Merge branch 'topic/hwdep-cleanup' into topic/hdsp
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
90 }
91
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 int err;
99
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = NULL;
102 codec->ac97->dev.release = soc_ac97_device_release;
103
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
111 }
112 return 0;
113 }
114 #endif
115
116 /*
117 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118 * then initialized and any private data can be allocated. This also calls
119 * startup for the cpu DAI, platform, machine and codec DAI.
120 */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 struct snd_soc_device *socdev = rtd->socdev;
125 struct snd_soc_card *card = socdev->card;
126 struct snd_pcm_runtime *runtime = substream->runtime;
127 struct snd_soc_dai_link *machine = rtd->dai;
128 struct snd_soc_platform *platform = card->platform;
129 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 struct snd_soc_dai *codec_dai = machine->codec_dai;
131 int ret = 0;
132
133 mutex_lock(&pcm_mutex);
134
135 /* startup the audio subsystem */
136 if (cpu_dai->ops.startup) {
137 ret = cpu_dai->ops.startup(substream, cpu_dai);
138 if (ret < 0) {
139 printk(KERN_ERR "asoc: can't open interface %s\n",
140 cpu_dai->name);
141 goto out;
142 }
143 }
144
145 if (platform->pcm_ops->open) {
146 ret = platform->pcm_ops->open(substream);
147 if (ret < 0) {
148 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 goto platform_err;
150 }
151 }
152
153 if (codec_dai->ops.startup) {
154 ret = codec_dai->ops.startup(substream, codec_dai);
155 if (ret < 0) {
156 printk(KERN_ERR "asoc: can't open codec %s\n",
157 codec_dai->name);
158 goto codec_dai_err;
159 }
160 }
161
162 if (machine->ops && machine->ops->startup) {
163 ret = machine->ops->startup(substream);
164 if (ret < 0) {
165 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 goto machine_err;
167 }
168 }
169
170 /* Check that the codec and cpu DAI's are compatible */
171 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 runtime->hw.rate_min =
173 max(codec_dai->playback.rate_min,
174 cpu_dai->playback.rate_min);
175 runtime->hw.rate_max =
176 min(codec_dai->playback.rate_max,
177 cpu_dai->playback.rate_max);
178 runtime->hw.channels_min =
179 max(codec_dai->playback.channels_min,
180 cpu_dai->playback.channels_min);
181 runtime->hw.channels_max =
182 min(codec_dai->playback.channels_max,
183 cpu_dai->playback.channels_max);
184 runtime->hw.formats =
185 codec_dai->playback.formats & cpu_dai->playback.formats;
186 runtime->hw.rates =
187 codec_dai->playback.rates & cpu_dai->playback.rates;
188 } else {
189 runtime->hw.rate_min =
190 max(codec_dai->capture.rate_min,
191 cpu_dai->capture.rate_min);
192 runtime->hw.rate_max =
193 min(codec_dai->capture.rate_max,
194 cpu_dai->capture.rate_max);
195 runtime->hw.channels_min =
196 max(codec_dai->capture.channels_min,
197 cpu_dai->capture.channels_min);
198 runtime->hw.channels_max =
199 min(codec_dai->capture.channels_max,
200 cpu_dai->capture.channels_max);
201 runtime->hw.formats =
202 codec_dai->capture.formats & cpu_dai->capture.formats;
203 runtime->hw.rates =
204 codec_dai->capture.rates & cpu_dai->capture.rates;
205 }
206
207 snd_pcm_limit_hw_rates(runtime);
208 if (!runtime->hw.rates) {
209 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 codec_dai->name, cpu_dai->name);
211 goto machine_err;
212 }
213 if (!runtime->hw.formats) {
214 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 codec_dai->name, cpu_dai->name);
216 goto machine_err;
217 }
218 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 codec_dai->name, cpu_dai->name);
221 goto machine_err;
222 }
223
224 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 runtime->hw.channels_max);
228 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 runtime->hw.rate_max);
230
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 cpu_dai->playback.active = codec_dai->playback.active = 1;
233 else
234 cpu_dai->capture.active = codec_dai->capture.active = 1;
235 cpu_dai->active = codec_dai->active = 1;
236 cpu_dai->runtime = runtime;
237 socdev->codec->active++;
238 mutex_unlock(&pcm_mutex);
239 return 0;
240
241 machine_err:
242 if (machine->ops && machine->ops->shutdown)
243 machine->ops->shutdown(substream);
244
245 codec_dai_err:
246 if (platform->pcm_ops->close)
247 platform->pcm_ops->close(substream);
248
249 platform_err:
250 if (cpu_dai->ops.shutdown)
251 cpu_dai->ops.shutdown(substream, cpu_dai);
252 out:
253 mutex_unlock(&pcm_mutex);
254 return ret;
255 }
256
257 /*
258 * Power down the audio subsystem pmdown_time msecs after close is called.
259 * This is to ensure there are no pops or clicks in between any music tracks
260 * due to DAPM power cycling.
261 */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 delayed_work.work);
266 struct snd_soc_device *socdev = card->socdev;
267 struct snd_soc_codec *codec = socdev->codec;
268 struct snd_soc_dai *codec_dai;
269 int i;
270
271 mutex_lock(&pcm_mutex);
272 for (i = 0; i < codec->num_dai; i++) {
273 codec_dai = &codec->dai[i];
274
275 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 codec_dai->playback.stream_name,
277 codec_dai->playback.active ? "active" : "inactive",
278 codec_dai->pop_wait ? "yes" : "no");
279
280 /* are we waiting on this codec DAI stream */
281 if (codec_dai->pop_wait == 1) {
282
283 /* Reduce power if no longer active */
284 if (codec->active == 0) {
285 pr_debug("pop wq D1 %s %s\n", codec->name,
286 codec_dai->playback.stream_name);
287 snd_soc_dapm_set_bias_level(socdev,
288 SND_SOC_BIAS_PREPARE);
289 }
290
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec,
293 codec_dai->playback.stream_name,
294 SND_SOC_DAPM_STREAM_STOP);
295
296 /* Fall into standby if no longer active */
297 if (codec->active == 0) {
298 pr_debug("pop wq D3 %s %s\n", codec->name,
299 codec_dai->playback.stream_name);
300 snd_soc_dapm_set_bias_level(socdev,
301 SND_SOC_BIAS_STANDBY);
302 }
303 }
304 }
305 mutex_unlock(&pcm_mutex);
306 }
307
308 /*
309 * Called by ALSA when a PCM substream is closed. Private data can be
310 * freed here. The cpu DAI, codec DAI, machine and platform are also
311 * shutdown.
312 */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 struct snd_soc_device *socdev = rtd->socdev;
317 struct snd_soc_card *card = socdev->card;
318 struct snd_soc_dai_link *machine = rtd->dai;
319 struct snd_soc_platform *platform = card->platform;
320 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 struct snd_soc_dai *codec_dai = machine->codec_dai;
322 struct snd_soc_codec *codec = socdev->codec;
323
324 mutex_lock(&pcm_mutex);
325
326 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 cpu_dai->playback.active = codec_dai->playback.active = 0;
328 else
329 cpu_dai->capture.active = codec_dai->capture.active = 0;
330
331 if (codec_dai->playback.active == 0 &&
332 codec_dai->capture.active == 0) {
333 cpu_dai->active = codec_dai->active = 0;
334 }
335 codec->active--;
336
337 /* Muting the DAC suppresses artifacts caused during digital
338 * shutdown, for example from stopping clocks.
