Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / au88x0 / au88x0_pcm.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU Library General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 */
16
17 /*
18 * Vortex PCM ALSA driver.
19 *
20 * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21 * It remains stuck,and DMA transfers do not happen.
22 */
23 #include <sound/asoundef.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include "au88x0.h"
29
30 #define VORTEX_PCM_TYPE(x) (x->name[40])
31
32 /* hardware definition */
33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
34 .info =
35 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
36 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
37 SNDRV_PCM_INFO_MMAP_VALID),
38 .formats =
39 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
40 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
41 .rates = SNDRV_PCM_RATE_CONTINUOUS,
42 .rate_min = 5000,
43 .rate_max = 48000,
44 .channels_min = 1,
45 .channels_max = 2,
46 .buffer_bytes_max = 0x10000,
47 .period_bytes_min = 0x1,
48 .period_bytes_max = 0x1000,
49 .periods_min = 2,
50 .periods_max = 32,
51 };
52
53 #ifndef CHIP_AU8820
54 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
55 .info =
56 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
57 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
58 SNDRV_PCM_INFO_MMAP_VALID),
59 .formats =
60 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
61 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
62 .rates = SNDRV_PCM_RATE_CONTINUOUS,
63 .rate_min = 5000,
64 .rate_max = 48000,
65 .channels_min = 1,
66 .channels_max = 1,
67 .buffer_bytes_max = 0x10000,
68 .period_bytes_min = 0x100,
69 .period_bytes_max = 0x1000,
70 .periods_min = 2,
71 .periods_max = 64,
72 };
73 #endif
74 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
75 .info =
76 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
77 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
78 SNDRV_PCM_INFO_MMAP_VALID),
79 .formats =
80 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
81 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
82 SNDRV_PCM_FMTBIT_A_LAW,
83 .rates =
84 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
85 .rate_min = 32000,
86 .rate_max = 48000,
87 .channels_min = 1,
88 .channels_max = 2,
89 .buffer_bytes_max = 0x10000,
90 .period_bytes_min = 0x100,
91 .period_bytes_max = 0x1000,
92 .periods_min = 2,
93 .periods_max = 64,
94 };
95
96 #ifndef CHIP_AU8810
97 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
98 .info = (SNDRV_PCM_INFO_MMAP |
99 SNDRV_PCM_INFO_INTERLEAVED |
100 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
101 .formats = SNDRV_PCM_FMTBIT_S16_LE,
102 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
103 .rate_min = 8000,
104 .rate_max = 48000,
105 .channels_min = 1,
106 .channels_max = 2,
107 .buffer_bytes_max = 0x10000,
108 .period_bytes_min = 0x0400,
109 .period_bytes_max = 0x1000,
110 .periods_min = 2,
111 .periods_max = 64,
112 };
113 #endif
114 #ifdef CHIP_AU8830
115 static unsigned int au8830_channels[3] = {
116 1, 2, 4,
117 };
118
119 static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
120 .count = ARRAY_SIZE(au8830_channels),
121 .list = au8830_channels,
122 .mask = 0,
123 };
124 #endif
125 /* open callback */
126 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
127 {
128 vortex_t *vortex = snd_pcm_substream_chip(substream);
129 struct snd_pcm_runtime *runtime = substream->runtime;
130 int err;
131
132 /* Force equal size periods */
133 if ((err =
134 snd_pcm_hw_constraint_integer(runtime,
135 SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
136 return err;
137 /* Avoid PAGE_SIZE boundary to fall inside of a period. */
138 if ((err =
139 snd_pcm_hw_constraint_pow2(runtime, 0,
140 SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
141 return err;
142
143 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
