[PATCH] security: enable atomic inode security labeling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/security.h>
29 #include <linux/xattr.h>
30 #include <linux/capability.h>
31 #include <linux/unistd.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/slab.h>
35 #include <linux/pagemap.h>
36 #include <linux/swap.h>
37 #include <linux/smp_lock.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/semaphore.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76
77 #define XATTR_SELINUX_SUFFIX "selinux"
78 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
79
80 extern unsigned int policydb_loaded_version;
81 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
82
83 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
84 int selinux_enforcing = 0;
85
86 static int __init enforcing_setup(char *str)
87 {
88 selinux_enforcing = simple_strtol(str,NULL,0);
89 return 1;
90 }
91 __setup("enforcing=", enforcing_setup);
92 #endif
93
94 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
95 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
96
97 static int __init selinux_enabled_setup(char *str)
98 {
99 selinux_enabled = simple_strtol(str, NULL, 0);
100 return 1;
101 }
102 __setup("selinux=", selinux_enabled_setup);
103 #endif
104
105 /* Original (dummy) security module. */
106 static struct security_operations *original_ops = NULL;
107
108 /* Minimal support for a secondary security module,
109 just to allow the use of the dummy or capability modules.
110 The owlsm module can alternatively be used as a secondary
111 module as long as CONFIG_OWLSM_FD is not enabled. */
112 static struct security_operations *secondary_ops = NULL;
113
114 /* Lists of inode and superblock security structures initialized
115 before the policy was loaded. */
116 static LIST_HEAD(superblock_security_head);
117 static DEFINE_SPINLOCK(sb_security_lock);
118
119 /* Allocate and free functions for each kind of security blob. */
120
121 static int task_alloc_security(struct task_struct *task)
122 {
123 struct task_security_struct *tsec;
124
125 tsec = kmalloc(sizeof(struct task_security_struct), GFP_KERNEL);
126 if (!tsec)
127 return -ENOMEM;
128
129 memset(tsec, 0, sizeof(struct task_security_struct));
130 tsec->magic = SELINUX_MAGIC;
131 tsec->task = task;
132 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
133 task->security = tsec;
134
135 return 0;
136 }
137
138 static void task_free_security(struct task_struct *task)
139 {
140 struct task_security_struct *tsec = task->security;
141
142 if (!tsec || tsec->magic != SELINUX_MAGIC)
143 return;
144
145 task->security = NULL;
146 kfree(tsec);
147 }
148
149 static int inode_alloc_security(struct inode *inode)
150 {
151 struct task_security_struct *tsec = current->security;
152 struct inode_security_struct *isec;
153
154 isec = kmalloc(sizeof(struct inode_security_struct), GFP_KERNEL);
155 if (!isec)
156 return -ENOMEM;
157
158 memset(isec, 0, sizeof(struct inode_security_struct));
159 init_MUTEX(&isec->sem);
160 INIT_LIST_HEAD(&isec->list);
161 isec->magic = SELINUX_MAGIC;
162 isec->inode = inode;
163 isec->sid = SECINITSID_UNLABELED;
164 isec->sclass = SECCLASS_FILE;
165 if (tsec && tsec->magic == SELINUX_MAGIC)
166 isec->task_sid = tsec->sid;
167 else
168 isec->task_sid = SECINITSID_UNLABELED;
169 inode->i_security = isec;
170
171 return 0;
172 }
173
174 static void inode_free_security(struct inode *inode)
175 {
176 struct inode_security_struct *isec = inode->i_security;
177 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
178
179 if (!isec || isec->magic != SELINUX_MAGIC)
180 return;
181
182 spin_lock(&sbsec->isec_lock);
183 if (!list_empty(&isec->list))
184 list_del_init(&isec->list);
185 spin_unlock(&sbsec->isec_lock);
186
187 inode->i_security = NULL;
188 kfree(isec);
189 }
190
191 static int file_alloc_security(struct file *file)
192 {
193 struct task_security_struct *tsec = current->security;
194 struct file_security_struct *fsec;
195
196 fsec = kmalloc(sizeof(struct file_security_struct), GFP_ATOMIC);
197 if (!fsec)
198 return -ENOMEM;
199
200 memset(fsec, 0, sizeof(struct file_security_struct));
201 fsec->magic = SELINUX_MAGIC;
202 fsec->file = file;
203 if (tsec && tsec->magic == SELINUX_MAGIC) {
204 fsec->sid = tsec->sid;
205 fsec->fown_sid = tsec->sid;
206 } else {
207 fsec->sid = SECINITSID_UNLABELED;
208 fsec->fown_sid = SECINITSID_UNLABELED;
209 }
210 file->f_security = fsec;
