drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / mips / hal2.c
1 /*
2 * Driver for A2 audio system used in SGI machines
3 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4 *
5 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6 * was based on code from Ulf Carlsson
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30
31 #include <asm/sgi/hpc3.h>
32 #include <asm/sgi/ip22.h>
33
34 #include <sound/core.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm-indirect.h>
38 #include <sound/initval.h>
39
40 #include "hal2.h"
41
42 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
43 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
44
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
49 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
50 MODULE_AUTHOR("Thomas Bogendoerfer");
51 MODULE_LICENSE("GPL");
52
53
54 #define H2_BLOCK_SIZE 1024
55 #define H2_BUF_SIZE 16384
56
57 struct hal2_pbus {
58 struct hpc3_pbus_dmacregs *pbus;
59 int pbusnr;
60 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
61 };
62
63 struct hal2_desc {
64 struct hpc_dma_desc desc;
65 u32 pad; /* padding */
66 };
67
68 struct hal2_codec {
69 struct snd_pcm_indirect pcm_indirect;
70 struct snd_pcm_substream *substream;
71
72 unsigned char *buffer;
73 dma_addr_t buffer_dma;
74 struct hal2_desc *desc;
75 dma_addr_t desc_dma;
76 int desc_count;
77 struct hal2_pbus pbus;
78 int voices; /* mono/stereo */
79 unsigned int sample_rate;
80 unsigned int master; /* Master frequency */
81 unsigned short mod; /* MOD value */
82 unsigned short inc; /* INC value */
83 };
84
85 #define H2_MIX_OUTPUT_ATT 0
86 #define H2_MIX_INPUT_GAIN 1
87
88 struct snd_hal2 {
89 struct snd_card *card;
90
91 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
92 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
93 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
94 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
95
96 struct hal2_codec dac;
97 struct hal2_codec adc;
98 };
99
100 #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101
102 #define H2_READ_ADDR(addr) (addr | (1<<7))
103 #define H2_WRITE_ADDR(addr) (addr)
104
105 static inline u32 hal2_read(u32 *reg)
106 {
107 return __raw_readl(reg);
108 }
109
110 static inline void hal2_write(u32 val, u32 *reg)
111 {
112 __raw_writel(val, reg);
113 }
114
115
116 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117 {
118 u32 ret;
119 struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121 hal2_write(H2_READ_ADDR(addr), &regs->iar);
122 H2_INDIRECT_WAIT(regs);
123 ret = hal2_read(&regs->idr0) & 0xffff;
124 hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125 H2_INDIRECT_WAIT(regs);
126 ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127 return ret;
128 }
129
130 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131 {
132 struct hal2_ctl_regs *regs = hal2->ctl_regs;
133
134 hal2_write(val, &regs->idr0);
135 hal2_write(0, &regs->idr1);
136 hal2_write(0, &regs->idr2);
137 hal2_write(0, &regs->idr3);
138 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139 H2_INDIRECT_WAIT(regs);
140 }
141
142 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143 {
144 struct hal2_ctl_regs *regs = hal2->ctl_regs;
145
146 hal2_write(val & 0xffff, &regs->idr0);
147 hal2_write(val >> 16, &regs->idr1);
148 hal2_write(0, &regs->idr2);
149 hal2_write(0, &regs->idr3);
150 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151 H2_INDIRECT_WAIT(regs);
152 }
153
154 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155 {
156 struct hal2_ctl_regs *regs = hal2->ctl_regs;
157
158 hal2_write(H2_READ_ADDR(addr), &regs->iar);
159 H2_INDIRECT_WAIT(regs);
160 hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161 hal2_write(0, &regs->idr1);
162 hal2_write(0, &regs->idr2);
163 hal2_write(0, &regs->idr3);
164 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165 H2_INDIRECT_WAIT(regs);
166 }
167
168 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169 {
170 struct hal2_ctl_regs *regs = hal2->ctl_regs;
171
172 hal2_write(H2_READ_ADDR(addr), &regs->iar);
173 H2_INDIRECT_WAIT(regs);
174 hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175 hal2_write(0, &regs->idr1);
176 hal2_write(0, &regs->idr2);
177 hal2_write(0, &regs->idr3);
178 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179 H2_INDIRECT_WAIT(regs);
180 }
181
182 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183 struct snd_ctl_elem_info *uinfo)
184 {
185 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186 uinfo->count = 2;