144 #ifndef CHIP_AU8820
145 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
146 runtime->hw = snd_vortex_playback_hw_a3d;
147 }
148 #endif
149 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
150 runtime->hw = snd_vortex_playback_hw_spdif;
151 switch (vortex->spdif_sr) {
152 case 32000:
153 runtime->hw.rates = SNDRV_PCM_RATE_32000;
154 break;
155 case 44100:
156 runtime->hw.rates = SNDRV_PCM_RATE_44100;
157 break;
158 case 48000:
159 runtime->hw.rates = SNDRV_PCM_RATE_48000;
160 break;
161 }
162 }
163 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
164 || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
165 runtime->hw = snd_vortex_playback_hw_adb;
166 #ifdef CHIP_AU8830
167 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
168 VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
169 runtime->hw.channels_max = 4;
170 snd_pcm_hw_constraint_list(runtime, 0,
171 SNDRV_PCM_HW_PARAM_CHANNELS,
172 &hw_constraints_au8830_channels);
173 }
174 #endif
175 substream->runtime->private_data = NULL;
176 }
177 #ifndef CHIP_AU8810
178 else {
179 runtime->hw = snd_vortex_playback_hw_wt;
180 substream->runtime->private_data = NULL;
181 }
182 #endif
183 return 0;
184 }
185
186 /* close callback */
187 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
188 {
189 //vortex_t *chip = snd_pcm_substream_chip(substream);
190 stream_t *stream = (stream_t *) substream->runtime->private_data;
191
192 // the hardware-specific codes will be here
193 if (stream != NULL) {
194 stream->substream = NULL;
195 stream->nr_ch = 0;
196 }
197 substream->runtime->private_data = NULL;
198 return 0;
199 }
200
201 /* hw_params callback */
202 static int
203 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
204 struct snd_pcm_hw_params *hw_params)
205 {
206 vortex_t *chip = snd_pcm_substream_chip(substream);
207 stream_t *stream = (stream_t *) (substream->runtime->private_data);
208 int err;
209
210 // Alloc buffer memory.
211 err =
212 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
213 if (err < 0) {
214 printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
215 return err;
216 }
217 /*
218 printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
219 params_period_bytes(hw_params), params_channels(hw_params));
220 */
221 spin_lock_irq(&chip->lock);
222 // Make audio routes and config buffer DMA.
223 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
224 int dma, type = VORTEX_PCM_TYPE(substream->pcm);
225 /* Dealloc any routes. */
226 if (stream != NULL)
227 vortex_adb_allocroute(chip, stream->dma,
228 stream->nr_ch, stream->dir,
229 stream->type);
230 /* Alloc routes. */
231 dma =
232 vortex_adb_allocroute(chip, -1,
233 params_channels(hw_params),
234 substream->stream, type);
235 if (dma < 0) {
236 spin_unlock_irq(&chip->lock);
237 return dma;
238 }
239 stream = substream->runtime->private_data = &chip->dma_adb[dma];
240 stream->substream = substream;
241 /* Setup Buffers. */
242 vortex_adbdma_setbuffers(chip, dma,
243 params_period_bytes(hw_params),
244 params_periods(hw_params));
245 }
246 #ifndef CHIP_AU8810
247 else {
248 /* if (stream != NULL)
249 vortex_wt_allocroute(chip, substream->number, 0); */
250 vortex_wt_allocroute(chip, substream->number,
251 params_channels(hw_params));
252 stream = substream->runtime->private_data =
253 &chip->dma_wt[substream->number];
254 stream->dma = substream->number;
255 stream->substream = substream;
256 vortex_wtdma_setbuffers(chip, substream->number,
257 params_period_bytes(hw_params),
258 params_periods(hw_params));
259 }
260 #endif
261 spin_unlock_irq(&chip->lock);
262 return 0;
263 }
264
265 /* hw_free callback */
266 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
267 {
268 vortex_t *chip = snd_pcm_substream_chip(substream);
269 stream_t *stream = (stream_t *) (substream->runtime->private_data);
270
271 spin_lock_irq(&chip->lock);
272 // Delete audio routes.
