ACPI: Set hotplug _OST support bit to _OSC
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 long dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
298
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, address);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long address)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 int young, idx;
398
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401 young = kvm_test_age_hva(kvm, address);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
404
405 return young;
406 }
407
408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 struct mm_struct *mm)
410 {
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int idx;
413
414 idx = srcu_read_lock(&kvm->srcu);
415 kvm_arch_flush_shadow(kvm);
416 srcu_read_unlock(&kvm->srcu, idx);
417 }
418
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 .invalidate_page = kvm_mmu_notifier_invalidate_page,
421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
424 .test_young = kvm_mmu_notifier_test_young,
425 .change_pte = kvm_mmu_notifier_change_pte,
426 .release = kvm_mmu_notifier_release,
427 };
428
429 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 {
431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 }
434
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 return 0;
440 }
441
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443
444 static void kvm_init_memslots_id(struct kvm *kvm)
445 {
446 int i;
447 struct kvm_memslots *slots = kvm->memslots;
448
449 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
450 slots->id_to_index[i] = slots->memslots[i].id = i;
451 }
452
453 static struct kvm *kvm_create_vm(unsigned long type)
454 {
455 int r, i;
456 struct kvm *kvm = kvm_arch_alloc_vm();
457
458 if (!kvm)
459 return ERR_PTR(-ENOMEM);
460
461 r = kvm_arch_init_vm(kvm, type);
462 if (r)
463 goto out_err_nodisable;
464
465 r = hardware_enable_all();
466 if (r)
467 goto out_err_nodisable;
468
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
472 #endif
473
474 r = -ENOMEM;
475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476 if (!kvm->memslots)
477 goto out_err_nosrcu;
478 kvm_init_memslots_id(kvm);
479 if (init_srcu_struct(&kvm->srcu))
480 goto out_err_nosrcu;
481 for (i = 0; i < KVM_NR_BUSES; i++) {
482 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
483 GFP_KERNEL);
484 if (!kvm->buses[i])
485 goto out_err;
486 }
487
488 spin_lock_init(&kvm->mmu_lock);
489 kvm->mm = current->mm;
490 atomic_inc(&kvm->mm->mm_count);
491 kvm_eventfd_init(kvm);
492 mutex_init(&kvm->lock);
493 mutex_init(&kvm->irq_lock);
494 mutex_init(&kvm->slots_lock);
495 atomic_set(&kvm->users_count, 1);
496
497 r = kvm_init_mmu_notifier(kvm);
498 if (r)
499 goto out_err;
500
501 raw_spin_lock(&kvm_lock);
502 list_add(&kvm->vm_list, &vm_list);
503 raw_spin_unlock(&kvm_lock);
504
505 return kvm;
506
507 out_err:
508 cleanup_srcu_struct(&kvm->srcu);
509 out_err_nosrcu:
510 hardware_disable_all();
511 out_err_nodisable:
512 for (i = 0; i < KVM_NR_BUSES; i++)
513 kfree(kvm->buses[i]);
514 kfree(kvm->memslots);
515 kvm_arch_free_vm(kvm);
516 return ERR_PTR(r);
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521 if (!memslot->dirty_bitmap)
522 return;
523
524 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
525 vfree(memslot->dirty_bitmap);
526 else
527 kfree(memslot->dirty_bitmap);
528
529 memslot->dirty_bitmap = NULL;
530 }
531
532 /*
533 * Free any memory in @free but not in @dont.
534 */
535 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
536 struct kvm_memory_slot *dont)
537 {
538 if (!dont || free->rmap != dont->rmap)
539 vfree(free->rmap);
540
541 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
542 kvm_destroy_dirty_bitmap(free);
543
544 kvm_arch_free_memslot(free, dont);
545
546 free->npages = 0;
547 free->rmap = NULL;
548 }
549
550 void kvm_free_physmem(struct kvm *kvm)
551 {
552 struct kvm_memslots *slots = kvm->memslots;
553 struct kvm_memory_slot *memslot;
554
555 kvm_for_each_memslot(memslot, slots)
556 kvm_free_physmem_slot(memslot, NULL);
557
558 kfree(kvm->memslots);
559 }
560
561 static void kvm_destroy_vm(struct kvm *kvm)
562 {
563 int i;
564 struct mm_struct *mm = kvm->mm;
565
566 kvm_arch_sync_events(kvm);
567 raw_spin_lock(&kvm_lock);
568 list_del(&kvm->vm_list);
569 raw_spin_unlock(&kvm_lock);
570 kvm_free_irq_routing(kvm);
571 for (i = 0; i < KVM_NR_BUSES; i++)
572 kvm_io_bus_destroy(kvm->buses[i]);
573 kvm_coalesced_mmio_free(kvm);
574 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
575 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
576 #else
577 kvm_arch_flush_shadow(kvm);
578 #endif
579 kvm_arch_destroy_vm(kvm);
580 kvm_free_physmem(kvm);
581 cleanup_srcu_struct(&kvm->srcu);
582 kvm_arch_free_vm(kvm);
583 hardware_disable_all();
584 mmdrop(mm);
585 }
586
587 void kvm_get_kvm(struct kvm *kvm)
588 {
589 atomic_inc(&kvm->users_count);
590 }
591 EXPORT_SYMBOL_GPL(kvm_get_kvm);
592
593 void kvm_put_kvm(struct kvm *kvm)
594 {
595 if (atomic_dec_and_test(&kvm->users_count))
596 kvm_destroy_vm(kvm);
597 }
598 EXPORT_SYMBOL_GPL(kvm_put_kvm);
599
600
601 static int kvm_vm_release(struct inode *inode, struct file *filp)
602 {
603 struct kvm *kvm = filp->private_data;
604
605 kvm_irqfd_release(kvm);
606
607 kvm_put_kvm(kvm);
608 return 0;
609 }
610
611 /*
612 * Allocation size is twice as large as the actual dirty bitmap size.
613 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
614 */
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
616 {
617 #ifndef CONFIG_S390
618 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
619
620 if (dirty_bytes > PAGE_SIZE)
621 memslot->dirty_bitmap = vzalloc(dirty_bytes);
622 else
623 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
624
625 if (!memslot->dirty_bitmap)
626 return -ENOMEM;
627
628 #endif /* !CONFIG_S390 */
629 return 0;
630 }
631
632 static int cmp_memslot(const void *slot1, const void *slot2)
633 {
634 struct kvm_memory_slot *s1, *s2;
635
636 s1 = (struct kvm_memory_slot *)slot1;
637 s2 = (struct kvm_memory_slot *)slot2;
638
639 if (s1->npages < s2->npages)
640 return 1;
641 if (s1->npages > s2->npages)
642 return -1;
643
644 return 0;
645 }
646
647 /*
648 * Sort the memslots base on its size, so the larger slots
649 * will get better fit.
650 */
651 static void sort_memslots(struct kvm_memslots *slots)
652 {
653 int i;
654
655 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
656 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
657
658 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
659 slots->id_to_index[slots->memslots[i].id] = i;
660 }
661
662 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
663 {
664 if (new) {
665 int id = new->id;
666 struct kvm_memory_slot *old = id_to_memslot(slots, id);
667 unsigned long npages = old->npages;
668
669 *old = *new;
670 if (new->npages != npages)
671 sort_memslots(slots);
672 }
673
674 slots->generation++;
675 }
676
677 /*
678 * Allocate some memory and give it an address in the guest physical address
679 * space.
680 *
681 * Discontiguous memory is allowed, mostly for framebuffers.
682 *
683 * Must be called holding mmap_sem for write.
