KVM: x86: clear bus pointer when destroyed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
72 */
73
74 DEFINE_RAW_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 if (pfn_valid(pfn)) {
107 int reserved;
108 struct page *tail = pfn_to_page(pfn);
109 struct page *head = compound_head(tail);
110 reserved = PageReserved(head);
111 if (head != tail) {
112 /*
113 * "head" is not a dangling pointer
114 * (compound_head takes care of that)
115 * but the hugepage may have been splitted
116 * from under us (and we may not hold a
117 * reference count on the head page so it can
118 * be reused before we run PageReferenced), so
119 * we've to check PageTail before returning
120 * what we just read.
121 */
122 smp_rmb();
123 if (PageTail(tail))
124 return reserved;
125 }
126 return PageReserved(tail);
127 }
128
129 return true;
130 }
131
132 /*
133 * Switches to specified vcpu, until a matching vcpu_put()
134 */
135 int vcpu_load(struct kvm_vcpu *vcpu)
136 {
137 int cpu;
138
139 if (mutex_lock_killable(&vcpu->mutex))
140 return -EINTR;
141 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
142 /* The thread running this VCPU changed. */
143 struct pid *oldpid = vcpu->pid;
144 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
145 rcu_assign_pointer(vcpu->pid, newpid);
146 synchronize_rcu();
147 put_pid(oldpid);
148 }
149 cpu = get_cpu();
150 preempt_notifier_register(&vcpu->preempt_notifier);
151 kvm_arch_vcpu_load(vcpu, cpu);
152 put_cpu();
153 return 0;
154 }
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 preempt_disable();
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 preempt_enable();
162 mutex_unlock(&vcpu->mutex);
163 }
164
165 static void ack_flush(void *_completed)
166 {
167 }
168
169 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
170 {
171 int i, cpu, me;
172 cpumask_var_t cpus;
173 bool called = true;
174 struct kvm_vcpu *vcpu;
175
176 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
177
178 me = get_cpu();
179 kvm_for_each_vcpu(i, vcpu, kvm) {
180 kvm_make_request(req, vcpu);
181 cpu = vcpu->cpu;
182
183 /* Set ->requests bit before we read ->mode */
184 smp_mb();
185
186 if (cpus != NULL && cpu != -1 && cpu != me &&
187 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
188 cpumask_set_cpu(cpu, cpus);
189 }
190 if (unlikely(cpus == NULL))
191 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
192 else if (!cpumask_empty(cpus))
193 smp_call_function_many(cpus, ack_flush, NULL, 1);
194 else
195 called = false;
196 put_cpu();
197 free_cpumask_var(cpus);
198 return called;
199 }
200
201 void kvm_flush_remote_tlbs(struct kvm *kvm)
202 {
203 long dirty_count = kvm->tlbs_dirty;
204
205 smp_mb();
206 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
207 ++kvm->stat.remote_tlb_flush;
208 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
209 }
210
211 void kvm_reload_remote_mmus(struct kvm *kvm)
212 {
213 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
214 }
215
216 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
217 {
218 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
219 }
220
221 void kvm_make_scan_ioapic_request(struct kvm *kvm)
222 {
223 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
224 }
225
226 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
227 {
228 struct page *page;
229 int r;
230
231 mutex_init(&vcpu->mutex);
232 vcpu->cpu = -1;
233 vcpu->kvm = kvm;
234 vcpu->vcpu_id = id;
235 vcpu->pid = NULL;
236 init_waitqueue_head(&vcpu->wq);
237 kvm_async_pf_vcpu_init(vcpu);
238
239 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
240 if (!page) {
241 r = -ENOMEM;
242 goto fail;
243 }
244 vcpu->run = page_address(page);
245
246 kvm_vcpu_set_in_spin_loop(vcpu, false);
247 kvm_vcpu_set_dy_eligible(vcpu, false);
248 vcpu->preempted = false;
249
250 r = kvm_arch_vcpu_init(vcpu);
251 if (r < 0)
252 goto fail_free_run;
253 return 0;
254
255 fail_free_run:
256 free_page((unsigned long)vcpu->run);
257 fail:
258 return r;
259 }
260 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
261
262 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
263 {
264 put_pid(vcpu->pid);
265 kvm_arch_vcpu_uninit(vcpu);
266 free_page((unsigned long)vcpu->run);
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
269
270 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
271 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
272 {
273 return container_of(mn, struct kvm, mmu_notifier);
274 }
275
276 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long address)
279 {
280 struct kvm *kvm = mmu_notifier_to_kvm(mn);
281 int need_tlb_flush, idx;
282
283 /*
284 * When ->invalidate_page runs, the linux pte has been zapped
285 * already but the page is still allocated until
286 * ->invalidate_page returns. So if we increase the sequence
287 * here the kvm page fault will notice if the spte can't be
288 * established because the page is going to be freed. If
289 * instead the kvm page fault establishes the spte before
290 * ->invalidate_page runs, kvm_unmap_hva will release it
291 * before returning.
292 *
293 * The sequence increase only need to be seen at spin_unlock
294 * time, and not at spin_lock time.
295 *
296 * Increasing the sequence after the spin_unlock would be
297 * unsafe because the kvm page fault could then establish the
298 * pte after kvm_unmap_hva returned, without noticing the page
299 * is going to be freed.
300 */
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303
304 kvm->mmu_notifier_seq++;
305 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
306 /* we've to flush the tlb before the pages can be freed */
307 if (need_tlb_flush)
308 kvm_flush_remote_tlbs(kvm);
309
310 spin_unlock(&kvm->mmu_lock);
311 srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 struct mm_struct *mm,
316 unsigned long address,
317 pte_t pte)
318 {
319 struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 int idx;
321
322 idx = srcu_read_lock(&kvm->srcu);
323 spin_lock(&kvm->mmu_lock);
324 kvm->mmu_notifier_seq++;
325 kvm_set_spte_hva(kvm, address, pte);
326 spin_unlock(&kvm->mmu_lock);
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long start,
333 unsigned long end)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int need_tlb_flush = 0, idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 /*
341 * The count increase must become visible at unlock time as no
342 * spte can be established without taking the mmu_lock and
343 * count is also read inside the mmu_lock critical section.
344 */
345 kvm->mmu_notifier_count++;
346 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 need_tlb_flush |= kvm->tlbs_dirty;
348 /* we've to flush the tlb before the pages can be freed */
349 if (need_tlb_flush)
350 kvm_flush_remote_tlbs(kvm);
351
352 spin_unlock(&kvm->mmu_lock);
353 srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 struct mm_struct *mm,
358 unsigned long start,
359 unsigned long end)
360 {
361 struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363 spin_lock(&kvm->mmu_lock);
364 /*
365 * This sequence increase will notify the kvm page fault that
366 * the page that is going to be mapped in the spte could have
367 * been freed.
368 */
369 kvm->mmu_notifier_seq++;
370 smp_wmb();
371 /*
372 * The above sequence increase must be visible before the
373 * below count decrease, which is ensured by the smp_wmb above
374 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 */
376 kvm->mmu_notifier_count--;
377 spin_unlock(&kvm->mmu_lock);
378
379 BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long address)
385 {
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 int young, idx;
388
389 idx = srcu_read_lock(&kvm->srcu);
390 spin_lock(&kvm->mmu_lock);
391
392 young = kvm_age_hva(kvm, address);
393 if (young)
394 kvm_flush_remote_tlbs(kvm);
395
396 spin_unlock(&kvm->mmu_lock);
397 srcu_read_unlock(&kvm->srcu, idx);
398
399 return young;
400 }
401
402 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
403 struct mm_struct *mm,
404 unsigned long address)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
408
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
411 young = kvm_test_age_hva(kvm, address);
412 spin_unlock(&kvm->mmu_lock);
413 srcu_read_unlock(&kvm->srcu, idx);
414
415 return young;
416 }
417
418 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
419 struct mm_struct *mm)
420 {
421 struct kvm *kvm = mmu_notifier_to_kvm(mn);
422 int idx;
423
424 idx = srcu_read_lock(&kvm->srcu);
425 kvm_arch_flush_shadow_all(kvm);
426 srcu_read_unlock(&kvm->srcu, idx);
427 }
428
429 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
430 .invalidate_page = kvm_mmu_notifier_invalidate_page,
431 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
432 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
433 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
434 .test_young = kvm_mmu_notifier_test_young,
435 .change_pte = kvm_mmu_notifier_change_pte,
436 .release = kvm_mmu_notifier_release,
437 };
438
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
442 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
443 }
444
445 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
446
447 static int kvm_init_mmu_notifier(struct kvm *kvm)
448 {
449 return 0;
450 }
451
452 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
453
454 static void kvm_init_memslots_id(struct kvm *kvm)
455 {
456 int i;
457 struct kvm_memslots *slots = kvm->memslots;
458
459 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
460 slots->id_to_index[i] = slots->memslots[i].id = i;
461 }
462
463 static struct kvm *kvm_create_vm(unsigned long type)
464 {
465 int r, i;
466 struct kvm *kvm = kvm_arch_alloc_vm();
467
468 if (!kvm)
469 return ERR_PTR(-ENOMEM);
470
471 spin_lock_init(&kvm->mmu_lock);
472 atomic_inc(&current->mm->mm_count);
473 kvm->mm = current->mm;
474 kvm_eventfd_init(kvm);
475 mutex_init(&kvm->lock);
476 mutex_init(&kvm->irq_lock);
477 mutex_init(&kvm->slots_lock);
478 atomic_set(&kvm->users_count, 1);
479 INIT_LIST_HEAD(&kvm->devices);
480
481 r = kvm_arch_init_vm(kvm, type);
482 if (r)
483 goto out_err_nodisable;
484
485 r = hardware_enable_all();
486 if (r)
487 goto out_err_nodisable;
488
489 #ifdef CONFIG_HAVE_KVM_IRQCHIP
490 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
491 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
492 #endif
493
494 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
495
496 r = -ENOMEM;
497 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
498 if (!kvm->memslots)
499 goto out_err_nosrcu;
500 kvm_init_memslots_id(kvm);
501 if (init_srcu_struct(&kvm->srcu))
502 goto out_err_nosrcu;
503 for (i = 0; i < KVM_NR_BUSES; i++) {
504 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
505 GFP_KERNEL);
506 if (!kvm->buses[i])
507 goto out_err;
508 }
509
510 r = kvm_init_mmu_notifier(kvm);
511 if (r)
512 goto out_err;
513
514 raw_spin_lock(&kvm_lock);
515 list_add(&kvm->vm_list, &vm_list);
516 raw_spin_unlock(&kvm_lock);
517
518 return kvm;
519
520 out_err:
521 cleanup_srcu_struct(&kvm->srcu);
522 out_err_nosrcu:
523 hardware_disable_all();
524 out_err_nodisable:
525 for (i = 0; i < KVM_NR_BUSES; i++)
526 kfree(kvm->buses[i]);
527 kfree(kvm->memslots);
528 kvm_arch_free_vm(kvm);
529 mmdrop(current->mm);
530 return ERR_PTR(r);
531 }
532
533 /*
534 * Avoid using vmalloc for a small buffer.
