Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / core / memalloc.c
1 /*
2 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3 * Takashi Iwai <tiwai@suse.de>
4 *
5 * Generic memory allocators
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/proc_fs.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <asm/uaccess.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <sound/memalloc.h>
36 #ifdef CONFIG_SBUS
37 #include <asm/sbus.h>
38 #endif
39
40
41 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
42 MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43 MODULE_LICENSE("GPL");
44
45
46 /*
47 */
48
49 void *snd_malloc_sgbuf_pages(struct device *device,
50 size_t size, struct snd_dma_buffer *dmab,
51 size_t *res_size);
52 int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
53
54 /*
55 */
56
57 static DEFINE_MUTEX(list_mutex);
58 static LIST_HEAD(mem_list_head);
59
60 /* buffer preservation list */
61 struct snd_mem_list {
62 struct snd_dma_buffer buffer;
63 unsigned int id;
64 struct list_head list;
65 };
66
67 /* id for pre-allocated buffers */
68 #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
69
70 #ifdef CONFIG_SND_DEBUG
71 #define __ASTRING__(x) #x
72 #define snd_assert(expr, args...) do {\
73 if (!(expr)) {\
74 printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
75 args;\
76 }\
77 } while (0)
78 #else
79 #define snd_assert(expr, args...) /**/
80 #endif
81
82 /*
83 * Hacks
84 */
85
86 #if defined(__i386__)
87 /*
88 * A hack to allocate large buffers via dma_alloc_coherent()
89 *
90 * since dma_alloc_coherent always tries GFP_DMA when the requested
91 * pci memory region is below 32bit, it happens quite often that even
92 * 2 order of pages cannot be allocated.
93 *
94 * so in the following, we allocate at first without dma_mask, so that
95 * allocation will be done without GFP_DMA. if the area doesn't match
96 * with the requested region, then realloate with the original dma_mask
97 * again.
98 *
99 * Really, we want to move this type of thing into dma_alloc_coherent()
100 * so dma_mask doesn't have to be messed with.
101 */
102
103 static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
104 dma_addr_t *dma_handle,
105 gfp_t flags)
106 {
107 void *ret;
108 u64 dma_mask, coherent_dma_mask;
109
110 if (dev == NULL || !dev->dma_mask)
111 return dma_alloc_coherent(dev, size, dma_handle, flags);
112 dma_mask = *dev->dma_mask;
113 coherent_dma_mask = dev->coherent_dma_mask;
114 *dev->dma_mask = 0xffffffff; /* do without masking */
115 dev->coherent_dma_mask = 0xffffffff; /* do without masking */
116 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
117 *dev->dma_mask = dma_mask; /* restore */
118 dev->coherent_dma_mask = coherent_dma_mask; /* restore */
119 if (ret) {
120 /* obtained address is out of range? */
121 if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
122 /* reallocate with the proper mask */
123 dma_free_coherent(dev, size, ret, *dma_handle);
124 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
125 }
126 } else {
127 /* wish to success now with the proper mask... */
128 if (dma_mask != 0xffffffffUL) {
129 /* allocation with GFP_ATOMIC to avoid the long stall */
130 flags &= ~GFP_KERNEL;
131 flags |= GFP_ATOMIC;
132 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
133 }
134 }
135 return ret;
136 }
137
138 /* redefine dma_alloc_coherent for some architectures */
139 #undef dma_alloc_coherent
140 #define dma_alloc_coherent snd_dma_hack_alloc_coherent
141
142 #endif /* arch */
143
144 /*
145 *
146 * Generic memory allocators
147 *
148 */
149
150 static long snd_allocated_pages; /* holding the number of allocated pages */
151
152 static inline void inc_snd_pages(int order)
153 {
154 snd_allocated_pages += 1 << order;
155 }
156
157 static inline void dec_snd_pages(int order)
158 {
159 snd_allocated_pages -= 1 << order;
160 }
161
162 /**
163 * snd_malloc_pages - allocate pages with the given size
164 * @size: the size to allocate in bytes
165 * @gfp_flags: the allocation conditions, GFP_XXX
166 *
167 * Allocates the physically contiguous pages with the given size.
168 *
169 * Returns the pointer of the buffer, or NULL if no enoguh memory.
170 */
171 void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
172 {
173 int pg;
174 void *res;
175
176 snd_assert(size > 0, return NULL);
177 snd_assert(gfp_flags != 0, return NULL);
178 gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
179 pg = get_order(size);
180 if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
181 inc_snd_pages(pg);
182 return res;
183 }
184
185 /**
186 * snd_free_pages - release the pages
187 * @ptr: the buffer pointer to release
188 * @size: the allocated buffer size
189 *
190 * Releases the buffer allocated via snd_malloc_pages().