684 */
685 int __kvm_set_memory_region(struct kvm *kvm,
686 struct kvm_userspace_memory_region *mem,
687 int user_alloc)
688 {
689 int r;
690 gfn_t base_gfn;
691 unsigned long npages;
692 unsigned long i;
693 struct kvm_memory_slot *memslot;
694 struct kvm_memory_slot old, new;
695 struct kvm_memslots *slots, *old_memslots;
696
697 r = -EINVAL;
698 /* General sanity checks */
699 if (mem->memory_size & (PAGE_SIZE - 1))
700 goto out;
701 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
702 goto out;
703 /* We can read the guest memory with __xxx_user() later on. */
704 if (user_alloc &&
705 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
706 !access_ok(VERIFY_WRITE,
707 (void __user *)(unsigned long)mem->userspace_addr,
708 mem->memory_size)))
709 goto out;
710 if (mem->slot >= KVM_MEM_SLOTS_NUM)
711 goto out;
712 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
713 goto out;
714
715 memslot = id_to_memslot(kvm->memslots, mem->slot);
716 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
717 npages = mem->memory_size >> PAGE_SHIFT;
718
719 r = -EINVAL;
720 if (npages > KVM_MEM_MAX_NR_PAGES)
721 goto out;
722
723 if (!npages)
724 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
725
726 new = old = *memslot;
727
728 new.id = mem->slot;
729 new.base_gfn = base_gfn;
730 new.npages = npages;
731 new.flags = mem->flags;
732
733 /* Disallow changing a memory slot's size. */
734 r = -EINVAL;
735 if (npages && old.npages && npages != old.npages)
736 goto out_free;
737
738 /* Check for overlaps */
739 r = -EEXIST;
740 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
741 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
742
743 if (s == memslot || !s->npages)
744 continue;
745 if (!((base_gfn + npages <= s->base_gfn) ||
746 (base_gfn >= s->base_gfn + s->npages)))
747 goto out_free;
748 }
749
750 /* Free page dirty bitmap if unneeded */
751 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
752 new.dirty_bitmap = NULL;
753
754 r = -ENOMEM;
755
756 /* Allocate if a slot is being created */
757 if (npages && !old.npages) {
758 new.user_alloc = user_alloc;
759 new.userspace_addr = mem->userspace_addr;
760 #ifndef CONFIG_S390
761 new.rmap = vzalloc(npages * sizeof(*new.rmap));
762 if (!new.rmap)
763 goto out_free;
764 #endif /* not defined CONFIG_S390 */
765 if (kvm_arch_create_memslot(&new, npages))
766 goto out_free;
767 }
768
769 /* Allocate page dirty bitmap if needed */
770 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
771 if (kvm_create_dirty_bitmap(&new) < 0)
772 goto out_free;
773 /* destroy any largepage mappings for dirty tracking */
774 }
775
776 if (!npages) {
777 struct kvm_memory_slot *slot;
778
779 r = -ENOMEM;
780 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
781 GFP_KERNEL);
782 if (!slots)
783 goto out_free;
784 slot = id_to_memslot(slots, mem->slot);
785 slot->flags |= KVM_MEMSLOT_INVALID;
786
787 update_memslots(slots, NULL);
788
789 old_memslots = kvm->memslots;
790 rcu_assign_pointer(kvm->memslots, slots);
791 synchronize_srcu_expedited(&kvm->srcu);
792 /* From this point no new shadow pages pointing to a deleted
793 * memslot will be created.
794 *
795 * validation of sp->gfn happens in:
796 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
797 * - kvm_is_visible_gfn (mmu_check_roots)
798 */
799 kvm_arch_flush_shadow(kvm);
800 kfree(old_memslots);
801 }
802
803 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
804 if (r)
805 goto out_free;
806
807 /* map/unmap the pages in iommu page table */
808 if (npages) {
809 r = kvm_iommu_map_pages(kvm, &new);
810 if (r)
811 goto out_free;
812 } else
813 kvm_iommu_unmap_pages(kvm, &old);
814
815 r = -ENOMEM;
816 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
817 GFP_KERNEL);
818 if (!slots)
819 goto out_free;
820
821 /* actual memory is freed via old in kvm_free_physmem_slot below */
822 if (!npages) {
823 new.rmap = NULL;
824 new.dirty_bitmap = NULL;
825 memset(&new.arch, 0, sizeof(new.arch));
826 }
827
828 update_memslots(slots, &new);
829 old_memslots = kvm->memslots;
830 rcu_assign_pointer(kvm->memslots, slots);
831 synchronize_srcu_expedited(&kvm->srcu);
832
833 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
834
835 /*
836 * If the new memory slot is created, we need to clear all
837 * mmio sptes.
838 */
839 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
840 kvm_arch_flush_shadow(kvm);
841
842 kvm_free_physmem_slot(&old, &new);
843 kfree(old_memslots);
844
845 return 0;
846
847 out_free:
848 kvm_free_physmem_slot(&new, &old);
849 out:
850 return r;
851
852 }
853 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
854
855 int kvm_set_memory_region(struct kvm *kvm,
856 struct kvm_userspace_memory_region *mem,
857 int user_alloc)
858 {
859 int r;
860
861 mutex_lock(&kvm->slots_lock);
862 r = __kvm_set_memory_region(kvm, mem, user_alloc);
863 mutex_unlock(&kvm->slots_lock);
864 return r;
865 }
866 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
867
868 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
869 struct
870 kvm_userspace_memory_region *mem,
871 int user_alloc)
872 {
873 if (mem->slot >= KVM_MEMORY_SLOTS)
874 return -EINVAL;
875 return kvm_set_memory_region(kvm, mem, user_alloc);
876 }
877
878 int kvm_get_dirty_log(struct kvm *kvm,
879 struct kvm_dirty_log *log, int *is_dirty)
880 {
881 struct kvm_memory_slot *memslot;
882 int r, i;
883 unsigned long n;
884 unsigned long any = 0;
885
886 r = -EINVAL;
887 if (log->slot >= KVM_MEMORY_SLOTS)
888 goto out;
889
890 memslot = id_to_memslot(kvm->memslots, log->slot);
891 r = -ENOENT;
892 if (!memslot->dirty_bitmap)
893 goto out;
894
895 n = kvm_dirty_bitmap_bytes(memslot);
896
897 for (i = 0; !any && i < n/sizeof(long); ++i)
898 any = memslot->dirty_bitmap[i];
899
900 r = -EFAULT;
901 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
902 goto out;
903
904 if (any)
905 *is_dirty = 1;
906
907 r = 0;
908 out:
909 return r;
910 }
911
912 bool kvm_largepages_enabled(void)
913 {
914 return largepages_enabled;
915 }
916
917 void kvm_disable_largepages(void)
918 {
919 largepages_enabled = false;
920 }
921 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
922
923 int is_error_page(struct page *page)
924 {
925 return page == bad_page || page == hwpoison_page || page == fault_page;
926 }
927 EXPORT_SYMBOL_GPL(is_error_page);
928
929 int is_error_pfn(pfn_t pfn)
930 {
931 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
932 }
933 EXPORT_SYMBOL_GPL(is_error_pfn);
934
935 int is_hwpoison_pfn(pfn_t pfn)
936 {
937 return pfn == hwpoison_pfn;
938 }
939 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
940
941 int is_fault_pfn(pfn_t pfn)
942 {
943 return pfn == fault_pfn;
944 }
945 EXPORT_SYMBOL_GPL(is_fault_pfn);
946
947 int is_noslot_pfn(pfn_t pfn)
948 {
949 return pfn == bad_pfn;
950 }
951 EXPORT_SYMBOL_GPL(is_noslot_pfn);
952
953 int is_invalid_pfn(pfn_t pfn)
954 {
955 return pfn == hwpoison_pfn || pfn == fault_pfn;
956 }
957 EXPORT_SYMBOL_GPL(is_invalid_pfn);
958
959 static inline unsigned long bad_hva(void)
960 {
961 return PAGE_OFFSET;
962 }
963
964 int kvm_is_error_hva(unsigned long addr)
965 {
966 return addr == bad_hva();
967 }
968 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
969
970 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
971 {
972 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
973 }
974 EXPORT_SYMBOL_GPL(gfn_to_memslot);
975
976 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
977 {
978 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
979
980 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
981 memslot->flags & KVM_MEMSLOT_INVALID)
982 return 0;
983
984 return 1;
985 }
986 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
987
988 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
989 {
990 struct vm_area_struct *vma;
991 unsigned long addr, size;
992
993 size = PAGE_SIZE;
994
995 addr = gfn_to_hva(kvm, gfn);
996 if (kvm_is_error_hva(addr))
997 return PAGE_SIZE;
998
999 down_read(&current->mm->mmap_sem);
1000 vma = find_vma(current->mm, addr);
1001 if (!vma)
1002 goto out;
1003
1004 size = vma_kernel_pagesize(vma);
1005
1006 out:
1007 up_read(&current->mm->mmap_sem);
1008
1009 return size;
1010 }
1011
1012 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013 gfn_t *nr_pages)
1014 {