535 * Should not be used when the size is statically known.
536 */
537 void *kvm_kvzalloc(unsigned long size)
538 {
539 if (size > PAGE_SIZE)
540 return vzalloc(size);
541 else
542 return kzalloc(size, GFP_KERNEL);
543 }
544
545 void kvm_kvfree(const void *addr)
546 {
547 if (is_vmalloc_addr(addr))
548 vfree(addr);
549 else
550 kfree(addr);
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555 if (!memslot->dirty_bitmap)
556 return;
557
558 kvm_kvfree(memslot->dirty_bitmap);
559 memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563 * Free any memory in @free but not in @dont.
564 */
565 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
566 struct kvm_memory_slot *dont)
567 {
568 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569 kvm_destroy_dirty_bitmap(free);
570
571 kvm_arch_free_memslot(free, dont);
572
573 free->npages = 0;
574 }
575
576 void kvm_free_physmem(struct kvm *kvm)
577 {
578 struct kvm_memslots *slots = kvm->memslots;
579 struct kvm_memory_slot *memslot;
580
581 kvm_for_each_memslot(memslot, slots)
582 kvm_free_physmem_slot(memslot, NULL);
583
584 kfree(kvm->memslots);
585 }
586
587 static void kvm_destroy_devices(struct kvm *kvm)
588 {
589 struct list_head *node, *tmp;
590
591 list_for_each_safe(node, tmp, &kvm->devices) {
592 struct kvm_device *dev =
593 list_entry(node, struct kvm_device, vm_node);
594
595 list_del(node);
596 dev->ops->destroy(dev);
597 }
598 }
599
600 static void kvm_destroy_vm(struct kvm *kvm)
601 {
602 int i;
603 struct mm_struct *mm = kvm->mm;
604
605 kvm_arch_sync_events(kvm);
606 raw_spin_lock(&kvm_lock);
607 list_del(&kvm->vm_list);
608 raw_spin_unlock(&kvm_lock);
609 kvm_free_irq_routing(kvm);
610 for (i = 0; i < KVM_NR_BUSES; i++) {
611 kvm_io_bus_destroy(kvm->buses[i]);
612 kvm->buses[i] = NULL;
613 }
614 kvm_coalesced_mmio_free(kvm);
615 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
616 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
617 #else
618 kvm_arch_flush_shadow_all(kvm);
619 #endif
620 kvm_arch_destroy_vm(kvm);
621 kvm_destroy_devices(kvm);
622 kvm_free_physmem(kvm);
623 cleanup_srcu_struct(&kvm->srcu);
624 kvm_arch_free_vm(kvm);
625 hardware_disable_all();
626 mmdrop(mm);
627 }
628
629 void kvm_get_kvm(struct kvm *kvm)
630 {
631 atomic_inc(&kvm->users_count);
632 }
633 EXPORT_SYMBOL_GPL(kvm_get_kvm);
634
635 void kvm_put_kvm(struct kvm *kvm)
636 {
637 if (atomic_dec_and_test(&kvm->users_count))
638 kvm_destroy_vm(kvm);
639 }
640 EXPORT_SYMBOL_GPL(kvm_put_kvm);
641
642
643 static int kvm_vm_release(struct inode *inode, struct file *filp)
644 {
645 struct kvm *kvm = filp->private_data;
646
647 kvm_irqfd_release(kvm);
648
649 kvm_put_kvm(kvm);
650 return 0;
651 }
652
653 /*
654 * Allocation size is twice as large as the actual dirty bitmap size.
655 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
656 */
657 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
658 {
659 #ifndef CONFIG_S390
660 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
661
662 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
663 if (!memslot->dirty_bitmap)
664 return -ENOMEM;
665
666 #endif /* !CONFIG_S390 */
667 return 0;
668 }
669
670 static int cmp_memslot(const void *slot1, const void *slot2)
671 {
672 struct kvm_memory_slot *s1, *s2;
673
674 s1 = (struct kvm_memory_slot *)slot1;
675 s2 = (struct kvm_memory_slot *)slot2;
676
677 if (s1->npages < s2->npages)
678 return 1;
679 if (s1->npages > s2->npages)
680 return -1;
681
682 return 0;
683 }
684
685 /*
686 * Sort the memslots base on its size, so the larger slots
687 * will get better fit.
688 */
689 static void sort_memslots(struct kvm_memslots *slots)
690 {
691 int i;
692
693 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
694 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
695
696 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
697 slots->id_to_index[slots->memslots[i].id] = i;
698 }
699
700 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
701 u64 last_generation)
702 {
703 if (new) {
704 int id = new->id;
705 struct kvm_memory_slot *old = id_to_memslot(slots, id);
706 unsigned long npages = old->npages;
707
708 *old = *new;
709 if (new->npages != npages)
710 sort_memslots(slots);
711 }
712
713 slots->generation = last_generation + 1;
714 }
715
716 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
717 {
718 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
719
720 #ifdef KVM_CAP_READONLY_MEM
721 valid_flags |= KVM_MEM_READONLY;
722 #endif
723
724 if (mem->flags & ~valid_flags)
725 return -EINVAL;
726
727 return 0;
728 }
729
730 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
731 struct kvm_memslots *slots, struct kvm_memory_slot *new)
732 {
733 struct kvm_memslots *old_memslots = kvm->memslots;
734
735 update_memslots(slots, new, kvm->memslots->generation);
736 rcu_assign_pointer(kvm->memslots, slots);
737 synchronize_srcu_expedited(&kvm->srcu);
738 return old_memslots;
739 }
740
741 /*
742 * Allocate some memory and give it an address in the guest physical address
743 * space.
744 *
745 * Discontiguous memory is allowed, mostly for framebuffers.
746 *
747 * Must be called holding mmap_sem for write.
748 */
749 int __kvm_set_memory_region(struct kvm *kvm,
750 struct kvm_userspace_memory_region *mem)
751 {
752 int r;
753 gfn_t base_gfn;
754 unsigned long npages;
755 struct kvm_memory_slot *slot;
756 struct kvm_memory_slot old, new;
757 struct kvm_memslots *slots = NULL, *old_memslots;
758 enum kvm_mr_change change;
759
760 r = check_memory_region_flags(mem);
761 if (r)
762 goto out;
763
764 r = -EINVAL;
765 /* General sanity checks */
766 if (mem->memory_size & (PAGE_SIZE - 1))
767 goto out;
768 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
769 goto out;
770 /* We can read the guest memory with __xxx_user() later on. */
771 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
772 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
773 !access_ok(VERIFY_WRITE,
774 (void __user *)(unsigned long)mem->userspace_addr,
775 mem->memory_size)))
776 goto out;
777 if (mem->slot >= KVM_MEM_SLOTS_NUM)
778 goto out;
779 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
780 goto out;
781
782 slot = id_to_memslot(kvm->memslots, mem->slot);
783 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
784 npages = mem->memory_size >> PAGE_SHIFT;
785
786 r = -EINVAL;
787 if (npages > KVM_MEM_MAX_NR_PAGES)
788 goto out;
789
790 if (!npages)
791 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
792
793 new = old = *slot;
794
795 new.id = mem->slot;
796 new.base_gfn = base_gfn;
797 new.npages = npages;
798 new.flags = mem->flags;
799
800 r = -EINVAL;
801 if (npages) {
802 if (!old.npages)
803 change = KVM_MR_CREATE;
804 else { /* Modify an existing slot. */
805 if ((mem->userspace_addr != old.userspace_addr) ||
806 (npages != old.npages) ||
807 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
808 goto out;
809
810 if (base_gfn != old.base_gfn)
811 change = KVM_MR_MOVE;
812 else if (new.flags != old.flags)
813 change = KVM_MR_FLAGS_ONLY;
814 else { /* Nothing to change. */
815 r = 0;
816 goto out;
817 }
818 }
819 } else if (old.npages) {
820 change = KVM_MR_DELETE;
821 } else /* Modify a non-existent slot: disallowed. */
822 goto out;
823
824 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
825 /* Check for overlaps */
826 r = -EEXIST;
827 kvm_for_each_memslot(slot, kvm->memslots) {
828 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
829 (slot->id == mem->slot))
830 continue;
831 if (!((base_gfn + npages <= slot->base_gfn) ||
832 (base_gfn >= slot->base_gfn + slot->npages)))
833 goto out;
834 }
835 }
836
837 /* Free page dirty bitmap if unneeded */
838 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
839 new.dirty_bitmap = NULL;
840
841 r = -ENOMEM;
842 if (change == KVM_MR_CREATE) {
843 new.userspace_addr = mem->userspace_addr;
844
845 if (kvm_arch_create_memslot(&new, npages))
846 goto out_free;
847 }
848
849 /* Allocate page dirty bitmap if needed */
850 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
851 if (kvm_create_dirty_bitmap(&new) < 0)
852 goto out_free;
853 }
854
855 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
856 r = -ENOMEM;
857 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
858 GFP_KERNEL);
859 if (!slots)
860 goto out_free;
861 slot = id_to_memslot(slots, mem->slot);
862 slot->flags |= KVM_MEMSLOT_INVALID;
863
864 old_memslots = install_new_memslots(kvm, slots, NULL);
865
866 /* slot was deleted or moved, clear iommu mapping */
867 kvm_iommu_unmap_pages(kvm, &old);
868 /* From this point no new shadow pages pointing to a deleted,
869 * or moved, memslot will be created.
870 *
871 * validation of sp->gfn happens in:
872 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
873 * - kvm_is_visible_gfn (mmu_check_roots)
874 */
875 kvm_arch_flush_shadow_memslot(kvm, slot);
876 slots = old_memslots;
877 }
878
879 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
880 if (r)
881 goto out_slots;
882
883 r = -ENOMEM;
884 /*
885 * We can re-use the old_memslots from above, the only difference
886 * from the currently installed memslots is the invalid flag. This
887 * will get overwritten by update_memslots anyway.