339 */
340 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 snd_soc_dai_digital_mute(codec_dai, 1);
342
343 if (cpu_dai->ops.shutdown)
344 cpu_dai->ops.shutdown(substream, cpu_dai);
345
346 if (codec_dai->ops.shutdown)
347 codec_dai->ops.shutdown(substream, codec_dai);
348
349 if (machine->ops && machine->ops->shutdown)
350 machine->ops->shutdown(substream);
351
352 if (platform->pcm_ops->close)
353 platform->pcm_ops->close(substream);
354 cpu_dai->runtime = NULL;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai->pop_wait = 1;
359 schedule_delayed_work(&card->delayed_work,
360 msecs_to_jiffies(pmdown_time));
361 } else {
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec,
364 codec_dai->capture.stream_name,
365 SND_SOC_DAPM_STREAM_STOP);
366
367 if (codec->active == 0 && codec_dai->pop_wait == 0)
368 snd_soc_dapm_set_bias_level(socdev,
369 SND_SOC_BIAS_STANDBY);
370 }
371
372 mutex_unlock(&pcm_mutex);
373 return 0;
374 }
375
376 /*
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
380 */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 struct snd_soc_device *socdev = rtd->socdev;
385 struct snd_soc_card *card = socdev->card;
386 struct snd_soc_dai_link *machine = rtd->dai;
387 struct snd_soc_platform *platform = card->platform;
388 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 struct snd_soc_dai *codec_dai = machine->codec_dai;
390 struct snd_soc_codec *codec = socdev->codec;
391 int ret = 0;
392
393 mutex_lock(&pcm_mutex);
394
395 if (machine->ops && machine->ops->prepare) {
396 ret = machine->ops->prepare(substream);
397 if (ret < 0) {
398 printk(KERN_ERR "asoc: machine prepare error\n");
399 goto out;
400 }
401 }
402
403 if (platform->pcm_ops->prepare) {
404 ret = platform->pcm_ops->prepare(substream);
405 if (ret < 0) {
406 printk(KERN_ERR "asoc: platform prepare error\n");
407 goto out;
408 }
409 }
410
411 if (codec_dai->ops.prepare) {
412 ret = codec_dai->ops.prepare(substream, codec_dai);
413 if (ret < 0) {
414 printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 goto out;
416 }
417 }
418
419 if (cpu_dai->ops.prepare) {
420 ret = cpu_dai->ops.prepare(substream, cpu_dai);
421 if (ret < 0) {
422 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 goto out;
424 }
425 }
426
427 /* cancel any delayed stream shutdown that is pending */
428 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 codec_dai->pop_wait) {
430 codec_dai->pop_wait = 0;
431 cancel_delayed_work(&card->delayed_work);
432 }
433
434 /* do we need to power up codec */
435 if (codec->bias_level != SND_SOC_BIAS_ON) {
436 snd_soc_dapm_set_bias_level(socdev,
437 SND_SOC_BIAS_PREPARE);
438
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
443 else
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
447
448 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 snd_soc_dai_digital_mute(codec_dai, 0);
450
451 } else {
452 /* codec already powered - power on widgets */
453 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->playback.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457 else
458 snd_soc_dapm_stream_event(codec,
459 codec_dai->capture.stream_name,
460 SND_SOC_DAPM_STREAM_START);
461
462 snd_soc_dai_digital_mute(codec_dai, 0);
463 }
464
465 out:
466 mutex_unlock(&pcm_mutex);
467 return ret;
468 }
469
470 /*
471 * Called by ALSA when the hardware params are set by application. This
472 * function can also be called multiple times and can allocate buffers
473 * (using snd_pcm_lib_* ). It's non-atomic.
474 */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params)
477 {
478 struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 struct snd_soc_device *socdev = rtd->socdev;
480 struct snd_soc_dai_link *machine = rtd->dai;
481 struct snd_soc_card *card = socdev->card;
482 struct snd_soc_platform *platform = card->platform;
483 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 struct snd_soc_dai *codec_dai = machine->codec_dai;
485 int ret = 0;
486
487 mutex_lock(&pcm_mutex);
488
489 if (machine->ops && machine->ops->hw_params) {
490 ret = machine->ops->hw_params(substream, params);
491 if (ret < 0) {
492 printk(KERN_ERR "asoc: machine hw_params failed\n");
493 goto out;
494 }
495 }
496
497 if (codec_dai->ops.hw_params) {
498 ret = codec_dai->ops.hw_params(substream, params, codec_dai);
499 if (ret < 0) {
500 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 codec_dai->name);
502 goto codec_err;
503 }
504 }
505
506 if (cpu_dai->ops.hw_params) {
507 ret = cpu_dai->ops.hw_params(substream, params, cpu_dai);
508 if (ret < 0) {
509 printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 cpu_dai->name);
511 goto interface_err;
512 }
513 }
514
515 if (platform->pcm_ops->hw_params) {
516 ret = platform->pcm_ops->hw_params(substream, params);
517 if (ret < 0) {
518 printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 platform->name);
520 goto platform_err;
521 }
522 }
523
524 out:
525 mutex_unlock(&pcm_mutex);
526 return ret;
527
528 platform_err:
529 if (cpu_dai->ops.hw_free)
530 cpu_dai->ops.hw_free(substream, cpu_dai);
531
532 interface_err:
533 if (codec_dai->ops.hw_free)
534 codec_dai->ops.hw_free(substream, codec_dai);
535
536 codec_err:
537 if (machine->ops && machine->ops->hw_free)
538 machine->ops->hw_free(substream);
539
540 mutex_unlock(&pcm_mutex);
541 return ret;
542 }
543
544 /*
545 * Free's resources allocated by hw_params, can be called multiple times
546 */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 struct snd_soc_device *socdev = rtd->socdev;
551 struct snd_soc_dai_link *machine = rtd->dai;
552 struct snd_soc_card *card = socdev->card;
553 struct snd_soc_platform *platform = card->platform;
554 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 struct snd_soc_dai *codec_dai = machine->codec_dai;
556 struct snd_soc_codec *codec = socdev->codec;
557
558 mutex_lock(&pcm_mutex);
559
560 /* apply codec digital mute */
561 if (!codec->active)
562 snd_soc_dai_digital_mute(codec_dai, 1);
563
564 /* free any machine hw params */
565 if (machine->ops && machine->ops->hw_free)
566 machine->ops->hw_free(substream);
567
568 /* free any DMA resources */
569 if (platform->pcm_ops->hw_free)
570 platform->pcm_ops->hw_free(substream);
571
572 /* now free hw params for the DAI's */
573 if (codec_dai->ops.hw_free)
574 codec_dai->ops.hw_free(substream, codec_dai);
575
576 if (cpu_dai->ops.hw_free)
577 cpu_dai->ops.hw_free(substream, cpu_dai);
578
579 mutex_unlock(&pcm_mutex);
580 return 0;
581 }
582
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 struct snd_soc_device *socdev = rtd->socdev;
587 struct snd_soc_card *card= socdev->card;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = card->platform;
590 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_dai *codec_dai = machine->codec_dai;
592 int ret;
593
594 if (codec_dai->ops.trigger) {
595 ret = codec_dai->ops.trigger(substream, cmd, codec_dai);
596 if (ret < 0)
597 return ret;
598 }
599
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
602 if (ret < 0)
603 return ret;
604 }
605
606 if (cpu_dai->ops.trigger) {
607 ret = cpu_dai->ops.trigger(substream, cmd, cpu_dai);
608 if (ret < 0)
609 return ret;
610 }
611 return 0;
612 }
613
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
622 };
623
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_card *card = socdev->card;
630 struct snd_soc_platform *platform = card->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = socdev->codec;
633 int i;
634
635 /* Due to the resume being scheduled into a workqueue we could
636 * suspend before that's finished - wait for it to complete.