187 uinfo->value.integer.min = 0;
188 switch ((int)kcontrol->private_value) {
189 case H2_MIX_OUTPUT_ATT:
190 uinfo->value.integer.max = 31;
191 break;
192 case H2_MIX_INPUT_GAIN:
193 uinfo->value.integer.max = 15;
194 break;
195 }
196 return 0;
197 }
198
199 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200 struct snd_ctl_elem_value *ucontrol)
201 {
202 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203 u32 tmp;
204 int l, r;
205
206 switch ((int)kcontrol->private_value) {
207 case H2_MIX_OUTPUT_ATT:
208 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209 if (tmp & H2I_C2_MUTE) {
210 l = 0;
211 r = 0;
212 } else {
213 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215 }
216 break;
217 case H2_MIX_INPUT_GAIN:
218 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221 break;
222 }
223 ucontrol->value.integer.value[0] = l;
224 ucontrol->value.integer.value[1] = r;
225
226 return 0;
227 }
228
229 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
230 struct snd_ctl_elem_value *ucontrol)
231 {
232 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
233 u32 old, new;
234 int l, r;
235
236 l = ucontrol->value.integer.value[0];
237 r = ucontrol->value.integer.value[1];
238
239 switch ((int)kcontrol->private_value) {
240 case H2_MIX_OUTPUT_ATT:
241 old = hal2_i_read32(hal2, H2I_DAC_C2);
242 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
243 if (l | r) {
244 l = 31 - l;
245 r = 31 - r;
246 new |= (l << H2I_C2_L_ATT_SHIFT);
247 new |= (r << H2I_C2_R_ATT_SHIFT);
248 } else
249 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
250 hal2_i_write32(hal2, H2I_DAC_C2, new);
251 break;
252 case H2_MIX_INPUT_GAIN:
253 old = hal2_i_read32(hal2, H2I_ADC_C2);
254 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
255 new |= (l << H2I_C2_L_GAIN_SHIFT);
256 new |= (r << H2I_C2_R_GAIN_SHIFT);
257 hal2_i_write32(hal2, H2I_ADC_C2, new);
258 break;
259 }
260 return old != new;
261 }
262
263 static struct snd_kcontrol_new hal2_ctrl_headphone = {
264 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
265 .name = "Headphone Playback Volume",
266 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
267 .private_value = H2_MIX_OUTPUT_ATT,
268 .info = hal2_gain_info,
269 .get = hal2_gain_get,
270 .put = hal2_gain_put,
271 };
272
273 static struct snd_kcontrol_new hal2_ctrl_mic = {
274 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
275 .name = "Mic Capture Volume",
276 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
277 .private_value = H2_MIX_INPUT_GAIN,
278 .info = hal2_gain_info,
279 .get = hal2_gain_get,
280 .put = hal2_gain_put,
281 };
282
283 static int hal2_mixer_create(struct snd_hal2 *hal2)
284 {
285 int err;
286
287 /* mute DAC */
288 hal2_i_write32(hal2, H2I_DAC_C2,
289 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
290 /* mute ADC */
291 hal2_i_write32(hal2, H2I_ADC_C2, 0);
292
293 err = snd_ctl_add(hal2->card,
294 snd_ctl_new1(&hal2_ctrl_headphone, hal2));
295 if (err < 0)
296 return err;
297
298 err = snd_ctl_add(hal2->card,
299 snd_ctl_new1(&hal2_ctrl_mic, hal2));
300 if (err < 0)
301 return err;
302
303 return 0;
304 }
305
306 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
307 {
308 struct snd_hal2 *hal2 = dev_id;
309 irqreturn_t ret = IRQ_NONE;
310
311 /* decide what caused this interrupt */
312 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
313 snd_pcm_period_elapsed(hal2->dac.substream);
314 ret = IRQ_HANDLED;
315 }
316 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317 snd_pcm_period_elapsed(hal2->adc.substream);
318 ret = IRQ_HANDLED;
319 }
320 return ret;
321 }
322
323 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
324 {
325 unsigned short mod;
326
327 if (44100 % rate < 48000 % rate) {
328 mod = 4 * 44100 / rate;
329 codec->master = 44100;
330 } else {
331 mod = 4 * 48000 / rate;
332 codec->master = 48000;
333 }
334
335 codec->inc = 4;
336 codec->mod = mod;
337 rate = 4 * codec->master / mod;
338
339 return rate;
340 }
341
342 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
343 {
344 unsigned int master = hal2->dac.master;
345 int inc = hal2->dac.inc;
346 int mod = hal2->dac.mod;
347
348 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
349 hal2_i_write32(hal2, H2I_BRES1_C2,
350 ((0xffff & (inc - mod - 1)) << 16) | inc);
351 }
352
353 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
354 {
355 unsigned int master = hal2->adc.master;
356 int inc = hal2->adc.inc;
357 int mod = hal2->adc.mod;
358