273 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
274 if (stream != NULL)
275 vortex_adb_allocroute(chip, stream->dma,
276 stream->nr_ch, stream->dir,
277 stream->type);
278 }
279 #ifndef CHIP_AU8810
280 else {
281 if (stream != NULL)
282 vortex_wt_allocroute(chip, stream->dma, 0);
283 }
284 #endif
285 substream->runtime->private_data = NULL;
286 spin_unlock_irq(&chip->lock);
287
288 return snd_pcm_lib_free_pages(substream);
289 }
290
291 /* prepare callback */
292 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
293 {
294 vortex_t *chip = snd_pcm_substream_chip(substream);
295 struct snd_pcm_runtime *runtime = substream->runtime;
296 stream_t *stream = (stream_t *) substream->runtime->private_data;
297 int dma = stream->dma, fmt, dir;
298
299 // set up the hardware with the current configuration.
300 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
301 dir = 1;
302 else
303 dir = 0;
304 fmt = vortex_alsafmt_aspfmt(runtime->format);
305 spin_lock_irq(&chip->lock);
306 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
307 vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
308 0);
309 vortex_adbdma_setstartbuffer(chip, dma, 0);
310 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
311 vortex_adb_setsrc(chip, dma, runtime->rate, dir);
312 }
313 #ifndef CHIP_AU8810
314 else {
315 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
316 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
317 vortex_wtdma_setstartbuffer(chip, dma, 0);
318 }
319 #endif
320 spin_unlock_irq(&chip->lock);
321 return 0;
322 }
323
324 /* trigger callback */
325 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
326 {
327 vortex_t *chip = snd_pcm_substream_chip(substream);
328 stream_t *stream = (stream_t *) substream->runtime->private_data;
329 int dma = stream->dma;
330
331 spin_lock(&chip->lock);
332 switch (cmd) {
333 case SNDRV_PCM_TRIGGER_START:
334 // do something to start the PCM engine
335 //printk(KERN_INFO "vortex: start %d\n", dma);
336 stream->fifo_enabled = 1;
337 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
338 vortex_adbdma_resetup(chip, dma);
339 vortex_adbdma_startfifo(chip, dma);
340 }
341 #ifndef CHIP_AU8810
342 else {
343 printk(KERN_INFO "vortex: wt start %d\n", dma);
344 vortex_wtdma_startfifo(chip, dma);
345 }
346 #endif
347 break;
348 case SNDRV_PCM_TRIGGER_STOP:
349 // do something to stop the PCM engine
350 //printk(KERN_INFO "vortex: stop %d\n", dma);
351 stream->fifo_enabled = 0;
352 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
353 vortex_adbdma_pausefifo(chip, dma);
354 //vortex_adbdma_stopfifo(chip, dma);
355 #ifndef CHIP_AU8810
356 else {
357 printk(KERN_INFO "vortex: wt stop %d\n", dma);
358 vortex_wtdma_stopfifo(chip, dma);
359 }
360 #endif
361 break;
362 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
363 //printk(KERN_INFO "vortex: pause %d\n", dma);
364 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
365 vortex_adbdma_pausefifo(chip, dma);
366 #ifndef CHIP_AU8810
367 else
368 vortex_wtdma_pausefifo(chip, dma);
369 #endif
370 break;
371 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
372 //printk(KERN_INFO "vortex: resume %d\n", dma);
373 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
374 vortex_adbdma_resumefifo(chip, dma);
375 #ifndef CHIP_AU8810
376 else
377 vortex_wtdma_resumefifo(chip, dma);
378 #endif
379 break;
380 default:
381 spin_unlock(&chip->lock);
382 return -EINVAL;
383 }
384 spin_unlock(&chip->lock);
385 return 0;
386 }
387
388 /* pointer callback */
389 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
390 {
391 vortex_t *chip = snd_pcm_substream_chip(substream);
392 stream_t *stream = (stream_t *) substream->runtime->private_data;
393 int dma = stream->dma;
394 snd_pcm_uframes_t current_ptr = 0;
395
396 spin_lock(&chip->lock);
397 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
398 current_ptr = vortex_adbdma_getlinearpos(chip, dma);
399 #ifndef CHIP_AU8810
400 else
401 current_ptr = vortex_wtdma_getlinearpos(chip, dma);
402 #endif
403 //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
404 spin_unlock(&chip->lock);
405 return (bytes_to_frames(substream->runtime, current_ptr));
406 }
407
408 /* operators */
409 static struct snd_pcm_ops snd_vortex_playback_ops = {
410 .open = snd_vortex_pcm_open,
411 .close = snd_vortex_pcm_close,
412 .ioctl = snd_pcm_lib_ioctl,
413 .hw_params = snd_vortex_pcm_hw_params,
414 .hw_free = snd_vortex_pcm_hw_free,
415 .prepare = snd_vortex_pcm_prepare,
416 .trigger = snd_vortex_pcm_trigger,
417 .pointer = snd_vortex_pcm_pointer,
418 .page = snd_pcm_sgbuf_ops_page,
419 };
420
421 /*
422 * definitions of capture are omitted here...