191 */
192 void snd_free_pages(void *ptr, size_t size)
193 {
194 int pg;
195
196 if (ptr == NULL)
197 return;
198 pg = get_order(size);
199 dec_snd_pages(pg);
200 free_pages((unsigned long) ptr, pg);
201 }
202
203 /*
204 *
205 * Bus-specific memory allocators
206 *
207 */
208
209 /* allocate the coherent DMA pages */
210 static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
211 {
212 int pg;
213 void *res;
214 gfp_t gfp_flags;
215
216 snd_assert(size > 0, return NULL);
217 snd_assert(dma != NULL, return NULL);
218 pg = get_order(size);
219 gfp_flags = GFP_KERNEL
220 | __GFP_COMP /* compound page lets parts be mapped */
221 | __GFP_NORETRY /* don't trigger OOM-killer */
222 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
223 res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
224 if (res != NULL)
225 inc_snd_pages(pg);
226
227 return res;
228 }
229
230 /* free the coherent DMA pages */
231 static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
232 dma_addr_t dma)
233 {
234 int pg;
235
236 if (ptr == NULL)
237 return;
238 pg = get_order(size);
239 dec_snd_pages(pg);
240 dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
241 }
242
243 #ifdef CONFIG_SBUS
244
245 static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
246 dma_addr_t *dma_addr)
247 {
248 struct sbus_dev *sdev = (struct sbus_dev *)dev;
249 int pg;
250 void *res;
251
252 snd_assert(size > 0, return NULL);
253 snd_assert(dma_addr != NULL, return NULL);
254 pg = get_order(size);
255 res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
256 if (res != NULL)
257 inc_snd_pages(pg);
258 return res;
259 }
260
261 static void snd_free_sbus_pages(struct device *dev, size_t size,
262 void *ptr, dma_addr_t dma_addr)
263 {
264 struct sbus_dev *sdev = (struct sbus_dev *)dev;
265 int pg;
266
267 if (ptr == NULL)
268 return;
269 pg = get_order(size);
270 dec_snd_pages(pg);
271 sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
272 }
273
274 #endif /* CONFIG_SBUS */
275
276 /*
277 *
278 * ALSA generic memory management
279 *
280 */
281
282
283 /**
284 * snd_dma_alloc_pages - allocate the buffer area according to the given type
285 * @type: the DMA buffer type
286 * @device: the device pointer
287 * @size: the buffer size to allocate
288 * @dmab: buffer allocation record to store the allocated data
289 *
290 * Calls the memory-allocator function for the corresponding
291 * buffer type.
292 *
293 * Returns zero if the buffer with the given size is allocated successfuly,
294 * other a negative value at error.
295 */
296 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
297 struct snd_dma_buffer *dmab)
298 {
299 snd_assert(size > 0, return -ENXIO);
300 snd_assert(dmab != NULL, return -ENXIO);
301
302 dmab->dev.type = type;
303 dmab->dev.dev = device;
304 dmab->bytes = 0;
305 switch (type) {
306 case SNDRV_DMA_TYPE_CONTINUOUS:
307 dmab->area = snd_malloc_pages(size, (unsigned long)device);
308 dmab->addr = 0;
309 break;
310 #ifdef CONFIG_SBUS
311 case SNDRV_DMA_TYPE_SBUS:
312 dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
313 break;
314 #endif
315 case SNDRV_DMA_TYPE_DEV:
316 dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
317 break;
318 case SNDRV_DMA_TYPE_DEV_SG:
319 snd_malloc_sgbuf_pages(device, size, dmab, NULL);
320 break;
321 default:
322 printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
323 dmab->area = NULL;
324 dmab->addr = 0;
325 return -ENXIO;
326 }
327 if (! dmab->area)
328 return -ENOMEM;
329 dmab->bytes = size;
330 return 0;
331 }
332
333 /**
334 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
335 * @type: the DMA buffer type
336 * @device: the device pointer
337 * @size: the buffer size to allocate
338 * @dmab: buffer allocation record to store the allocated data
339 *
340 * Calls the memory-allocator function for the corresponding
341 * buffer type. When no space is left, this function reduces the size and
342 * tries to allocate again. The size actually allocated is stored in
343 * res_size argument.
344 *
345 * Returns zero if the buffer with the given size is allocated successfuly,
346 * other a negative value at error.