211
212 return 0;
213 }
214
215 static void file_free_security(struct file *file)
216 {
217 struct file_security_struct *fsec = file->f_security;
218
219 if (!fsec || fsec->magic != SELINUX_MAGIC)
220 return;
221
222 file->f_security = NULL;
223 kfree(fsec);
224 }
225
226 static int superblock_alloc_security(struct super_block *sb)
227 {
228 struct superblock_security_struct *sbsec;
229
230 sbsec = kmalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
231 if (!sbsec)
232 return -ENOMEM;
233
234 memset(sbsec, 0, sizeof(struct superblock_security_struct));
235 init_MUTEX(&sbsec->sem);
236 INIT_LIST_HEAD(&sbsec->list);
237 INIT_LIST_HEAD(&sbsec->isec_head);
238 spin_lock_init(&sbsec->isec_lock);
239 sbsec->magic = SELINUX_MAGIC;
240 sbsec->sb = sb;
241 sbsec->sid = SECINITSID_UNLABELED;
242 sbsec->def_sid = SECINITSID_FILE;
243 sb->s_security = sbsec;
244
245 return 0;
246 }
247
248 static void superblock_free_security(struct super_block *sb)
249 {
250 struct superblock_security_struct *sbsec = sb->s_security;
251
252 if (!sbsec || sbsec->magic != SELINUX_MAGIC)
253 return;
254
255 spin_lock(&sb_security_lock);
256 if (!list_empty(&sbsec->list))
257 list_del_init(&sbsec->list);
258 spin_unlock(&sb_security_lock);
259
260 sb->s_security = NULL;
261 kfree(sbsec);
262 }
263
264 #ifdef CONFIG_SECURITY_NETWORK
265 static int sk_alloc_security(struct sock *sk, int family, int priority)
266 {
267 struct sk_security_struct *ssec;
268
269 if (family != PF_UNIX)
270 return 0;
271
272 ssec = kmalloc(sizeof(*ssec), priority);
273 if (!ssec)
274 return -ENOMEM;
275
276 memset(ssec, 0, sizeof(*ssec));
277 ssec->magic = SELINUX_MAGIC;
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 sk->sk_security = ssec;
281
282 return 0;
283 }
284
285 static void sk_free_security(struct sock *sk)
286 {
287 struct sk_security_struct *ssec = sk->sk_security;
288
289 if (sk->sk_family != PF_UNIX || ssec->magic != SELINUX_MAGIC)
290 return;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295 #endif /* CONFIG_SECURITY_NETWORK */
296
297 /* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304 "uses xattr",
305 "uses transition SIDs",
306 "uses task SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316 return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 4,
323 };
324
325 static match_table_t tokens = {
326 {Opt_context, "context=%s"},
327 {Opt_fscontext, "fscontext=%s"},
328 {Opt_defcontext, "defcontext=%s"},
329 };
330
331 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
332
333 static int try_context_mount(struct super_block *sb, void *data)
334 {
335 char *context = NULL, *defcontext = NULL;
336 const char *name;
337 u32 sid;
338 int alloc = 0, rc = 0, seen = 0;
339 struct task_security_struct *tsec = current->security;
340 struct superblock_security_struct *sbsec = sb->s_security;
341
342 if (!data)
343 goto out;
344
345 name = sb->s_type->name;
346
347 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
348
349 /* NFS we understand. */
350 if (!strcmp(name, "nfs")) {
351 struct nfs_mount_data *d = data;
352
353 if (d->version < NFS_MOUNT_VERSION)
354 goto out;
355
356 if (d->context[0]) {
357 context = d->context;
358 seen |= Opt_context;
359 }
360 } else
361 goto out;
362
363 } else {
364 /* Standard string-based options. */
365 char *p, *options = data;
366
367 while ((p = strsep(&options, ",")) != NULL) {
368 int token;
369 substring_t args[MAX_OPT_ARGS];
370
371 if (!*p)
372 continue;
373
374 token = match_token(p, tokens, args);
375
376 switch (token) {
377 case Opt_context:
378 if (seen) {
379 rc = -EINVAL;
380 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
381 goto out_free;
382 }
383 context = match_strdup(&args[0]);
384 if (!context) {
385 rc = -ENOMEM;
386 goto out_free;
387 }
388 if (!alloc)
389 alloc = 1;
390 seen |= Opt_context;
391 break;
392
393 case Opt_fscontext:
394 if (seen & (Opt_context|Opt_fscontext)) {
395 rc = -EINVAL;
396 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
397 goto out_free;
398 }
399 context = match_strdup(&args[0]);
400 if (!context) {
401 rc = -ENOMEM;
402 goto out_free;
403 }
404 if (!alloc)
405 alloc = 1;
406 seen |= Opt_fscontext;
407 break;
408
409 case Opt_defcontext:
410 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
411 rc = -EINVAL;
412 printk(KERN_WARNING "SELinux: "
413 "defcontext option is invalid "
414 "for this filesystem type\n");
