[ALSA] Changed Jaroslav Kysela's e-mail from perex@suse.cz to perex@perex.cz
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / fm801.c
1 /*
2 * The driver for the ForteMedia FM801 based soundcards
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 *
5 * Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/moduleparam.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/tlv.h>
33 #include <sound/ac97_codec.h>
34 #include <sound/mpu401.h>
35 #include <sound/opl3.h>
36 #include <sound/initval.h>
37
38 #include <asm/io.h>
39
40 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
41 #include <sound/tea575x-tuner.h>
42 #define TEA575X_RADIO 1
43 #endif
44
45 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
46 MODULE_DESCRIPTION("ForteMedia FM801");
47 MODULE_LICENSE("GPL");
48 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
49 "{Genius,SoundMaker Live 5.1}}");
50
51 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
52 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
53 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
54 /*
55 * Enable TEA575x tuner
56 * 1 = MediaForte 256-PCS
57 * 2 = MediaForte 256-PCPR
58 * 3 = MediaForte 64-PCR
59 * 16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
60 * High 16-bits are video (radio) device number + 1
61 */
62 static int tea575x_tuner[SNDRV_CARDS];
63
64 module_param_array(index, int, NULL, 0444);
65 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
66 module_param_array(id, charp, NULL, 0444);
67 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
68 module_param_array(enable, bool, NULL, 0444);
69 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
70 module_param_array(tea575x_tuner, int, NULL, 0444);
71 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
72
73 /*
74 * Direct registers
75 */
76
77 #define FM801_REG(chip, reg) (chip->port + FM801_##reg)
78
79 #define FM801_PCM_VOL 0x00 /* PCM Output Volume */
80 #define FM801_FM_VOL 0x02 /* FM Output Volume */
81 #define FM801_I2S_VOL 0x04 /* I2S Volume */
82 #define FM801_REC_SRC 0x06 /* Record Source */
83 #define FM801_PLY_CTRL 0x08 /* Playback Control */
84 #define FM801_PLY_COUNT 0x0a /* Playback Count */
85 #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
86 #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
87 #define FM801_CAP_CTRL 0x14 /* Capture Control */
88 #define FM801_CAP_COUNT 0x16 /* Capture Count */
89 #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
90 #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
91 #define FM801_CODEC_CTRL 0x22 /* Codec Control */
92 #define FM801_I2S_MODE 0x24 /* I2S Mode Control */
93 #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
94 #define FM801_I2C_CTRL 0x29 /* I2C Control */
95 #define FM801_AC97_CMD 0x2a /* AC'97 Command */
96 #define FM801_AC97_DATA 0x2c /* AC'97 Data */
97 #define FM801_MPU401_DATA 0x30 /* MPU401 Data */
98 #define FM801_MPU401_CMD 0x31 /* MPU401 Command */
99 #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
100 #define FM801_GEN_CTRL 0x54 /* General Control */
101 #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
102 #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
103 #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
104 #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
105 #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
106 #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
107 #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
108
109 /* codec access */
110 #define FM801_AC97_READ (1<<7) /* read=1, write=0 */
111 #define FM801_AC97_VALID (1<<8) /* port valid=1 */
112 #define FM801_AC97_BUSY (1<<9) /* busy=1 */
113 #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
114
115 /* playback and record control register bits */
116 #define FM801_BUF1_LAST (1<<1)
117 #define FM801_BUF2_LAST (1<<2)
118 #define FM801_START (1<<5)
119 #define FM801_PAUSE (1<<6)
120 #define FM801_IMMED_STOP (1<<7)
121 #define FM801_RATE_SHIFT 8
122 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
123 #define FM801_CHANNELS_4 (1<<12) /* playback only */
124 #define FM801_CHANNELS_6 (2<<12) /* playback only */
125 #define FM801_CHANNELS_6MS (3<<12) /* playback only */
126 #define FM801_CHANNELS_MASK (3<<12)
127 #define FM801_16BIT (1<<14)
128 #define FM801_STEREO (1<<15)
129
130 /* IRQ status bits */
131 #define FM801_IRQ_PLAYBACK (1<<8)
132 #define FM801_IRQ_CAPTURE (1<<9)
133 #define FM801_IRQ_VOLUME (1<<14)
134 #define FM801_IRQ_MPU (1<<15)
135
136 /* GPIO control register */
137 #define FM801_GPIO_GP0 (1<<0) /* read/write */
138 #define FM801_GPIO_GP1 (1<<1)
139 #define FM801_GPIO_GP2 (1<<2)
140 #define FM801_GPIO_GP3 (1<<3)
141 #define FM801_GPIO_GP(x) (1<<(0+(x)))
142 #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
143 #define FM801_GPIO_GD1 (1<<9)
144 #define FM801_GPIO_GD2 (1<<10)
145 #define FM801_GPIO_GD3 (1<<11)
146 #define FM801_GPIO_GD(x) (1<<(8+(x)))
147 #define FM801_GPIO_GS0 (1<<12) /* function select: */
148 #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
149 #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
150 #define FM801_GPIO_GS3 (1<<15)
151 #define FM801_GPIO_GS(x) (1<<(12+(x)))
152
153 /*
154
155 */
156
157 struct fm801 {
158 int irq;
159
160 unsigned long port; /* I/O port number */
161 unsigned int multichannel: 1, /* multichannel support */
162 secondary: 1; /* secondary codec */
163 unsigned char secondary_addr; /* address of the secondary codec */
164 unsigned int tea575x_tuner; /* tuner flags */
165