347 */
348 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
349 struct snd_dma_buffer *dmab)
350 {
351 int err;
352
353 snd_assert(size > 0, return -ENXIO);
354 snd_assert(dmab != NULL, return -ENXIO);
355
356 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
357 if (err != -ENOMEM)
358 return err;
359 size >>= 1;
360 if (size <= PAGE_SIZE)
361 return -ENOMEM;
362 }
363 if (! dmab->area)
364 return -ENOMEM;
365 return 0;
366 }
367
368
369 /**
370 * snd_dma_free_pages - release the allocated buffer
371 * @dmab: the buffer allocation record to release
372 *
373 * Releases the allocated buffer via snd_dma_alloc_pages().
374 */
375 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
376 {
377 switch (dmab->dev.type) {
378 case SNDRV_DMA_TYPE_CONTINUOUS:
379 snd_free_pages(dmab->area, dmab->bytes);
380 break;
381 #ifdef CONFIG_SBUS
382 case SNDRV_DMA_TYPE_SBUS:
383 snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
384 break;
385 #endif
386 case SNDRV_DMA_TYPE_DEV:
387 snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
388 break;
389 case SNDRV_DMA_TYPE_DEV_SG:
390 snd_free_sgbuf_pages(dmab);
391 break;
392 default:
393 printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
394 }
395 }
396
397
398 /**
399 * snd_dma_get_reserved - get the reserved buffer for the given device
400 * @dmab: the buffer allocation record to store
401 * @id: the buffer id
402 *
403 * Looks for the reserved-buffer list and re-uses if the same buffer
404 * is found in the list. When the buffer is found, it's removed from the free list.
405 *
406 * Returns the size of buffer if the buffer is found, or zero if not found.
407 */
408 size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
409 {
410 struct list_head *p;
411 struct snd_mem_list *mem;
412
413 snd_assert(dmab, return 0);
414
415 mutex_lock(&list_mutex);
416 list_for_each(p, &mem_list_head) {
417 mem = list_entry(p, struct snd_mem_list, list);
418 if (mem->id == id &&
419 (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
420 ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
421 struct device *dev = dmab->dev.dev;
422 list_del(p);
423 *dmab = mem->buffer;
424 if (dmab->dev.dev == NULL)
425 dmab->dev.dev = dev;
426 kfree(mem);
427 mutex_unlock(&list_mutex);
428 return dmab->bytes;
429 }
430 }
431 mutex_unlock(&list_mutex);
432 return 0;
433 }
434
435 /**
436 * snd_dma_reserve_buf - reserve the buffer
437 * @dmab: the buffer to reserve
438 * @id: the buffer id
439 *
440 * Reserves the given buffer as a reserved buffer.
441 *
442 * Returns zero if successful, or a negative code at error.
443 */
444 int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
445 {
446 struct snd_mem_list *mem;
447
448 snd_assert(dmab, return -EINVAL);
449 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
450 if (! mem)
451 return -ENOMEM;
452 mutex_lock(&list_mutex);
453 mem->buffer = *dmab;
454 mem->id = id;
455 list_add_tail(&mem->list, &mem_list_head);
456 mutex_unlock(&list_mutex);
457 return 0;
458 }
459
460 /*
461 * purge all reserved buffers
462 */
463 static void free_all_reserved_pages(void)
464 {
465 struct list_head *p;
466 struct snd_mem_list *mem;
467
468 mutex_lock(&list_mutex);
469 while (! list_empty(&mem_list_head)) {
470 p = mem_list_head.next;
471 mem = list_entry(p, struct snd_mem_list, list);
472 list_del(p);
473 snd_dma_free_pages(&mem->buffer);
474 kfree(mem);
475 }
476 mutex_unlock(&list_mutex);
477 }
478
479
480 #ifdef CONFIG_PROC_FS
481 /*
482 * proc file interface
483 */
484 #define SND_MEM_PROC_FILE "driver/snd-page-alloc"
485 static struct proc_dir_entry *snd_mem_proc;
486
487 static int snd_mem_proc_read(char *page, char **start, off_t off,
488 int count, int *eof, void *data)
489 {
490 int len = 0;
491 long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
492 struct list_head *p;
493 struct snd_mem_list *mem;
494 int devno;
495 static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
496
497 mutex_lock(&list_mutex);
498 len += snprintf(page + len, count - len,
499 "pages : %li bytes (%li pages per %likB)\n",
500 pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
501 devno = 0;
502 list_for_each(p, &mem_list_head) {
503 mem = list_entry(p, struct snd_mem_list, list);