888 */
889 if (!slots) {
890 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
891 GFP_KERNEL);
892 if (!slots)
893 goto out_free;
894 }
895
896 /*
897 * IOMMU mapping: New slots need to be mapped. Old slots need to be
898 * un-mapped and re-mapped if their base changes. Since base change
899 * unmapping is handled above with slot deletion, mapping alone is
900 * needed here. Anything else the iommu might care about for existing
901 * slots (size changes, userspace addr changes and read-only flag
902 * changes) is disallowed above, so any other attribute changes getting
903 * here can be skipped.
904 */
905 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
906 r = kvm_iommu_map_pages(kvm, &new);
907 if (r)
908 goto out_slots;
909 }
910
911 /* actual memory is freed via old in kvm_free_physmem_slot below */
912 if (change == KVM_MR_DELETE) {
913 new.dirty_bitmap = NULL;
914 memset(&new.arch, 0, sizeof(new.arch));
915 }
916
917 old_memslots = install_new_memslots(kvm, slots, &new);
918
919 kvm_arch_commit_memory_region(kvm, mem, &old, change);
920
921 kvm_free_physmem_slot(&old, &new);
922 kfree(old_memslots);
923
924 return 0;
925
926 out_slots:
927 kfree(slots);
928 out_free:
929 kvm_free_physmem_slot(&new, &old);
930 out:
931 return r;
932 }
933 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
934
935 int kvm_set_memory_region(struct kvm *kvm,
936 struct kvm_userspace_memory_region *mem)
937 {
938 int r;
939
940 mutex_lock(&kvm->slots_lock);
941 r = __kvm_set_memory_region(kvm, mem);
942 mutex_unlock(&kvm->slots_lock);
943 return r;
944 }
945 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
946
947 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
948 struct kvm_userspace_memory_region *mem)
949 {
950 if (mem->slot >= KVM_USER_MEM_SLOTS)
951 return -EINVAL;
952 return kvm_set_memory_region(kvm, mem);
953 }
954
955 int kvm_get_dirty_log(struct kvm *kvm,
956 struct kvm_dirty_log *log, int *is_dirty)
957 {
958 struct kvm_memory_slot *memslot;
959 int r, i;
960 unsigned long n;
961 unsigned long any = 0;
962
963 r = -EINVAL;
964 if (log->slot >= KVM_USER_MEM_SLOTS)
965 goto out;
966
967 memslot = id_to_memslot(kvm->memslots, log->slot);
968 r = -ENOENT;
969 if (!memslot->dirty_bitmap)
970 goto out;
971
972 n = kvm_dirty_bitmap_bytes(memslot);
973
974 for (i = 0; !any && i < n/sizeof(long); ++i)
975 any = memslot->dirty_bitmap[i];
976
977 r = -EFAULT;
978 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
979 goto out;
980
981 if (any)
982 *is_dirty = 1;
983
984 r = 0;
985 out:
986 return r;
987 }
988
989 bool kvm_largepages_enabled(void)
990 {
991 return largepages_enabled;
992 }
993
994 void kvm_disable_largepages(void)
995 {
996 largepages_enabled = false;
997 }
998 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
999
1000 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1001 {
1002 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1003 }
1004 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1005
1006 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1007 {
1008 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1009
1010 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1011 memslot->flags & KVM_MEMSLOT_INVALID)
1012 return 0;
1013
1014 return 1;
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1017
1018 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1019 {
1020 struct vm_area_struct *vma;
1021 unsigned long addr, size;
1022
1023 size = PAGE_SIZE;
1024
1025 addr = gfn_to_hva(kvm, gfn);
1026 if (kvm_is_error_hva(addr))
1027 return PAGE_SIZE;
1028
1029 down_read(&current->mm->mmap_sem);
1030 vma = find_vma(current->mm, addr);
1031 if (!vma)
1032 goto out;
1033
1034 size = vma_kernel_pagesize(vma);
1035
1036 out:
1037 up_read(&current->mm->mmap_sem);
1038
1039 return size;
1040 }
1041
1042 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1043 {
1044 return slot->flags & KVM_MEM_READONLY;
1045 }
1046
1047 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1048 gfn_t *nr_pages, bool write)
1049 {
1050 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1051 return KVM_HVA_ERR_BAD;
1052
1053 if (memslot_is_readonly(slot) && write)
1054 return KVM_HVA_ERR_RO_BAD;
1055
1056 if (nr_pages)
1057 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1058
1059 return __gfn_to_hva_memslot(slot, gfn);
1060 }
1061
1062 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1063 gfn_t *nr_pages)
1064 {
1065 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1066 }
1067
1068 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1069 gfn_t gfn)
1070 {
1071 return gfn_to_hva_many(slot, gfn, NULL);
1072 }
1073 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1074
1075 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1076 {
1077 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1078 }
1079 EXPORT_SYMBOL_GPL(gfn_to_hva);
1080
1081 /*
1082 * The hva returned by this function is only allowed to be read.
1083 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1084 */
1085 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1086 {
1087 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1088 }
1089
1090 static int kvm_read_hva(void *data, void __user *hva, int len)
1091 {
1092 return __copy_from_user(data, hva, len);
1093 }
1094
1095 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1096 {
1097 return __copy_from_user_inatomic(data, hva, len);
1098 }
1099
1100 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1101 unsigned long start, int write, struct page **page)
1102 {
1103 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1104
1105 if (write)
1106 flags |= FOLL_WRITE;
1107
1108 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1109 }
1110
1111 static inline int check_user_page_hwpoison(unsigned long addr)
1112 {
1113 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1114
1115 rc = __get_user_pages(current, current->mm, addr, 1,
1116 flags, NULL, NULL, NULL);
1117 return rc == -EHWPOISON;
1118 }
1119
1120 /*
1121 * The atomic path to get the writable pfn which will be stored in @pfn,
1122 * true indicates success, otherwise false is returned.
1123 */
1124 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1125 bool write_fault, bool *writable, pfn_t *pfn)
1126 {
1127 struct page *page[1];
1128 int npages;
1129
1130 if (!(async || atomic))
1131 return false;
1132
1133 /*
1134 * Fast pin a writable pfn only if it is a write fault request
1135 * or the caller allows to map a writable pfn for a read fault
1136 * request.
1137 */
1138 if (!(write_fault || writable))
1139 return false;
1140
1141 npages = __get_user_pages_fast(addr, 1, 1, page);
1142 if (npages == 1) {
1143 *pfn = page_to_pfn(page[0]);
1144
1145 if (writable)
1146 *writable = true;
1147 return true;
1148 }
1149
1150 return false;
1151 }
1152
1153 /*
1154 * The slow path to get the pfn of the specified host virtual address,
1155 * 1 indicates success, -errno is returned if error is detected.
1156 */
1157 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1158 bool *writable, pfn_t *pfn)
1159 {
1160 struct page *page[1];
1161 int npages = 0;
1162
1163 might_sleep();
1164
1165 if (writable)
1166 *writable = write_fault;
1167
1168 if (async) {
1169 down_read(&current->mm->mmap_sem);
1170 npages = get_user_page_nowait(current, current->mm,
1171 addr, write_fault, page);
1172 up_read(&current->mm->mmap_sem);
1173 } else
1174 npages = get_user_pages_fast(addr, 1, write_fault,
1175 page);
1176 if (npages != 1)
1177 return npages;
1178
1179 /* map read fault as writable if possible */
1180 if (unlikely(!write_fault) && writable) {
1181 struct page *wpage[1];
1182
1183 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1184 if (npages == 1) {
1185 *writable = true;
1186 put_page(page[0]);
1187 page[0] = wpage[0];
1188 }
1189
1190 npages = 1;
1191 }
1192 *pfn = page_to_pfn(page[0]);
1193 return npages;
1194 }
1195
1196 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1197 {
1198 if (unlikely(!(vma->vm_flags & VM_READ)))
1199 return false;
1200
1201 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1202 return false;
1203
1204 return true;
1205 }
1206
1207 /*
1208 * Pin guest page in memory and return its pfn.
1209 * @addr: host virtual address which maps memory to the guest
1210 * @atomic: whether this function can sleep
1211 * @async: whether this function need to wait IO complete if the
1212 * host page is not in the memory
1213 * @write_fault: whether we should get a writable host page
1214 * @writable: whether it allows to map a writable host page for !@write_fault
1215 *
1216 * The function will map a writable host page for these two cases:
1217 * 1): @write_fault = true
1218 * 2): @write_fault = false && @writable, @writable will tell the caller
1219 * whether the mapping is writable.