637 */
638 snd_power_lock(codec->card);
639 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 snd_power_unlock(codec->card);
641
642 /* we're going to block userspace touching us until resume completes */
643 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644
645 /* mute any active DAC's */
646 for (i = 0; i < card->num_links; i++) {
647 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 if (dai->ops.digital_mute && dai->playback.active)
649 dai->ops.digital_mute(dai, 1);
650 }
651
652 /* suspend all pcms */
653 for (i = 0; i < card->num_links; i++)
654 snd_pcm_suspend_all(card->dai_link[i].pcm);
655
656 if (card->suspend_pre)
657 card->suspend_pre(pdev, state);
658
659 for (i = 0; i < card->num_links; i++) {
660 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
661 if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 cpu_dai->suspend(cpu_dai);
663 if (platform->suspend)
664 platform->suspend(cpu_dai);
665 }
666
667 /* close any waiting streams and save state */
668 run_delayed_work(&card->delayed_work);
669 codec->suspend_bias_level = codec->bias_level;
670
671 for (i = 0; i < codec->num_dai; i++) {
672 char *stream = codec->dai[i].playback.stream_name;
673 if (stream != NULL)
674 snd_soc_dapm_stream_event(codec, stream,
675 SND_SOC_DAPM_STREAM_SUSPEND);
676 stream = codec->dai[i].capture.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 }
681
682 if (codec_dev->suspend)
683 codec_dev->suspend(pdev, state);
684
685 for (i = 0; i < card->num_links; i++) {
686 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 if (cpu_dai->suspend && cpu_dai->ac97_control)
688 cpu_dai->suspend(cpu_dai);
689 }
690
691 if (card->suspend_post)
692 card->suspend_post(pdev, state);
693
694 return 0;
695 }
696
697 /* deferred resume work, so resume can complete before we finished
698 * setting our codec back up, which can be very slow on I2C
699 */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 struct snd_soc_card *card = container_of(work,
703 struct snd_soc_card,
704 deferred_resume_work);
705 struct snd_soc_device *socdev = card->socdev;
706 struct snd_soc_platform *platform = card->platform;
707 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 struct snd_soc_codec *codec = socdev->codec;
709 struct platform_device *pdev = to_platform_device(socdev->dev);
710 int i;
711
712 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 * so userspace apps are blocked from touching us
714 */
715
716 dev_dbg(socdev->dev, "starting resume work\n");
717
718 if (card->resume_pre)
719 card->resume_pre(pdev);
720
721 for (i = 0; i < card->num_links; i++) {
722 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 if (cpu_dai->resume && cpu_dai->ac97_control)
724 cpu_dai->resume(cpu_dai);
725 }
726
727 if (codec_dev->resume)
728 codec_dev->resume(pdev);
729
730 for (i = 0; i < codec->num_dai; i++) {
731 char *stream = codec->dai[i].playback.stream_name;
732 if (stream != NULL)
733 snd_soc_dapm_stream_event(codec, stream,
734 SND_SOC_DAPM_STREAM_RESUME);
735 stream = codec->dai[i].capture.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 }
740
741 /* unmute any active DACs */
742 for (i = 0; i < card->num_links; i++) {
743 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 if (dai->ops.digital_mute && dai->playback.active)
745 dai->ops.digital_mute(dai, 0);
746 }
747
748 for (i = 0; i < card->num_links; i++) {
749 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 if (cpu_dai->resume && !cpu_dai->ac97_control)
751 cpu_dai->resume(cpu_dai);
752 if (platform->resume)
753 platform->resume(cpu_dai);
754 }
755
756 if (card->resume_post)
757 card->resume_post(pdev);
758
759 dev_dbg(socdev->dev, "resume work completed\n");
760
761 /* userspace can access us now we are back as we were before */
762 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 struct snd_soc_card *card = socdev->card;
770
771 dev_dbg(socdev->dev, "scheduling resume work\n");
772
773 if (!schedule_work(&card->deferred_resume_work))
774 dev_err(socdev->dev, "resume work item may be lost\n");
775
776 return 0;
777 }
778
779 #else
780 #define soc_suspend NULL
781 #define soc_resume NULL
782 #endif
783
784 static void snd_soc_instantiate_card(struct snd_soc_card *card)
785 {
786 struct platform_device *pdev = container_of(card->dev,
787 struct platform_device,
788 dev);
789 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
790 struct snd_soc_platform *platform;
791 struct snd_soc_dai *dai;
792 int i, found, ret, ac97;
793
794 if (card->instantiated)
795 return;
796
797 found = 0;
798 list_for_each_entry(platform, &platform_list, list)
799 if (card->platform == platform) {
800 found = 1;
801 break;
802 }
803 if (!found) {
804 dev_dbg(card->dev, "Platform %s not registered\n",
805 card->platform->name);
806 return;
807 }
808
809 ac97 = 0;
810 for (i = 0; i < card->num_links; i++) {
811 found = 0;
812 list_for_each_entry(dai, &dai_list, list)
813 if (card->dai_link[i].cpu_dai == dai) {
814 found = 1;
815 break;
816 }
817 if (!found) {
818 dev_dbg(card->dev, "DAI %s not registered\n",
819 card->dai_link[i].cpu_dai->name);
820 return;
821 }
822
823 if (card->dai_link[i].cpu_dai->ac97_control)
824 ac97 = 1;
825 }
826
827 /* If we have AC97 in the system then don't wait for the
828 * codec. This will need revisiting if we have to handle
829 * systems with mixed AC97 and non-AC97 parts. Only check for
830 * DAIs currently; we can't do this per link since some AC97
831 * codecs have non-AC97 DAIs.
832 */
833 if (!ac97)
834 for (i = 0; i < card->num_links; i++) {
835 found = 0;
836 list_for_each_entry(dai, &dai_list, list)
837 if (card->dai_link[i].codec_dai == dai) {
838 found = 1;
839 break;
840 }
841 if (!found) {
842 dev_dbg(card->dev, "DAI %s not registered\n",
843 card->dai_link[i].codec_dai->name);
844 return;
845 }
846 }
847
848 /* Note that we do not current check for codec components */
849
850 dev_dbg(card->dev, "All components present, instantiating\n");
851
852 /* Found everything, bring it up */
853 if (card->probe) {
854 ret = card->probe(pdev);
855 if (ret < 0)
856 return;
857 }
858
859 for (i = 0; i < card->num_links; i++) {
860 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
861 if (cpu_dai->probe) {
862 ret = cpu_dai->probe(pdev, cpu_dai);
863 if (ret < 0)
864 goto cpu_dai_err;
865 }
866 }
867
868 if (codec_dev->probe) {
869 ret = codec_dev->probe(pdev);
870 if (ret < 0)
871 goto cpu_dai_err;
872 }
873
874 if (platform->probe) {
875 ret = platform->probe(pdev);
876 if (ret < 0)
877 goto platform_err;
878 }
879
880 /* DAPM stream work */
881 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
882 #ifdef CONFIG_PM
883 /* deferred resume work */
884 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
885 #endif
886
887 card->instantiated = 1;
888
889 return;
890
891 platform_err:
892 if (codec_dev->remove)
893 codec_dev->remove(pdev);
894
895 cpu_dai_err:
896 for (i--; i >= 0; i--) {
897 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
898 if (cpu_dai->remove)
899 cpu_dai->remove(pdev, cpu_dai);
900 }
901
902 if (card->remove)
903 card->remove(pdev);
904 }
905
906 /*
907 * Attempt to initialise any uninitalised cards. Must be called with
908 * client_mutex.