166 unsigned short ply_ctrl; /* playback control */
167 unsigned short cap_ctrl; /* capture control */
168
169 unsigned long ply_buffer;
170 unsigned int ply_buf;
171 unsigned int ply_count;
172 unsigned int ply_size;
173 unsigned int ply_pos;
174
175 unsigned long cap_buffer;
176 unsigned int cap_buf;
177 unsigned int cap_count;
178 unsigned int cap_size;
179 unsigned int cap_pos;
180
181 struct snd_ac97_bus *ac97_bus;
182 struct snd_ac97 *ac97;
183 struct snd_ac97 *ac97_sec;
184
185 struct pci_dev *pci;
186 struct snd_card *card;
187 struct snd_pcm *pcm;
188 struct snd_rawmidi *rmidi;
189 struct snd_pcm_substream *playback_substream;
190 struct snd_pcm_substream *capture_substream;
191 unsigned int p_dma_size;
192 unsigned int c_dma_size;
193
194 spinlock_t reg_lock;
195 struct snd_info_entry *proc_entry;
196
197 #ifdef TEA575X_RADIO
198 struct snd_tea575x tea;
199 #endif
200
201 #ifdef CONFIG_PM
202 u16 saved_regs[0x20];
203 #endif
204 };
205
206 static struct pci_device_id snd_fm801_ids[] = {
207 { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
208 { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
209 { 0, }
210 };
211
212 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
213
214 /*
215 * common I/O routines
216 */
217
218 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
219 unsigned short mask, unsigned short value)
220 {
221 int change;
222 unsigned long flags;
223 unsigned short old, new;
224
225 spin_lock_irqsave(&chip->reg_lock, flags);
226 old = inw(chip->port + reg);
227 new = (old & ~mask) | value;
228 change = old != new;
229 if (change)
230 outw(new, chip->port + reg);
231 spin_unlock_irqrestore(&chip->reg_lock, flags);
232 return change;
233 }
234
235 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
236 unsigned short reg,
237 unsigned short val)
238 {
239 struct fm801 *chip = ac97->private_data;
240 int idx;
241
242 /*
243 * Wait until the codec interface is not ready..
244 */
245 for (idx = 0; idx < 100; idx++) {
246 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
247 goto ok1;
248 udelay(10);
249 }
250 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
251 return;
252
253 ok1:
254 /* write data and address */
255 outw(val, FM801_REG(chip, AC97_DATA));
256 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
257 /*
258 * Wait until the write command is not completed..
259 */
260 for (idx = 0; idx < 1000; idx++) {
261 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
262 return;
263 udelay(10);
264 }
265 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
266 }
267
268 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
269 {
270 struct fm801 *chip = ac97->private_data;
271 int idx;
272
273 /*
274 * Wait until the codec interface is not ready..
275 */
276 for (idx = 0; idx < 100; idx++) {
277 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
278 goto ok1;
279 udelay(10);
280 }
281 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
282 return 0;
283
284 ok1:
285 /* read command */
286 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
287 FM801_REG(chip, AC97_CMD));
288 for (idx = 0; idx < 100; idx++) {
289 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
290 goto ok2;
291 udelay(10);
292 }
293 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
294 return 0;
295
296 ok2:
297 for (idx = 0; idx < 1000; idx++) {
298 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
299 goto ok3;
300 udelay(10);
301 }
302 snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
303 return 0;
304
305 ok3:
306 return inw(FM801_REG(chip, AC97_DATA));
307 }
308
309 static unsigned int rates[] = {
310 5500, 8000, 9600, 11025,
311 16000, 19200, 22050, 32000,
312 38400, 44100, 48000
313 };
314
315 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
316 .count = ARRAY_SIZE(rates),
317 .list = rates,
318 .mask = 0,
319 };
320
321 static unsigned int channels[] = {
322 2, 4, 6
323 };
324
325 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
326 .count = ARRAY_SIZE(channels),
327 .list = channels,
328 .mask = 0,
329 };
330
331 /*
332 * Sample rate routines
333 */
334
335 static unsigned short snd_fm801_rate_bits(unsigned int rate)
336 {
337 unsigned int idx;
338
339 for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
340 if (rates[idx] == rate)
341 return idx;
342 snd_BUG();
343 return ARRAY_SIZE(rates) - 1;
344 }
345
346 /*
347 * PCM part
348 */
349
350 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
351 int cmd)
352 {
353 struct fm801 *chip = snd_pcm_substream_chip(substream);
354
355 spin_lock(&chip->reg_lock);
356 switch (cmd) {
357 case SNDRV_PCM_TRIGGER_START:
358 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
359 FM801_BUF2_LAST |
360 FM801_PAUSE);
361 chip->ply_ctrl |= FM801_START |
362 FM801_IMMED_STOP;
363 break;
364 case SNDRV_PCM_TRIGGER_STOP:
365 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
366 break;
367 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
368 case SNDRV_PCM_TRIGGER_SUSPEND:
369 chip->ply_ctrl |= FM801_PAUSE;
370 break;
371 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
372 case SNDRV_PCM_TRIGGER_RESUME:
373 chip->ply_ctrl &= ~FM801_PAUSE;
374 break;
375 default:
376 spin_unlock(&chip->reg_lock);
377 snd_BUG();
378 return -EINVAL;
379 }
380 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
381 spin_unlock(&chip->reg_lock);
382 return 0;
383 }
384
385 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
386 int cmd)
387 {
388 struct fm801 *chip = snd_pcm_substream_chip(substream);
389
390 spin_lock(&chip->reg_lock);
391 switch (cmd) {