1220 */
1221 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1222 bool write_fault, bool *writable)
1223 {
1224 struct vm_area_struct *vma;
1225 pfn_t pfn = 0;
1226 int npages;
1227
1228 /* we can do it either atomically or asynchronously, not both */
1229 BUG_ON(atomic && async);
1230
1231 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1232 return pfn;
1233
1234 if (atomic)
1235 return KVM_PFN_ERR_FAULT;
1236
1237 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1238 if (npages == 1)
1239 return pfn;
1240
1241 down_read(&current->mm->mmap_sem);
1242 if (npages == -EHWPOISON ||
1243 (!async && check_user_page_hwpoison(addr))) {
1244 pfn = KVM_PFN_ERR_HWPOISON;
1245 goto exit;
1246 }
1247
1248 vma = find_vma_intersection(current->mm, addr, addr + 1);
1249
1250 if (vma == NULL)
1251 pfn = KVM_PFN_ERR_FAULT;
1252 else if ((vma->vm_flags & VM_PFNMAP)) {
1253 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1254 vma->vm_pgoff;
1255 BUG_ON(!kvm_is_mmio_pfn(pfn));
1256 } else {
1257 if (async && vma_is_valid(vma, write_fault))
1258 *async = true;
1259 pfn = KVM_PFN_ERR_FAULT;
1260 }
1261 exit:
1262 up_read(&current->mm->mmap_sem);
1263 return pfn;
1264 }
1265
1266 static pfn_t
1267 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1268 bool *async, bool write_fault, bool *writable)
1269 {
1270 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1271
1272 if (addr == KVM_HVA_ERR_RO_BAD)
1273 return KVM_PFN_ERR_RO_FAULT;
1274
1275 if (kvm_is_error_hva(addr))
1276 return KVM_PFN_NOSLOT;
1277
1278 /* Do not map writable pfn in the readonly memslot. */
1279 if (writable && memslot_is_readonly(slot)) {
1280 *writable = false;
1281 writable = NULL;
1282 }
1283
1284 return hva_to_pfn(addr, atomic, async, write_fault,
1285 writable);
1286 }
1287
1288 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1289 bool write_fault, bool *writable)
1290 {
1291 struct kvm_memory_slot *slot;
1292
1293 if (async)
1294 *async = false;
1295
1296 slot = gfn_to_memslot(kvm, gfn);
1297
1298 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1299 writable);
1300 }
1301
1302 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1303 {
1304 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1307
1308 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1309 bool write_fault, bool *writable)
1310 {
1311 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1314
1315 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1316 {
1317 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1320
1321 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1322 bool *writable)
1323 {
1324 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1325 }
1326 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1327
1328 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1329 {
1330 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1331 }
1332
1333 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1334 {
1335 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1336 }
1337 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1338
1339 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1340 int nr_pages)
1341 {
1342 unsigned long addr;
1343 gfn_t entry;
1344
1345 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1346 if (kvm_is_error_hva(addr))
1347 return -1;
1348
1349 if (entry < nr_pages)
1350 return 0;
1351
1352 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1353 }
1354 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1355
1356 static struct page *kvm_pfn_to_page(pfn_t pfn)
1357 {
1358 if (is_error_noslot_pfn(pfn))
1359 return KVM_ERR_PTR_BAD_PAGE;
1360
1361 if (kvm_is_mmio_pfn(pfn)) {
1362 WARN_ON(1);
1363 return KVM_ERR_PTR_BAD_PAGE;
1364 }
1365
1366 return pfn_to_page(pfn);
1367 }
1368
1369 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1370 {
1371 pfn_t pfn;
1372
1373 pfn = gfn_to_pfn(kvm, gfn);
1374
1375 return kvm_pfn_to_page(pfn);
1376 }
1377
1378 EXPORT_SYMBOL_GPL(gfn_to_page);
1379
1380 void kvm_release_page_clean(struct page *page)
1381 {
1382 WARN_ON(is_error_page(page));
1383
1384 kvm_release_pfn_clean(page_to_pfn(page));
1385 }
1386 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1387
1388 void kvm_release_pfn_clean(pfn_t pfn)
1389 {
1390 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1391 put_page(pfn_to_page(pfn));
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1394
1395 void kvm_release_page_dirty(struct page *page)
1396 {
1397 WARN_ON(is_error_page(page));
1398
1399 kvm_release_pfn_dirty(page_to_pfn(page));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1402
1403 void kvm_release_pfn_dirty(pfn_t pfn)
1404 {
1405 kvm_set_pfn_dirty(pfn);
1406 kvm_release_pfn_clean(pfn);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1409
1410 void kvm_set_page_dirty(struct page *page)
1411 {
1412 kvm_set_pfn_dirty(page_to_pfn(page));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1415
1416 void kvm_set_pfn_dirty(pfn_t pfn)
1417 {
1418 if (!kvm_is_mmio_pfn(pfn)) {
1419 struct page *page = pfn_to_page(pfn);
1420 if (!PageReserved(page))
1421 SetPageDirty(page);
1422 }
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1425
1426 void kvm_set_pfn_accessed(pfn_t pfn)
1427 {
1428 if (!kvm_is_mmio_pfn(pfn))
1429 mark_page_accessed(pfn_to_page(pfn));
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1432
1433 void kvm_get_pfn(pfn_t pfn)
1434 {
1435 if (!kvm_is_mmio_pfn(pfn))
1436 get_page(pfn_to_page(pfn));
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1439
1440 static int next_segment(unsigned long len, int offset)
1441 {
1442 if (len > PAGE_SIZE - offset)
1443 return PAGE_SIZE - offset;
1444 else
1445 return len;
1446 }
1447
1448 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1449 int len)
1450 {
1451 int r;
1452 unsigned long addr;
1453
1454 addr = gfn_to_hva_read(kvm, gfn);
1455 if (kvm_is_error_hva(addr))
1456 return -EFAULT;
1457 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1458 if (r)
1459 return -EFAULT;
1460 return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1463
1464 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1465 {
1466 gfn_t gfn = gpa >> PAGE_SHIFT;
1467 int seg;
1468 int offset = offset_in_page(gpa);
1469 int ret;
1470
1471 while ((seg = next_segment(len, offset)) != 0) {
1472 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1473 if (ret < 0)
1474 return ret;
1475 offset = 0;
1476 len -= seg;
1477 data += seg;
1478 ++gfn;
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(kvm_read_guest);
1483
1484 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1485 unsigned long len)
1486 {
1487 int r;
1488 unsigned long addr;
1489 gfn_t gfn = gpa >> PAGE_SHIFT;
1490 int offset = offset_in_page(gpa);
1491
1492 addr = gfn_to_hva_read(kvm, gfn);
1493 if (kvm_is_error_hva(addr))
1494 return -EFAULT;
1495 pagefault_disable();
1496 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1497 pagefault_enable();
1498 if (r)
1499 return -EFAULT;
1500 return 0;
1501 }
1502 EXPORT_SYMBOL(kvm_read_guest_atomic);
1503
1504 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1505 int offset, int len)
1506 {
1507 int r;
1508 unsigned long addr;
1509
1510 addr = gfn_to_hva(kvm, gfn);
1511 if (kvm_is_error_hva(addr))
1512 return -EFAULT;
1513 r = __copy_to_user((void __user *)addr + offset, data, len);
1514 if (r)
1515 return -EFAULT;
1516 mark_page_dirty(kvm, gfn);
1517 return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1520
1521 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1522 unsigned long len)
1523 {
1524 gfn_t gfn = gpa >> PAGE_SHIFT;
1525 int seg;
1526 int offset = offset_in_page(gpa);
1527 int ret;
1528
1529 while ((seg = next_segment(len, offset)) != 0) {
1530 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1531 if (ret < 0)
1532 return ret;
1533 offset = 0;
1534 len -= seg;
1535 data += seg;
1536 ++gfn;
1537 }
1538 return 0;
1539 }
1540
1541 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1542 gpa_t gpa, unsigned long len)
1543 {
1544 struct kvm_memslots *slots = kvm_memslots(kvm);
1545 int offset = offset_in_page(gpa);
1546 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1547 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1548 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1549 gfn_t nr_pages_avail;
1550
1551 ghc->gpa = gpa;
1552 ghc->generation = slots->generation;
1553 ghc->len = len;
1554 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1555 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1556 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1557 ghc->hva += offset;
1558 } else {
1559 /*
1560 * If the requested region crosses two memslots, we still
1561 * verify that the entire region is valid here.
1562 */
1563 while (start_gfn <= end_gfn) {
1564 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1565 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1566 &nr_pages_avail);
1567 if (kvm_is_error_hva(ghc->hva))
1568 return -EFAULT;
1569 start_gfn += nr_pages_avail;
1570 }
1571 /* Use the slow path for cross page reads and writes. */
1572 ghc->memslot = NULL;
1573 }
1574 return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1577
1578 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1579 void *data, unsigned long len)
1580 {
1581 struct kvm_memslots *slots = kvm_memslots(kvm);
1582 int r;
1583
1584 BUG_ON(len > ghc->len);
1585
1586 if (slots->generation != ghc->generation)
1587 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1588
1589 if (unlikely(!ghc->memslot))
1590 return kvm_write_guest(kvm, ghc->gpa, data, len);
1591
1592 if (kvm_is_error_hva(ghc->hva))
1593 return -EFAULT;
1594
1595 r = __copy_to_user((void __user *)ghc->hva, data, len);
1596 if (r)
1597 return -EFAULT;
1598 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1603
1604 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1605 void *data, unsigned long len)
1606 {
1607 struct kvm_memslots *slots = kvm_memslots(kvm);
1608 int r;
1609
1610 BUG_ON(len > ghc->len);
1611
1612 if (slots->generation != ghc->generation)
1613 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1614
1615 if (unlikely(!ghc->memslot))
1616 return kvm_read_guest(kvm, ghc->gpa, data, len);
1617
1618 if (kvm_is_error_hva(ghc->hva))
1619 return -EFAULT;
1620
1621 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1622 if (r)
1623 return -EFAULT;
1624
1625 return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1628
1629 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1630 {
1631 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1632 offset, len);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1635
1636 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1637 {
1638 gfn_t gfn = gpa >> PAGE_SHIFT;
1639 int seg;
1640 int offset = offset_in_page(gpa);
1641 int ret;
1642
1643 while ((seg = next_segment(len, offset)) != 0) {
1644 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1645 if (ret < 0)
1646 return ret;
1647 offset = 0;
1648 len -= seg;
1649 ++gfn;
1650 }
1651 return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1654
1655 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1656 gfn_t gfn)
1657 {
1658 if (memslot && memslot->dirty_bitmap) {
1659 unsigned long rel_gfn = gfn - memslot->base_gfn;
1660
1661 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1662 }
1663 }
1664
1665 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1666 {
1667 struct kvm_memory_slot *memslot;
1668
1669 memslot = gfn_to_memslot(kvm, gfn);
1670 mark_page_dirty_in_slot(kvm, memslot, gfn);
1671 }
1672
1673 /*
1674 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1675 */
1676 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1677 {
1678 DEFINE_WAIT(wait);
1679
1680 for (;;) {
1681 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1682
1683 if (kvm_arch_vcpu_runnable(vcpu)) {
1684 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1685 break;
1686 }
1687 if (kvm_cpu_has_pending_timer(vcpu))
1688 break;
1689 if (signal_pending(current))
1690 break;
1691
1692 schedule();
1693 }
1694
1695 finish_wait(&vcpu->wq, &wait);
1696 }
1697
1698 #ifndef CONFIG_S390
1699 /*
1700 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1701 */
1702 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1703 {
1704 int me;
1705 int cpu = vcpu->cpu;
1706 wait_queue_head_t *wqp;
1707
1708 wqp = kvm_arch_vcpu_wq(vcpu);
1709 if (waitqueue_active(wqp)) {
1710 wake_up_interruptible(wqp);
1711 ++vcpu->stat.halt_wakeup;
1712 }
1713
1714 me = get_cpu();
1715 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1716 if (kvm_arch_vcpu_should_kick(vcpu))
1717 smp_send_reschedule(cpu);
1718 put_cpu();
1719 }
1720 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1721 #endif /* !CONFIG_S390 */
1722
1723 void kvm_resched(struct kvm_vcpu *vcpu)
1724 {
1725 if (!need_resched())
1726 return;
1727 cond_resched();
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_resched);
1730
1731 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1732 {
1733 struct pid *pid;
1734 struct task_struct *task = NULL;
1735 bool ret = false;
1736
1737 rcu_read_lock();
1738 pid = rcu_dereference(target->pid);
1739 if (pid)
1740 task = get_pid_task(target->pid, PIDTYPE_PID);
1741 rcu_read_unlock();
1742 if (!task)
1743 return ret;
1744 if (task->flags & PF_VCPU) {
1745 put_task_struct(task);
1746 return ret;
1747 }
1748 ret = yield_to(task, 1);
1749 put_task_struct(task);
1750
1751 return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1754
1755 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1756 /*
1757 * Helper that checks whether a VCPU is eligible for directed yield.