909 */
910 static void snd_soc_instantiate_cards(void)
911 {
912 struct snd_soc_card *card;
913 list_for_each_entry(card, &card_list, list)
914 snd_soc_instantiate_card(card);
915 }
916
917 /* probes a new socdev */
918 static int soc_probe(struct platform_device *pdev)
919 {
920 int ret = 0;
921 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
922 struct snd_soc_card *card = socdev->card;
923
924 /* Bodge while we push things out of socdev */
925 card->socdev = socdev;
926
927 /* Bodge while we unpick instantiation */
928 card->dev = &pdev->dev;
929 ret = snd_soc_register_card(card);
930 if (ret != 0) {
931 dev_err(&pdev->dev, "Failed to register card\n");
932 return ret;
933 }
934
935 return 0;
936 }
937
938 /* removes a socdev */
939 static int soc_remove(struct platform_device *pdev)
940 {
941 int i;
942 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
943 struct snd_soc_card *card = socdev->card;
944 struct snd_soc_platform *platform = card->platform;
945 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
946
947 run_delayed_work(&card->delayed_work);
948
949 if (platform->remove)
950 platform->remove(pdev);
951
952 if (codec_dev->remove)
953 codec_dev->remove(pdev);
954
955 for (i = 0; i < card->num_links; i++) {
956 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
957 if (cpu_dai->remove)
958 cpu_dai->remove(pdev, cpu_dai);
959 }
960
961 if (card->remove)
962 card->remove(pdev);
963
964 snd_soc_unregister_card(card);
965
966 return 0;
967 }
968
969 /* ASoC platform driver */
970 static struct platform_driver soc_driver = {
971 .driver = {
972 .name = "soc-audio",
973 .owner = THIS_MODULE,
974 },
975 .probe = soc_probe,
976 .remove = soc_remove,
977 .suspend = soc_suspend,
978 .resume = soc_resume,
979 };
980
981 /* create a new pcm */
982 static int soc_new_pcm(struct snd_soc_device *socdev,
983 struct snd_soc_dai_link *dai_link, int num)
984 {
985 struct snd_soc_codec *codec = socdev->codec;
986 struct snd_soc_card *card = socdev->card;
987 struct snd_soc_platform *platform = card->platform;
988 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
989 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
990 struct snd_soc_pcm_runtime *rtd;
991 struct snd_pcm *pcm;
992 char new_name[64];
993 int ret = 0, playback = 0, capture = 0;
994
995 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
996 if (rtd == NULL)
997 return -ENOMEM;
998
999 rtd->dai = dai_link;
1000 rtd->socdev = socdev;
1001 codec_dai->codec = socdev->codec;
1002
1003 /* check client and interface hw capabilities */
1004 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1005 num);
1006
1007 if (codec_dai->playback.channels_min)
1008 playback = 1;
1009 if (codec_dai->capture.channels_min)
1010 capture = 1;
1011
1012 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1013 capture, &pcm);
1014 if (ret < 0) {
1015 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1016 codec->name);
1017 kfree(rtd);
1018 return ret;
1019 }
1020
1021 dai_link->pcm = pcm;
1022 pcm->private_data = rtd;
1023 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1024 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1025 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1026 soc_pcm_ops.copy = platform->pcm_ops->copy;
1027 soc_pcm_ops.silence = platform->pcm_ops->silence;
1028 soc_pcm_ops.ack = platform->pcm_ops->ack;
1029 soc_pcm_ops.page = platform->pcm_ops->page;
1030
1031 if (playback)
1032 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1033
1034 if (capture)
1035 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1036
1037 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1038 if (ret < 0) {
1039 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1040 kfree(rtd);
1041 return ret;
1042 }
1043
1044 pcm->private_free = platform->pcm_free;
1045 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1046 cpu_dai->name);
1047 return ret;
1048 }
1049
1050 /* codec register dump */
1051 static ssize_t soc_codec_reg_show(struct snd_soc_device *devdata, char *buf)
1052 {
1053 struct snd_soc_codec *codec = devdata->codec;
1054 int i, step = 1, count = 0;
1055
1056 if (!codec->reg_cache_size)
1057 return 0;
1058
1059 if (codec->reg_cache_step)
1060 step = codec->reg_cache_step;
1061
1062 count += sprintf(buf, "%s registers\n", codec->name);
1063 for (i = 0; i < codec->reg_cache_size; i += step) {
1064 count += sprintf(buf + count, "%2x: ", i);
1065 if (count >= PAGE_SIZE - 1)
1066 break;
1067
1068 if (codec->display_register)
1069 count += codec->display_register(codec, buf + count,
1070 PAGE_SIZE - count, i);
1071 else
1072 count += snprintf(buf + count, PAGE_SIZE - count,
1073 "%4x", codec->read(codec, i));
1074
1075 if (count >= PAGE_SIZE - 1)
1076 break;
1077
1078 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1079 if (count >= PAGE_SIZE - 1)
1080 break;
1081 }
1082
1083 /* Truncate count; min() would cause a warning */
1084 if (count >= PAGE_SIZE)
1085 count = PAGE_SIZE - 1;
1086
1087 return count;
1088 }
1089 static ssize_t codec_reg_show(struct device *dev,
1090 struct device_attribute *attr, char *buf)
1091 {
1092 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1093 return soc_codec_reg_show(devdata, buf);
1094 }
1095
1096 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1097
1098 #ifdef CONFIG_DEBUG_FS
1099 static int codec_reg_open_file(struct inode *inode, struct file *file)
1100 {
1101 file->private_data = inode->i_private;
1102 return 0;
1103 }
1104
1105 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1106 size_t count, loff_t *ppos)
1107 {
1108 ssize_t ret;
1109 struct snd_soc_codec *codec = file->private_data;
1110 struct device *card_dev = codec->card->dev;
1111 struct snd_soc_device *devdata = card_dev->driver_data;
1112 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1113 if (!buf)
1114 return -ENOMEM;
1115 ret = soc_codec_reg_show(devdata, buf);
1116 if (ret >= 0)
1117 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1118 kfree(buf);
1119 return ret;
1120 }
1121
1122 static ssize_t codec_reg_write_file(struct file *file,
1123 const char __user *user_buf, size_t count, loff_t *ppos)
1124 {
1125 char buf[32];
1126 int buf_size;
1127 char *start = buf;
1128 unsigned long reg, value;
1129 int step = 1;
1130 struct snd_soc_codec *codec = file->private_data;
1131
1132 buf_size = min(count, (sizeof(buf)-1));
1133 if (copy_from_user(buf, user_buf, buf_size))
1134 return -EFAULT;
1135 buf[buf_size] = 0;
1136
1137 if (codec->reg_cache_step)
1138 step = codec->reg_cache_step;
1139
1140 while (*start == ' ')
1141 start++;
1142 reg = simple_strtoul(start, &start, 16);
1143 if ((reg >= codec->reg_cache_size) || (reg % step))
1144 return -EINVAL;
1145 while (*start == ' ')
1146 start++;
1147 if (strict_strtoul(start, 16, &value))
1148 return -EINVAL;
1149 codec->write(codec, reg, value);
1150 return buf_size;
1151 }
1152
1153 static const struct file_operations codec_reg_fops = {
1154 .open = codec_reg_open_file,
1155 .read = codec_reg_read_file,
1156 .write = codec_reg_write_file,
1157 };
1158
1159 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1160 {
1161 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1162 debugfs_root, codec,
1163 &codec_reg_fops);
1164 if (!codec->debugfs_reg)
1165 printk(KERN_WARNING
1166 "ASoC: Failed to create codec register debugfs file\n");
1167
1168 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1169 debugfs_root,
1170 &codec->pop_time);
1171 if (!codec->debugfs_pop_time)
1172 printk(KERN_WARNING
1173 "Failed to create pop time debugfs file\n");
1174 }
1175
1176 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1177 {
1178 debugfs_remove(codec->debugfs_pop_time);
1179 debugfs_remove(codec->debugfs_reg);
1180 }
1181
1182 #else
1183
1184 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1185 {
1186 }
1187
1188 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1189 {
1190 }
1191 #endif
1192
1193 /**
1194 * snd_soc_new_ac97_codec - initailise AC97 device
1195 * @codec: audio codec
1196 * @ops: AC97 bus operations
1197 * @num: AC97 codec number
1198 *
1199 * Initialises AC97 codec resources for use by ad-hoc devices only.
1200 */
1201 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1202 struct snd_ac97_bus_ops *ops, int num)
1203 {
1204 mutex_lock(&codec->mutex);
1205
1206 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1207 if (codec->ac97 == NULL) {
1208 mutex_unlock(&codec->mutex);
1209 return -ENOMEM;
1210 }
1211
1212 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1213 if (codec->ac97->bus == NULL) {
1214 kfree(codec->ac97);
1215 codec->ac97 = NULL;
1216 mutex_unlock(&codec->mutex);
1217 return -ENOMEM;
1218 }
1219
1220 codec->ac97->bus->ops = ops;
1221 codec->ac97->num = num;
1222 mutex_unlock(&codec->mutex);
1223 return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1226
1227 /**
1228 * snd_soc_free_ac97_codec - free AC97 codec device
1229 * @codec: audio codec
1230 *
1231 * Frees AC97 codec device resources.
1232 */
1233 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1234 {
1235 mutex_lock(&codec->mutex);
1236 kfree(codec->ac97->bus);
1237 kfree(codec->ac97);
1238 codec->ac97 = NULL;
1239 mutex_unlock(&codec->mutex);
1240 }
1241 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1242
1243 /**
1244 * snd_soc_update_bits - update codec register bits
1245 * @codec: audio codec
1246 * @reg: codec register
1247 * @mask: register mask
1248 * @value: new value
1249 *
1250 * Writes new register value.