359 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
360 hal2_i_write32(hal2, H2I_BRES2_C2,
361 ((0xffff & (inc - mod - 1)) << 16) | inc);
362 }
363
364 static void hal2_setup_dac(struct snd_hal2 *hal2)
365 {
366 unsigned int fifobeg, fifoend, highwater, sample_size;
367 struct hal2_pbus *pbus = &hal2->dac.pbus;
368
369 /* Now we set up some PBUS information. The PBUS needs information about
370 * what portion of the fifo it will use. If it's receiving or
371 * transmitting, and finally whether the stream is little endian or big
372 * endian. The information is written later, on the start call.
373 */
374 sample_size = 2 * hal2->dac.voices;
375 /* Fifo should be set to hold exactly four samples. Highwater mark
376 * should be set to two samples. */
377 highwater = (sample_size * 2) >> 1; /* halfwords */
378 fifobeg = 0; /* playback is first */
379 fifoend = (sample_size * 4) >> 3; /* doublewords */
380 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
381 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
382 /* We disable everything before we do anything at all */
383 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
384 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
385 /* Setup the HAL2 for playback */
386 hal2_set_dac_rate(hal2);
387 /* Set endianess */
388 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
389 /* Set DMA bus */
390 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
391 /* We are using 1st Bresenham clock generator for playback */
392 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
393 | (1 << H2I_C1_CLKID_SHIFT)
394 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
395 }
396
397 static void hal2_setup_adc(struct snd_hal2 *hal2)
398 {
399 unsigned int fifobeg, fifoend, highwater, sample_size;
400 struct hal2_pbus *pbus = &hal2->adc.pbus;
401
402 sample_size = 2 * hal2->adc.voices;
403 highwater = (sample_size * 2) >> 1; /* halfwords */
404 fifobeg = (4 * 4) >> 3; /* record is second */
405 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
406 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
407 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
408 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
409 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
410 /* Setup the HAL2 for record */
411 hal2_set_adc_rate(hal2);
412 /* Set endianess */
413 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
414 /* Set DMA bus */
415 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
416 /* We are using 2nd Bresenham clock generator for record */
417 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
418 | (2 << H2I_C1_CLKID_SHIFT)
419 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
420 }
421
422 static void hal2_start_dac(struct snd_hal2 *hal2)
423 {
424 struct hal2_pbus *pbus = &hal2->dac.pbus;
425
426 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
427 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
428 /* enable DAC */
429 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
430 }
431
432 static void hal2_start_adc(struct snd_hal2 *hal2)
433 {
434 struct hal2_pbus *pbus = &hal2->adc.pbus;
435
436 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
437 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
438 /* enable ADC */
439 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
440 }
441
442 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
443 {
444 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
445 /* The HAL2 itself may remain enabled safely */
446 }
447
448 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
449 {
450 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
451 }
452
453 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
454 {
455 struct hal2_desc *desc;
456 dma_addr_t desc_dma, buffer_dma;
457 int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
458 int i;
459
460 codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
461 &buffer_dma, GFP_KERNEL);
462 if (!codec->buffer)
463 return -ENOMEM;
464 desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
465 &desc_dma, GFP_KERNEL);
466 if (!desc) {
467 dma_free_noncoherent(NULL, H2_BUF_SIZE,
468 codec->buffer, buffer_dma);
469 return -ENOMEM;
470 }
471 codec->buffer_dma = buffer_dma;
472 codec->desc_dma = desc_dma;
473 codec->desc = desc;
474 for (i = 0; i < count; i++) {
475 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
476 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
477 desc->desc.pnext = (i == count - 1) ?