1015 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016 return bad_hva();
1017
1018 if (nr_pages)
1019 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1020
1021 return gfn_to_hva_memslot(slot, gfn);
1022 }
1023
1024 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1025 {
1026 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1027 }
1028 EXPORT_SYMBOL_GPL(gfn_to_hva);
1029
1030 static pfn_t get_fault_pfn(void)
1031 {
1032 get_page(fault_page);
1033 return fault_pfn;
1034 }
1035
1036 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1037 unsigned long start, int write, struct page **page)
1038 {
1039 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1040
1041 if (write)
1042 flags |= FOLL_WRITE;
1043
1044 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1045 }
1046
1047 static inline int check_user_page_hwpoison(unsigned long addr)
1048 {
1049 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1050
1051 rc = __get_user_pages(current, current->mm, addr, 1,
1052 flags, NULL, NULL, NULL);
1053 return rc == -EHWPOISON;
1054 }
1055
1056 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1057 bool *async, bool write_fault, bool *writable)
1058 {
1059 struct page *page[1];
1060 int npages = 0;
1061 pfn_t pfn;
1062
1063 /* we can do it either atomically or asynchronously, not both */
1064 BUG_ON(atomic && async);
1065
1066 BUG_ON(!write_fault && !writable);
1067
1068 if (writable)
1069 *writable = true;
1070
1071 if (atomic || async)
1072 npages = __get_user_pages_fast(addr, 1, 1, page);
1073
1074 if (unlikely(npages != 1) && !atomic) {
1075 might_sleep();
1076
1077 if (writable)
1078 *writable = write_fault;
1079
1080 if (async) {
1081 down_read(&current->mm->mmap_sem);
1082 npages = get_user_page_nowait(current, current->mm,
1083 addr, write_fault, page);
1084 up_read(&current->mm->mmap_sem);
1085 } else
1086 npages = get_user_pages_fast(addr, 1, write_fault,
1087 page);
1088
1089 /* map read fault as writable if possible */
1090 if (unlikely(!write_fault) && npages == 1) {
1091 struct page *wpage[1];
1092
1093 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1094 if (npages == 1) {
1095 *writable = true;
1096 put_page(page[0]);
1097 page[0] = wpage[0];
1098 }
1099 npages = 1;
1100 }
1101 }
1102
1103 if (unlikely(npages != 1)) {
1104 struct vm_area_struct *vma;
1105
1106 if (atomic)
1107 return get_fault_pfn();
1108
1109 down_read(&current->mm->mmap_sem);
1110 if (npages == -EHWPOISON ||
1111 (!async && check_user_page_hwpoison(addr))) {
1112 up_read(&current->mm->mmap_sem);
1113 get_page(hwpoison_page);
1114 return page_to_pfn(hwpoison_page);
1115 }
1116
1117 vma = find_vma_intersection(current->mm, addr, addr+1);
1118
1119 if (vma == NULL)
1120 pfn = get_fault_pfn();
1121 else if ((vma->vm_flags & VM_PFNMAP)) {
1122 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1123 vma->vm_pgoff;
1124 BUG_ON(!kvm_is_mmio_pfn(pfn));
1125 } else {
1126 if (async && (vma->vm_flags & VM_WRITE))
1127 *async = true;
1128 pfn = get_fault_pfn();
1129 }
1130 up_read(&current->mm->mmap_sem);
1131 } else
1132 pfn = page_to_pfn(page[0]);
1133
1134 return pfn;
1135 }
1136
1137 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1138 {
1139 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1140 }
1141 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1142
1143 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1144 bool write_fault, bool *writable)
1145 {
1146 unsigned long addr;
1147
1148 if (async)
1149 *async = false;
1150
1151 addr = gfn_to_hva(kvm, gfn);
1152 if (kvm_is_error_hva(addr)) {
1153 get_page(bad_page);
1154 return page_to_pfn(bad_page);
1155 }
1156
1157 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1158 }
1159
1160 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1161 {
1162 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1163 }
1164 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1165
1166 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1167 bool write_fault, bool *writable)
1168 {
1169 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1170 }
1171 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1172
1173 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1174 {
1175 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1176 }
1177 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1178
1179 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1180 bool *writable)
1181 {
1182 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1183 }
1184 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1185
1186 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1187 struct kvm_memory_slot *slot, gfn_t gfn)
1188 {
1189 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1190 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1191 }
1192
1193 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1194 int nr_pages)
1195 {
1196 unsigned long addr;
1197 gfn_t entry;
1198
1199 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1200 if (kvm_is_error_hva(addr))
1201 return -1;
1202
1203 if (entry < nr_pages)
1204 return 0;
1205
1206 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1209
1210 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1211 {
1212 pfn_t pfn;
1213
1214 pfn = gfn_to_pfn(kvm, gfn);
1215 if (!kvm_is_mmio_pfn(pfn))
1216 return pfn_to_page(pfn);
1217
1218 WARN_ON(kvm_is_mmio_pfn(pfn));
1219
1220 get_page(bad_page);
1221 return bad_page;
1222 }
1223
1224 EXPORT_SYMBOL_GPL(gfn_to_page);
1225
1226 void kvm_release_page_clean(struct page *page)
1227 {
1228 kvm_release_pfn_clean(page_to_pfn(page));
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1231
1232 void kvm_release_pfn_clean(pfn_t pfn)
1233 {
1234 if (!kvm_is_mmio_pfn(pfn))
1235 put_page(pfn_to_page(pfn));
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1238
1239 void kvm_release_page_dirty(struct page *page)
1240 {
1241 kvm_release_pfn_dirty(page_to_pfn(page));
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1244
1245 void kvm_release_pfn_dirty(pfn_t pfn)
1246 {
1247 kvm_set_pfn_dirty(pfn);
1248 kvm_release_pfn_clean(pfn);
1249 }
1250 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1251
1252 void kvm_set_page_dirty(struct page *page)
1253 {
1254 kvm_set_pfn_dirty(page_to_pfn(page));
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1257
1258 void kvm_set_pfn_dirty(pfn_t pfn)
1259 {
1260 if (!kvm_is_mmio_pfn(pfn)) {
1261 struct page *page = pfn_to_page(pfn);
1262 if (!PageReserved(page))
1263 SetPageDirty(page);
1264 }
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1267
1268 void kvm_set_pfn_accessed(pfn_t pfn)
1269 {
1270 if (!kvm_is_mmio_pfn(pfn))
1271 mark_page_accessed(pfn_to_page(pfn));
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1274
1275 void kvm_get_pfn(pfn_t pfn)
1276 {
1277 if (!kvm_is_mmio_pfn(pfn))
1278 get_page(pfn_to_page(pfn));
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1281
1282 static int next_segment(unsigned long len, int offset)
1283 {
1284 if (len > PAGE_SIZE - offset)
1285 return PAGE_SIZE - offset;
1286 else
1287 return len;
1288 }
1289
1290 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291 int len)
1292 {
1293 int r;
1294 unsigned long addr;
1295
1296 addr = gfn_to_hva(kvm, gfn);
1297 if (kvm_is_error_hva(addr))
1298 return -EFAULT;
1299 r = __copy_from_user(data, (void __user *)addr + offset, len);
1300 if (r)
1301 return -EFAULT;
1302 return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1305
1306 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1307 {
1308 gfn_t gfn = gpa >> PAGE_SHIFT;
1309 int seg;
1310 int offset = offset_in_page(gpa);
1311 int ret;
1312
1313 while ((seg = next_segment(len, offset)) != 0) {
1314 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1315 if (ret < 0)
1316 return ret;
1317 offset = 0;
1318 len -= seg;
1319 data += seg;
1320 ++gfn;
1321 }
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_read_guest);
1325
1326 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1327 unsigned long len)
1328 {
1329 int r;
1330 unsigned long addr;
1331 gfn_t gfn = gpa >> PAGE_SHIFT;
1332 int offset = offset_in_page(gpa);
1333
1334 addr = gfn_to_hva(kvm, gfn);
1335 if (kvm_is_error_hva(addr))
1336 return -EFAULT;
1337 pagefault_disable();
1338 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1339 pagefault_enable();
1340 if (r)