1758 * Most eligible candidate to yield is decided by following heuristics:
1759 *
1760 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1761 * (preempted lock holder), indicated by @in_spin_loop.
1762 * Set at the beiginning and cleared at the end of interception/PLE handler.
1763 *
1764 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1765 * chance last time (mostly it has become eligible now since we have probably
1766 * yielded to lockholder in last iteration. This is done by toggling
1767 * @dy_eligible each time a VCPU checked for eligibility.)
1768 *
1769 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1770 * to preempted lock-holder could result in wrong VCPU selection and CPU
1771 * burning. Giving priority for a potential lock-holder increases lock
1772 * progress.
1773 *
1774 * Since algorithm is based on heuristics, accessing another VCPU data without
1775 * locking does not harm. It may result in trying to yield to same VCPU, fail
1776 * and continue with next VCPU and so on.
1777 */
1778 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1779 {
1780 bool eligible;
1781
1782 eligible = !vcpu->spin_loop.in_spin_loop ||
1783 (vcpu->spin_loop.in_spin_loop &&
1784 vcpu->spin_loop.dy_eligible);
1785
1786 if (vcpu->spin_loop.in_spin_loop)
1787 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1788
1789 return eligible;
1790 }
1791 #endif
1792
1793 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1794 {
1795 struct kvm *kvm = me->kvm;
1796 struct kvm_vcpu *vcpu;
1797 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1798 int yielded = 0;
1799 int try = 3;
1800 int pass;
1801 int i;
1802
1803 kvm_vcpu_set_in_spin_loop(me, true);
1804 /*
1805 * We boost the priority of a VCPU that is runnable but not
1806 * currently running, because it got preempted by something
1807 * else and called schedule in __vcpu_run. Hopefully that
1808 * VCPU is holding the lock that we need and will release it.
1809 * We approximate round-robin by starting at the last boosted VCPU.
1810 */
1811 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1812 kvm_for_each_vcpu(i, vcpu, kvm) {
1813 if (!pass && i <= last_boosted_vcpu) {
1814 i = last_boosted_vcpu;
1815 continue;
1816 } else if (pass && i > last_boosted_vcpu)
1817 break;
1818 if (!ACCESS_ONCE(vcpu->preempted))
1819 continue;
1820 if (vcpu == me)
1821 continue;
1822 if (waitqueue_active(&vcpu->wq))
1823 continue;
1824 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1825 continue;
1826
1827 yielded = kvm_vcpu_yield_to(vcpu);
1828 if (yielded > 0) {
1829 kvm->last_boosted_vcpu = i;
1830 break;
1831 } else if (yielded < 0) {
1832 try--;
1833 if (!try)
1834 break;
1835 }
1836 }
1837 }
1838 kvm_vcpu_set_in_spin_loop(me, false);
1839
1840 /* Ensure vcpu is not eligible during next spinloop */
1841 kvm_vcpu_set_dy_eligible(me, false);
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1844
1845 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1846 {
1847 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1848 struct page *page;
1849
1850 if (vmf->pgoff == 0)
1851 page = virt_to_page(vcpu->run);
1852 #ifdef CONFIG_X86
1853 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1854 page = virt_to_page(vcpu->arch.pio_data);
1855 #endif
1856 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1857 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1858 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1859 #endif
1860 else
1861 return kvm_arch_vcpu_fault(vcpu, vmf);
1862 get_page(page);
1863 vmf->page = page;
1864 return 0;
1865 }
1866
1867 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1868 .fault = kvm_vcpu_fault,
1869 };
1870
1871 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1872 {
1873 vma->vm_ops = &kvm_vcpu_vm_ops;
1874 return 0;
1875 }
1876
1877 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1878 {
1879 struct kvm_vcpu *vcpu = filp->private_data;
1880
1881 kvm_put_kvm(vcpu->kvm);
1882 return 0;
1883 }
1884
1885 static struct file_operations kvm_vcpu_fops = {
1886 .release = kvm_vcpu_release,
1887 .unlocked_ioctl = kvm_vcpu_ioctl,
1888 #ifdef CONFIG_COMPAT
1889 .compat_ioctl = kvm_vcpu_compat_ioctl,
1890 #endif
1891 .mmap = kvm_vcpu_mmap,
1892 .llseek = noop_llseek,
1893 };
1894
1895 /*
1896 * Allocates an inode for the vcpu.
1897 */
1898 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1899 {
1900 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1901 }
1902
1903 /*
1904 * Creates some virtual cpus. Good luck creating more than one.
1905 */
1906 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1907 {
1908 int r;
1909 struct kvm_vcpu *vcpu, *v;
1910
1911 if (id >= KVM_MAX_VCPUS)
1912 return -EINVAL;
1913
1914 vcpu = kvm_arch_vcpu_create(kvm, id);
1915 if (IS_ERR(vcpu))
1916 return PTR_ERR(vcpu);
1917
1918 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1919
1920 r = kvm_arch_vcpu_setup(vcpu);
1921 if (r)
1922 goto vcpu_destroy;
1923
1924 mutex_lock(&kvm->lock);
1925 if (!kvm_vcpu_compatible(vcpu)) {
1926 r = -EINVAL;
1927 goto unlock_vcpu_destroy;
1928 }
1929 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1930 r = -EINVAL;
1931 goto unlock_vcpu_destroy;
1932 }
1933
1934 kvm_for_each_vcpu(r, v, kvm)
1935 if (v->vcpu_id == id) {
1936 r = -EEXIST;
1937 goto unlock_vcpu_destroy;
1938 }
1939
1940 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1941
1942 /* Now it's all set up, let userspace reach it */
1943 kvm_get_kvm(kvm);
1944 r = create_vcpu_fd(vcpu);
1945 if (r < 0) {
1946 kvm_put_kvm(kvm);
1947 goto unlock_vcpu_destroy;
1948 }
1949
1950 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1951 smp_wmb();
1952 atomic_inc(&kvm->online_vcpus);
1953
1954 mutex_unlock(&kvm->lock);
1955 kvm_arch_vcpu_postcreate(vcpu);
1956 return r;
1957
1958 unlock_vcpu_destroy:
1959 mutex_unlock(&kvm->lock);
1960 vcpu_destroy:
1961 kvm_arch_vcpu_destroy(vcpu);
1962 return r;
1963 }
1964
1965 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1966 {
1967 if (sigset) {
1968 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1969 vcpu->sigset_active = 1;
1970 vcpu->sigset = *sigset;
1971 } else
1972 vcpu->sigset_active = 0;
1973 return 0;
1974 }
1975
1976 static long kvm_vcpu_ioctl(struct file *filp,
1977 unsigned int ioctl, unsigned long arg)
1978 {
1979 struct kvm_vcpu *vcpu = filp->private_data;
1980 void __user *argp = (void __user *)arg;
1981 int r;
1982 struct kvm_fpu *fpu = NULL;
1983 struct kvm_sregs *kvm_sregs = NULL;
1984
1985 if (vcpu->kvm->mm != current->mm)
1986 return -EIO;
1987
1988 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
1989 return -EINVAL;
1990
1991 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1992 /*
1993 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1994 * so vcpu_load() would break it.
1995 */
1996 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1997 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1998 #endif
1999
2000
2001 r = vcpu_load(vcpu);
2002 if (r)
2003 return r;
2004 switch (ioctl) {
2005 case KVM_RUN:
2006 r = -EINVAL;
2007 if (arg)
2008 goto out;
2009 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2010 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2011 break;
2012 case KVM_GET_REGS: {
2013 struct kvm_regs *kvm_regs;
2014
2015 r = -ENOMEM;
2016 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2017 if (!kvm_regs)
2018 goto out;
2019 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2020 if (r)
2021 goto out_free1;
2022 r = -EFAULT;
2023 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2024 goto out_free1;
2025 r = 0;
2026 out_free1:
2027 kfree(kvm_regs);
2028 break;
2029 }
2030 case KVM_SET_REGS: {
2031 struct kvm_regs *kvm_regs;
2032
2033 r = -ENOMEM;
2034 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2035 if (IS_ERR(kvm_regs)) {
2036 r = PTR_ERR(kvm_regs);
2037 goto out;
2038 }
2039 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2040 kfree(kvm_regs);
2041 break;
2042 }
2043 case KVM_GET_SREGS: {
2044 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2045 r = -ENOMEM;
2046 if (!kvm_sregs)
2047 goto out;
2048 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2049 if (r)
2050 goto out;
2051 r = -EFAULT;
2052 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2053 goto out;
2054 r = 0;
2055 break;
2056 }
2057 case KVM_SET_SREGS: {
2058 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2059 if (IS_ERR(kvm_sregs)) {
2060 r = PTR_ERR(kvm_sregs);
2061 kvm_sregs = NULL;
2062 goto out;
2063 }
2064 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2065 break;
2066 }
2067 case KVM_GET_MP_STATE: {
2068 struct kvm_mp_state mp_state;
2069
2070 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2071 if (r)
2072 goto out;
2073 r = -EFAULT;
2074 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2075 goto out;
2076 r = 0;
2077 break;
2078 }
2079 case KVM_SET_MP_STATE: {