415 goto out_free;
416 }
417 if (seen & (Opt_context|Opt_defcontext)) {
418 rc = -EINVAL;
419 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
420 goto out_free;
421 }
422 defcontext = match_strdup(&args[0]);
423 if (!defcontext) {
424 rc = -ENOMEM;
425 goto out_free;
426 }
427 if (!alloc)
428 alloc = 1;
429 seen |= Opt_defcontext;
430 break;
431
432 default:
433 rc = -EINVAL;
434 printk(KERN_WARNING "SELinux: unknown mount "
435 "option\n");
436 goto out_free;
437
438 }
439 }
440 }
441
442 if (!seen)
443 goto out;
444
445 if (context) {
446 rc = security_context_to_sid(context, strlen(context), &sid);
447 if (rc) {
448 printk(KERN_WARNING "SELinux: security_context_to_sid"
449 "(%s) failed for (dev %s, type %s) errno=%d\n",
450 context, sb->s_id, name, rc);
451 goto out_free;
452 }
453
454 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELFROM, NULL);
456 if (rc)
457 goto out_free;
458
459 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
460 FILESYSTEM__RELABELTO, NULL);
461 if (rc)
462 goto out_free;
463
464 sbsec->sid = sid;
465
466 if (seen & Opt_context)
467 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
468 }
469
470 if (defcontext) {
471 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
472 if (rc) {
473 printk(KERN_WARNING "SELinux: security_context_to_sid"
474 "(%s) failed for (dev %s, type %s) errno=%d\n",
475 defcontext, sb->s_id, name, rc);
476 goto out_free;
477 }
478
479 if (sid == sbsec->def_sid)
480 goto out_free;
481
482 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
483 FILESYSTEM__RELABELFROM, NULL);
484 if (rc)
485 goto out_free;
486
487 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
488 FILESYSTEM__ASSOCIATE, NULL);
489 if (rc)
490 goto out_free;
491
492 sbsec->def_sid = sid;
493 }
494
495 out_free:
496 if (alloc) {
497 kfree(context);
498 kfree(defcontext);
499 }
500 out:
501 return rc;
502 }
503
504 static int superblock_doinit(struct super_block *sb, void *data)
505 {
506 struct superblock_security_struct *sbsec = sb->s_security;
507 struct dentry *root = sb->s_root;
508 struct inode *inode = root->d_inode;
509 int rc = 0;
510
511 down(&sbsec->sem);
512 if (sbsec->initialized)
513 goto out;
514
515 if (!ss_initialized) {
516 /* Defer initialization until selinux_complete_init,
517 after the initial policy is loaded and the security
518 server is ready to handle calls. */
519 spin_lock(&sb_security_lock);
520 if (list_empty(&sbsec->list))
521 list_add(&sbsec->list, &superblock_security_head);
522 spin_unlock(&sb_security_lock);
523 goto out;
524 }
525
526 /* Determine the labeling behavior to use for this filesystem type. */
527 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
528 if (rc) {
529 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
530 __FUNCTION__, sb->s_type->name, rc);
531 goto out;
532 }
533
534 rc = try_context_mount(sb, data);
535 if (rc)
536 goto out;
537
538 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
539 /* Make sure that the xattr handler exists and that no
540 error other than -ENODATA is returned by getxattr on
541 the root directory. -ENODATA is ok, as this may be
542 the first boot of the SELinux kernel before we have
543 assigned xattr values to the filesystem. */
544 if (!inode->i_op->getxattr) {
545 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
546 "xattr support\n", sb->s_id, sb->s_type->name);
547 rc = -EOPNOTSUPP;
548 goto out;
549 }
550 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
551 if (rc < 0 && rc != -ENODATA) {
552 if (rc == -EOPNOTSUPP)
553 printk(KERN_WARNING "SELinux: (dev %s, type "
554 "%s) has no security xattr handler\n",
555 sb->s_id, sb->s_type->name);
556 else
557 printk(KERN_WARNING "SELinux: (dev %s, type "
558 "%s) getxattr errno %d\n", sb->s_id,
559 sb->s_type->name, -rc);
560 goto out;
561 }
562 }
563
564 if (strcmp(sb->s_type->name, "proc") == 0)
565 sbsec->proc = 1;
566
567 sbsec->initialized = 1;
568
569 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
570 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
571 sb->s_id, sb->s_type->name);
572 }
573 else {
574 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
575 sb->s_id, sb->s_type->name,
576 labeling_behaviors[sbsec->behavior-1]);
577 }
578
579 /* Initialize the root inode. */
580 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
581
582 /* Initialize any other inodes associated with the superblock, e.g.