1341 return -EFAULT;
1342 return 0;
1343 }
1344 EXPORT_SYMBOL(kvm_read_guest_atomic);
1345
1346 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1347 int offset, int len)
1348 {
1349 int r;
1350 unsigned long addr;
1351
1352 addr = gfn_to_hva(kvm, gfn);
1353 if (kvm_is_error_hva(addr))
1354 return -EFAULT;
1355 r = __copy_to_user((void __user *)addr + offset, data, len);
1356 if (r)
1357 return -EFAULT;
1358 mark_page_dirty(kvm, gfn);
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1362
1363 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1364 unsigned long len)
1365 {
1366 gfn_t gfn = gpa >> PAGE_SHIFT;
1367 int seg;
1368 int offset = offset_in_page(gpa);
1369 int ret;
1370
1371 while ((seg = next_segment(len, offset)) != 0) {
1372 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1373 if (ret < 0)
1374 return ret;
1375 offset = 0;
1376 len -= seg;
1377 data += seg;
1378 ++gfn;
1379 }
1380 return 0;
1381 }
1382
1383 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1384 gpa_t gpa)
1385 {
1386 struct kvm_memslots *slots = kvm_memslots(kvm);
1387 int offset = offset_in_page(gpa);
1388 gfn_t gfn = gpa >> PAGE_SHIFT;
1389
1390 ghc->gpa = gpa;
1391 ghc->generation = slots->generation;
1392 ghc->memslot = gfn_to_memslot(kvm, gfn);
1393 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1394 if (!kvm_is_error_hva(ghc->hva))
1395 ghc->hva += offset;
1396 else
1397 return -EFAULT;
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1402
1403 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404 void *data, unsigned long len)
1405 {
1406 struct kvm_memslots *slots = kvm_memslots(kvm);
1407 int r;
1408
1409 if (slots->generation != ghc->generation)
1410 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1411
1412 if (kvm_is_error_hva(ghc->hva))
1413 return -EFAULT;
1414
1415 r = __copy_to_user((void __user *)ghc->hva, data, len);
1416 if (r)
1417 return -EFAULT;
1418 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1419
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1423
1424 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425 void *data, unsigned long len)
1426 {
1427 struct kvm_memslots *slots = kvm_memslots(kvm);
1428 int r;
1429
1430 if (slots->generation != ghc->generation)
1431 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1432
1433 if (kvm_is_error_hva(ghc->hva))
1434 return -EFAULT;
1435
1436 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1437 if (r)
1438 return -EFAULT;
1439
1440 return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1443
1444 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1445 {
1446 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1447 offset, len);
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1450
1451 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1452 {
1453 gfn_t gfn = gpa >> PAGE_SHIFT;
1454 int seg;
1455 int offset = offset_in_page(gpa);
1456 int ret;
1457
1458 while ((seg = next_segment(len, offset)) != 0) {
1459 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1460 if (ret < 0)
1461 return ret;
1462 offset = 0;
1463 len -= seg;
1464 ++gfn;
1465 }
1466 return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1469
1470 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1471 gfn_t gfn)
1472 {
1473 if (memslot && memslot->dirty_bitmap) {
1474 unsigned long rel_gfn = gfn - memslot->base_gfn;
1475
1476 /* TODO: introduce set_bit_le() and use it */
1477 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1478 }
1479 }
1480
1481 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1482 {
1483 struct kvm_memory_slot *memslot;
1484
1485 memslot = gfn_to_memslot(kvm, gfn);
1486 mark_page_dirty_in_slot(kvm, memslot, gfn);
1487 }
1488
1489 /*
1490 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1491 */
1492 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493 {
1494 DEFINE_WAIT(wait);
1495
1496 for (;;) {
1497 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1498
1499 if (kvm_arch_vcpu_runnable(vcpu)) {
1500 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1501 break;
1502 }
1503 if (kvm_cpu_has_pending_timer(vcpu))
1504 break;
1505 if (signal_pending(current))
1506 break;
1507
1508 schedule();
1509 }
1510
1511 finish_wait(&vcpu->wq, &wait);
1512 }
1513
1514 #ifndef CONFIG_S390
1515 /*
1516 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1517 */
1518 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1519 {
1520 int me;
1521 int cpu = vcpu->cpu;
1522 wait_queue_head_t *wqp;
1523
1524 wqp = kvm_arch_vcpu_wq(vcpu);
1525 if (waitqueue_active(wqp)) {
1526 wake_up_interruptible(wqp);
1527 ++vcpu->stat.halt_wakeup;
1528 }
1529
1530 me = get_cpu();
1531 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1532 if (kvm_arch_vcpu_should_kick(vcpu))
1533 smp_send_reschedule(cpu);
1534 put_cpu();
1535 }
1536 #endif /* !CONFIG_S390 */
1537
1538 void kvm_resched(struct kvm_vcpu *vcpu)
1539 {
1540 if (!need_resched())
1541 return;
1542 cond_resched();
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_resched);
1545
1546 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1547 {
1548 struct pid *pid;
1549 struct task_struct *task = NULL;
1550
1551 rcu_read_lock();
1552 pid = rcu_dereference(target->pid);
1553 if (pid)
1554 task = get_pid_task(target->pid, PIDTYPE_PID);
1555 rcu_read_unlock();
1556 if (!task)
1557 return false;
1558 if (task->flags & PF_VCPU) {
1559 put_task_struct(task);
1560 return false;
1561 }
1562 if (yield_to(task, 1)) {
1563 put_task_struct(task);
1564 return true;
1565 }
1566 put_task_struct(task);
1567 return false;
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1570
1571 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1572 {
1573 struct kvm *kvm = me->kvm;
1574 struct kvm_vcpu *vcpu;
1575 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1576 int yielded = 0;
1577 int pass;
1578 int i;
1579
1580 /*
1581 * We boost the priority of a VCPU that is runnable but not
1582 * currently running, because it got preempted by something
1583 * else and called schedule in __vcpu_run. Hopefully that
1584 * VCPU is holding the lock that we need and will release it.
1585 * We approximate round-robin by starting at the last boosted VCPU.
1586 */
1587 for (pass = 0; pass < 2 && !yielded; pass++) {
1588 kvm_for_each_vcpu(i, vcpu, kvm) {
1589 if (!pass && i < last_boosted_vcpu) {
1590 i = last_boosted_vcpu;
1591 continue;
1592 } else if (pass && i > last_boosted_vcpu)
1593 break;
1594 if (vcpu == me)
1595 continue;
1596 if (waitqueue_active(&vcpu->wq))
1597 continue;
1598 if (kvm_vcpu_yield_to(vcpu)) {
1599 kvm->last_boosted_vcpu = i;
1600 yielded = 1;
1601 break;
1602 }
1603 }
1604 }
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1607
1608 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609 {
1610 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1611 struct page *page;
1612
1613 if (vmf->pgoff == 0)
1614 page = virt_to_page(vcpu->run);
1615 #ifdef CONFIG_X86
1616 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1617 page = virt_to_page(vcpu->arch.pio_data);
1618 #endif
1619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1620 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1621 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1622 #endif
1623 else
1624 return kvm_arch_vcpu_fault(vcpu, vmf);
1625 get_page(page);
1626 vmf->page = page;
1627 return 0;
1628 }
1629
1630 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1631 .fault = kvm_vcpu_fault,
1632 };
1633
1634 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1635 {
1636 vma->vm_ops = &kvm_vcpu_vm_ops;
1637 return 0;
1638 }
1639
1640 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1641 {
1642 struct kvm_vcpu *vcpu = filp->private_data;
1643
1644 kvm_put_kvm(vcpu->kvm);
1645 return 0;
1646 }
1647
1648 static struct file_operations kvm_vcpu_fops = {
1649 .release = kvm_vcpu_release,
1650 .unlocked_ioctl = kvm_vcpu_ioctl,
1651 #ifdef CONFIG_COMPAT
1652 .compat_ioctl = kvm_vcpu_compat_ioctl,
1653 #endif
1654 .mmap = kvm_vcpu_mmap,
1655 .llseek = noop_llseek,
1656 };
1657
1658 /*
1659 * Allocates an inode for the vcpu.
1660 */
1661 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1662 {
1663 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1664 }
1665
1666 /*
1667 * Creates some virtual cpus. Good luck creating more than one.