392 case SNDRV_PCM_TRIGGER_START:
393 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
394 FM801_BUF2_LAST |
395 FM801_PAUSE);
396 chip->cap_ctrl |= FM801_START |
397 FM801_IMMED_STOP;
398 break;
399 case SNDRV_PCM_TRIGGER_STOP:
400 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
401 break;
402 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
403 case SNDRV_PCM_TRIGGER_SUSPEND:
404 chip->cap_ctrl |= FM801_PAUSE;
405 break;
406 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
407 case SNDRV_PCM_TRIGGER_RESUME:
408 chip->cap_ctrl &= ~FM801_PAUSE;
409 break;
410 default:
411 spin_unlock(&chip->reg_lock);
412 snd_BUG();
413 return -EINVAL;
414 }
415 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
416 spin_unlock(&chip->reg_lock);
417 return 0;
418 }
419
420 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
421 struct snd_pcm_hw_params *hw_params)
422 {
423 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
424 }
425
426 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
427 {
428 return snd_pcm_lib_free_pages(substream);
429 }
430
431 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
432 {
433 struct fm801 *chip = snd_pcm_substream_chip(substream);
434 struct snd_pcm_runtime *runtime = substream->runtime;
435
436 chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
437 chip->ply_count = snd_pcm_lib_period_bytes(substream);
438 spin_lock_irq(&chip->reg_lock);
439 chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
440 FM801_STEREO | FM801_RATE_MASK |
441 FM801_CHANNELS_MASK);
442 if (snd_pcm_format_width(runtime->format) == 16)
443 chip->ply_ctrl |= FM801_16BIT;
444 if (runtime->channels > 1) {
445 chip->ply_ctrl |= FM801_STEREO;
446 if (runtime->channels == 4)
447 chip->ply_ctrl |= FM801_CHANNELS_4;
448 else if (runtime->channels == 6)
449 chip->ply_ctrl |= FM801_CHANNELS_6;
450 }
451 chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
452 chip->ply_buf = 0;
453 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
454 outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
455 chip->ply_buffer = runtime->dma_addr;
456 chip->ply_pos = 0;
457 outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
458 outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
459 spin_unlock_irq(&chip->reg_lock);
460 return 0;
461 }
462
463 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
464 {
465 struct fm801 *chip = snd_pcm_substream_chip(substream);
466 struct snd_pcm_runtime *runtime = substream->runtime;
467
468 chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
469 chip->cap_count = snd_pcm_lib_period_bytes(substream);
470 spin_lock_irq(&chip->reg_lock);
471 chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
472 FM801_STEREO | FM801_RATE_MASK);
473 if (snd_pcm_format_width(runtime->format) == 16)
474 chip->cap_ctrl |= FM801_16BIT;
475 if (runtime->channels > 1)
476 chip->cap_ctrl |= FM801_STEREO;
477 chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
478 chip->cap_buf = 0;
479 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
480 outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
481 chip->cap_buffer = runtime->dma_addr;
482 chip->cap_pos = 0;
483 outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
484 outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
485 spin_unlock_irq(&chip->reg_lock);
486 return 0;
487 }
488
489 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
490 {
491 struct fm801 *chip = snd_pcm_substream_chip(substream);
492 size_t ptr;
493
494 if (!(chip->ply_ctrl & FM801_START))
495 return 0;
496 spin_lock(&chip->reg_lock);
497 ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
498 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
499 ptr += chip->ply_count;
500 ptr %= chip->ply_size;
501 }
502 spin_unlock(&chip->reg_lock);
503 return bytes_to_frames(substream->runtime, ptr);
504 }
505
506 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
507 {
508 struct fm801 *chip = snd_pcm_substream_chip(substream);
509 size_t ptr;
510
511 if (!(chip->cap_ctrl & FM801_START))
512 return 0;
513 spin_lock(&chip->reg_lock);
514 ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
515 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
516 ptr += chip->cap_count;
517 ptr %= chip->cap_size;
518 }
519 spin_unlock(&chip->reg_lock);
520 return bytes_to_frames(substream->runtime, ptr);
521 }
522
523 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
524 {
525 struct fm801 *chip = dev_id;
526 unsigned short status;
527 unsigned int tmp;
528
529 status = inw(FM801_REG(chip, IRQ_STATUS));
530 status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
531 if (! status)
532 return IRQ_NONE;
533 /* ack first */
534 outw(status, FM801_REG(chip, IRQ_STATUS));
535 if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
536 spin_lock(&chip->reg_lock);
537 chip->ply_buf++;
538 chip->ply_pos += chip->ply_count;
539 chip->ply_pos %= chip->ply_size;
540 tmp = chip->ply_pos + chip->ply_count;
541 tmp %= chip->ply_size;
542 outl(chip->ply_buffer + tmp,
543 (chip->ply_buf & 1) ?
544 FM801_REG(chip, PLY_BUF1) :
545 FM801_REG(chip, PLY_BUF2));
546 spin_unlock(&chip->reg_lock);
547 snd_pcm_period_elapsed(chip->playback_substream);
548 }
549 if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
550 spin_lock(&chip->reg_lock);
551 chip->cap_buf++;
552 chip->cap_pos += chip->cap_count;
553 chip->cap_pos %= chip->cap_size;
554 tmp = chip->cap_pos + chip->cap_count;
555 tmp %= chip->cap_size;
556 outl(chip->cap_buffer + tmp,
557 (chip->cap_buf & 1) ?