583 inodes created prior to initial policy load or inodes created
584 during get_sb by a pseudo filesystem that directly
585 populates itself. */
586 spin_lock(&sbsec->isec_lock);
587 next_inode:
588 if (!list_empty(&sbsec->isec_head)) {
589 struct inode_security_struct *isec =
590 list_entry(sbsec->isec_head.next,
591 struct inode_security_struct, list);
592 struct inode *inode = isec->inode;
593 spin_unlock(&sbsec->isec_lock);
594 inode = igrab(inode);
595 if (inode) {
596 if (!IS_PRIVATE (inode))
597 inode_doinit(inode);
598 iput(inode);
599 }
600 spin_lock(&sbsec->isec_lock);
601 list_del_init(&isec->list);
602 goto next_inode;
603 }
604 spin_unlock(&sbsec->isec_lock);
605 out:
606 up(&sbsec->sem);
607 return rc;
608 }
609
610 static inline u16 inode_mode_to_security_class(umode_t mode)
611 {
612 switch (mode & S_IFMT) {
613 case S_IFSOCK:
614 return SECCLASS_SOCK_FILE;
615 case S_IFLNK:
616 return SECCLASS_LNK_FILE;
617 case S_IFREG:
618 return SECCLASS_FILE;
619 case S_IFBLK:
620 return SECCLASS_BLK_FILE;
621 case S_IFDIR:
622 return SECCLASS_DIR;
623 case S_IFCHR:
624 return SECCLASS_CHR_FILE;
625 case S_IFIFO:
626 return SECCLASS_FIFO_FILE;
627
628 }
629
630 return SECCLASS_FILE;
631 }
632
633 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
634 {
635 switch (family) {
636 case PF_UNIX:
637 switch (type) {
638 case SOCK_STREAM:
639 case SOCK_SEQPACKET:
640 return SECCLASS_UNIX_STREAM_SOCKET;
641 case SOCK_DGRAM:
642 return SECCLASS_UNIX_DGRAM_SOCKET;
643 }
644 break;
645 case PF_INET:
646 case PF_INET6:
647 switch (type) {
648 case SOCK_STREAM:
649 return SECCLASS_TCP_SOCKET;
650 case SOCK_DGRAM:
651 return SECCLASS_UDP_SOCKET;
652 case SOCK_RAW:
653 return SECCLASS_RAWIP_SOCKET;
654 }
655 break;
656 case PF_NETLINK:
657 switch (protocol) {
658 case NETLINK_ROUTE:
659 return SECCLASS_NETLINK_ROUTE_SOCKET;
660 case NETLINK_FIREWALL:
661 return SECCLASS_NETLINK_FIREWALL_SOCKET;
662 case NETLINK_INET_DIAG:
663 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
664 case NETLINK_NFLOG:
665 return SECCLASS_NETLINK_NFLOG_SOCKET;
666 case NETLINK_XFRM:
667 return SECCLASS_NETLINK_XFRM_SOCKET;
668 case NETLINK_SELINUX:
669 return SECCLASS_NETLINK_SELINUX_SOCKET;
670 case NETLINK_AUDIT:
671 return SECCLASS_NETLINK_AUDIT_SOCKET;
672 case NETLINK_IP6_FW:
673 return SECCLASS_NETLINK_IP6FW_SOCKET;
674 case NETLINK_DNRTMSG:
675 return SECCLASS_NETLINK_DNRT_SOCKET;
676 case NETLINK_KOBJECT_UEVENT:
677 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
678 default:
679 return SECCLASS_NETLINK_SOCKET;
680 }
681 case PF_PACKET:
682 return SECCLASS_PACKET_SOCKET;
683 case PF_KEY:
684 return SECCLASS_KEY_SOCKET;
685 }
686
687 return SECCLASS_SOCKET;
688 }
689
690 #ifdef CONFIG_PROC_FS
691 static int selinux_proc_get_sid(struct proc_dir_entry *de,
692 u16 tclass,
693 u32 *sid)
694 {
695 int buflen, rc;
696 char *buffer, *path, *end;
697
698 buffer = (char*)__get_free_page(GFP_KERNEL);
699 if (!buffer)
700 return -ENOMEM;
701
702 buflen = PAGE_SIZE;
703 end = buffer+buflen;
704 *--end = '\0';
705 buflen--;
706 path = end-1;
707 *path = '/';
708 while (de && de != de->parent) {
709 buflen -= de->namelen + 1;
710 if (buflen < 0)
711 break;
712 end -= de->namelen;
713 memcpy(end, de->name, de->namelen);
714 *--end = '/';
715 path = end;
716 de = de->parent;
717 }
718 rc = security_genfs_sid("proc", path, tclass, sid);
719 free_page((unsigned long)buffer);
720 return rc;
721 }
722 #else
723 static int selinux_proc_get_sid(struct proc_dir_entry *de,
724 u16 tclass,
725 u32 *sid)
726 {
727 return -EINVAL;
728 }
729 #endif
730
731 /* The inode's security attributes must be initialized before first use. */
732 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
733 {
734 struct superblock_security_struct *sbsec = NULL;
735 struct inode_security_struct *isec = inode->i_security;
736 u32 sid;
737 struct dentry *dentry;
738 #define INITCONTEXTLEN 255
739 char *context = NULL;
740 unsigned len = 0;
741 int rc = 0;
742 int hold_sem = 0;
743
744 if (isec->initialized)
745 goto out;
746
747 down(&isec->sem);
748 hold_sem = 1;
749 if (isec->initialized)
750 goto out;
751
752 sbsec = inode->i_sb->s_security;
753 if (!sbsec->initialized) {
754 /* Defer initialization until selinux_complete_init,
755 after the initial policy is loaded and the security
756 server is ready to handle calls. */
757 spin_lock(&sbsec->isec_lock);
758 if (list_empty(&isec->list))
759 list_add(&isec->list, &sbsec->isec_head);
760 spin_unlock(&sbsec->isec_lock);
761 goto out;
762 }
763
764 switch (sbsec->behavior) {
765 case SECURITY_FS_USE_XATTR:
766 if (!inode->i_op->getxattr) {
767 isec->sid = sbsec->def_sid;
768 break;
769 }
770
771 /* Need a dentry, since the xattr API requires one.