1668 */
1669 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1670 {
1671 int r;
1672 struct kvm_vcpu *vcpu, *v;
1673
1674 vcpu = kvm_arch_vcpu_create(kvm, id);
1675 if (IS_ERR(vcpu))
1676 return PTR_ERR(vcpu);
1677
1678 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1679
1680 r = kvm_arch_vcpu_setup(vcpu);
1681 if (r)
1682 goto vcpu_destroy;
1683
1684 mutex_lock(&kvm->lock);
1685 if (!kvm_vcpu_compatible(vcpu)) {
1686 r = -EINVAL;
1687 goto unlock_vcpu_destroy;
1688 }
1689 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690 r = -EINVAL;
1691 goto unlock_vcpu_destroy;
1692 }
1693
1694 kvm_for_each_vcpu(r, v, kvm)
1695 if (v->vcpu_id == id) {
1696 r = -EEXIST;
1697 goto unlock_vcpu_destroy;
1698 }
1699
1700 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1701
1702 /* Now it's all set up, let userspace reach it */
1703 kvm_get_kvm(kvm);
1704 r = create_vcpu_fd(vcpu);
1705 if (r < 0) {
1706 kvm_put_kvm(kvm);
1707 goto unlock_vcpu_destroy;
1708 }
1709
1710 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1711 smp_wmb();
1712 atomic_inc(&kvm->online_vcpus);
1713
1714 mutex_unlock(&kvm->lock);
1715 return r;
1716
1717 unlock_vcpu_destroy:
1718 mutex_unlock(&kvm->lock);
1719 vcpu_destroy:
1720 kvm_arch_vcpu_destroy(vcpu);
1721 return r;
1722 }
1723
1724 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725 {
1726 if (sigset) {
1727 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728 vcpu->sigset_active = 1;
1729 vcpu->sigset = *sigset;
1730 } else
1731 vcpu->sigset_active = 0;
1732 return 0;
1733 }
1734
1735 static long kvm_vcpu_ioctl(struct file *filp,
1736 unsigned int ioctl, unsigned long arg)
1737 {
1738 struct kvm_vcpu *vcpu = filp->private_data;
1739 void __user *argp = (void __user *)arg;
1740 int r;
1741 struct kvm_fpu *fpu = NULL;
1742 struct kvm_sregs *kvm_sregs = NULL;
1743
1744 if (vcpu->kvm->mm != current->mm)
1745 return -EIO;
1746
1747 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1748 /*
1749 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750 * so vcpu_load() would break it.
1751 */
1752 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754 #endif
1755
1756
1757 vcpu_load(vcpu);
1758 switch (ioctl) {
1759 case KVM_RUN:
1760 r = -EINVAL;
1761 if (arg)
1762 goto out;
1763 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1764 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765 break;
1766 case KVM_GET_REGS: {
1767 struct kvm_regs *kvm_regs;
1768
1769 r = -ENOMEM;
1770 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771 if (!kvm_regs)
1772 goto out;
1773 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774 if (r)
1775 goto out_free1;
1776 r = -EFAULT;
1777 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778 goto out_free1;
1779 r = 0;
1780 out_free1:
1781 kfree(kvm_regs);
1782 break;
1783 }
1784 case KVM_SET_REGS: {
1785 struct kvm_regs *kvm_regs;
1786
1787 r = -ENOMEM;
1788 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789 if (IS_ERR(kvm_regs)) {
1790 r = PTR_ERR(kvm_regs);
1791 goto out;
1792 }
1793 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794 if (r)
1795 goto out_free2;
1796 r = 0;
1797 out_free2:
1798 kfree(kvm_regs);
1799 break;
1800 }
1801 case KVM_GET_SREGS: {
1802 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803 r = -ENOMEM;
1804 if (!kvm_sregs)
1805 goto out;
1806 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807 if (r)
1808 goto out;
1809 r = -EFAULT;
1810 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811 goto out;
1812 r = 0;
1813 break;
1814 }
1815 case KVM_SET_SREGS: {
1816 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817 if (IS_ERR(kvm_sregs)) {
1818 r = PTR_ERR(kvm_sregs);
1819 goto out;
1820 }
1821 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822 if (r)
1823 goto out;
1824 r = 0;
1825 break;
1826 }
1827 case KVM_GET_MP_STATE: {
1828 struct kvm_mp_state mp_state;
1829
1830 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831 if (r)
1832 goto out;
1833 r = -EFAULT;
1834 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835 goto out;
1836 r = 0;
1837 break;
1838 }
1839 case KVM_SET_MP_STATE: {
1840 struct kvm_mp_state mp_state;
1841
1842 r = -EFAULT;
1843 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844 goto out;
1845 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846 if (r)
1847 goto out;
1848 r = 0;
1849 break;
1850 }
1851 case KVM_TRANSLATE: {
1852 struct kvm_translation tr;
1853
1854 r = -EFAULT;
1855 if (copy_from_user(&tr, argp, sizeof tr))
1856 goto out;
1857 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858 if (r)
1859 goto out;
1860 r = -EFAULT;
1861 if (copy_to_user(argp, &tr, sizeof tr))
1862 goto out;
1863 r = 0;
1864 break;
1865 }
1866 case KVM_SET_GUEST_DEBUG: {
1867 struct kvm_guest_debug dbg;
1868
1869 r = -EFAULT;
1870 if (copy_from_user(&dbg, argp, sizeof dbg))
1871 goto out;
1872 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873 if (r)
1874 goto out;
1875 r = 0;
1876 break;
1877 }
1878 case KVM_SET_SIGNAL_MASK: {
1879 struct kvm_signal_mask __user *sigmask_arg = argp;
1880 struct kvm_signal_mask kvm_sigmask;
1881 sigset_t sigset, *p;
1882
1883 p = NULL;
1884 if (argp) {
1885 r = -EFAULT;
1886 if (copy_from_user(&kvm_sigmask, argp,
1887 sizeof kvm_sigmask))
1888 goto out;
1889 r = -EINVAL;
1890 if (kvm_sigmask.len != sizeof sigset)
1891 goto out;
1892 r = -EFAULT;
1893 if (copy_from_user(&sigset, sigmask_arg->sigset,
1894 sizeof sigset))
1895 goto out;
1896 p = &sigset;
1897 }
1898 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899 break;
1900 }
1901 case KVM_GET_FPU: {
1902 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903 r = -ENOMEM;
1904 if (!fpu)
1905 goto out;
1906 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907 if (r)
1908 goto out;
1909 r = -EFAULT;
1910 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911 goto out;
1912 r = 0;
1913 break;
1914 }
1915 case KVM_SET_FPU: {
1916 fpu = memdup_user(argp, sizeof(*fpu));
1917 if (IS_ERR(fpu)) {
1918 r = PTR_ERR(fpu);
1919 goto out;
1920 }
1921 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922 if (r)
1923 goto out;
1924 r = 0;
1925 break;
1926 }
1927 default:
1928 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929 }
1930 out:
1931 vcpu_put(vcpu);
1932 kfree(fpu);
1933 kfree(kvm_sregs);
1934 return r;
1935 }
1936
1937 #ifdef CONFIG_COMPAT
1938 static long kvm_vcpu_compat_ioctl(struct file *filp,
1939 unsigned int ioctl, unsigned long arg)
1940 {
1941 struct kvm_vcpu *vcpu = filp->private_data;
1942 void __user *argp = compat_ptr(arg);
1943 int r;
1944
1945 if (vcpu->kvm->mm != current->mm)
1946 return -EIO;
1947
1948 switch (ioctl) {
1949 case KVM_SET_SIGNAL_MASK: {
1950 struct kvm_signal_mask __user *sigmask_arg = argp;
1951 struct kvm_signal_mask kvm_sigmask;
1952 compat_sigset_t csigset;
1953 sigset_t sigset;
1954
1955 if (argp) {
1956 r = -EFAULT;
1957 if (copy_from_user(&kvm_sigmask, argp,
1958 sizeof kvm_sigmask))
1959 goto out;
1960 r = -EINVAL;
1961 if (kvm_sigmask.len != sizeof csigset)
1962 goto out;
1963 r = -EFAULT;
1964 if (copy_from_user(&csigset, sigmask_arg->sigset,
1965 sizeof csigset))
1966 goto out;
1967 }
1968 sigset_from_compat(&sigset, &csigset);