2080 struct kvm_mp_state mp_state;
2081
2082 r = -EFAULT;
2083 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2084 goto out;
2085 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2086 break;
2087 }
2088 case KVM_TRANSLATE: {
2089 struct kvm_translation tr;
2090
2091 r = -EFAULT;
2092 if (copy_from_user(&tr, argp, sizeof tr))
2093 goto out;
2094 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2095 if (r)
2096 goto out;
2097 r = -EFAULT;
2098 if (copy_to_user(argp, &tr, sizeof tr))
2099 goto out;
2100 r = 0;
2101 break;
2102 }
2103 case KVM_SET_GUEST_DEBUG: {
2104 struct kvm_guest_debug dbg;
2105
2106 r = -EFAULT;
2107 if (copy_from_user(&dbg, argp, sizeof dbg))
2108 goto out;
2109 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2110 break;
2111 }
2112 case KVM_SET_SIGNAL_MASK: {
2113 struct kvm_signal_mask __user *sigmask_arg = argp;
2114 struct kvm_signal_mask kvm_sigmask;
2115 sigset_t sigset, *p;
2116
2117 p = NULL;
2118 if (argp) {
2119 r = -EFAULT;
2120 if (copy_from_user(&kvm_sigmask, argp,
2121 sizeof kvm_sigmask))
2122 goto out;
2123 r = -EINVAL;
2124 if (kvm_sigmask.len != sizeof sigset)
2125 goto out;
2126 r = -EFAULT;
2127 if (copy_from_user(&sigset, sigmask_arg->sigset,
2128 sizeof sigset))
2129 goto out;
2130 p = &sigset;
2131 }
2132 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2133 break;
2134 }
2135 case KVM_GET_FPU: {
2136 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2137 r = -ENOMEM;
2138 if (!fpu)
2139 goto out;
2140 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2141 if (r)
2142 goto out;
2143 r = -EFAULT;
2144 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2145 goto out;
2146 r = 0;
2147 break;
2148 }
2149 case KVM_SET_FPU: {
2150 fpu = memdup_user(argp, sizeof(*fpu));
2151 if (IS_ERR(fpu)) {
2152 r = PTR_ERR(fpu);
2153 fpu = NULL;
2154 goto out;
2155 }
2156 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2157 break;
2158 }
2159 default:
2160 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2161 }
2162 out:
2163 vcpu_put(vcpu);
2164 kfree(fpu);
2165 kfree(kvm_sregs);
2166 return r;
2167 }
2168
2169 #ifdef CONFIG_COMPAT
2170 static long kvm_vcpu_compat_ioctl(struct file *filp,
2171 unsigned int ioctl, unsigned long arg)
2172 {
2173 struct kvm_vcpu *vcpu = filp->private_data;
2174 void __user *argp = compat_ptr(arg);
2175 int r;
2176
2177 if (vcpu->kvm->mm != current->mm)
2178 return -EIO;
2179
2180 switch (ioctl) {
2181 case KVM_SET_SIGNAL_MASK: {
2182 struct kvm_signal_mask __user *sigmask_arg = argp;
2183 struct kvm_signal_mask kvm_sigmask;
2184 compat_sigset_t csigset;
2185 sigset_t sigset;
2186
2187 if (argp) {
2188 r = -EFAULT;
2189 if (copy_from_user(&kvm_sigmask, argp,
2190 sizeof kvm_sigmask))
2191 goto out;
2192 r = -EINVAL;
2193 if (kvm_sigmask.len != sizeof csigset)
2194 goto out;
2195 r = -EFAULT;
2196 if (copy_from_user(&csigset, sigmask_arg->sigset,
2197 sizeof csigset))
2198 goto out;
2199 sigset_from_compat(&sigset, &csigset);
2200 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2201 } else
2202 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2203 break;
2204 }
2205 default:
2206 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2207 }
2208
2209 out:
2210 return r;
2211 }
2212 #endif
2213
2214 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2215 int (*accessor)(struct kvm_device *dev,
2216 struct kvm_device_attr *attr),
2217 unsigned long arg)
2218 {
2219 struct kvm_device_attr attr;
2220
2221 if (!accessor)
2222 return -EPERM;
2223
2224 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2225 return -EFAULT;
2226
2227 return accessor(dev, &attr);
2228 }
2229
2230 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2231 unsigned long arg)
2232 {
2233 struct kvm_device *dev = filp->private_data;
2234
2235 switch (ioctl) {
2236 case KVM_SET_DEVICE_ATTR:
2237 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2238 case KVM_GET_DEVICE_ATTR:
2239 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2240 case KVM_HAS_DEVICE_ATTR:
2241 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2242 default:
2243 if (dev->ops->ioctl)
2244 return dev->ops->ioctl(dev, ioctl, arg);
2245
2246 return -ENOTTY;
2247 }
2248 }
2249
2250 static int kvm_device_release(struct inode *inode, struct file *filp)
2251 {
2252 struct kvm_device *dev = filp->private_data;
2253 struct kvm *kvm = dev->kvm;
2254
2255 kvm_put_kvm(kvm);
2256 return 0;
2257 }
2258
2259 static const struct file_operations kvm_device_fops = {
2260 .unlocked_ioctl = kvm_device_ioctl,
2261 #ifdef CONFIG_COMPAT
2262 .compat_ioctl = kvm_device_ioctl,
2263 #endif
2264 .release = kvm_device_release,
2265 };
2266
2267 struct kvm_device *kvm_device_from_filp(struct file *filp)
2268 {
2269 if (filp->f_op != &kvm_device_fops)
2270 return NULL;
2271
2272 return filp->private_data;
2273 }
2274
2275 static int kvm_ioctl_create_device(struct kvm *kvm,
2276 struct kvm_create_device *cd)
2277 {
2278 struct kvm_device_ops *ops = NULL;
2279 struct kvm_device *dev;
2280 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2281 int ret;
2282
2283 switch (cd->type) {
2284 #ifdef CONFIG_KVM_MPIC
2285 case KVM_DEV_TYPE_FSL_MPIC_20:
2286 case KVM_DEV_TYPE_FSL_MPIC_42:
2287 ops = &kvm_mpic_ops;
2288 break;
2289 #endif
2290 #ifdef CONFIG_KVM_XICS
2291 case KVM_DEV_TYPE_XICS:
2292 ops = &kvm_xics_ops;
2293 break;
2294 #endif
2295 default:
2296 return -ENODEV;
2297 }
2298
2299 if (test)
2300 return 0;
2301
2302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2303 if (!dev)
2304 return -ENOMEM;
2305
2306 dev->ops = ops;
2307 dev->kvm = kvm;
2308
2309 ret = ops->create(dev, cd->type);
2310 if (ret < 0) {
2311 kfree(dev);
2312 return ret;
2313 }
2314
2315 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2316 if (ret < 0) {
2317 ops->destroy(dev);
2318 return ret;
2319 }
2320
2321 list_add(&dev->vm_node, &kvm->devices);
2322 kvm_get_kvm(kvm);
2323 cd->fd = ret;
2324 return 0;
2325 }
2326
2327 static long kvm_vm_ioctl(struct file *filp,
2328 unsigned int ioctl, unsigned long arg)
2329 {
2330 struct kvm *kvm = filp->private_data;
2331 void __user *argp = (void __user *)arg;
2332 int r;
2333
2334 if (kvm->mm != current->mm)
2335 return -EIO;
2336 switch (ioctl) {
2337 case KVM_CREATE_VCPU:
2338 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2339 break;
2340 case KVM_SET_USER_MEMORY_REGION: {
2341 struct kvm_userspace_memory_region kvm_userspace_mem;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&kvm_userspace_mem, argp,
2345 sizeof kvm_userspace_mem))
2346 goto out;
2347
2348 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2349 break;
2350 }
2351 case KVM_GET_DIRTY_LOG: {
2352 struct kvm_dirty_log log;
2353
2354 r = -EFAULT;
2355 if (copy_from_user(&log, argp, sizeof log))
2356 goto out;
2357 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2358 break;
2359 }
2360 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2361 case KVM_REGISTER_COALESCED_MMIO: {
2362 struct kvm_coalesced_mmio_zone zone;
2363 r = -EFAULT;
2364 if (copy_from_user(&zone, argp, sizeof zone))
2365 goto out;
2366 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2367 break;
2368 }
2369 case KVM_UNREGISTER_COALESCED_MMIO: {
2370 struct kvm_coalesced_mmio_zone zone;
2371 r = -EFAULT;
2372 if (copy_from_user(&zone, argp, sizeof zone))
2373 goto out;
2374 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2375 break;
2376 }
2377 #endif
2378 case KVM_IRQFD: {
2379 struct kvm_irqfd data;
2380
2381 r = -EFAULT;
2382 if (copy_from_user(&data, argp, sizeof data))
2383 goto out;
2384 r = kvm_irqfd(kvm, &data);
2385 break;
2386 }
2387 case KVM_IOEVENTFD: {
2388 struct kvm_ioeventfd data;
2389
2390 r = -EFAULT;
2391 if (copy_from_user(&data, argp, sizeof data))
2392 goto out;
2393 r = kvm_ioeventfd(kvm, &data);
2394 break;
2395 }
2396 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2397 case KVM_SET_BOOT_CPU_ID:
2398 r = 0;
2399 mutex_lock(&kvm->lock);
2400 if (atomic_read(&kvm->online_vcpus) != 0)
2401 r = -EBUSY;
2402 else
2403 kvm->bsp_vcpu_id = arg;
2404 mutex_unlock(&kvm->lock);
2405 break;
2406 #endif
2407 #ifdef CONFIG_HAVE_KVM_MSI
2408 case KVM_SIGNAL_MSI: {
2409 struct kvm_msi msi;
2410
2411 r = -EFAULT;
2412 if (copy_from_user(&msi, argp, sizeof msi))
2413 goto out;
2414 r = kvm_send_userspace_msi(kvm, &msi);
2415 break;
2416 }
2417 #endif
2418 #ifdef __KVM_HAVE_IRQ_LINE
2419 case KVM_IRQ_LINE_STATUS:
2420 case KVM_IRQ_LINE: {
2421 struct kvm_irq_level irq_event;
2422
2423 r = -EFAULT;
2424 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2425 goto out;
2426
2427 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2428 ioctl == KVM_IRQ_LINE_STATUS);
2429 if (r)
2430 goto out;
2431
2432 r = -EFAULT;
2433 if (ioctl == KVM_IRQ_LINE_STATUS) {
2434 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2435 goto out;
2436 }
2437
2438 r = 0;