772 Life would be simpler if we could just pass the inode. */
773 if (opt_dentry) {
774 /* Called from d_instantiate or d_splice_alias. */
775 dentry = dget(opt_dentry);
776 } else {
777 /* Called from selinux_complete_init, try to find a dentry. */
778 dentry = d_find_alias(inode);
779 }
780 if (!dentry) {
781 printk(KERN_WARNING "%s: no dentry for dev=%s "
782 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
783 inode->i_ino);
784 goto out;
785 }
786
787 len = INITCONTEXTLEN;
788 context = kmalloc(len, GFP_KERNEL);
789 if (!context) {
790 rc = -ENOMEM;
791 dput(dentry);
792 goto out;
793 }
794 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
795 context, len);
796 if (rc == -ERANGE) {
797 /* Need a larger buffer. Query for the right size. */
798 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
799 NULL, 0);
800 if (rc < 0) {
801 dput(dentry);
802 goto out;
803 }
804 kfree(context);
805 len = rc;
806 context = kmalloc(len, GFP_KERNEL);
807 if (!context) {
808 rc = -ENOMEM;
809 dput(dentry);
810 goto out;
811 }
812 rc = inode->i_op->getxattr(dentry,
813 XATTR_NAME_SELINUX,
814 context, len);
815 }
816 dput(dentry);
817 if (rc < 0) {
818 if (rc != -ENODATA) {
819 printk(KERN_WARNING "%s: getxattr returned "
820 "%d for dev=%s ino=%ld\n", __FUNCTION__,
821 -rc, inode->i_sb->s_id, inode->i_ino);
822 kfree(context);
823 goto out;
824 }
825 /* Map ENODATA to the default file SID */
826 sid = sbsec->def_sid;
827 rc = 0;
828 } else {
829 rc = security_context_to_sid_default(context, rc, &sid,
830 sbsec->def_sid);
831 if (rc) {
832 printk(KERN_WARNING "%s: context_to_sid(%s) "
833 "returned %d for dev=%s ino=%ld\n",
834 __FUNCTION__, context, -rc,
835 inode->i_sb->s_id, inode->i_ino);
836 kfree(context);
837 /* Leave with the unlabeled SID */
838 rc = 0;
839 break;
840 }
841 }
842 kfree(context);
843 isec->sid = sid;
844 break;
845 case SECURITY_FS_USE_TASK:
846 isec->sid = isec->task_sid;
847 break;
848 case SECURITY_FS_USE_TRANS:
849 /* Default to the fs SID. */
850 isec->sid = sbsec->sid;
851
852 /* Try to obtain a transition SID. */
853 isec->sclass = inode_mode_to_security_class(inode->i_mode);
854 rc = security_transition_sid(isec->task_sid,
855 sbsec->sid,
856 isec->sclass,
857 &sid);
858 if (rc)
859 goto out;
860 isec->sid = sid;
861 break;
862 default:
863 /* Default to the fs SID. */
864 isec->sid = sbsec->sid;
865
866 if (sbsec->proc) {
867 struct proc_inode *proci = PROC_I(inode);
868 if (proci->pde) {
869 isec->sclass = inode_mode_to_security_class(inode->i_mode);
870 rc = selinux_proc_get_sid(proci->pde,
871 isec->sclass,
872 &sid);
873 if (rc)
874 goto out;
875 isec->sid = sid;
876 }
877 }
878 break;
879 }
880
881 isec->initialized = 1;
882
883 out:
884 if (isec->sclass == SECCLASS_FILE)
885 isec->sclass = inode_mode_to_security_class(inode->i_mode);
886
887 if (hold_sem)
888 up(&isec->sem);
889 return rc;
890 }
891
892 /* Convert a Linux signal to an access vector. */
893 static inline u32 signal_to_av(int sig)
894 {
895 u32 perm = 0;
896
897 switch (sig) {
898 case SIGCHLD:
899 /* Commonly granted from child to parent. */
900 perm = PROCESS__SIGCHLD;
901 break;
902 case SIGKILL:
903 /* Cannot be caught or ignored */
904 perm = PROCESS__SIGKILL;
905 break;
906 case SIGSTOP:
907 /* Cannot be caught or ignored */
908 perm = PROCESS__SIGSTOP;
909 break;
910 default:
911 /* All other signals. */
912 perm = PROCESS__SIGNAL;
913 break;
914 }
915
916 return perm;
917 }
918
919 /* Check permission betweeen a pair of tasks, e.g. signal checks,
920 fork check, ptrace check, etc. */
921 static int task_has_perm(struct task_struct *tsk1,
922 struct task_struct *tsk2,
923 u32 perms)
924 {
925 struct task_security_struct *tsec1, *tsec2;
926
927 tsec1 = tsk1->security;
928 tsec2 = tsk2->security;
929 return avc_has_perm(tsec1->sid, tsec2->sid,
930 SECCLASS_PROCESS, perms, NULL);
931 }
932
933 /* Check whether a task is allowed to use a capability. */
934 static int task_has_capability(struct task_struct *tsk,
935 int cap)
936 {
937 struct task_security_struct *tsec;
938 struct avc_audit_data ad;
939
940 tsec = tsk->security;
941
942 AVC_AUDIT_DATA_INIT(&ad,CAP);
943 ad.tsk = tsk;
944 ad.u.cap = cap;
945
946 return avc_has_perm(tsec->sid, tsec->sid,
947 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
948 }
949
950 /* Check whether a task is allowed to use a system operation. */
951 static int task_has_system(struct task_struct *tsk,
952 u32 perms)
953 {
954 struct task_security_struct *tsec;
955
956 tsec = tsk->security;
957
958 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
959 SECCLASS_SYSTEM, perms, NULL);
960 }
961
962 /* Check whether a task has a particular permission to an inode.
