2989 .notifier_call = kvm_cpu_hotplug,
2990 };
2991
2992 static int vm_stat_get(void *_offset, u64 *val)
2993 {
2994 unsigned offset = (long)_offset;
2995 struct kvm *kvm;
2996
2997 *val = 0;
2998 raw_spin_lock(&kvm_lock);
2999 list_for_each_entry(kvm, &vm_list, vm_list)
3000 *val += *(u32 *)((void *)kvm + offset);
3001 raw_spin_unlock(&kvm_lock);
3002 return 0;
3003 }
3004
3005 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3006
3007 static int vcpu_stat_get(void *_offset, u64 *val)
3008 {
3009 unsigned offset = (long)_offset;
3010 struct kvm *kvm;
3011 struct kvm_vcpu *vcpu;
3012 int i;
3013
3014 *val = 0;
3015 raw_spin_lock(&kvm_lock);
3016 list_for_each_entry(kvm, &vm_list, vm_list)
3017 kvm_for_each_vcpu(i, vcpu, kvm)
3018 *val += *(u32 *)((void *)vcpu + offset);
3019
3020 raw_spin_unlock(&kvm_lock);
3021 return 0;
3022 }
3023
3024 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3025
3026 static const struct file_operations *stat_fops[] = {
3027 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3028 [KVM_STAT_VM] = &vm_stat_fops,
3029 };
3030
3031 static int kvm_init_debug(void)
3032 {
3033 int r = -EFAULT;
3034 struct kvm_stats_debugfs_item *p;
3035
3036 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3037 if (kvm_debugfs_dir == NULL)
3038 goto out;
3039
3040 for (p = debugfs_entries; p->name; ++p) {
3041 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3042 (void *)(long)p->offset,
3043 stat_fops[p->kind]);
3044 if (p->dentry == NULL)
3045 goto out_dir;
3046 }
3047
3048 return 0;
3049
3050 out_dir:
3051 debugfs_remove_recursive(kvm_debugfs_dir);
3052 out:
3053 return r;
3054 }
3055
3056 static void kvm_exit_debug(void)
3057 {
3058 struct kvm_stats_debugfs_item *p;
3059
3060 for (p = debugfs_entries; p->name; ++p)
3061 debugfs_remove(p->dentry);
3062 debugfs_remove(kvm_debugfs_dir);
3063 }
3064
3065 static int kvm_suspend(void)
3066 {
3067 if (kvm_usage_count)
3068 hardware_disable_nolock(NULL);
3069 return 0;
3070 }
3071
3072 static void kvm_resume(void)
3073 {
3074 if (kvm_usage_count) {
3075 WARN_ON(raw_spin_is_locked(&kvm_lock));
3076 hardware_enable_nolock(NULL);
3077 }
3078 }
3079
3080 static struct syscore_ops kvm_syscore_ops = {
3081 .suspend = kvm_suspend,
3082 .resume = kvm_resume,
3083 };
3084
3085 static inline
3086 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3087 {
3088 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3089 }
3090
3091 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3092 {
3093 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3094 if (vcpu->preempted)
3095 vcpu->preempted = false;
3096
3097 kvm_arch_vcpu_load(vcpu, cpu);
3098 }
3099
3100 static void kvm_sched_out(struct preempt_notifier *pn,
3101 struct task_struct *next)
3102 {
3103 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3104
3105 if (current->state == TASK_RUNNING)
3106 vcpu->preempted = true;
3107 kvm_arch_vcpu_put(vcpu);
3108 }
3109
3110 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3111 struct module *module)
3112 {
3113 int r;
3114 int cpu;
3115
3116 r = kvm_arch_init(opaque);
3117 if (r)
3118 goto out_fail;
3119
3120 /*
3121 * kvm_arch_init makes sure there's at most one caller
3122 * for architectures that support multiple implementations,
3123 * like intel and amd on x86.
3124 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3125 * conflicts in case kvm is already setup for another implementation.
3126 */
3127 r = kvm_irqfd_init();
3128 if (r)
3129 goto out_irqfd;
3130
3131 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3132 r = -ENOMEM;
3133 goto out_free_0;
3134 }
3135
3136 r = kvm_arch_hardware_setup();
3137 if (r < 0)
3138 goto out_free_0a;
3139
3140 for_each_online_cpu(cpu) {
3141 smp_call_function_single(cpu,
3142 kvm_arch_check_processor_compat,
3143 &r, 1);
3144 if (r < 0)
3145 goto out_free_1;
3146 }
3147
3148 r = register_cpu_notifier(&kvm_cpu_notifier);
3149 if (r)
3150 goto out_free_2;
3151 register_reboot_notifier(&kvm_reboot_notifier);
3152
3153 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3154 if (!vcpu_align)
3155 vcpu_align = __alignof__(struct kvm_vcpu);
3156 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3157 0, NULL);
3158 if (!kvm_vcpu_cache) {
3159 r = -ENOMEM;
3160 goto out_free_3;
3161 }
3162
3163 r = kvm_async_pf_init();
3164 if (r)
3165 goto out_free;
3166
3167 kvm_chardev_ops.owner = module;
3168 kvm_vm_fops.owner = module;
3169 kvm_vcpu_fops.owner = module;
3170
3171 r = misc_register(&kvm_dev);
3172 if (r) {
3173 printk(KERN_ERR "kvm: misc device register failed\n");
3174 goto out_unreg;
3175 }
3176
3177 register_syscore_ops(&kvm_syscore_ops);
3178
3179 kvm_preempt_ops.sched_in = kvm_sched_in;
3180 kvm_preempt_ops.sched_out = kvm_sched_out;
3181
3182 r = kvm_init_debug();
3183 if (r) {
3184 printk(KERN_ERR "kvm: create debugfs files failed\n");
3185 goto out_undebugfs;
3186 }
3187
3188 return 0;
3189
3190 out_undebugfs:
3191 unregister_syscore_ops(&kvm_syscore_ops);
3192 out_unreg:
3193 kvm_async_pf_deinit();
3194 out_free:
3195 kmem_cache_destroy(kvm_vcpu_cache);
3196 out_free_3:
3197 unregister_reboot_notifier(&kvm_reboot_notifier);
3198 unregister_cpu_notifier(&kvm_cpu_notifier);
3199 out_free_2:
3200 out_free_1:
3201 kvm_arch_hardware_unsetup();
3202 out_free_0a:
3203 free_cpumask_var(cpus_hardware_enabled);
3204 out_free_0:
3205 kvm_irqfd_exit();
3206 out_irqfd:
3207 kvm_arch_exit();
3208 out_fail:
3209 return r;
3210 }
3211 EXPORT_SYMBOL_GPL(kvm_init);
3212
3213 void kvm_exit(void)
3214 {
3215 kvm_exit_debug();
3216 misc_deregister(&kvm_dev);
3217 kmem_cache_destroy(kvm_vcpu_cache);
3218 kvm_async_pf_deinit();
3219 unregister_syscore_ops(&kvm_syscore_ops);
3220 unregister_reboot_notifier(&kvm_reboot_notifier);
3221 unregister_cpu_notifier(&kvm_cpu_notifier);
3222 on_each_cpu(hardware_disable_nolock, NULL, 1);
3223 kvm_arch_hardware_unsetup();
3224 kvm_arch_exit();
3225 kvm_irqfd_exit();
3226 free_cpumask_var(cpus_hardware_enabled);
3227 }
3228 EXPORT_SYMBOL_GPL(kvm_exit);