558 FM801_REG(chip, CAP_BUF1) :
559 FM801_REG(chip, CAP_BUF2));
560 spin_unlock(&chip->reg_lock);
561 snd_pcm_period_elapsed(chip->capture_substream);
562 }
563 if (chip->rmidi && (status & FM801_IRQ_MPU))
564 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
565 if (status & FM801_IRQ_VOLUME)
566 ;/* TODO */
567
568 return IRQ_HANDLED;
569 }
570
571 static struct snd_pcm_hardware snd_fm801_playback =
572 {
573 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
574 SNDRV_PCM_INFO_BLOCK_TRANSFER |
575 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
576 SNDRV_PCM_INFO_MMAP_VALID),
577 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
578 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
579 .rate_min = 5500,
580 .rate_max = 48000,
581 .channels_min = 1,
582 .channels_max = 2,
583 .buffer_bytes_max = (128*1024),
584 .period_bytes_min = 64,
585 .period_bytes_max = (128*1024),
586 .periods_min = 1,
587 .periods_max = 1024,
588 .fifo_size = 0,
589 };
590
591 static struct snd_pcm_hardware snd_fm801_capture =
592 {
593 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
594 SNDRV_PCM_INFO_BLOCK_TRANSFER |
595 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
596 SNDRV_PCM_INFO_MMAP_VALID),
597 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
598 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
599 .rate_min = 5500,
600 .rate_max = 48000,
601 .channels_min = 1,
602 .channels_max = 2,
603 .buffer_bytes_max = (128*1024),
604 .period_bytes_min = 64,
605 .period_bytes_max = (128*1024),
606 .periods_min = 1,
607 .periods_max = 1024,
608 .fifo_size = 0,
609 };
610
611 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
612 {
613 struct fm801 *chip = snd_pcm_substream_chip(substream);
614 struct snd_pcm_runtime *runtime = substream->runtime;
615 int err;
616
617 chip->playback_substream = substream;
618 runtime->hw = snd_fm801_playback;
619 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
620 &hw_constraints_rates);
621 if (chip->multichannel) {
622 runtime->hw.channels_max = 6;
623 snd_pcm_hw_constraint_list(runtime, 0,
624 SNDRV_PCM_HW_PARAM_CHANNELS,
625 &hw_constraints_channels);
626 }
627 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
628 return err;
629 return 0;
630 }
631
632 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
633 {
634 struct fm801 *chip = snd_pcm_substream_chip(substream);
635 struct snd_pcm_runtime *runtime = substream->runtime;
636 int err;
637
638 chip->capture_substream = substream;
639 runtime->hw = snd_fm801_capture;
640 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
641 &hw_constraints_rates);
642 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
643 return err;
644 return 0;
645 }
646
647 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
648 {
649 struct fm801 *chip = snd_pcm_substream_chip(substream);
650
651 chip->playback_substream = NULL;
652 return 0;
653 }
654
655 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
656 {
657 struct fm801 *chip = snd_pcm_substream_chip(substream);
658
659 chip->capture_substream = NULL;
660 return 0;
661 }
662
663 static struct snd_pcm_ops snd_fm801_playback_ops = {
664 .open = snd_fm801_playback_open,
665 .close = snd_fm801_playback_close,
666 .ioctl = snd_pcm_lib_ioctl,
667 .hw_params = snd_fm801_hw_params,
668 .hw_free = snd_fm801_hw_free,
669 .prepare = snd_fm801_playback_prepare,
670 .trigger = snd_fm801_playback_trigger,
671 .pointer = snd_fm801_playback_pointer,
672 };
673
674 static struct snd_pcm_ops snd_fm801_capture_ops = {
675 .open = snd_fm801_capture_open,
676 .close = snd_fm801_capture_close,
677 .ioctl = snd_pcm_lib_ioctl,
678 .hw_params = snd_fm801_hw_params,
679 .hw_free = snd_fm801_hw_free,
680 .prepare = snd_fm801_capture_prepare,
681 .trigger = snd_fm801_capture_trigger,
682 .pointer = snd_fm801_capture_pointer,
683 };
684
685 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
686 {
687 struct snd_pcm *pcm;
688 int err;
689
690 if (rpcm)
691 *rpcm = NULL;
692 if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
693 return err;
694
695 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
696 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
697
698 pcm->private_data = chip;
699 pcm->info_flags = 0;
700 strcpy(pcm->name, "FM801");
701 chip->pcm = pcm;
702
703 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
704 snd_dma_pci_data(chip->pci),
705 chip->multichannel ? 128*1024 : 64*1024, 128*1024);
706
707 if (rpcm)
708 *rpcm = pcm;
709 return 0;
710 }
711
712 /*
713 * TEA5757 radio
714 */
715
716 #ifdef TEA575X_RADIO
717
718 /* 256PCS GPIO numbers */
719 #define TEA_256PCS_DATA 1
720 #define TEA_256PCS_WRITE_ENABLE 2 /* inverted */
721 #define TEA_256PCS_BUS_CLOCK 3
722
723 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
724 {
725 struct fm801 *chip = tea->private_data;
726 unsigned short reg;
727 int i = 25;
728
729 spin_lock_irq(&chip->reg_lock);
730 reg = inw(FM801_REG(chip, GPIO_CTRL));
731 /* use GPIO lines and set write enable bit */
732 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
733 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
734 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
735 /* all of lines are in the write direction */
736 /* clear data and clock lines */
737 reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
738 FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
739 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
740 FM801_GPIO_GP(TEA_256PCS_DATA) |
741 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
742 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
743 outw(reg, FM801_REG(chip, GPIO_CTRL));
744 udelay(1);
745
746 while (i--) {
747 if (val & (1 << i))
748 reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
749 else
750 reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
751 outw(reg, FM801_REG(chip, GPIO_CTRL));
752 udelay(1);
753 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
754 outw(reg, FM801_REG(chip, GPIO_CTRL));
755 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
756 outw(reg, FM801_REG(chip, GPIO_CTRL));
757 udelay(1);
758 }
759
760 /* and reset the write enable bit */
761 reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
762 FM801_GPIO_GP(TEA_256PCS_DATA);
763 outw(reg, FM801_REG(chip, GPIO_CTRL));
764 spin_unlock_irq(&chip->reg_lock);
765 }
766
767 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
768 {