1969 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970 break;
1971 }
1972 default:
1973 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974 }
1975
1976 out:
1977 return r;
1978 }
1979 #endif
1980
1981 static long kvm_vm_ioctl(struct file *filp,
1982 unsigned int ioctl, unsigned long arg)
1983 {
1984 struct kvm *kvm = filp->private_data;
1985 void __user *argp = (void __user *)arg;
1986 int r;
1987
1988 if (kvm->mm != current->mm)
1989 return -EIO;
1990 switch (ioctl) {
1991 case KVM_CREATE_VCPU:
1992 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993 if (r < 0)
1994 goto out;
1995 break;
1996 case KVM_SET_USER_MEMORY_REGION: {
1997 struct kvm_userspace_memory_region kvm_userspace_mem;
1998
1999 r = -EFAULT;
2000 if (copy_from_user(&kvm_userspace_mem, argp,
2001 sizeof kvm_userspace_mem))
2002 goto out;
2003
2004 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005 if (r)
2006 goto out;
2007 break;
2008 }
2009 case KVM_GET_DIRTY_LOG: {
2010 struct kvm_dirty_log log;
2011
2012 r = -EFAULT;
2013 if (copy_from_user(&log, argp, sizeof log))
2014 goto out;
2015 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016 if (r)
2017 goto out;
2018 break;
2019 }
2020 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2021 case KVM_REGISTER_COALESCED_MMIO: {
2022 struct kvm_coalesced_mmio_zone zone;
2023 r = -EFAULT;
2024 if (copy_from_user(&zone, argp, sizeof zone))
2025 goto out;
2026 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027 if (r)
2028 goto out;
2029 r = 0;
2030 break;
2031 }
2032 case KVM_UNREGISTER_COALESCED_MMIO: {
2033 struct kvm_coalesced_mmio_zone zone;
2034 r = -EFAULT;
2035 if (copy_from_user(&zone, argp, sizeof zone))
2036 goto out;
2037 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038 if (r)
2039 goto out;
2040 r = 0;
2041 break;
2042 }
2043 #endif
2044 case KVM_IRQFD: {
2045 struct kvm_irqfd data;
2046
2047 r = -EFAULT;
2048 if (copy_from_user(&data, argp, sizeof data))
2049 goto out;
2050 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2051 break;
2052 }
2053 case KVM_IOEVENTFD: {
2054 struct kvm_ioeventfd data;
2055
2056 r = -EFAULT;
2057 if (copy_from_user(&data, argp, sizeof data))
2058 goto out;
2059 r = kvm_ioeventfd(kvm, &data);
2060 break;
2061 }
2062 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063 case KVM_SET_BOOT_CPU_ID:
2064 r = 0;
2065 mutex_lock(&kvm->lock);
2066 if (atomic_read(&kvm->online_vcpus) != 0)
2067 r = -EBUSY;
2068 else
2069 kvm->bsp_vcpu_id = arg;
2070 mutex_unlock(&kvm->lock);
2071 break;
2072 #endif
2073 #ifdef CONFIG_HAVE_KVM_MSI
2074 case KVM_SIGNAL_MSI: {
2075 struct kvm_msi msi;
2076
2077 r = -EFAULT;
2078 if (copy_from_user(&msi, argp, sizeof msi))
2079 goto out;
2080 r = kvm_send_userspace_msi(kvm, &msi);
2081 break;
2082 }
2083 #endif
2084 default:
2085 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2086 if (r == -ENOTTY)
2087 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2088 }
2089 out:
2090 return r;
2091 }
2092
2093 #ifdef CONFIG_COMPAT
2094 struct compat_kvm_dirty_log {
2095 __u32 slot;
2096 __u32 padding1;
2097 union {
2098 compat_uptr_t dirty_bitmap; /* one bit per page */
2099 __u64 padding2;
2100 };
2101 };
2102
2103 static long kvm_vm_compat_ioctl(struct file *filp,
2104 unsigned int ioctl, unsigned long arg)
2105 {
2106 struct kvm *kvm = filp->private_data;
2107 int r;
2108
2109 if (kvm->mm != current->mm)
2110 return -EIO;
2111 switch (ioctl) {
2112 case KVM_GET_DIRTY_LOG: {
2113 struct compat_kvm_dirty_log compat_log;
2114 struct kvm_dirty_log log;
2115
2116 r = -EFAULT;
2117 if (copy_from_user(&compat_log, (void __user *)arg,
2118 sizeof(compat_log)))
2119 goto out;
2120 log.slot = compat_log.slot;
2121 log.padding1 = compat_log.padding1;
2122 log.padding2 = compat_log.padding2;
2123 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2124
2125 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126 if (r)
2127 goto out;
2128 break;
2129 }
2130 default:
2131 r = kvm_vm_ioctl(filp, ioctl, arg);
2132 }
2133
2134 out:
2135 return r;
2136 }
2137 #endif
2138
2139 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2140 {
2141 struct page *page[1];
2142 unsigned long addr;
2143 int npages;
2144 gfn_t gfn = vmf->pgoff;
2145 struct kvm *kvm = vma->vm_file->private_data;
2146
2147 addr = gfn_to_hva(kvm, gfn);
2148 if (kvm_is_error_hva(addr))
2149 return VM_FAULT_SIGBUS;
2150
2151 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2152 NULL);
2153 if (unlikely(npages != 1))
2154 return VM_FAULT_SIGBUS;
2155
2156 vmf->page = page[0];
2157 return 0;
2158 }
2159
2160 static const struct vm_operations_struct kvm_vm_vm_ops = {
2161 .fault = kvm_vm_fault,
2162 };
2163
2164 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2165 {
2166 vma->vm_ops = &kvm_vm_vm_ops;
2167 return 0;
2168 }
2169
2170 static struct file_operations kvm_vm_fops = {
2171 .release = kvm_vm_release,
2172 .unlocked_ioctl = kvm_vm_ioctl,
2173 #ifdef CONFIG_COMPAT
2174 .compat_ioctl = kvm_vm_compat_ioctl,
2175 #endif
2176 .mmap = kvm_vm_mmap,
2177 .llseek = noop_llseek,
2178 };
2179
2180 static int kvm_dev_ioctl_create_vm(unsigned long type)
2181 {
2182 int r;
2183 struct kvm *kvm;
2184
2185 kvm = kvm_create_vm(type);
2186 if (IS_ERR(kvm))
2187 return PTR_ERR(kvm);
2188 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2189 r = kvm_coalesced_mmio_init(kvm);
2190 if (r < 0) {
2191 kvm_put_kvm(kvm);
2192 return r;
2193 }
2194 #endif
2195 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2196 if (r < 0)
2197 kvm_put_kvm(kvm);
2198
2199 return r;
2200 }
2201
2202 static long kvm_dev_ioctl_check_extension_generic(long arg)
2203 {
2204 switch (arg) {
2205 case KVM_CAP_USER_MEMORY:
2206 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2207 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2208 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2209 case KVM_CAP_SET_BOOT_CPU_ID:
2210 #endif
2211 case KVM_CAP_INTERNAL_ERROR_DATA:
2212 #ifdef CONFIG_HAVE_KVM_MSI
2213 case KVM_CAP_SIGNAL_MSI:
2214 #endif
2215 return 1;
2216 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2217 case KVM_CAP_IRQ_ROUTING:
2218 return KVM_MAX_IRQ_ROUTES;
2219 #endif
2220 default:
2221 break;
2222 }
2223 return kvm_dev_ioctl_check_extension(arg);
2224 }
2225
2226 static long kvm_dev_ioctl(struct file *filp,
2227 unsigned int ioctl, unsigned long arg)
2228 {
2229 long r = -EINVAL;
2230
2231 switch (ioctl) {
2232 case KVM_GET_API_VERSION:
2233 r = -EINVAL;
2234 if (arg)
2235 goto out;
2236 r = KVM_API_VERSION;
2237 break;
2238 case KVM_CREATE_VM:
2239 r = kvm_dev_ioctl_create_vm(arg);
2240 break;
2241 case KVM_CHECK_EXTENSION:
2242 r = kvm_dev_ioctl_check_extension_generic(arg);
2243 break;
2244 case KVM_GET_VCPU_MMAP_SIZE:
2245 r = -EINVAL;
2246 if (arg)
2247 goto out;
2248 r = PAGE_SIZE; /* struct kvm_run */
2249 #ifdef CONFIG_X86
2250 r += PAGE_SIZE; /* pio data page */
2251 #endif
2252 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2253 r += PAGE_SIZE; /* coalesced mmio ring page */
2254 #endif
2255 break;
2256 case KVM_TRACE_ENABLE:
2257 case KVM_TRACE_PAUSE:
2258 case KVM_TRACE_DISABLE:
2259 r = -EOPNOTSUPP;
2260 break;
2261 default:
2262 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2263 }