963 The 'adp' parameter is optional and allows other audit
964 data to be passed (e.g. the dentry). */
965 static int inode_has_perm(struct task_struct *tsk,
966 struct inode *inode,
967 u32 perms,
968 struct avc_audit_data *adp)
969 {
970 struct task_security_struct *tsec;
971 struct inode_security_struct *isec;
972 struct avc_audit_data ad;
973
974 tsec = tsk->security;
975 isec = inode->i_security;
976
977 if (!adp) {
978 adp = &ad;
979 AVC_AUDIT_DATA_INIT(&ad, FS);
980 ad.u.fs.inode = inode;
981 }
982
983 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
984 }
985
986 /* Same as inode_has_perm, but pass explicit audit data containing
987 the dentry to help the auditing code to more easily generate the
988 pathname if needed. */
989 static inline int dentry_has_perm(struct task_struct *tsk,
990 struct vfsmount *mnt,
991 struct dentry *dentry,
992 u32 av)
993 {
994 struct inode *inode = dentry->d_inode;
995 struct avc_audit_data ad;
996 AVC_AUDIT_DATA_INIT(&ad,FS);
997 ad.u.fs.mnt = mnt;
998 ad.u.fs.dentry = dentry;
999 return inode_has_perm(tsk, inode, av, &ad);
1000 }
1001
1002 /* Check whether a task can use an open file descriptor to
1003 access an inode in a given way. Check access to the
1004 descriptor itself, and then use dentry_has_perm to
1005 check a particular permission to the file.
1006 Access to the descriptor is implicitly granted if it
1007 has the same SID as the process. If av is zero, then
1008 access to the file is not checked, e.g. for cases
1009 where only the descriptor is affected like seek. */
1010 static inline int file_has_perm(struct task_struct *tsk,
1011 struct file *file,
1012 u32 av)
1013 {
1014 struct task_security_struct *tsec = tsk->security;
1015 struct file_security_struct *fsec = file->f_security;
1016 struct vfsmount *mnt = file->f_vfsmnt;
1017 struct dentry *dentry = file->f_dentry;
1018 struct inode *inode = dentry->d_inode;
1019 struct avc_audit_data ad;
1020 int rc;
1021
1022 AVC_AUDIT_DATA_INIT(&ad, FS);
1023 ad.u.fs.mnt = mnt;
1024 ad.u.fs.dentry = dentry;
1025
1026 if (tsec->sid != fsec->sid) {
1027 rc = avc_has_perm(tsec->sid, fsec->sid,
1028 SECCLASS_FD,
1029 FD__USE,
1030 &ad);
1031 if (rc)
1032 return rc;
1033 }
1034
1035 /* av is zero if only checking access to the descriptor. */
1036 if (av)
1037 return inode_has_perm(tsk, inode, av, &ad);
1038
1039 return 0;
1040 }
1041
1042 /* Check whether a task can create a file. */
1043 static int may_create(struct inode *dir,
1044 struct dentry *dentry,
1045 u16 tclass)
1046 {
1047 struct task_security_struct *tsec;
1048 struct inode_security_struct *dsec;
1049 struct superblock_security_struct *sbsec;
1050 u32 newsid;
1051 struct avc_audit_data ad;
1052 int rc;
1053
1054 tsec = current->security;
1055 dsec = dir->i_security;
1056 sbsec = dir->i_sb->s_security;
1057
1058 AVC_AUDIT_DATA_INIT(&ad, FS);
1059 ad.u.fs.dentry = dentry;
1060
1061 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1062 DIR__ADD_NAME | DIR__SEARCH,
1063 &ad);
1064 if (rc)
1065 return rc;
1066
1067 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1068 newsid = tsec->create_sid;
1069 } else {
1070 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1071 &newsid);
1072 if (rc)
1073 return rc;
1074 }
1075
1076 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1077 if (rc)
1078 return rc;
1079
1080 return avc_has_perm(newsid, sbsec->sid,
1081 SECCLASS_FILESYSTEM,
1082 FILESYSTEM__ASSOCIATE, &ad);
1083 }
1084
1085 #define MAY_LINK 0
1086 #define MAY_UNLINK 1
1087 #define MAY_RMDIR 2
1088
1089 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1090 static int may_link(struct inode *dir,
1091 struct dentry *dentry,
1092 int kind)
1093
1094 {
1095 struct task_security_struct *tsec;
1096 struct inode_security_struct *dsec, *isec;
1097 struct avc_audit_data ad;
1098 u32 av;
1099 int rc;
1100
1101 tsec = current->security;
1102 dsec = dir->i_security;
1103 isec = dentry->d_inode->i_security;
1104
1105 AVC_AUDIT_DATA_INIT(&ad, FS);
1106 ad.u.fs.dentry = dentry;
1107
1108 av = DIR__SEARCH;
1109 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1110 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1111 if (rc)
1112 return rc;
1113
1114 switch (kind) {
1115 case MAY_LINK:
1116 av = FILE__LINK;
1117 break;
1118 case MAY_UNLINK:
1119 av = FILE__UNLINK;