769 struct fm801 *chip = tea->private_data;
770 unsigned short reg;
771 unsigned int val = 0;
772 int i;
773
774 spin_lock_irq(&chip->reg_lock);
775 reg = inw(FM801_REG(chip, GPIO_CTRL));
776 /* use GPIO lines, set data direction to input */
777 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
778 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
779 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
780 FM801_GPIO_GD(TEA_256PCS_DATA) |
781 FM801_GPIO_GP(TEA_256PCS_DATA) |
782 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
783 /* all of lines are in the write direction, except data */
784 /* clear data, write enable and clock lines */
785 reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
786 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
787 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
788
789 for (i = 0; i < 24; i++) {
790 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
791 outw(reg, FM801_REG(chip, GPIO_CTRL));
792 udelay(1);
793 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
794 outw(reg, FM801_REG(chip, GPIO_CTRL));
795 udelay(1);
796 val <<= 1;
797 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
798 val |= 1;
799 }
800
801 spin_unlock_irq(&chip->reg_lock);
802
803 return val;
804 }
805
806 /* 256PCPR GPIO numbers */
807 #define TEA_256PCPR_BUS_CLOCK 0
808 #define TEA_256PCPR_DATA 1
809 #define TEA_256PCPR_WRITE_ENABLE 2 /* inverted */
810
811 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
812 {
813 struct fm801 *chip = tea->private_data;
814 unsigned short reg;
815 int i = 25;
816
817 spin_lock_irq(&chip->reg_lock);
818 reg = inw(FM801_REG(chip, GPIO_CTRL));
819 /* use GPIO lines and set write enable bit */
820 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
821 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
822 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
823 /* all of lines are in the write direction */
824 /* clear data and clock lines */
825 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
826 FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
827 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
828 FM801_GPIO_GP(TEA_256PCPR_DATA) |
829 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
830 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
831 outw(reg, FM801_REG(chip, GPIO_CTRL));
832 udelay(1);
833
834 while (i--) {
835 if (val & (1 << i))
836 reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
837 else
838 reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
839 outw(reg, FM801_REG(chip, GPIO_CTRL));
840 udelay(1);
841 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
842 outw(reg, FM801_REG(chip, GPIO_CTRL));
843 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
844 outw(reg, FM801_REG(chip, GPIO_CTRL));
845 udelay(1);
846 }
847
848 /* and reset the write enable bit */
849 reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
850 FM801_GPIO_GP(TEA_256PCPR_DATA);
851 outw(reg, FM801_REG(chip, GPIO_CTRL));
852 spin_unlock_irq(&chip->reg_lock);
853 }
854
855 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
856 {
857 struct fm801 *chip = tea->private_data;
858 unsigned short reg;
859 unsigned int val = 0;
860 int i;
861
862 spin_lock_irq(&chip->reg_lock);
863 reg = inw(FM801_REG(chip, GPIO_CTRL));
864 /* use GPIO lines, set data direction to input */
865 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
866 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
867 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
868 FM801_GPIO_GD(TEA_256PCPR_DATA) |
869 FM801_GPIO_GP(TEA_256PCPR_DATA) |
870 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
871 /* all of lines are in the write direction, except data */
872 /* clear data, write enable and clock lines */
873 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
874 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
875 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
876
877 for (i = 0; i < 24; i++) {
878 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
879 outw(reg, FM801_REG(chip, GPIO_CTRL));
880 udelay(1);
881 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
882 outw(reg, FM801_REG(chip, GPIO_CTRL));
883 udelay(1);
884 val <<= 1;
885 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
886 val |= 1;
887 }
888
889 spin_unlock_irq(&chip->reg_lock);
890
891 return val;
892 }
893
894 /* 64PCR GPIO numbers */
895 #define TEA_64PCR_BUS_CLOCK 0
896 #define TEA_64PCR_WRITE_ENABLE 1 /* inverted */
897 #define TEA_64PCR_DATA 2
898
899 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
900 {
901 struct fm801 *chip = tea->private_data;
902 unsigned short reg;
903 int i = 25;
904
905 spin_lock_irq(&chip->reg_lock);
906 reg = inw(FM801_REG(chip, GPIO_CTRL));
907 /* use GPIO lines and set write enable bit */
908 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
909 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
910 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
911 /* all of lines are in the write direction */
912 /* clear data and clock lines */
913 reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
914 FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
915 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
916 FM801_GPIO_GP(TEA_64PCR_DATA) |
917 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
918 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
919 outw(reg, FM801_REG(chip, GPIO_CTRL));
920 udelay(1);
921
922 while (i--) {
923 if (val & (1 << i))
924 reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
925 else
926 reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
927 outw(reg, FM801_REG(chip, GPIO_CTRL));
928 udelay(1);
929 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
930 outw(reg, FM801_REG(chip, GPIO_CTRL));
931 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
932 outw(reg, FM801_REG(chip, GPIO_CTRL));
933 udelay(1);
934 }
935
936 /* and reset the write enable bit */
937 reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
938 FM801_GPIO_GP(TEA_64PCR_DATA);
939 outw(reg, FM801_REG(chip, GPIO_CTRL));
940 spin_unlock_irq(&chip->reg_lock);
941 }
942
943 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
944 {
945 struct fm801 *chip = tea->private_data;
946 unsigned short reg;
947 unsigned int val = 0;
948 int i;
949
950 spin_lock_irq(&chip->reg_lock);
951 reg = inw(FM801_REG(chip, GPIO_CTRL));