1251 *
1252 * Returns 1 for change else 0.
1253 */
1254 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1255 unsigned short mask, unsigned short value)
1256 {
1257 int change;
1258 unsigned short old, new;
1259
1260 mutex_lock(&io_mutex);
1261 old = snd_soc_read(codec, reg);
1262 new = (old & ~mask) | value;
1263 change = old != new;
1264 if (change)
1265 snd_soc_write(codec, reg, new);
1266
1267 mutex_unlock(&io_mutex);
1268 return change;
1269 }
1270 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1271
1272 /**
1273 * snd_soc_test_bits - test register for change
1274 * @codec: audio codec
1275 * @reg: codec register
1276 * @mask: register mask
1277 * @value: new value
1278 *
1279 * Tests a register with a new value and checks if the new value is
1280 * different from the old value.
1281 *
1282 * Returns 1 for change else 0.
1283 */
1284 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1285 unsigned short mask, unsigned short value)
1286 {
1287 int change;
1288 unsigned short old, new;
1289
1290 mutex_lock(&io_mutex);
1291 old = snd_soc_read(codec, reg);
1292 new = (old & ~mask) | value;
1293 change = old != new;
1294 mutex_unlock(&io_mutex);
1295
1296 return change;
1297 }
1298 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1299
1300 /**
1301 * snd_soc_new_pcms - create new sound card and pcms
1302 * @socdev: the SoC audio device
1303 * @idx: ALSA card index
1304 * @xid: card identification
1305 *
1306 * Create a new sound card based upon the codec and interface pcms.
1307 *
1308 * Returns 0 for success, else error.
1309 */
1310 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1311 {
1312 struct snd_soc_codec *codec = socdev->codec;
1313 struct snd_soc_card *card = socdev->card;
1314 int ret, i;
1315
1316 mutex_lock(&codec->mutex);
1317
1318 /* register a sound card */
1319 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1320 if (ret < 0) {
1321 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1322 codec->name);
1323 mutex_unlock(&codec->mutex);
1324 return ret;
1325 }
1326
1327 codec->card->dev = socdev->dev;
1328 codec->card->private_data = codec;
1329 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1330
1331 /* create the pcms */
1332 for (i = 0; i < card->num_links; i++) {
1333 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1334 if (ret < 0) {
1335 printk(KERN_ERR "asoc: can't create pcm %s\n",
1336 card->dai_link[i].stream_name);
1337 mutex_unlock(&codec->mutex);
1338 return ret;
1339 }
1340 }
1341
1342 mutex_unlock(&codec->mutex);
1343 return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1346
1347 /**
1348 * snd_soc_init_card - register sound card
1349 * @socdev: the SoC audio device
1350 *
1351 * Register a SoC sound card. Also registers an AC97 device if the
1352 * codec is AC97 for ad hoc devices.
1353 *
1354 * Returns 0 for success, else error.
1355 */
1356 int snd_soc_init_card(struct snd_soc_device *socdev)
1357 {
1358 struct snd_soc_codec *codec = socdev->codec;
1359 struct snd_soc_card *card = socdev->card;
1360 int ret = 0, i, ac97 = 0, err = 0;
1361
1362 for (i = 0; i < card->num_links; i++) {
1363 if (card->dai_link[i].init) {
1364 err = card->dai_link[i].init(codec);
1365 if (err < 0) {
1366 printk(KERN_ERR "asoc: failed to init %s\n",
1367 card->dai_link[i].stream_name);
1368 continue;
1369 }
1370 }
1371 if (card->dai_link[i].codec_dai->ac97_control)
1372 ac97 = 1;
1373 }
1374 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1375 "%s", card->name);
1376 snprintf(codec->card->longname, sizeof(codec->card->longname),
1377 "%s (%s)", card->name, codec->name);
1378
1379 ret = snd_card_register(codec->card);
1380 if (ret < 0) {
1381 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1382 codec->name);
1383 goto out;
1384 }
1385
1386 mutex_lock(&codec->mutex);
1387 #ifdef CONFIG_SND_SOC_AC97_BUS
1388 if (ac97) {
1389 ret = soc_ac97_dev_register(codec);
1390 if (ret < 0) {
1391 printk(KERN_ERR "asoc: AC97 device register failed\n");
1392 snd_card_free(codec->card);
1393 mutex_unlock(&codec->mutex);
1394 goto out;
1395 }
1396 }
1397 #endif
1398
1399 err = snd_soc_dapm_sys_add(socdev->dev);
1400 if (err < 0)
1401 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1402
1403 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1404 if (err < 0)
1405 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1406
1407 soc_init_codec_debugfs(socdev->codec);
1408 mutex_unlock(&codec->mutex);
1409
1410 out:
1411 return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1414
1415 /**
1416 * snd_soc_free_pcms - free sound card and pcms
1417 * @socdev: the SoC audio device
1418 *
1419 * Frees sound card and pcms associated with the socdev.
1420 * Also unregister the codec if it is an AC97 device.
1421 */
1422 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1423 {
1424 struct snd_soc_codec *codec = socdev->codec;
1425 #ifdef CONFIG_SND_SOC_AC97_BUS
1426 struct snd_soc_dai *codec_dai;
1427 int i;
1428 #endif
1429
1430 mutex_lock(&codec->mutex);
1431 soc_cleanup_codec_debugfs(socdev->codec);
1432 #ifdef CONFIG_SND_SOC_AC97_BUS
1433 for (i = 0; i < codec->num_dai; i++) {
1434 codec_dai = &codec->dai[i];
1435 if (codec_dai->ac97_control && codec->ac97) {
1436 soc_ac97_dev_unregister(codec);
1437 goto free_card;
1438 }
1439 }
1440 free_card:
1441 #endif
1442
1443 if (codec->card)
1444 snd_card_free(codec->card);
1445 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1446 mutex_unlock(&codec->mutex);
1447 }
1448 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1449
1450 /**
1451 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1452 * @substream: the pcm substream
1453 * @hw: the hardware parameters
1454 *
1455 * Sets the substream runtime hardware parameters.
1456 */
1457 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1458 const struct snd_pcm_hardware *hw)
1459 {
1460 struct snd_pcm_runtime *runtime = substream->runtime;
1461 runtime->hw.info = hw->info;
1462 runtime->hw.formats = hw->formats;
1463 runtime->hw.period_bytes_min = hw->period_bytes_min;
1464 runtime->hw.period_bytes_max = hw->period_bytes_max;
1465 runtime->hw.periods_min = hw->periods_min;
1466 runtime->hw.periods_max = hw->periods_max;
1467 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1468 runtime->hw.fifo_size = hw->fifo_size;
1469 return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1472
1473 /**
1474 * snd_soc_cnew - create new control
1475 * @_template: control template
1476 * @data: control private data
1477 * @long_name: control long name
1478 *
1479 * Create a new mixer control from a template control.
1480 *
1481 * Returns 0 for success, else error.
1482 */
1483 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1484 void *data, char *long_name)
1485 {
1486 struct snd_kcontrol_new template;
1487
1488 memcpy(&template, _template, sizeof(template));
1489 if (long_name)
1490 template.name = long_name;
1491 template.index = 0;
1492
1493 return snd_ctl_new1(&template, data);
1494 }
1495 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1496
1497 /**
1498 * snd_soc_info_enum_double - enumerated double mixer info callback
1499 * @kcontrol: mixer control
1500 * @uinfo: control element information
1501 *
1502 * Callback to provide information about a double enumerated
1503 * mixer control.
1504 *
1505 * Returns 0 for success.