1120 break;
1121 case MAY_RMDIR:
1122 av = DIR__RMDIR;
1123 break;
1124 default:
1125 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1126 return 0;
1127 }
1128
1129 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1130 return rc;
1131 }
1132
1133 static inline int may_rename(struct inode *old_dir,
1134 struct dentry *old_dentry,
1135 struct inode *new_dir,
1136 struct dentry *new_dentry)
1137 {
1138 struct task_security_struct *tsec;
1139 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1140 struct avc_audit_data ad;
1141 u32 av;
1142 int old_is_dir, new_is_dir;
1143 int rc;
1144
1145 tsec = current->security;
1146 old_dsec = old_dir->i_security;
1147 old_isec = old_dentry->d_inode->i_security;
1148 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1149 new_dsec = new_dir->i_security;
1150
1151 AVC_AUDIT_DATA_INIT(&ad, FS);
1152
1153 ad.u.fs.dentry = old_dentry;
1154 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1155 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1156 if (rc)
1157 return rc;
1158 rc = avc_has_perm(tsec->sid, old_isec->sid,
1159 old_isec->sclass, FILE__RENAME, &ad);
1160 if (rc)
1161 return rc;
1162 if (old_is_dir && new_dir != old_dir) {
1163 rc = avc_has_perm(tsec->sid, old_isec->sid,
1164 old_isec->sclass, DIR__REPARENT, &ad);
1165 if (rc)
1166 return rc;
1167 }
1168
1169 ad.u.fs.dentry = new_dentry;
1170 av = DIR__ADD_NAME | DIR__SEARCH;
1171 if (new_dentry->d_inode)
1172 av |= DIR__REMOVE_NAME;
1173 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1174 if (rc)
1175 return rc;
1176 if (new_dentry->d_inode) {
1177 new_isec = new_dentry->d_inode->i_security;
1178 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1179 rc = avc_has_perm(tsec->sid, new_isec->sid,
1180 new_isec->sclass,
1181 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1182 if (rc)
1183 return rc;
1184 }
1185
1186 return 0;
1187 }
1188
1189 /* Check whether a task can perform a filesystem operation. */
1190 static int superblock_has_perm(struct task_struct *tsk,
1191 struct super_block *sb,
1192 u32 perms,
1193 struct avc_audit_data *ad)
1194 {
1195 struct task_security_struct *tsec;
1196 struct superblock_security_struct *sbsec;
1197
1198 tsec = tsk->security;
1199 sbsec = sb->s_security;
1200 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1201 perms, ad);
1202 }
1203
1204 /* Convert a Linux mode and permission mask to an access vector. */
1205 static inline u32 file_mask_to_av(int mode, int mask)
1206 {
1207 u32 av = 0;
1208
1209 if ((mode & S_IFMT) != S_IFDIR) {
1210 if (mask & MAY_EXEC)
1211 av |= FILE__EXECUTE;
1212 if (mask & MAY_READ)
1213 av |= FILE__READ;
1214
1215 if (mask & MAY_APPEND)
1216 av |= FILE__APPEND;
1217 else if (mask & MAY_WRITE)
1218 av |= FILE__WRITE;
1219
1220 } else {
1221 if (mask & MAY_EXEC)
1222 av |= DIR__SEARCH;
1223 if (mask & MAY_WRITE)
1224 av |= DIR__WRITE;
1225 if (mask & MAY_READ)
1226 av |= DIR__READ;
1227 }
1228
1229 return av;
1230 }
1231
1232 /* Convert a Linux file to an access vector. */
1233 static inline u32 file_to_av(struct file *file)
1234 {
1235 u32 av = 0;
1236
1237 if (file->f_mode & FMODE_READ)
1238 av |= FILE__READ;
1239 if (file->f_mode & FMODE_WRITE) {
1240 if (file->f_flags & O_APPEND)
1241 av |= FILE__APPEND;
1242 else
1243 av |= FILE__WRITE;
1244 }
1245
1246 return av;
1247 }
1248
1249 /* Set an inode's SID to a specified value. */
1250 static int inode_security_set_sid(struct inode *inode, u32 sid)
1251 {
1252 struct inode_security_struct *isec = inode->i_security;
1253 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1254
1255 if (!sbsec->initialized) {
1256 /* Defer initialization to selinux_complete_init. */
1257 return 0;
1258 }
1259
1260 down(&isec->sem);
1261 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1262 isec->sid = sid;
1263 isec->initialized = 1;
1264 up(&isec->sem);
1265 return 0;
1266 }
1267
1268 /* Set the security attributes on a newly created file. */
1269 static int post_create(struct inode *dir,
1270 struct dentry *dentry)
1271 {
1272
1273 struct task_security_struct *tsec;
1274 struct inode *inode;
1275 struct inode_security_struct *dsec;
1276 struct superblock_security_struct *sbsec;
1277 struct inode_security_struct *isec;
1278 u32 newsid;
1279 char *context;
1280 unsigned int len;
1281 int rc;
1282