478 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
479 desc++;
480 }
481 dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
482 DMA_TO_DEVICE);
483 codec->desc_count = count;
484 return 0;
485 }
486
487 static void hal2_free_dmabuf(struct hal2_codec *codec)
488 {
489 dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
490 codec->desc, codec->desc_dma);
491 dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
492 codec->buffer_dma);
493 }
494
495 static struct snd_pcm_hardware hal2_pcm_hw = {
496 .info = (SNDRV_PCM_INFO_MMAP |
497 SNDRV_PCM_INFO_MMAP_VALID |
498 SNDRV_PCM_INFO_INTERLEAVED |
499 SNDRV_PCM_INFO_BLOCK_TRANSFER),
500 .formats = SNDRV_PCM_FMTBIT_S16_BE,
501 .rates = SNDRV_PCM_RATE_8000_48000,
502 .rate_min = 8000,
503 .rate_max = 48000,
504 .channels_min = 2,
505 .channels_max = 2,
506 .buffer_bytes_max = 65536,
507 .period_bytes_min = 1024,
508 .period_bytes_max = 65536,
509 .periods_min = 2,
510 .periods_max = 1024,
511 };
512
513 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
514 struct snd_pcm_hw_params *params)
515 {
516 int err;
517
518 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
519 if (err < 0)
520 return err;
521
522 return 0;
523 }
524
525 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
526 {
527 return snd_pcm_lib_free_pages(substream);
528 }
529
530 static int hal2_playback_open(struct snd_pcm_substream *substream)
531 {
532 struct snd_pcm_runtime *runtime = substream->runtime;
533 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
534 int err;
535
536 runtime->hw = hal2_pcm_hw;
537
538 err = hal2_alloc_dmabuf(&hal2->dac);
539 if (err)
540 return err;
541 return 0;
542 }
543
544 static int hal2_playback_close(struct snd_pcm_substream *substream)
545 {
546 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
547
548 hal2_free_dmabuf(&hal2->dac);
549 return 0;
550 }
551
552 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
553 {
554 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
555 struct snd_pcm_runtime *runtime = substream->runtime;
556 struct hal2_codec *dac = &hal2->dac;
557
558 dac->voices = runtime->channels;
559 dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
560 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
561 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
562 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
563 dac->substream = substream;
564 hal2_setup_dac(hal2);
565 return 0;
566 }
567
568 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
569 {
570 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
571
572 switch (cmd) {
573 case SNDRV_PCM_TRIGGER_START:
574 hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
575 hal2->dac.pcm_indirect.hw_data = 0;
576 substream->ops->ack(substream);
577 hal2_start_dac(hal2);
578 break;
579 case SNDRV_PCM_TRIGGER_STOP:
580 hal2_stop_dac(hal2);
581 break;
582 default:
583 return -EINVAL;
584 }
585 return 0;
586 }
587
588 static snd_pcm_uframes_t
589 hal2_playback_pointer(struct snd_pcm_substream *substream)
590 {
591 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
592 struct hal2_codec *dac = &hal2->dac;
593
594 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
595 dac->pbus.pbus->pbdma_bptr);
596 }
597
598 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
599 struct snd_pcm_indirect *rec, size_t bytes)
600 {
601 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
602 unsigned char *buf = hal2->dac.buffer + rec->hw_data;
603
604 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
605 dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
606
607 }
608
609 static int hal2_playback_ack(struct snd_pcm_substream *substream)
610 {
611 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
612 struct hal2_codec *dac = &hal2->dac;
613
614 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
615 snd_pcm_indirect_playback_transfer(substream,
616 &dac->pcm_indirect,
617 hal2_playback_transfer);
618 return 0;
619 }
620
621 static int hal2_capture_open(struct snd_pcm_substream *substream)
622 {
623 struct snd_pcm_runtime *runtime = substream->runtime;
624 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
625 struct hal2_codec *adc = &hal2->adc;
626 int err;
627