2264 out:
2265 return r;
2266 }
2267
2268 static struct file_operations kvm_chardev_ops = {
2269 .unlocked_ioctl = kvm_dev_ioctl,
2270 .compat_ioctl = kvm_dev_ioctl,
2271 .llseek = noop_llseek,
2272 };
2273
2274 static struct miscdevice kvm_dev = {
2275 KVM_MINOR,
2276 "kvm",
2277 &kvm_chardev_ops,
2278 };
2279
2280 static void hardware_enable_nolock(void *junk)
2281 {
2282 int cpu = raw_smp_processor_id();
2283 int r;
2284
2285 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2286 return;
2287
2288 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2289
2290 r = kvm_arch_hardware_enable(NULL);
2291
2292 if (r) {
2293 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2294 atomic_inc(&hardware_enable_failed);
2295 printk(KERN_INFO "kvm: enabling virtualization on "
2296 "CPU%d failed\n", cpu);
2297 }
2298 }
2299
2300 static void hardware_enable(void *junk)
2301 {
2302 raw_spin_lock(&kvm_lock);
2303 hardware_enable_nolock(junk);
2304 raw_spin_unlock(&kvm_lock);
2305 }
2306
2307 static void hardware_disable_nolock(void *junk)
2308 {
2309 int cpu = raw_smp_processor_id();
2310
2311 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2312 return;
2313 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2314 kvm_arch_hardware_disable(NULL);
2315 }
2316
2317 static void hardware_disable(void *junk)
2318 {
2319 raw_spin_lock(&kvm_lock);
2320 hardware_disable_nolock(junk);
2321 raw_spin_unlock(&kvm_lock);
2322 }
2323
2324 static void hardware_disable_all_nolock(void)
2325 {
2326 BUG_ON(!kvm_usage_count);
2327
2328 kvm_usage_count--;
2329 if (!kvm_usage_count)
2330 on_each_cpu(hardware_disable_nolock, NULL, 1);
2331 }
2332
2333 static void hardware_disable_all(void)
2334 {
2335 raw_spin_lock(&kvm_lock);
2336 hardware_disable_all_nolock();
2337 raw_spin_unlock(&kvm_lock);
2338 }
2339
2340 static int hardware_enable_all(void)
2341 {
2342 int r = 0;
2343
2344 raw_spin_lock(&kvm_lock);
2345
2346 kvm_usage_count++;
2347 if (kvm_usage_count == 1) {
2348 atomic_set(&hardware_enable_failed, 0);
2349 on_each_cpu(hardware_enable_nolock, NULL, 1);
2350
2351 if (atomic_read(&hardware_enable_failed)) {
2352 hardware_disable_all_nolock();
2353 r = -EBUSY;
2354 }
2355 }
2356
2357 raw_spin_unlock(&kvm_lock);
2358
2359 return r;
2360 }
2361
2362 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2363 void *v)
2364 {
2365 int cpu = (long)v;
2366
2367 if (!kvm_usage_count)
2368 return NOTIFY_OK;
2369
2370 val &= ~CPU_TASKS_FROZEN;
2371 switch (val) {
2372 case CPU_DYING:
2373 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2374 cpu);
2375 hardware_disable(NULL);
2376 break;
2377 case CPU_STARTING:
2378 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2379 cpu);
2380 hardware_enable(NULL);
2381 break;
2382 }
2383 return NOTIFY_OK;
2384 }
2385
2386
2387 asmlinkage void kvm_spurious_fault(void)
2388 {
2389 /* Fault while not rebooting. We want the trace. */
2390 BUG();
2391 }
2392 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2393
2394 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2395 void *v)
2396 {
2397 /*
2398 * Some (well, at least mine) BIOSes hang on reboot if
2399 * in vmx root mode.
2400 *
2401 * And Intel TXT required VMX off for all cpu when system shutdown.
2402 */
2403 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2404 kvm_rebooting = true;
2405 on_each_cpu(hardware_disable_nolock, NULL, 1);
2406 return NOTIFY_OK;
2407 }
2408
2409 static struct notifier_block kvm_reboot_notifier = {
2410 .notifier_call = kvm_reboot,
2411 .priority = 0,
2412 };
2413
2414 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2415 {
2416 int i;
2417
2418 for (i = 0; i < bus->dev_count; i++) {
2419 struct kvm_io_device *pos = bus->range[i].dev;
2420
2421 kvm_iodevice_destructor(pos);
2422 }
2423 kfree(bus);
2424 }
2425
2426 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2427 {
2428 const struct kvm_io_range *r1 = p1;
2429 const struct kvm_io_range *r2 = p2;
2430
2431 if (r1->addr < r2->addr)
2432 return -1;
2433 if (r1->addr + r1->len > r2->addr + r2->len)
2434 return 1;
2435 return 0;
2436 }
2437
2438 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2439 gpa_t addr, int len)
2440 {
2441 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2442 .addr = addr,
2443 .len = len,
2444 .dev = dev,
2445 };
2446
2447 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2448 kvm_io_bus_sort_cmp, NULL);
2449
2450 return 0;
2451 }
2452
2453 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2454 gpa_t addr, int len)
2455 {
2456 struct kvm_io_range *range, key;
2457 int off;
2458
2459 key = (struct kvm_io_range) {
2460 .addr = addr,
2461 .len = len,
2462 };
2463
2464 range = bsearch(&key, bus->range, bus->dev_count,
2465 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2466 if (range == NULL)
2467 return -ENOENT;
2468
2469 off = range - bus->range;
2470
2471 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2472 off--;
2473
2474 return off;
2475 }
2476
2477 /* kvm_io_bus_write - called under kvm->slots_lock */
2478 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2479 int len, const void *val)
2480 {
2481 int idx;
2482 struct kvm_io_bus *bus;
2483 struct kvm_io_range range;
2484
2485 range = (struct kvm_io_range) {
2486 .addr = addr,
2487 .len = len,
2488 };
2489
2490 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2491 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2492 if (idx < 0)
2493 return -EOPNOTSUPP;
2494
2495 while (idx < bus->dev_count &&
2496 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2497 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2498 return 0;
2499 idx++;
2500 }
2501
2502 return -EOPNOTSUPP;
2503 }
2504
2505 /* kvm_io_bus_read - called under kvm->slots_lock */
2506 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2507 int len, void *val)
2508 {
2509 int idx;
2510 struct kvm_io_bus *bus;
2511 struct kvm_io_range range;
2512
2513 range = (struct kvm_io_range) {
2514 .addr = addr,
2515 .len = len,
2516 };
2517
2518 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2519 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2520 if (idx < 0)
2521 return -EOPNOTSUPP;
2522
2523 while (idx < bus->dev_count &&
2524 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2525 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2526 return 0;
2527 idx++;
2528 }
2529
2530 return -EOPNOTSUPP;
2531 }
2532
2533 /* Caller must hold slots_lock. */
2534 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2535 int len, struct kvm_io_device *dev)
2536 {
2537 struct kvm_io_bus *new_bus, *bus;
2538
2539 bus = kvm->buses[bus_idx];
2540 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2541 return -ENOSPC;
2542
2543 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2544 sizeof(struct kvm_io_range)), GFP_KERNEL);
2545 if (!new_bus)
2546 return -ENOMEM;
2547 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2548 sizeof(struct kvm_io_range)));
2549 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2550 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2551 synchronize_srcu_expedited(&kvm->srcu);
2552 kfree(bus);
2553
2554 return 0;
2555 }
2556
2557 /* Caller must hold slots_lock. */