423 */
424
425 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
426 "AU88x0 ADB",
427 "AU88x0 SPDIF",
428 "AU88x0 A3D",
429 "AU88x0 WT",
430 "AU88x0 I2S",
431 };
432 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
433 "adb",
434 "spdif",
435 "a3d",
436 "wt",
437 "i2s",
438 };
439
440 /* SPDIF kcontrol */
441
442 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
443 {
444 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
445 uinfo->count = 1;
446 return 0;
447 }
448
449 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
450 {
451 ucontrol->value.iec958.status[0] = 0xff;
452 ucontrol->value.iec958.status[1] = 0xff;
453 ucontrol->value.iec958.status[2] = 0xff;
454 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
455 return 0;
456 }
457
458 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
459 {
460 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
461 ucontrol->value.iec958.status[0] = 0x00;
462 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
463 ucontrol->value.iec958.status[2] = 0x00;
464 switch (vortex->spdif_sr) {
465 case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
466 case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
467 case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
468 }
469 return 0;
470 }
471
472 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
473 {
474 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
475 int spdif_sr = 48000;
476 switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
477 case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
478 case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
479 case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
480 }
481 if (spdif_sr == vortex->spdif_sr)
482 return 0;
483 vortex->spdif_sr = spdif_sr;
484 vortex_spdif_init(vortex, vortex->spdif_sr, 1);
485 return 1;
486 }
487
488 /* spdif controls */
489 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
490 {
491 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
492 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
493 .info = snd_vortex_spdif_info,
494 .get = snd_vortex_spdif_get,
495 .put = snd_vortex_spdif_put,
496 },
497 {
498 .access = SNDRV_CTL_ELEM_ACCESS_READ,
499 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
500 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
501 .info = snd_vortex_spdif_info,
502 .get = snd_vortex_spdif_mask_get
503 },
504 };
505
506 /* create a pcm device */
507 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
508 {
509 struct snd_pcm *pcm;
510 struct snd_kcontrol *kctl;
511 int i;
512 int err, nr_capt;
513
514 if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
515 return -ENODEV;
516
517 /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
518 * same dma engine. WT uses it own separate dma engine whcih cant capture. */
519 if (idx == VORTEX_PCM_ADB)
520 nr_capt = nr;
521 else
522 nr_capt = 0;
523 err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
524 nr_capt, &pcm);
525 if (err < 0)
526 return err;
527 strcpy(pcm->name, vortex_pcm_name[idx]);
528 chip->pcm[idx] = pcm;
529 // This is an evil hack, but it saves a lot of duplicated code.
530 VORTEX_PCM_TYPE(pcm) = idx;
531 pcm->private_data = chip;
532 /* set operators */
533 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
534 &snd_vortex_playback_ops);
535 if (idx == VORTEX_PCM_ADB)
536 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
537 &snd_vortex_playback_ops);
538
539 /* pre-allocation of Scatter-Gather buffers */
540
541 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
542 snd_dma_pci_data(chip->pci_dev),
543 0x10000, 0x10000);
544
545 if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
546 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
547 kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
548 if (!kctl)
549 return -ENOMEM;
550 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
551 return err;
552 }
553 }
554 return 0;
555 }