1506 */
1507 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1508 struct snd_ctl_elem_info *uinfo)
1509 {
1510 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1511
1512 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1513 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1514 uinfo->value.enumerated.items = e->max;
1515
1516 if (uinfo->value.enumerated.item > e->max - 1)
1517 uinfo->value.enumerated.item = e->max - 1;
1518 strcpy(uinfo->value.enumerated.name,
1519 e->texts[uinfo->value.enumerated.item]);
1520 return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1523
1524 /**
1525 * snd_soc_get_enum_double - enumerated double mixer get callback
1526 * @kcontrol: mixer control
1527 * @ucontrol: control element information
1528 *
1529 * Callback to get the value of a double enumerated mixer.
1530 *
1531 * Returns 0 for success.
1532 */
1533 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1534 struct snd_ctl_elem_value *ucontrol)
1535 {
1536 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1537 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1538 unsigned short val, bitmask;
1539
1540 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1541 ;
1542 val = snd_soc_read(codec, e->reg);
1543 ucontrol->value.enumerated.item[0]
1544 = (val >> e->shift_l) & (bitmask - 1);
1545 if (e->shift_l != e->shift_r)
1546 ucontrol->value.enumerated.item[1] =
1547 (val >> e->shift_r) & (bitmask - 1);
1548
1549 return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1552
1553 /**
1554 * snd_soc_put_enum_double - enumerated double mixer put callback
1555 * @kcontrol: mixer control
1556 * @ucontrol: control element information
1557 *
1558 * Callback to set the value of a double enumerated mixer.
1559 *
1560 * Returns 0 for success.
1561 */
1562 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1563 struct snd_ctl_elem_value *ucontrol)
1564 {
1565 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1566 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1567 unsigned short val;
1568 unsigned short mask, bitmask;
1569
1570 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1571 ;
1572 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1573 return -EINVAL;
1574 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1575 mask = (bitmask - 1) << e->shift_l;
1576 if (e->shift_l != e->shift_r) {
1577 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1578 return -EINVAL;
1579 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1580 mask |= (bitmask - 1) << e->shift_r;
1581 }
1582
1583 return snd_soc_update_bits(codec, e->reg, mask, val);
1584 }
1585 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1586
1587 /**
1588 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1589 * @kcontrol: mixer control
1590 * @ucontrol: control element information
1591 *
1592 * Callback to get the value of a double semi enumerated mixer.
1593 *
1594 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1595 * used for handling bitfield coded enumeration for example.
1596 *
1597 * Returns 0 for success.
1598 */
1599 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1600 struct snd_ctl_elem_value *ucontrol)
1601 {
1602 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1603 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1604 unsigned short reg_val, val, mux;
1605
1606 reg_val = snd_soc_read(codec, e->reg);
1607 val = (reg_val >> e->shift_l) & e->mask;
1608 for (mux = 0; mux < e->max; mux++) {
1609 if (val == e->values[mux])
1610 break;
1611 }
1612 ucontrol->value.enumerated.item[0] = mux;
1613 if (e->shift_l != e->shift_r) {
1614 val = (reg_val >> e->shift_r) & e->mask;
1615 for (mux = 0; mux < e->max; mux++) {
1616 if (val == e->values[mux])
1617 break;
1618 }
1619 ucontrol->value.enumerated.item[1] = mux;
1620 }
1621
1622 return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1625
1626 /**
1627 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1628 * @kcontrol: mixer control
1629 * @ucontrol: control element information
1630 *
1631 * Callback to set the value of a double semi enumerated mixer.
1632 *
1633 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1634 * used for handling bitfield coded enumeration for example.
1635 *
1636 * Returns 0 for success.
1637 */
1638 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1639 struct snd_ctl_elem_value *ucontrol)
1640 {
1641 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1642 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1643 unsigned short val;
1644 unsigned short mask;
1645
1646 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1647 return -EINVAL;
1648 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1649 mask = e->mask << e->shift_l;
1650 if (e->shift_l != e->shift_r) {
1651 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1652 return -EINVAL;
1653 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1654 mask |= e->mask << e->shift_r;
1655 }
1656
1657 return snd_soc_update_bits(codec, e->reg, mask, val);
1658 }
1659 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1660
1661 /**
1662 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1663 * @kcontrol: mixer control
1664 * @uinfo: control element information
1665 *
1666 * Callback to provide information about an external enumerated
1667 * single mixer.
1668 *
1669 * Returns 0 for success.
1670 */
1671 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1672 struct snd_ctl_elem_info *uinfo)
1673 {
1674 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1675
1676 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1677 uinfo->count = 1;
1678 uinfo->value.enumerated.items = e->max;
1679
1680 if (uinfo->value.enumerated.item > e->max - 1)
1681 uinfo->value.enumerated.item = e->max - 1;
1682 strcpy(uinfo->value.enumerated.name,
1683 e->texts[uinfo->value.enumerated.item]);
1684 return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1687
1688 /**
1689 * snd_soc_info_volsw_ext - external single mixer info callback
1690 * @kcontrol: mixer control
1691 * @uinfo: control element information
1692 *
1693 * Callback to provide information about a single external mixer control.
1694 *
1695 * Returns 0 for success.
1696 */
1697 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1698 struct snd_ctl_elem_info *uinfo)
1699 {
1700 int max = kcontrol->private_value;
1701
1702 if (max == 1)
1703 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1704 else
1705 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1706
1707 uinfo->count = 1;
1708 uinfo->value.integer.min = 0;
1709 uinfo->value.integer.max = max;
1710 return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1713
1714 /**
1715 * snd_soc_info_volsw - single mixer info callback
1716 * @kcontrol: mixer control
1717 * @uinfo: control element information
1718 *
1719 * Callback to provide information about a single mixer control.
1720 *
1721 * Returns 0 for success.
1722 */
1723 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1724 struct snd_ctl_elem_info *uinfo)
1725 {
1726 struct soc_mixer_control *mc =
1727 (struct soc_mixer_control *)kcontrol->private_value;
1728 int max = mc->max;
1729 unsigned int shift = mc->shift;
1730 unsigned int rshift = mc->rshift;
1731
1732 if (max == 1)
1733 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1734 else
1735 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1736
1737 uinfo->count = shift == rshift ? 1 : 2;
1738 uinfo->value.integer.min = 0;
1739 uinfo->value.integer.max = max;
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1743
1744 /**
1745 * snd_soc_get_volsw - single mixer get callback
1746 * @kcontrol: mixer control
1747 * @ucontrol: control element information
1748 *
1749 * Callback to get the value of a single mixer control.
1750 *
1751 * Returns 0 for success.
1752 */
1753 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1754 struct snd_ctl_elem_value *ucontrol)
1755 {
1756 struct soc_mixer_control *mc =
1757 (struct soc_mixer_control *)kcontrol->private_value;
1758 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1759 unsigned int reg = mc->reg;
1760 unsigned int shift = mc->shift;
1761 unsigned int rshift = mc->rshift;
1762 int max = mc->max;
1763 unsigned int mask = (1 << fls(max)) - 1;
1764 unsigned int invert = mc->invert;
1765
1766 ucontrol->value.integer.value[0] =
1767 (snd_soc_read(codec, reg) >> shift) & mask;
1768 if (shift != rshift)
1769 ucontrol->value.integer.value[1] =
1770 (snd_soc_read(codec, reg) >> rshift) & mask;
1771 if (invert) {
1772 ucontrol->value.integer.value[0] =
1773 max - ucontrol->value.integer.value[0];
1774 if (shift != rshift)
1775 ucontrol->value.integer.value[1] =
1776 max - ucontrol->value.integer.value[1];
1777 }
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1782
1783 /**
1784 * snd_soc_put_volsw - single mixer put callback
1785 * @kcontrol: mixer control
1786 * @ucontrol: control element information
1787 *
1788 * Callback to set the value of a single mixer control.
1789 *
1790 * Returns 0 for success.