952 /* use GPIO lines, set data direction to input */
953 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
954 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
955 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
956 FM801_GPIO_GD(TEA_64PCR_DATA) |
957 FM801_GPIO_GP(TEA_64PCR_DATA) |
958 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
959 /* all of lines are in the write direction, except data */
960 /* clear data, write enable and clock lines */
961 reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
962 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
963 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
964
965 for (i = 0; i < 24; i++) {
966 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
967 outw(reg, FM801_REG(chip, GPIO_CTRL));
968 udelay(1);
969 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
970 outw(reg, FM801_REG(chip, GPIO_CTRL));
971 udelay(1);
972 val <<= 1;
973 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
974 val |= 1;
975 }
976
977 spin_unlock_irq(&chip->reg_lock);
978
979 return val;
980 }
981
982 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
983 {
984 /* 1 = MediaForte 256-PCS */
985 .write = snd_fm801_tea575x_256pcs_write,
986 .read = snd_fm801_tea575x_256pcs_read,
987 },
988 {
989 /* 2 = MediaForte 256-PCPR */
990 .write = snd_fm801_tea575x_256pcpr_write,
991 .read = snd_fm801_tea575x_256pcpr_read,
992 },
993 {
994 /* 3 = MediaForte 64-PCR */
995 .write = snd_fm801_tea575x_64pcr_write,
996 .read = snd_fm801_tea575x_64pcr_read,
997 }
998 };
999 #endif
1000
1001 /*
1002 * Mixer routines
1003 */
1004
1005 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1006 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1007 .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1008 .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1009
1010 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1011 struct snd_ctl_elem_info *uinfo)
1012 {
1013 int mask = (kcontrol->private_value >> 16) & 0xff;
1014
1015 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1016 uinfo->count = 1;
1017 uinfo->value.integer.min = 0;
1018 uinfo->value.integer.max = mask;
1019 return 0;
1020 }
1021
1022 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1023 struct snd_ctl_elem_value *ucontrol)
1024 {
1025 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1026 int reg = kcontrol->private_value & 0xff;
1027 int shift = (kcontrol->private_value >> 8) & 0xff;
1028 int mask = (kcontrol->private_value >> 16) & 0xff;
1029 int invert = (kcontrol->private_value >> 24) & 0xff;
1030
1031 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1032 if (invert)
1033 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1034 return 0;
1035 }
1036
1037 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1038 struct snd_ctl_elem_value *ucontrol)
1039 {
1040 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1041 int reg = kcontrol->private_value & 0xff;
1042 int shift = (kcontrol->private_value >> 8) & 0xff;
1043 int mask = (kcontrol->private_value >> 16) & 0xff;
1044 int invert = (kcontrol->private_value >> 24) & 0xff;
1045 unsigned short val;
1046
1047 val = (ucontrol->value.integer.value[0] & mask);
1048 if (invert)
1049 val = mask - val;
1050 return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1051 }
1052
1053 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1054 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1055 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1056 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1057 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1058 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1059 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1060 .name = xname, .info = snd_fm801_info_double, \
1061 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1062 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1063 .tlv = { .p = (xtlv) } }
1064
1065 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1066 struct snd_ctl_elem_info *uinfo)
1067 {
1068 int mask = (kcontrol->private_value >> 16) & 0xff;
1069
1070 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1071 uinfo->count = 2;
1072 uinfo->value.integer.min = 0;
1073 uinfo->value.integer.max = mask;
1074 return 0;
1075 }
1076
1077 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1078 struct snd_ctl_elem_value *ucontrol)
1079 {
1080 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1081 int reg = kcontrol->private_value & 0xff;
1082 int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1083 int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1084 int mask = (kcontrol->private_value >> 16) & 0xff;
1085 int invert = (kcontrol->private_value >> 24) & 0xff;
1086
1087 spin_lock_irq(&chip->reg_lock);
1088 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1089 ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1090 spin_unlock_irq(&chip->reg_lock);
1091 if (invert) {
1092 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1093 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1094 }
1095 return 0;
1096 }
1097
1098 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1099 struct snd_ctl_elem_value *ucontrol)
1100 {
1101 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1102 int reg = kcontrol->private_value & 0xff;
1103 int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1104 int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1105 int mask = (kcontrol->private_value >> 16) & 0xff;
1106 int invert = (kcontrol->private_value >> 24) & 0xff;
1107 unsigned short val1, val2;
1108
1109 val1 = ucontrol->value.integer.value[0] & mask;
1110 val2 = ucontrol->value.integer.value[1] & mask;
1111 if (invert) {
1112 val1 = mask - val1;
1113 val2 = mask - val2;
1114 }
1115 return snd_fm801_update_bits(chip, reg,
1116 (mask << shift_left) | (mask << shift_right),
1117 (val1 << shift_left ) | (val2 << shift_right));
1118 }
1119
1120 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1121 struct snd_ctl_elem_info *uinfo)
1122 {
1123 static char *texts[5] = {
1124 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1125 };
1126
1127 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1128 uinfo->count = 1;
1129 uinfo->value.enumerated.items = 5;
1130 if (uinfo->value.enumerated.item > 4)
1131 uinfo->value.enumerated.item = 4;
1132 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1133 return 0;
1134 }
1135