504 devno++;
505 len += snprintf(page + len, count - len,
506 "buffer %d : ID %08x : type %s\n",
507 devno, mem->id, types[mem->buffer.dev.type]);
508 len += snprintf(page + len, count - len,
509 " addr = 0x%lx, size = %d bytes\n",
510 (unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
511 }
512 mutex_unlock(&list_mutex);
513 return len;
514 }
515
516 /* FIXME: for pci only - other bus? */
517 #ifdef CONFIG_PCI
518 #define gettoken(bufp) strsep(bufp, " \t\n")
519
520 static int snd_mem_proc_write(struct file *file, const char __user *buffer,
521 unsigned long count, void *data)
522 {
523 char buf[128];
524 char *token, *p;
525
526 if (count > ARRAY_SIZE(buf) - 1)
527 count = ARRAY_SIZE(buf) - 1;
528 if (copy_from_user(buf, buffer, count))
529 return -EFAULT;
530 buf[ARRAY_SIZE(buf) - 1] = '\0';
531
532 p = buf;
533 token = gettoken(&p);
534 if (! token || *token == '#')
535 return (int)count;
536 if (strcmp(token, "add") == 0) {
537 char *endp;
538 int vendor, device, size, buffers;
539 long mask;
540 int i, alloced;
541 struct pci_dev *pci;
542
543 if ((token = gettoken(&p)) == NULL ||
544 (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
545 (token = gettoken(&p)) == NULL ||
546 (device = simple_strtol(token, NULL, 0)) <= 0 ||
547 (token = gettoken(&p)) == NULL ||
548 (mask = simple_strtol(token, NULL, 0)) < 0 ||
549 (token = gettoken(&p)) == NULL ||
550 (size = memparse(token, &endp)) < 64*1024 ||
551 size > 16*1024*1024 /* too big */ ||
552 (token = gettoken(&p)) == NULL ||
553 (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
554 buffers > 4) {
555 printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
556 return (int)count;
557 }
558 vendor &= 0xffff;
559 device &= 0xffff;
560
561 alloced = 0;
562 pci = NULL;
563 while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
564 if (mask > 0 && mask < 0xffffffff) {
565 if (pci_set_dma_mask(pci, mask) < 0 ||
566 pci_set_consistent_dma_mask(pci, mask) < 0) {
567 printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
568 return (int)count;
569 }
570 }
571 for (i = 0; i < buffers; i++) {
572 struct snd_dma_buffer dmab;
573 memset(&dmab, 0, sizeof(dmab));
574 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
575 size, &dmab) < 0) {
576 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
577 pci_dev_put(pci);
578 return (int)count;
579 }
580 snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
581 }
582 alloced++;
583 }
584 if (! alloced) {
585 for (i = 0; i < buffers; i++) {
586 struct snd_dma_buffer dmab;
587 memset(&dmab, 0, sizeof(dmab));
588 /* FIXME: We can allocate only in ZONE_DMA
589 * without a device pointer!
590 */
591 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
592 size, &dmab) < 0) {
593 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
594 break;
595 }
596 snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
597 }
598 }
599 } else if (strcmp(token, "erase") == 0)
600 /* FIXME: need for releasing each buffer chunk? */
601 free_all_reserved_pages();
602 else
603 printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
604 return (int)count;
605 }
606 #endif /* CONFIG_PCI */
607 #endif /* CONFIG_PROC_FS */
608
609 /*
610 * module entry
611 */
612
613 static int __init snd_mem_init(void)
614 {
615 #ifdef CONFIG_PROC_FS
616 snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
617 if (snd_mem_proc) {
618 snd_mem_proc->read_proc = snd_mem_proc_read;
619 #ifdef CONFIG_PCI
620 snd_mem_proc->write_proc = snd_mem_proc_write;
621 #endif
622 }
623 #endif
624 return 0;
625 }
626
627 static void __exit snd_mem_exit(void)
628 {
629 remove_proc_entry(SND_MEM_PROC_FILE, NULL);
630 free_all_reserved_pages();
631 if (snd_allocated_pages > 0)
632 printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
633 }
634
635
636 module_init(snd_mem_init)
637 module_exit(snd_mem_exit)
638
639
640 /*
641 * exports
642 */
643 EXPORT_SYMBOL(snd_dma_alloc_pages);
644 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
645 EXPORT_SYMBOL(snd_dma_free_pages);
646
647 EXPORT_SYMBOL(snd_dma_get_reserved_buf);
648 EXPORT_SYMBOL(snd_dma_reserve_buf);
649
650 EXPORT_SYMBOL(snd_malloc_pages);
651 EXPORT_SYMBOL(snd_free_pages);