2558 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2559 struct kvm_io_device *dev)
2560 {
2561 int i, r;
2562 struct kvm_io_bus *new_bus, *bus;
2563
2564 bus = kvm->buses[bus_idx];
2565 r = -ENOENT;
2566 for (i = 0; i < bus->dev_count; i++)
2567 if (bus->range[i].dev == dev) {
2568 r = 0;
2569 break;
2570 }
2571
2572 if (r)
2573 return r;
2574
2575 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2576 sizeof(struct kvm_io_range)), GFP_KERNEL);
2577 if (!new_bus)
2578 return -ENOMEM;
2579
2580 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2581 new_bus->dev_count--;
2582 memcpy(new_bus->range + i, bus->range + i + 1,
2583 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2584
2585 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2586 synchronize_srcu_expedited(&kvm->srcu);
2587 kfree(bus);
2588 return r;
2589 }
2590
2591 static struct notifier_block kvm_cpu_notifier = {
2592 .notifier_call = kvm_cpu_hotplug,
2593 };
2594
2595 static int vm_stat_get(void *_offset, u64 *val)
2596 {
2597 unsigned offset = (long)_offset;
2598 struct kvm *kvm;
2599
2600 *val = 0;
2601 raw_spin_lock(&kvm_lock);
2602 list_for_each_entry(kvm, &vm_list, vm_list)
2603 *val += *(u32 *)((void *)kvm + offset);
2604 raw_spin_unlock(&kvm_lock);
2605 return 0;
2606 }
2607
2608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2609
2610 static int vcpu_stat_get(void *_offset, u64 *val)
2611 {
2612 unsigned offset = (long)_offset;
2613 struct kvm *kvm;
2614 struct kvm_vcpu *vcpu;
2615 int i;
2616
2617 *val = 0;
2618 raw_spin_lock(&kvm_lock);
2619 list_for_each_entry(kvm, &vm_list, vm_list)
2620 kvm_for_each_vcpu(i, vcpu, kvm)
2621 *val += *(u32 *)((void *)vcpu + offset);
2622
2623 raw_spin_unlock(&kvm_lock);
2624 return 0;
2625 }
2626
2627 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2628
2629 static const struct file_operations *stat_fops[] = {
2630 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2631 [KVM_STAT_VM] = &vm_stat_fops,
2632 };
2633
2634 static int kvm_init_debug(void)
2635 {
2636 int r = -EFAULT;
2637 struct kvm_stats_debugfs_item *p;
2638
2639 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2640 if (kvm_debugfs_dir == NULL)
2641 goto out;
2642
2643 for (p = debugfs_entries; p->name; ++p) {
2644 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2645 (void *)(long)p->offset,
2646 stat_fops[p->kind]);
2647 if (p->dentry == NULL)
2648 goto out_dir;
2649 }
2650
2651 return 0;
2652
2653 out_dir:
2654 debugfs_remove_recursive(kvm_debugfs_dir);
2655 out:
2656 return r;
2657 }
2658
2659 static void kvm_exit_debug(void)
2660 {
2661 struct kvm_stats_debugfs_item *p;
2662
2663 for (p = debugfs_entries; p->name; ++p)
2664 debugfs_remove(p->dentry);
2665 debugfs_remove(kvm_debugfs_dir);
2666 }
2667
2668 static int kvm_suspend(void)
2669 {
2670 if (kvm_usage_count)
2671 hardware_disable_nolock(NULL);
2672 return 0;
2673 }
2674
2675 static void kvm_resume(void)
2676 {
2677 if (kvm_usage_count) {
2678 WARN_ON(raw_spin_is_locked(&kvm_lock));
2679 hardware_enable_nolock(NULL);
2680 }
2681 }
2682
2683 static struct syscore_ops kvm_syscore_ops = {
2684 .suspend = kvm_suspend,
2685 .resume = kvm_resume,
2686 };
2687
2688 struct page *bad_page;
2689 pfn_t bad_pfn;
2690
2691 static inline
2692 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2693 {
2694 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2695 }
2696
2697 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2698 {
2699 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2700
2701 kvm_arch_vcpu_load(vcpu, cpu);
2702 }
2703
2704 static void kvm_sched_out(struct preempt_notifier *pn,
2705 struct task_struct *next)
2706 {
2707 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2708
2709 kvm_arch_vcpu_put(vcpu);
2710 }
2711
2712 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2713 struct module *module)
2714 {
2715 int r;
2716 int cpu;
2717
2718 r = kvm_arch_init(opaque);
2719 if (r)
2720 goto out_fail;
2721
2722 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2723
2724 if (bad_page == NULL) {
2725 r = -ENOMEM;
2726 goto out;
2727 }
2728
2729 bad_pfn = page_to_pfn(bad_page);
2730
2731 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2732
2733 if (hwpoison_page == NULL) {
2734 r = -ENOMEM;
2735 goto out_free_0;
2736 }
2737
2738 hwpoison_pfn = page_to_pfn(hwpoison_page);
2739
2740 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2741
2742 if (fault_page == NULL) {
2743 r = -ENOMEM;
2744 goto out_free_0;
2745 }
2746
2747 fault_pfn = page_to_pfn(fault_page);
2748
2749 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2750 r = -ENOMEM;
2751 goto out_free_0;
2752 }
2753
2754 r = kvm_arch_hardware_setup();
2755 if (r < 0)
2756 goto out_free_0a;
2757
2758 for_each_online_cpu(cpu) {
2759 smp_call_function_single(cpu,
2760 kvm_arch_check_processor_compat,
2761 &r, 1);
2762 if (r < 0)
2763 goto out_free_1;
2764 }
2765
2766 r = register_cpu_notifier(&kvm_cpu_notifier);
2767 if (r)
2768 goto out_free_2;
2769 register_reboot_notifier(&kvm_reboot_notifier);
2770
2771 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2772 if (!vcpu_align)
2773 vcpu_align = __alignof__(struct kvm_vcpu);
2774 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2775 0, NULL);
2776 if (!kvm_vcpu_cache) {
2777 r = -ENOMEM;
2778 goto out_free_3;
2779 }
2780
2781 r = kvm_async_pf_init();
2782 if (r)
2783 goto out_free;
2784
2785 kvm_chardev_ops.owner = module;
2786 kvm_vm_fops.owner = module;
2787 kvm_vcpu_fops.owner = module;
2788
2789 r = misc_register(&kvm_dev);
2790 if (r) {
2791 printk(KERN_ERR "kvm: misc device register failed\n");
2792 goto out_unreg;
2793 }
2794
2795 register_syscore_ops(&kvm_syscore_ops);
2796
2797 kvm_preempt_ops.sched_in = kvm_sched_in;
2798 kvm_preempt_ops.sched_out = kvm_sched_out;
2799
2800 r = kvm_init_debug();
2801 if (r) {
2802 printk(KERN_ERR "kvm: create debugfs files failed\n");
2803 goto out_undebugfs;
2804 }
2805
2806 return 0;
2807
2808 out_undebugfs:
2809 unregister_syscore_ops(&kvm_syscore_ops);
2810 out_unreg:
2811 kvm_async_pf_deinit();
2812 out_free:
2813 kmem_cache_destroy(kvm_vcpu_cache);
2814 out_free_3:
2815 unregister_reboot_notifier(&kvm_reboot_notifier);
2816 unregister_cpu_notifier(&kvm_cpu_notifier);
2817 out_free_2:
2818 out_free_1:
2819 kvm_arch_hardware_unsetup();
2820 out_free_0a:
2821 free_cpumask_var(cpus_hardware_enabled);
2822 out_free_0:
2823 if (fault_page)
2824 __free_page(fault_page);
2825 if (hwpoison_page)
2826 __free_page(hwpoison_page);
2827 __free_page(bad_page);
2828 out:
2829 kvm_arch_exit();
2830 out_fail:
2831 return r;
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_init);
2834
2835 void kvm_exit(void)
2836 {
2837 kvm_exit_debug();
2838 misc_deregister(&kvm_dev);
2839 kmem_cache_destroy(kvm_vcpu_cache);
2840 kvm_async_pf_deinit();
2841 unregister_syscore_ops(&kvm_syscore_ops);
2842 unregister_reboot_notifier(&kvm_reboot_notifier);
2843 unregister_cpu_notifier(&kvm_cpu_notifier);
2844 on_each_cpu(hardware_disable_nolock, NULL, 1);
2845 kvm_arch_hardware_unsetup();
2846 kvm_arch_exit();
2847 free_cpumask_var(cpus_hardware_enabled);
2848 __free_page(hwpoison_page);
2849 __free_page(bad_page);
2850 }
2851 EXPORT_SYMBOL_GPL(kvm_exit);