1136 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1137 struct snd_ctl_elem_value *ucontrol)
1138 {
1139 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1140 unsigned short val;
1141
1142 val = inw(FM801_REG(chip, REC_SRC)) & 7;
1143 if (val > 4)
1144 val = 4;
1145 ucontrol->value.enumerated.item[0] = val;
1146 return 0;
1147 }
1148
1149 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1150 struct snd_ctl_elem_value *ucontrol)
1151 {
1152 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1153 unsigned short val;
1154
1155 if ((val = ucontrol->value.enumerated.item[0]) > 4)
1156 return -EINVAL;
1157 return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1158 }
1159
1160 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1161
1162 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1163
1164 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1165 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1166 db_scale_dsp),
1167 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1168 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1169 db_scale_dsp),
1170 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1171 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1172 db_scale_dsp),
1173 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1174 {
1175 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1176 .name = "Digital Capture Source",
1177 .info = snd_fm801_info_mux,
1178 .get = snd_fm801_get_mux,
1179 .put = snd_fm801_put_mux,
1180 }
1181 };
1182
1183 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1184
1185 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1186 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1187 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1188 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1189 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1190 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1191 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1192 };
1193
1194 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1195 {
1196 struct fm801 *chip = bus->private_data;
1197 chip->ac97_bus = NULL;
1198 }
1199
1200 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1201 {
1202 struct fm801 *chip = ac97->private_data;
1203 if (ac97->num == 0) {
1204 chip->ac97 = NULL;
1205 } else {
1206 chip->ac97_sec = NULL;
1207 }
1208 }
1209
1210 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1211 {
1212 struct snd_ac97_template ac97;
1213 unsigned int i;
1214 int err;
1215 static struct snd_ac97_bus_ops ops = {
1216 .write = snd_fm801_codec_write,
1217 .read = snd_fm801_codec_read,
1218 };
1219
1220 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1221 return err;
1222 chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1223
1224 memset(&ac97, 0, sizeof(ac97));
1225 ac97.private_data = chip;
1226 ac97.private_free = snd_fm801_mixer_free_ac97;
1227 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1228 return err;
1229 if (chip->secondary) {
1230 ac97.num = 1;
1231 ac97.addr = chip->secondary_addr;
1232 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1233 return err;
1234 }
1235 for (i = 0; i < FM801_CONTROLS; i++)
1236 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1237 if (chip->multichannel) {
1238 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1239 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1240 }
1241 return 0;
1242 }
1243
1244 /*
1245 * initialization routines
1246 */
1247
1248 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1249 unsigned short reg, unsigned long waits)
1250 {
1251 unsigned long timeout = jiffies + waits;
1252
1253 outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1254 FM801_REG(chip, AC97_CMD));
1255 udelay(5);
1256 do {
1257 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1258 == FM801_AC97_VALID)
1259 return 0;
1260 schedule_timeout_uninterruptible(1);
1261 } while (time_after(timeout, jiffies));
1262 return -EIO;
1263 }
1264
1265 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1266 {
1267 int id;
1268 unsigned short cmdw;
1269
1270 if (chip->tea575x_tuner & 0x0010)
1271 goto __ac97_ok;
1272
1273 /* codec cold reset + AC'97 warm reset */
1274 outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1275 inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1276 udelay(100);
1277 outw(0, FM801_REG(chip, CODEC_CTRL));
1278
1279 if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1280 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1281 if (! resume)
1282 return -EIO;
1283 }
1284
1285 if (chip->multichannel) {
1286 if (chip->secondary_addr) {
1287 wait_for_codec(chip, chip->secondary_addr,
1288 AC97_VENDOR_ID1, msecs_to_jiffies(50));
1289 } else {
1290 /* my card has the secondary codec */
1291 /* at address #3, so the loop is inverted */
1292 for (id = 3; id > 0; id--) {
1293 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1294 msecs_to_jiffies(50))) {
1295 cmdw = inw(FM801_REG(chip, AC97_DATA));
1296 if (cmdw != 0xffff && cmdw != 0) {
1297 chip->secondary = 1;
1298 chip->secondary_addr = id;
1299 break;
1300 }
1301 }
1302 }
1303 }
1304
1305 /* the recovery phase, it seems that probing for non-existing codec might */
1306 /* cause timeout problems */
1307 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1308 }
1309
1310 __ac97_ok:
1311
1312 /* init volume */
1313 outw(0x0808, FM801_REG(chip, PCM_VOL));
1314 outw(0x9f1f, FM801_REG(chip, FM_VOL));
1315 outw(0x8808, FM801_REG(chip, I2S_VOL));
1316
1317 /* I2S control - I2S mode */
1318 outw(0x0003, FM801_REG(chip, I2S_MODE));
1319
1320 /* interrupt setup */
1321 cmdw = inw(FM801_REG(chip, IRQ_MASK));
1322 if (chip->irq < 0)
1323 cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
1324 else
1325 cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
1326 outw(cmdw, FM801_REG(chip, IRQ_MASK));
1327
1328 /* interrupt clear */
1329 outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1330
1331 return 0;
1332 }
1333
1334
1335 static int snd_fm801_free(struct fm801 *chip)
1336 {
1337 unsigned short cmdw;
1338
1339 if (chip->irq < 0)
1340 goto __end_hw;
1341
1342 /* interrupt setup - mask everything */
1343 cmdw = inw(FM801_REG(chip, IRQ_MASK));
1344 cmdw |= 0x00c3;
1345 outw(cmdw, FM801_REG(chip, IRQ_MASK));
1346
1347 __end_hw:
1348 #ifdef TEA575X_RADIO
1349 snd_tea575x_exit(&chip->tea);
1350 #endif
1351 if (chip->irq >= 0)
1352 free_irq(chip->irq, chip);
1353 pci_release_regions(chip->pci);