628 runtime->hw = hal2_pcm_hw;
629
630 err = hal2_alloc_dmabuf(adc);
631 if (err)
632 return err;
633 return 0;
634 }
635
636 static int hal2_capture_close(struct snd_pcm_substream *substream)
637 {
638 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
639
640 hal2_free_dmabuf(&hal2->adc);
641 return 0;
642 }
643
644 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
645 {
646 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
647 struct snd_pcm_runtime *runtime = substream->runtime;
648 struct hal2_codec *adc = &hal2->adc;
649
650 adc->voices = runtime->channels;
651 adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
652 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
653 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
654 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
655 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
656 adc->substream = substream;
657 hal2_setup_adc(hal2);
658 return 0;
659 }
660
661 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
662 {
663 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
664
665 switch (cmd) {
666 case SNDRV_PCM_TRIGGER_START:
667 hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
668 hal2->adc.pcm_indirect.hw_data = 0;
669 printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
670 hal2_start_adc(hal2);
671 break;
672 case SNDRV_PCM_TRIGGER_STOP:
673 hal2_stop_adc(hal2);
674 break;
675 default:
676 return -EINVAL;
677 }
678 return 0;
679 }
680
681 static snd_pcm_uframes_t
682 hal2_capture_pointer(struct snd_pcm_substream *substream)
683 {
684 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
685 struct hal2_codec *adc = &hal2->adc;
686
687 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
688 adc->pbus.pbus->pbdma_bptr);
689 }
690
691 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
692 struct snd_pcm_indirect *rec, size_t bytes)
693 {
694 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
695 unsigned char *buf = hal2->adc.buffer + rec->hw_data;
696
697 dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
698 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
699 }
700
701 static int hal2_capture_ack(struct snd_pcm_substream *substream)
702 {
703 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
704 struct hal2_codec *adc = &hal2->adc;
705
706 snd_pcm_indirect_capture_transfer(substream,
707 &adc->pcm_indirect,
708 hal2_capture_transfer);
709 return 0;
710 }
711
712 static struct snd_pcm_ops hal2_playback_ops = {
713 .open = hal2_playback_open,
714 .close = hal2_playback_close,
715 .ioctl = snd_pcm_lib_ioctl,
716 .hw_params = hal2_pcm_hw_params,
717 .hw_free = hal2_pcm_hw_free,
718 .prepare = hal2_playback_prepare,
719 .trigger = hal2_playback_trigger,
720 .pointer = hal2_playback_pointer,
721 .ack = hal2_playback_ack,
722 };
723
724 static struct snd_pcm_ops hal2_capture_ops = {
725 .open = hal2_capture_open,
726 .close = hal2_capture_close,
727 .ioctl = snd_pcm_lib_ioctl,
728 .hw_params = hal2_pcm_hw_params,
729 .hw_free = hal2_pcm_hw_free,
730 .prepare = hal2_capture_prepare,
731 .trigger = hal2_capture_trigger,
732 .pointer = hal2_capture_pointer,
733 .ack = hal2_capture_ack,
734 };
735
736 static int hal2_pcm_create(struct snd_hal2 *hal2)
737 {
738 struct snd_pcm *pcm;
739 int err;
740
741 /* create first pcm device with one outputs and one input */
742 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
743 if (err < 0)
744 return err;
745
746 pcm->private_data = hal2;
747 strcpy(pcm->name, "SGI HAL2");
748
749 /* set operators */
750 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
751 &hal2_playback_ops);
752 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
753 &hal2_capture_ops);
754 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
755 snd_dma_continuous_data(GFP_KERNEL),
756 0, 1024 * 1024);
757
758 return 0;
759 }
760
761 static int hal2_dev_free(struct snd_device *device)
762 {
763 struct snd_hal2 *hal2 = device->device_data;
764
765 free_irq(SGI_HPCDMA_IRQ, hal2);
766 kfree(hal2);
767 return 0;
768 }
769
770 static struct snd_device_ops hal2_ops = {
771 .dev_free = hal2_dev_free,
772 };
773
774 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
775 int index)
776 {