2439 break;
2440 }
2441 #endif
2442 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2443 case KVM_SET_GSI_ROUTING: {
2444 struct kvm_irq_routing routing;
2445 struct kvm_irq_routing __user *urouting;
2446 struct kvm_irq_routing_entry *entries;
2447
2448 r = -EFAULT;
2449 if (copy_from_user(&routing, argp, sizeof(routing)))
2450 goto out;
2451 r = -EINVAL;
2452 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2453 goto out;
2454 if (routing.flags)
2455 goto out;
2456 r = -ENOMEM;
2457 entries = vmalloc(routing.nr * sizeof(*entries));
2458 if (!entries)
2459 goto out;
2460 r = -EFAULT;
2461 urouting = argp;
2462 if (copy_from_user(entries, urouting->entries,
2463 routing.nr * sizeof(*entries)))
2464 goto out_free_irq_routing;
2465 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2466 routing.flags);
2467 out_free_irq_routing:
2468 vfree(entries);
2469 break;
2470 }
2471 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2472 case KVM_CREATE_DEVICE: {
2473 struct kvm_create_device cd;
2474
2475 r = -EFAULT;
2476 if (copy_from_user(&cd, argp, sizeof(cd)))
2477 goto out;
2478
2479 r = kvm_ioctl_create_device(kvm, &cd);
2480 if (r)
2481 goto out;
2482
2483 r = -EFAULT;
2484 if (copy_to_user(argp, &cd, sizeof(cd)))
2485 goto out;
2486
2487 r = 0;
2488 break;
2489 }
2490 default:
2491 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2492 if (r == -ENOTTY)
2493 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2494 }
2495 out:
2496 return r;
2497 }
2498
2499 #ifdef CONFIG_COMPAT
2500 struct compat_kvm_dirty_log {
2501 __u32 slot;
2502 __u32 padding1;
2503 union {
2504 compat_uptr_t dirty_bitmap; /* one bit per page */
2505 __u64 padding2;
2506 };
2507 };
2508
2509 static long kvm_vm_compat_ioctl(struct file *filp,
2510 unsigned int ioctl, unsigned long arg)
2511 {
2512 struct kvm *kvm = filp->private_data;
2513 int r;
2514
2515 if (kvm->mm != current->mm)
2516 return -EIO;
2517 switch (ioctl) {
2518 case KVM_GET_DIRTY_LOG: {
2519 struct compat_kvm_dirty_log compat_log;
2520 struct kvm_dirty_log log;
2521
2522 r = -EFAULT;
2523 if (copy_from_user(&compat_log, (void __user *)arg,
2524 sizeof(compat_log)))
2525 goto out;
2526 log.slot = compat_log.slot;
2527 log.padding1 = compat_log.padding1;
2528 log.padding2 = compat_log.padding2;
2529 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2530
2531 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2532 break;
2533 }
2534 default:
2535 r = kvm_vm_ioctl(filp, ioctl, arg);
2536 }
2537
2538 out:
2539 return r;
2540 }
2541 #endif
2542
2543 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2544 {
2545 struct page *page[1];
2546 unsigned long addr;
2547 int npages;
2548 gfn_t gfn = vmf->pgoff;
2549 struct kvm *kvm = vma->vm_file->private_data;
2550
2551 addr = gfn_to_hva(kvm, gfn);
2552 if (kvm_is_error_hva(addr))
2553 return VM_FAULT_SIGBUS;
2554
2555 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2556 NULL);
2557 if (unlikely(npages != 1))
2558 return VM_FAULT_SIGBUS;
2559
2560 vmf->page = page[0];
2561 return 0;
2562 }
2563
2564 static const struct vm_operations_struct kvm_vm_vm_ops = {
2565 .fault = kvm_vm_fault,
2566 };
2567
2568 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2569 {
2570 vma->vm_ops = &kvm_vm_vm_ops;
2571 return 0;
2572 }
2573
2574 static struct file_operations kvm_vm_fops = {
2575 .release = kvm_vm_release,
2576 .unlocked_ioctl = kvm_vm_ioctl,
2577 #ifdef CONFIG_COMPAT
2578 .compat_ioctl = kvm_vm_compat_ioctl,
2579 #endif
2580 .mmap = kvm_vm_mmap,
2581 .llseek = noop_llseek,
2582 };
2583
2584 static int kvm_dev_ioctl_create_vm(unsigned long type)
2585 {
2586 int r;
2587 struct kvm *kvm;
2588
2589 kvm = kvm_create_vm(type);
2590 if (IS_ERR(kvm))
2591 return PTR_ERR(kvm);
2592 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2593 r = kvm_coalesced_mmio_init(kvm);
2594 if (r < 0) {
2595 kvm_put_kvm(kvm);
2596 return r;
2597 }
2598 #endif
2599 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2600 if (r < 0)
2601 kvm_put_kvm(kvm);
2602
2603 return r;
2604 }
2605
2606 static long kvm_dev_ioctl_check_extension_generic(long arg)
2607 {
2608 switch (arg) {
2609 case KVM_CAP_USER_MEMORY:
2610 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2611 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2612 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2613 case KVM_CAP_SET_BOOT_CPU_ID:
2614 #endif
2615 case KVM_CAP_INTERNAL_ERROR_DATA:
2616 #ifdef CONFIG_HAVE_KVM_MSI
2617 case KVM_CAP_SIGNAL_MSI:
2618 #endif
2619 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2620 case KVM_CAP_IRQFD_RESAMPLE:
2621 #endif
2622 return 1;
2623 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2624 case KVM_CAP_IRQ_ROUTING:
2625 return KVM_MAX_IRQ_ROUTES;
2626 #endif
2627 default:
2628 break;
2629 }
2630 return kvm_dev_ioctl_check_extension(arg);
2631 }
2632
2633 static long kvm_dev_ioctl(struct file *filp,
2634 unsigned int ioctl, unsigned long arg)
2635 {
2636 long r = -EINVAL;
2637
2638 switch (ioctl) {
2639 case KVM_GET_API_VERSION:
2640 r = -EINVAL;
2641 if (arg)
2642 goto out;
2643 r = KVM_API_VERSION;
2644 break;
2645 case KVM_CREATE_VM:
2646 r = kvm_dev_ioctl_create_vm(arg);
2647 break;
2648 case KVM_CHECK_EXTENSION:
2649 r = kvm_dev_ioctl_check_extension_generic(arg);
2650 break;
2651 case KVM_GET_VCPU_MMAP_SIZE:
2652 r = -EINVAL;
2653 if (arg)
2654 goto out;
2655 r = PAGE_SIZE; /* struct kvm_run */
2656 #ifdef CONFIG_X86
2657 r += PAGE_SIZE; /* pio data page */
2658 #endif
2659 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2660 r += PAGE_SIZE; /* coalesced mmio ring page */
2661 #endif
2662 break;
2663 case KVM_TRACE_ENABLE:
2664 case KVM_TRACE_PAUSE:
2665 case KVM_TRACE_DISABLE:
2666 r = -EOPNOTSUPP;
2667 break;
2668 default:
2669 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2670 }
2671 out:
2672 return r;
2673 }
2674
2675 static struct file_operations kvm_chardev_ops = {
2676 .unlocked_ioctl = kvm_dev_ioctl,
2677 .compat_ioctl = kvm_dev_ioctl,
2678 .llseek = noop_llseek,
2679 };
2680
2681 static struct miscdevice kvm_dev = {
2682 KVM_MINOR,
2683 "kvm",
2684 &kvm_chardev_ops,
2685 };
2686
2687 static void hardware_enable_nolock(void *junk)
2688 {
2689 int cpu = raw_smp_processor_id();
2690 int r;
2691
2692 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2693 return;
2694
2695 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2696
2697 r = kvm_arch_hardware_enable(NULL);
2698
2699 if (r) {
2700 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2701 atomic_inc(&hardware_enable_failed);
2702 printk(KERN_INFO "kvm: enabling virtualization on "
2703 "CPU%d failed\n", cpu);
2704 }
2705 }
2706
2707 static void hardware_enable(void *junk)
2708 {
2709 raw_spin_lock(&kvm_lock);
2710 hardware_enable_nolock(junk);
2711 raw_spin_unlock(&kvm_lock);
2712 }
2713
2714 static void hardware_disable_nolock(void *junk)
2715 {
2716 int cpu = raw_smp_processor_id();
2717
2718 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2719 return;
2720 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2721 kvm_arch_hardware_disable(NULL);
2722 }
2723
2724 static void hardware_disable(void *junk)
2725 {
2726 raw_spin_lock(&kvm_lock);
2727 hardware_disable_nolock(junk);
2728 raw_spin_unlock(&kvm_lock);
2729 }
2730
2731 static void hardware_disable_all_nolock(void)
2732 {
2733 BUG_ON(!kvm_usage_count);
2734
2735 kvm_usage_count--;
2736 if (!kvm_usage_count)
2737 on_each_cpu(hardware_disable_nolock, NULL, 1);
2738 }
2739
2740 static void hardware_disable_all(void)
2741 {
2742 raw_spin_lock(&kvm_lock);
2743 hardware_disable_all_nolock();
2744 raw_spin_unlock(&kvm_lock);
2745 }
2746
2747 static int hardware_enable_all(void)
2748 {
2749 int r = 0;
2750
2751 raw_spin_lock(&kvm_lock);
2752
2753 kvm_usage_count++;
2754 if (kvm_usage_count == 1) {
2755 atomic_set(&hardware_enable_failed, 0);
2756 on_each_cpu(hardware_enable_nolock, NULL, 1);
2757
2758 if (atomic_read(&hardware_enable_failed)) {
2759 hardware_disable_all_nolock();
2760 r = -EBUSY;
2761 }
2762 }
2763
2764 raw_spin_unlock(&kvm_lock);
2765
2766 return r;
2767 }
2768
2769 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2770 void *v)
2771 {
2772 int cpu = (long)v;
2773
2774 if (!kvm_usage_count)
2775 return NOTIFY_OK;
2776
2777 val &= ~CPU_TASKS_FROZEN;
2778 switch (val) {
2779 case CPU_DYING:
2780 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2781 cpu);
2782 hardware_disable(NULL);
2783 break;
2784 case CPU_STARTING:
2785 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2786 cpu);
2787 hardware_enable(NULL);
2788 break;
2789 }
2790 return NOTIFY_OK;
2791 }
2792
2793 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2794 void *v)
2795 {
2796 /*
2797 * Some (well, at least mine) BIOSes hang on reboot if
2798 * in vmx root mode.
2799 *
2800 * And Intel TXT required VMX off for all cpu when system shutdown.