1791 */
1792 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1793 struct snd_ctl_elem_value *ucontrol)
1794 {
1795 struct soc_mixer_control *mc =
1796 (struct soc_mixer_control *)kcontrol->private_value;
1797 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1798 unsigned int reg = mc->reg;
1799 unsigned int shift = mc->shift;
1800 unsigned int rshift = mc->rshift;
1801 int max = mc->max;
1802 unsigned int mask = (1 << fls(max)) - 1;
1803 unsigned int invert = mc->invert;
1804 unsigned short val, val2, val_mask;
1805
1806 val = (ucontrol->value.integer.value[0] & mask);
1807 if (invert)
1808 val = max - val;
1809 val_mask = mask << shift;
1810 val = val << shift;
1811 if (shift != rshift) {
1812 val2 = (ucontrol->value.integer.value[1] & mask);
1813 if (invert)
1814 val2 = max - val2;
1815 val_mask |= mask << rshift;
1816 val |= val2 << rshift;
1817 }
1818 return snd_soc_update_bits(codec, reg, val_mask, val);
1819 }
1820 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1821
1822 /**
1823 * snd_soc_info_volsw_2r - double mixer info callback
1824 * @kcontrol: mixer control
1825 * @uinfo: control element information
1826 *
1827 * Callback to provide information about a double mixer control that
1828 * spans 2 codec registers.
1829 *
1830 * Returns 0 for success.
1831 */
1832 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1833 struct snd_ctl_elem_info *uinfo)
1834 {
1835 struct soc_mixer_control *mc =
1836 (struct soc_mixer_control *)kcontrol->private_value;
1837 int max = mc->max;
1838
1839 if (max == 1)
1840 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1841 else
1842 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1843
1844 uinfo->count = 2;
1845 uinfo->value.integer.min = 0;
1846 uinfo->value.integer.max = max;
1847 return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1850
1851 /**
1852 * snd_soc_get_volsw_2r - double mixer get callback
1853 * @kcontrol: mixer control
1854 * @ucontrol: control element information
1855 *
1856 * Callback to get the value of a double mixer control that spans 2 registers.
1857 *
1858 * Returns 0 for success.
1859 */
1860 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1861 struct snd_ctl_elem_value *ucontrol)
1862 {
1863 struct soc_mixer_control *mc =
1864 (struct soc_mixer_control *)kcontrol->private_value;
1865 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1866 unsigned int reg = mc->reg;
1867 unsigned int reg2 = mc->rreg;
1868 unsigned int shift = mc->shift;
1869 int max = mc->max;
1870 unsigned int mask = (1<<fls(max))-1;
1871 unsigned int invert = mc->invert;
1872
1873 ucontrol->value.integer.value[0] =
1874 (snd_soc_read(codec, reg) >> shift) & mask;
1875 ucontrol->value.integer.value[1] =
1876 (snd_soc_read(codec, reg2) >> shift) & mask;
1877 if (invert) {
1878 ucontrol->value.integer.value[0] =
1879 max - ucontrol->value.integer.value[0];
1880 ucontrol->value.integer.value[1] =
1881 max - ucontrol->value.integer.value[1];
1882 }
1883
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1887
1888 /**
1889 * snd_soc_put_volsw_2r - double mixer set callback
1890 * @kcontrol: mixer control
1891 * @ucontrol: control element information
1892 *
1893 * Callback to set the value of a double mixer control that spans 2 registers.
1894 *
1895 * Returns 0 for success.
1896 */
1897 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1898 struct snd_ctl_elem_value *ucontrol)
1899 {
1900 struct soc_mixer_control *mc =
1901 (struct soc_mixer_control *)kcontrol->private_value;
1902 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1903 unsigned int reg = mc->reg;
1904 unsigned int reg2 = mc->rreg;
1905 unsigned int shift = mc->shift;
1906 int max = mc->max;
1907 unsigned int mask = (1 << fls(max)) - 1;
1908 unsigned int invert = mc->invert;
1909 int err;
1910 unsigned short val, val2, val_mask;
1911
1912 val_mask = mask << shift;
1913 val = (ucontrol->value.integer.value[0] & mask);
1914 val2 = (ucontrol->value.integer.value[1] & mask);
1915
1916 if (invert) {
1917 val = max - val;
1918 val2 = max - val2;
1919 }
1920
1921 val = val << shift;
1922 val2 = val2 << shift;
1923
1924 err = snd_soc_update_bits(codec, reg, val_mask, val);
1925 if (err < 0)
1926 return err;
1927
1928 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1929 return err;
1930 }
1931 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1932
1933 /**
1934 * snd_soc_info_volsw_s8 - signed mixer info callback
1935 * @kcontrol: mixer control
1936 * @uinfo: control element information
1937 *
1938 * Callback to provide information about a signed mixer control.
1939 *
1940 * Returns 0 for success.
1941 */
1942 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1943 struct snd_ctl_elem_info *uinfo)
1944 {
1945 struct soc_mixer_control *mc =
1946 (struct soc_mixer_control *)kcontrol->private_value;
1947 int max = mc->max;
1948 int min = mc->min;
1949
1950 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1951 uinfo->count = 2;
1952 uinfo->value.integer.min = 0;
1953 uinfo->value.integer.max = max-min;
1954 return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1957
1958 /**
1959 * snd_soc_get_volsw_s8 - signed mixer get callback
1960 * @kcontrol: mixer control
1961 * @ucontrol: control element information
1962 *
1963 * Callback to get the value of a signed mixer control.
1964 *
1965 * Returns 0 for success.
1966 */
1967 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1968 struct snd_ctl_elem_value *ucontrol)
1969 {
1970 struct soc_mixer_control *mc =
1971 (struct soc_mixer_control *)kcontrol->private_value;
1972 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1973 unsigned int reg = mc->reg;
1974 int min = mc->min;
1975 int val = snd_soc_read(codec, reg);
1976
1977 ucontrol->value.integer.value[0] =
1978 ((signed char)(val & 0xff))-min;
1979 ucontrol->value.integer.value[1] =
1980 ((signed char)((val >> 8) & 0xff))-min;
1981 return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1984
1985 /**
1986 * snd_soc_put_volsw_sgn - signed mixer put callback
1987 * @kcontrol: mixer control
1988 * @ucontrol: control element information
1989 *
1990 * Callback to set the value of a signed mixer control.
1991 *
1992 * Returns 0 for success.
1993 */
1994 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1995 struct snd_ctl_elem_value *ucontrol)
1996 {
1997 struct soc_mixer_control *mc =
1998 (struct soc_mixer_control *)kcontrol->private_value;
1999 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2000 unsigned int reg = mc->reg;
2001 int min = mc->min;
2002 unsigned short val;
2003
2004 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2005 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2006
2007 return snd_soc_update_bits(codec, reg, 0xffff, val);
2008 }
2009 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2010
2011 /**
2012 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2013 * @dai: DAI
2014 * @clk_id: DAI specific clock ID
2015 * @freq: new clock frequency in Hz
2016 * @dir: new clock direction - input/output.
2017 *
2018 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2019 */
2020 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2021 unsigned int freq, int dir)
2022 {
2023 if (dai->ops.set_sysclk)
2024 return dai->ops.set_sysclk(dai, clk_id, freq, dir);
2025 else
2026 return -EINVAL;
2027 }
2028 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2029
2030 /**
2031 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2032 * @dai: DAI
2033 * @div_id: DAI specific clock divider ID
2034 * @div: new clock divisor.
2035 *
2036 * Configures the clock dividers. This is used to derive the best DAI bit and
2037 * frame clocks from the system or master clock. It's best to set the DAI bit
2038 * and frame clocks as low as possible to save system power.
2039 */
2040 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2041 int div_id, int div)
2042 {
2043 if (dai->ops.set_clkdiv)
2044 return dai->ops.set_clkdiv(dai, div_id, div);
2045 else
2046 return -EINVAL;
2047 }
2048 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2049
2050 /**
2051 * snd_soc_dai_set_pll - configure DAI PLL.
2052 * @dai: DAI
2053 * @pll_id: DAI specific PLL ID
2054 * @freq_in: PLL input clock frequency in Hz
2055 * @freq_out: requested PLL output clock frequency in Hz
2056 *
2057 * Configures and enables PLL to generate output clock based on input clock.
2058 */
2059 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2060 int pll_id, unsigned int freq_in, unsigned int freq_out)
2061 {
2062 if (dai->ops.set_pll)
2063 return dai->ops.set_pll(dai, pll_id, freq_in, freq_out);
2064 else
2065 return -EINVAL;
2066 }
2067 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2068
2069 /**
2070 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2071 * @dai: DAI
2072 * @fmt: SND_SOC_DAIFMT_ format value.