1354 pci_disable_device(chip->pci);
1355
1356 kfree(chip);
1357 return 0;
1358 }
1359
1360 static int snd_fm801_dev_free(struct snd_device *device)
1361 {
1362 struct fm801 *chip = device->device_data;
1363 return snd_fm801_free(chip);
1364 }
1365
1366 static int __devinit snd_fm801_create(struct snd_card *card,
1367 struct pci_dev * pci,
1368 int tea575x_tuner,
1369 struct fm801 ** rchip)
1370 {
1371 struct fm801 *chip;
1372 int err;
1373 static struct snd_device_ops ops = {
1374 .dev_free = snd_fm801_dev_free,
1375 };
1376
1377 *rchip = NULL;
1378 if ((err = pci_enable_device(pci)) < 0)
1379 return err;
1380 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1381 if (chip == NULL) {
1382 pci_disable_device(pci);
1383 return -ENOMEM;
1384 }
1385 spin_lock_init(&chip->reg_lock);
1386 chip->card = card;
1387 chip->pci = pci;
1388 chip->irq = -1;
1389 chip->tea575x_tuner = tea575x_tuner;
1390 if ((err = pci_request_regions(pci, "FM801")) < 0) {
1391 kfree(chip);
1392 pci_disable_device(pci);
1393 return err;
1394 }
1395 chip->port = pci_resource_start(pci, 0);
1396 if ((tea575x_tuner & 0x0010) == 0) {
1397 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
1398 "FM801", chip)) {
1399 snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1400 snd_fm801_free(chip);
1401 return -EBUSY;
1402 }
1403 chip->irq = pci->irq;
1404 pci_set_master(pci);
1405 }
1406
1407 if (pci->revision >= 0xb1) /* FM801-AU */
1408 chip->multichannel = 1;
1409
1410 snd_fm801_chip_init(chip, 0);
1411
1412 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1413 snd_fm801_free(chip);
1414 return err;
1415 }
1416
1417 snd_card_set_dev(card, &pci->dev);
1418
1419 #ifdef TEA575X_RADIO
1420 if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1421 chip->tea.dev_nr = tea575x_tuner >> 16;
1422 chip->tea.card = card;
1423 chip->tea.freq_fixup = 10700;
1424 chip->tea.private_data = chip;
1425 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1426 snd_tea575x_init(&chip->tea);
1427 }
1428 #endif
1429
1430 *rchip = chip;
1431 return 0;
1432 }
1433
1434 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1435 const struct pci_device_id *pci_id)
1436 {
1437 static int dev;
1438 struct snd_card *card;
1439 struct fm801 *chip;
1440 struct snd_opl3 *opl3;
1441 int err;
1442
1443 if (dev >= SNDRV_CARDS)
1444 return -ENODEV;
1445 if (!enable[dev]) {
1446 dev++;
1447 return -ENOENT;
1448 }
1449
1450 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1451 if (card == NULL)
1452 return -ENOMEM;
1453 if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1454 snd_card_free(card);
1455 return err;
1456 }
1457 card->private_data = chip;
1458
1459 strcpy(card->driver, "FM801");
1460 strcpy(card->shortname, "ForteMedia FM801-");
1461 strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1462 sprintf(card->longname, "%s at 0x%lx, irq %i",
1463 card->shortname, chip->port, chip->irq);
1464
1465 if (tea575x_tuner[dev] & 0x0010)
1466 goto __fm801_tuner_only;
1467
1468 if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1469 snd_card_free(card);
1470 return err;
1471 }
1472 if ((err = snd_fm801_mixer(chip)) < 0) {
1473 snd_card_free(card);
1474 return err;
1475 }
1476 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1477 FM801_REG(chip, MPU401_DATA),
1478 MPU401_INFO_INTEGRATED,
1479 chip->irq, 0, &chip->rmidi)) < 0) {
1480 snd_card_free(card);
1481 return err;
1482 }
1483 if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1484 FM801_REG(chip, OPL3_BANK1),
1485 OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1486 snd_card_free(card);
1487 return err;
1488 }
1489 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1490 snd_card_free(card);
1491 return err;
1492 }
1493
1494 __fm801_tuner_only:
1495 if ((err = snd_card_register(card)) < 0) {
1496 snd_card_free(card);
1497 return err;
1498 }
1499 pci_set_drvdata(pci, card);
1500 dev++;
1501 return 0;
1502 }
1503
1504 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1505 {
1506 snd_card_free(pci_get_drvdata(pci));
1507 pci_set_drvdata(pci, NULL);
1508 }
1509
1510 #ifdef CONFIG_PM
1511 static unsigned char saved_regs[] = {
1512 FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1513 FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1514 FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1515 FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1516 };
1517
1518 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1519 {
1520 struct snd_card *card = pci_get_drvdata(pci);
1521 struct fm801 *chip = card->private_data;
1522 int i;
1523
1524 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1525 snd_pcm_suspend_all(chip->pcm);
1526 snd_ac97_suspend(chip->ac97);
1527 snd_ac97_suspend(chip->ac97_sec);
1528 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1529 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1530 /* FIXME: tea575x suspend */
1531
1532 pci_disable_device(pci);
1533 pci_save_state(pci);
1534 pci_set_power_state(pci, pci_choose_state(pci, state));
1535 return 0;
1536 }
1537
1538 static int snd_fm801_resume(struct pci_dev *pci)
1539 {
1540 struct snd_card *card = pci_get_drvdata(pci);
1541 struct fm801 *chip = card->private_data;
1542 int i;
1543
1544 pci_set_power_state(pci, PCI_D0);
1545 pci_restore_state(pci);
1546 if (pci_enable_device(pci) < 0) {
1547 printk(KERN_ERR "fm801: pci_enable_device failed, "
1548 "disabling device\n");
1549 snd_card_disconnect(card);
1550 return -EIO;
1551 }
1552 pci_set_master(pci);
1553
1554 snd_fm801_chip_init(chip, 1);
1555 snd_ac97_resume(chip->ac97);
1556 snd_ac97_resume(chip->ac97_sec);
1557 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1558 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1559
1560 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1561 return 0;
1562 }
1563 #endif
1564
1565 static struct pci_driver driver = {
1566 .name = "FM801",
1567 .id_table = snd_fm801_ids,
1568 .probe = snd_card_fm801_probe,
1569 .remove = __devexit_p(snd_card_fm801_remove),
1570 #ifdef CONFIG_PM
1571 .suspend = snd_fm801_suspend,
1572 .resume = snd_fm801_resume,
1573 #endif
1574 };
1575
1576 static int __init alsa_card_fm801_init(void)
1577 {
1578 return pci_register_driver(&driver);
1579 }
1580
1581 static void __exit alsa_card_fm801_exit(void)
1582 {
1583 pci_unregister_driver(&driver);
1584 }
1585
1586 module_init(alsa_card_fm801_init)
1587 module_exit(alsa_card_fm801_exit)