2801 */
2802 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2803 kvm_rebooting = true;
2804 on_each_cpu(hardware_disable_nolock, NULL, 1);
2805 return NOTIFY_OK;
2806 }
2807
2808 static struct notifier_block kvm_reboot_notifier = {
2809 .notifier_call = kvm_reboot,
2810 .priority = 0,
2811 };
2812
2813 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2814 {
2815 int i;
2816
2817 for (i = 0; i < bus->dev_count; i++) {
2818 struct kvm_io_device *pos = bus->range[i].dev;
2819
2820 kvm_iodevice_destructor(pos);
2821 }
2822 kfree(bus);
2823 }
2824
2825 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2826 {
2827 const struct kvm_io_range *r1 = p1;
2828 const struct kvm_io_range *r2 = p2;
2829
2830 if (r1->addr < r2->addr)
2831 return -1;
2832 if (r1->addr + r1->len > r2->addr + r2->len)
2833 return 1;
2834 return 0;
2835 }
2836
2837 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2838 gpa_t addr, int len)
2839 {
2840 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2841 .addr = addr,
2842 .len = len,
2843 .dev = dev,
2844 };
2845
2846 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2847 kvm_io_bus_sort_cmp, NULL);
2848
2849 return 0;
2850 }
2851
2852 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2853 gpa_t addr, int len)
2854 {
2855 struct kvm_io_range *range, key;
2856 int off;
2857
2858 key = (struct kvm_io_range) {
2859 .addr = addr,
2860 .len = len,
2861 };
2862
2863 range = bsearch(&key, bus->range, bus->dev_count,
2864 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2865 if (range == NULL)
2866 return -ENOENT;
2867
2868 off = range - bus->range;
2869
2870 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2871 off--;
2872
2873 return off;
2874 }
2875
2876 /* kvm_io_bus_write - called under kvm->slots_lock */
2877 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 int len, const void *val)
2879 {
2880 int idx;
2881 struct kvm_io_bus *bus;
2882 struct kvm_io_range range;
2883
2884 range = (struct kvm_io_range) {
2885 .addr = addr,
2886 .len = len,
2887 };
2888
2889 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2890 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2891 if (idx < 0)
2892 return -EOPNOTSUPP;
2893
2894 while (idx < bus->dev_count &&
2895 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2896 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2897 return 0;
2898 idx++;
2899 }
2900
2901 return -EOPNOTSUPP;
2902 }
2903
2904 /* kvm_io_bus_read - called under kvm->slots_lock */
2905 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2906 int len, void *val)
2907 {
2908 int idx;
2909 struct kvm_io_bus *bus;
2910 struct kvm_io_range range;
2911
2912 range = (struct kvm_io_range) {
2913 .addr = addr,
2914 .len = len,
2915 };
2916
2917 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2918 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2919 if (idx < 0)
2920 return -EOPNOTSUPP;
2921
2922 while (idx < bus->dev_count &&
2923 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2924 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2925 return 0;
2926 idx++;
2927 }
2928
2929 return -EOPNOTSUPP;
2930 }
2931
2932 /* Caller must hold slots_lock. */
2933 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2934 int len, struct kvm_io_device *dev)
2935 {
2936 struct kvm_io_bus *new_bus, *bus;
2937
2938 bus = kvm->buses[bus_idx];
2939 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2940 return -ENOSPC;
2941
2942 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2943 sizeof(struct kvm_io_range)), GFP_KERNEL);
2944 if (!new_bus)
2945 return -ENOMEM;
2946 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2947 sizeof(struct kvm_io_range)));
2948 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2949 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2950 synchronize_srcu_expedited(&kvm->srcu);
2951 kfree(bus);
2952
2953 return 0;
2954 }
2955
2956 /* Caller must hold slots_lock. */
2957 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2958 struct kvm_io_device *dev)
2959 {
2960 int i, r;
2961 struct kvm_io_bus *new_bus, *bus;
2962
2963 bus = kvm->buses[bus_idx];
2964
2965 /*
2966 * It's possible the bus being released before hand. If so,
2967 * we're done here.
2968 */
2969 if (!bus)
2970 return 0;
2971
2972 r = -ENOENT;
2973 for (i = 0; i < bus->dev_count; i++)
2974 if (bus->range[i].dev == dev) {
2975 r = 0;
2976 break;
2977 }
2978
2979 if (r)
2980 return r;
2981
2982 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2983 sizeof(struct kvm_io_range)), GFP_KERNEL);
2984 if (!new_bus)
2985 return -ENOMEM;
2986
2987 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2988 new_bus->dev_count--;
2989 memcpy(new_bus->range + i, bus->range + i + 1,
2990 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2991
2992 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2993 synchronize_srcu_expedited(&kvm->srcu);
2994 kfree(bus);
2995 return r;
2996 }
2997
2998 static struct notifier_block kvm_cpu_notifier = {
2999 .notifier_call = kvm_cpu_hotplug,
3000 };
3001
3002 static int vm_stat_get(void *_offset, u64 *val)
3003 {
3004 unsigned offset = (long)_offset;
3005 struct kvm *kvm;
3006
3007 *val = 0;
3008 raw_spin_lock(&kvm_lock);
3009 list_for_each_entry(kvm, &vm_list, vm_list)
3010 *val += *(u32 *)((void *)kvm + offset);
3011 raw_spin_unlock(&kvm_lock);
3012 return 0;
3013 }
3014
3015 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3016
3017 static int vcpu_stat_get(void *_offset, u64 *val)
3018 {
3019 unsigned offset = (long)_offset;
3020 struct kvm *kvm;
3021 struct kvm_vcpu *vcpu;
3022 int i;
3023
3024 *val = 0;
3025 raw_spin_lock(&kvm_lock);
3026 list_for_each_entry(kvm, &vm_list, vm_list)
3027 kvm_for_each_vcpu(i, vcpu, kvm)
3028 *val += *(u32 *)((void *)vcpu + offset);
3029
3030 raw_spin_unlock(&kvm_lock);
3031 return 0;
3032 }
3033
3034 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3035
3036 static const struct file_operations *stat_fops[] = {
3037 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3038 [KVM_STAT_VM] = &vm_stat_fops,
3039 };
3040
3041 static int kvm_init_debug(void)
3042 {
3043 int r = -EFAULT;
3044 struct kvm_stats_debugfs_item *p;
3045
3046 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3047 if (kvm_debugfs_dir == NULL)
3048 goto out;
3049
3050 for (p = debugfs_entries; p->name; ++p) {
3051 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3052 (void *)(long)p->offset,
3053 stat_fops[p->kind]);
3054 if (p->dentry == NULL)
3055 goto out_dir;
3056 }
3057
3058 return 0;
3059
3060 out_dir:
3061 debugfs_remove_recursive(kvm_debugfs_dir);
3062 out:
3063 return r;
3064 }
3065
3066 static void kvm_exit_debug(void)
3067 {
3068 struct kvm_stats_debugfs_item *p;
3069
3070 for (p = debugfs_entries; p->name; ++p)
3071 debugfs_remove(p->dentry);
3072 debugfs_remove(kvm_debugfs_dir);
3073 }
3074
3075 static int kvm_suspend(void)
3076 {
3077 if (kvm_usage_count)
3078 hardware_disable_nolock(NULL);
3079 return 0;
3080 }
3081
3082 static void kvm_resume(void)
3083 {
3084 if (kvm_usage_count) {
3085 WARN_ON(raw_spin_is_locked(&kvm_lock));
3086 hardware_enable_nolock(NULL);
3087 }
3088 }
3089
3090 static struct syscore_ops kvm_syscore_ops = {
3091 .suspend = kvm_suspend,
3092 .resume = kvm_resume,
3093 };
3094
3095 static inline
3096 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3097 {
3098 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3099 }
3100
3101 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3102 {
3103 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3104 if (vcpu->preempted)
3105 vcpu->preempted = false;
3106
3107 kvm_arch_vcpu_load(vcpu, cpu);
3108 }
3109
3110 static void kvm_sched_out(struct preempt_notifier *pn,
3111 struct task_struct *next)
3112 {
3113 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3114
3115 if (current->state == TASK_RUNNING)
3116 vcpu->preempted = true;
3117 kvm_arch_vcpu_put(vcpu);
3118 }
3119
3120 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3121 struct module *module)
3122 {
3123 int r;
3124 int cpu;
3125
3126 r = kvm_arch_init(opaque);
3127 if (r)
3128 goto out_fail;
3129
3130 /*
3131 * kvm_arch_init makes sure there's at most one caller
3132 * for architectures that support multiple implementations,
3133 * like intel and amd on x86.
3134 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3135 * conflicts in case kvm is already setup for another implementation.
3136 */
3137 r = kvm_irqfd_init();
3138 if (r)
3139 goto out_irqfd;
3140
3141 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3142 r = -ENOMEM;
3143 goto out_free_0;
3144 }
3145
3146 r = kvm_arch_hardware_setup();
3147 if (r < 0)
3148 goto out_free_0a;
3149
3150 for_each_online_cpu(cpu) {
3151 smp_call_function_single(cpu,
3152 kvm_arch_check_processor_compat,
3153 &r, 1);
3154 if (r < 0)
3155 goto out_free_1;
3156 }
3157
3158 r = register_cpu_notifier(&kvm_cpu_notifier);
3159 if (r)
3160 goto out_free_2;
3161 register_reboot_notifier(&kvm_reboot_notifier);
3162
3163 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3164 if (!vcpu_align)
3165 vcpu_align = __alignof__(struct kvm_vcpu);
3166 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3167 0, NULL);
3168 if (!kvm_vcpu_cache) {
3169 r = -ENOMEM;
3170 goto out_free_3;
3171 }
3172
3173 r = kvm_async_pf_init();
3174 if (r)
3175 goto out_free;
3176
3177 kvm_chardev_ops.owner = module;
3178 kvm_vm_fops.owner = module;
3179 kvm_vcpu_fops.owner = module;
3180
3181 r = misc_register(&kvm_dev);
3182 if (r) {
3183 printk(KERN_ERR "kvm: misc device register failed\n");
3184 goto out_unreg;
3185 }
3186
3187 register_syscore_ops(&kvm_syscore_ops);
3188
3189 kvm_preempt_ops.sched_in = kvm_sched_in;
3190 kvm_preempt_ops.sched_out = kvm_sched_out;
3191
3192 r = kvm_init_debug();
3193 if (r) {
3194 printk(KERN_ERR "kvm: create debugfs files failed\n");
3195 goto out_undebugfs;
3196 }
3197
3198 return 0;
3199
3200 out_undebugfs:
3201 unregister_syscore_ops(&kvm_syscore_ops);
3202 out_unreg:
3203 kvm_async_pf_deinit();
3204 out_free:
3205 kmem_cache_destroy(kvm_vcpu_cache);
3206 out_free_3:
3207 unregister_reboot_notifier(&kvm_reboot_notifier);
3208 unregister_cpu_notifier(&kvm_cpu_notifier);
3209 out_free_2:
3210 out_free_1:
3211 kvm_arch_hardware_unsetup();
3212 out_free_0a:
3213 free_cpumask_var(cpus_hardware_enabled);
3214 out_free_0:
3215 kvm_irqfd_exit();
3216 out_irqfd:
3217 kvm_arch_exit();
3218 out_fail:
3219 return r;
3220 }
3221 EXPORT_SYMBOL_GPL(kvm_init);
3222
3223 void kvm_exit(void)
3224 {
3225 kvm_exit_debug();
3226 misc_deregister(&kvm_dev);
3227 kmem_cache_destroy(kvm_vcpu_cache);
3228 kvm_async_pf_deinit();
3229 unregister_syscore_ops(&kvm_syscore_ops);
3230 unregister_reboot_notifier(&kvm_reboot_notifier);
3231 unregister_cpu_notifier(&kvm_cpu_notifier);
3232 on_each_cpu(hardware_disable_nolock, NULL, 1);
3233 kvm_arch_hardware_unsetup();
3234 kvm_arch_exit();
3235 kvm_irqfd_exit();
3236 free_cpumask_var(cpus_hardware_enabled);
3237 }
3238 EXPORT_SYMBOL_GPL(kvm_exit);