777 codec->pbus.pbusnr = index;
778 codec->pbus.pbus = &hpc3->pbdma[index];
779 }
780
781 static int hal2_detect(struct snd_hal2 *hal2)
782 {
783 unsigned short board, major, minor;
784 unsigned short rev;
785
786 /* reset HAL2 */
787 hal2_write(0, &hal2->ctl_regs->isr);
788
789 /* release reset */
790 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
791 &hal2->ctl_regs->isr);
792
793
794 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
795 rev = hal2_read(&hal2->ctl_regs->rev);
796 if (rev & H2_REV_AUDIO_PRESENT)
797 return -ENODEV;
798
799 board = (rev & H2_REV_BOARD_M) >> 12;
800 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
801 minor = (rev & H2_REV_MINOR_CHIP_M);
802
803 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
804 board, major, minor);
805
806 return 0;
807 }
808
809 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
810 {
811 struct snd_hal2 *hal2;
812 struct hpc3_regs *hpc3 = hpc3c0;
813 int err;
814
815 hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
816 if (!hal2)
817 return -ENOMEM;
818
819 hal2->card = card;
820
821 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
822 "SGI HAL2", hal2)) {
823 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
824 kfree(hal2);
825 return -EAGAIN;
826 }
827
828 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
829 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
830 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
831 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
832
833 if (hal2_detect(hal2) < 0) {
834 kfree(hal2);
835 return -ENODEV;
836 }
837
838 hal2_init_codec(&hal2->dac, hpc3, 0);
839 hal2_init_codec(&hal2->adc, hpc3, 1);
840
841 /*
842 * All DMA channel interfaces in HAL2 are designed to operate with
843 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
844 * in D5. HAL2 is a 16-bit device which can accept both big and little
845 * endian format. It assumes that even address bytes are on high
846 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
847 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
848 */
849 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
850 (2 << HPC3_DMACFG_D4R_SHIFT) | \
851 (2 << HPC3_DMACFG_D5R_SHIFT) | \
852 (0 << HPC3_DMACFG_D3W_SHIFT) | \
853 (2 << HPC3_DMACFG_D4W_SHIFT) | \
854 (2 << HPC3_DMACFG_D5W_SHIFT) | \
855 HPC3_DMACFG_DS16 | \
856 HPC3_DMACFG_EVENHI | \
857 HPC3_DMACFG_RTIME | \
858 (8 << HPC3_DMACFG_BURST_SHIFT) | \
859 HPC3_DMACFG_DRQLIVE)
860 /*
861 * Ignore what's mentioned in the specification and write value which
862 * works in The Real World (TM)
863 */
864 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
865 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
866
867 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
868 if (err < 0) {
869 free_irq(SGI_HPCDMA_IRQ, hal2);
870 kfree(hal2);
871 return err;
872 }
873 *rchip = hal2;
874 return 0;
875 }
876
877 static int hal2_probe(struct platform_device *pdev)
878 {
879 struct snd_card *card;
880 struct snd_hal2 *chip;
881 int err;
882
883 err = snd_card_create(index, id, THIS_MODULE, 0, &card);
884 if (err < 0)
885 return err;
886
887 err = hal2_create(card, &chip);
888 if (err < 0) {
889 snd_card_free(card);
890 return err;
891 }
892 snd_card_set_dev(card, &pdev->dev);
893
894 err = hal2_pcm_create(chip);
895 if (err < 0) {
896 snd_card_free(card);
897 return err;
898 }
899 err = hal2_mixer_create(chip);
900 if (err < 0) {
901 snd_card_free(card);
902 return err;
903 }
904
905 strcpy(card->driver, "SGI HAL2 Audio");
906 strcpy(card->shortname, "SGI HAL2 Audio");
907 sprintf(card->longname, "%s irq %i",
908 card->shortname,
909 SGI_HPCDMA_IRQ);
910
911 err = snd_card_register(card);
912 if (err < 0) {
913 snd_card_free(card);
914 return err;
915 }
916 platform_set_drvdata(pdev, card);
917 return 0;
918 }
919
920 static int hal2_remove(struct platform_device *pdev)
921 {
922 struct snd_card *card = platform_get_drvdata(pdev);
923
924 snd_card_free(card);
925 return 0;
926 }
927
928 static struct platform_driver hal2_driver = {
929 .probe = hal2_probe,
930 .remove = hal2_remove,
931 .driver = {
932 .name = "sgihal2",
933 .owner = THIS_MODULE,
934 }
935 };
936
937 module_platform_driver(hal2_driver);