2073 *
2074 * Configures the DAI hardware format and clocking.
2075 */
2076 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2077 {
2078 if (dai->ops.set_fmt)
2079 return dai->ops.set_fmt(dai, fmt);
2080 else
2081 return -EINVAL;
2082 }
2083 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2084
2085 /**
2086 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2087 * @dai: DAI
2088 * @mask: DAI specific mask representing used slots.
2089 * @slots: Number of slots in use.
2090 *
2091 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2092 * specific.
2093 */
2094 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2095 unsigned int mask, int slots)
2096 {
2097 if (dai->ops.set_sysclk)
2098 return dai->ops.set_tdm_slot(dai, mask, slots);
2099 else
2100 return -EINVAL;
2101 }
2102 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2103
2104 /**
2105 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2106 * @dai: DAI
2107 * @tristate: tristate enable
2108 *
2109 * Tristates the DAI so that others can use it.
2110 */
2111 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2112 {
2113 if (dai->ops.set_sysclk)
2114 return dai->ops.set_tristate(dai, tristate);
2115 else
2116 return -EINVAL;
2117 }
2118 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2119
2120 /**
2121 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2122 * @dai: DAI
2123 * @mute: mute enable
2124 *
2125 * Mutes the DAI DAC.
2126 */
2127 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2128 {
2129 if (dai->ops.digital_mute)
2130 return dai->ops.digital_mute(dai, mute);
2131 else
2132 return -EINVAL;
2133 }
2134 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2135
2136 /**
2137 * snd_soc_register_card - Register a card with the ASoC core
2138 *
2139 * @card: Card to register
2140 *
2141 * Note that currently this is an internal only function: it will be
2142 * exposed to machine drivers after further backporting of ASoC v2
2143 * registration APIs.
2144 */
2145 static int snd_soc_register_card(struct snd_soc_card *card)
2146 {
2147 if (!card->name || !card->dev)
2148 return -EINVAL;
2149
2150 INIT_LIST_HEAD(&card->list);
2151 card->instantiated = 0;
2152
2153 mutex_lock(&client_mutex);
2154 list_add(&card->list, &card_list);
2155 snd_soc_instantiate_cards();
2156 mutex_unlock(&client_mutex);
2157
2158 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2159
2160 return 0;
2161 }
2162
2163 /**
2164 * snd_soc_unregister_card - Unregister a card with the ASoC core
2165 *
2166 * @card: Card to unregister
2167 *
2168 * Note that currently this is an internal only function: it will be
2169 * exposed to machine drivers after further backporting of ASoC v2
2170 * registration APIs.
2171 */
2172 static int snd_soc_unregister_card(struct snd_soc_card *card)
2173 {
2174 mutex_lock(&client_mutex);
2175 list_del(&card->list);
2176 mutex_unlock(&client_mutex);
2177
2178 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2179
2180 return 0;
2181 }
2182
2183 /**
2184 * snd_soc_register_dai - Register a DAI with the ASoC core
2185 *
2186 * @dai: DAI to register
2187 */
2188 int snd_soc_register_dai(struct snd_soc_dai *dai)
2189 {
2190 if (!dai->name)
2191 return -EINVAL;
2192
2193 /* The device should become mandatory over time */
2194 if (!dai->dev)
2195 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2196
2197 INIT_LIST_HEAD(&dai->list);
2198
2199 mutex_lock(&client_mutex);
2200 list_add(&dai->list, &dai_list);
2201 snd_soc_instantiate_cards();
2202 mutex_unlock(&client_mutex);
2203
2204 pr_debug("Registered DAI '%s'\n", dai->name);
2205
2206 return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2209
2210 /**
2211 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2212 *
2213 * @dai: DAI to unregister
2214 */
2215 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2216 {
2217 mutex_lock(&client_mutex);
2218 list_del(&dai->list);
2219 mutex_unlock(&client_mutex);
2220
2221 pr_debug("Unregistered DAI '%s'\n", dai->name);
2222 }
2223 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2224
2225 /**
2226 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2227 *
2228 * @dai: Array of DAIs to register
2229 * @count: Number of DAIs
2230 */
2231 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2232 {
2233 int i, ret;
2234
2235 for (i = 0; i < count; i++) {
2236 ret = snd_soc_register_dai(&dai[i]);
2237 if (ret != 0)
2238 goto err;
2239 }
2240
2241 return 0;
2242
2243 err:
2244 for (i--; i >= 0; i--)
2245 snd_soc_unregister_dai(&dai[i]);
2246
2247 return ret;
2248 }
2249 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2250
2251 /**
2252 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2253 *
2254 * @dai: Array of DAIs to unregister
2255 * @count: Number of DAIs
2256 */
2257 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2258 {
2259 int i;
2260
2261 for (i = 0; i < count; i++)
2262 snd_soc_unregister_dai(&dai[i]);
2263 }
2264 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2265
2266 /**
2267 * snd_soc_register_platform - Register a platform with the ASoC core
2268 *
2269 * @platform: platform to register
2270 */
2271 int snd_soc_register_platform(struct snd_soc_platform *platform)
2272 {
2273 if (!platform->name)
2274 return -EINVAL;
2275
2276 INIT_LIST_HEAD(&platform->list);
2277
2278 mutex_lock(&client_mutex);
2279 list_add(&platform->list, &platform_list);
2280 snd_soc_instantiate_cards();
2281 mutex_unlock(&client_mutex);
2282
2283 pr_debug("Registered platform '%s'\n", platform->name);
2284
2285 return 0;
2286 }
2287 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2288
2289 /**
2290 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2291 *
2292 * @platform: platform to unregister
2293 */
2294 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2295 {
2296 mutex_lock(&client_mutex);
2297 list_del(&platform->list);
2298 mutex_unlock(&client_mutex);
2299
2300 pr_debug("Unregistered platform '%s'\n", platform->name);
2301 }
2302 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2303
2304 /**
2305 * snd_soc_register_codec - Register a codec with the ASoC core
2306 *
2307 * @codec: codec to register
2308 */
2309 int snd_soc_register_codec(struct snd_soc_codec *codec)
2310 {
2311 if (!codec->name)
2312 return -EINVAL;
2313
2314 /* The device should become mandatory over time */
2315 if (!codec->dev)
2316 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2317
2318 INIT_LIST_HEAD(&codec->list);
2319
2320 mutex_lock(&client_mutex);
2321 list_add(&codec->list, &codec_list);
2322 snd_soc_instantiate_cards();
2323 mutex_unlock(&client_mutex);
2324
2325 pr_debug("Registered codec '%s'\n", codec->name);
2326
2327 return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2330
2331 /**
2332 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2333 *
2334 * @codec: codec to unregister
2335 */
2336 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2337 {
2338 mutex_lock(&client_mutex);
2339 list_del(&codec->list);
2340 mutex_unlock(&client_mutex);
2341
2342 pr_debug("Unregistered codec '%s'\n", codec->name);
2343 }
2344 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2345
2346 static int __init snd_soc_init(void)
2347 {
2348 #ifdef CONFIG_DEBUG_FS
2349 debugfs_root = debugfs_create_dir("asoc", NULL);
2350 if (IS_ERR(debugfs_root) || !debugfs_root) {
2351 printk(KERN_WARNING
2352 "ASoC: Failed to create debugfs directory\n");
2353 debugfs_root = NULL;
2354 }
2355 #endif
2356
2357 return platform_driver_register(&soc_driver);
2358 }
2359
2360 static void __exit snd_soc_exit(void)
2361 {
2362 #ifdef CONFIG_DEBUG_FS
2363 debugfs_remove_recursive(debugfs_root);
2364 #endif
2365 platform_driver_unregister(&soc_driver);
2366 }
2367
2368 module_init(snd_soc_init);
2369 module_exit(snd_soc_exit);
2370
2371 /* Module information */
2372 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2373 MODULE_DESCRIPTION("ALSA SoC Core");
2374 MODULE_LICENSE("GPL");
2375 MODULE_ALIAS("platform:soc-audio");