1283 tsec = current->security;
1284 dsec = dir->i_security;
1285 sbsec = dir->i_sb->s_security;
1286
1287 inode = dentry->d_inode;
1288 if (!inode) {
1289 /* Some file system types (e.g. NFS) may not instantiate
1290 a dentry for all create operations (e.g. symlink),
1291 so we have to check to see if the inode is non-NULL. */
1292 printk(KERN_WARNING "post_create: no inode, dir (dev=%s, "
1293 "ino=%ld)\n", dir->i_sb->s_id, dir->i_ino);
1294 return 0;
1295 }
1296
1297 isec = inode->i_security;
1298
1299 if (isec->security_attr_init)
1300 return 0;
1301
1302 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1303 newsid = tsec->create_sid;
1304 } else {
1305 rc = security_transition_sid(tsec->sid, dsec->sid,
1306 inode_mode_to_security_class(inode->i_mode),
1307 &newsid);
1308 if (rc) {
1309 printk(KERN_WARNING "post_create: "
1310 "security_transition_sid failed, rc=%d (dev=%s "
1311 "ino=%ld)\n",
1312 -rc, inode->i_sb->s_id, inode->i_ino);
1313 return rc;
1314 }
1315 }
1316
1317 rc = inode_security_set_sid(inode, newsid);
1318 if (rc) {
1319 printk(KERN_WARNING "post_create: inode_security_set_sid "
1320 "failed, rc=%d (dev=%s ino=%ld)\n",
1321 -rc, inode->i_sb->s_id, inode->i_ino);
1322 return rc;
1323 }
1324
1325 if (sbsec->behavior == SECURITY_FS_USE_XATTR &&
1326 inode->i_op->setxattr) {
1327 /* Use extended attributes. */
1328 rc = security_sid_to_context(newsid, &context, &len);
1329 if (rc) {
1330 printk(KERN_WARNING "post_create: sid_to_context "
1331 "failed, rc=%d (dev=%s ino=%ld)\n",
1332 -rc, inode->i_sb->s_id, inode->i_ino);
1333 return rc;
1334 }
1335 down(&inode->i_sem);
1336 rc = inode->i_op->setxattr(dentry,
1337 XATTR_NAME_SELINUX,
1338 context, len, 0);
1339 up(&inode->i_sem);
1340 kfree(context);
1341 if (rc < 0) {
1342 printk(KERN_WARNING "post_create: setxattr failed, "
1343 "rc=%d (dev=%s ino=%ld)\n",
1344 -rc, inode->i_sb->s_id, inode->i_ino);
1345 return rc;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352
1353 /* Hook functions begin here. */
1354
1355 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1356 {
1357 struct task_security_struct *psec = parent->security;
1358 struct task_security_struct *csec = child->security;
1359 int rc;
1360
1361 rc = secondary_ops->ptrace(parent,child);
1362 if (rc)
1363 return rc;
1364
1365 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1366 /* Save the SID of the tracing process for later use in apply_creds. */
1367 if (!rc)
1368 csec->ptrace_sid = psec->sid;
1369 return rc;
1370 }
1371
1372 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1373 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1374 {
1375 int error;
1376
1377 error = task_has_perm(current, target, PROCESS__GETCAP);
1378 if (error)
1379 return error;
1380
1381 return secondary_ops->capget(target, effective, inheritable, permitted);
1382 }
1383
1384 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1385 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1386 {
1387 int error;
1388
1389 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1390 if (error)
1391 return error;
1392
1393 return task_has_perm(current, target, PROCESS__SETCAP);
1394 }
1395
1396 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1397 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1398 {
1399 secondary_ops->capset_set(target, effective, inheritable, permitted);
1400 }
1401
1402 static int selinux_capable(struct task_struct *tsk, int cap)
1403 {
1404 int rc;
1405
1406 rc = secondary_ops->capable(tsk, cap);
1407 if (rc)
1408 return rc;
1409
1410 return task_has_capability(tsk,cap);
1411 }
1412
1413 static int selinux_sysctl(ctl_table *table, int op)
1414 {
1415 int error = 0;
1416 u32 av;
1417 struct task_security_struct *tsec;
1418 u32 tsid;
1419 int rc;
1420
1421 rc = secondary_ops->sysctl(table, op);
1422 if (rc)
1423 return rc;
1424
1425 tsec = current->security;
1426
1427 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1428 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1429 if (rc) {
1430 /* Default to the well-defined sysctl SID. */
1431 tsid = SECINITSID_SYSCTL;
1432 }
1433
1434 /* The op values are "defined" in sysctl.c, thereby creating
1435 * a bad coupling between this module and sysctl.c */
1436 if(op == 001) {
1437 error = avc_has_perm(tsec->sid, tsid,
1438 SECCLASS_DIR, DIR__SEARCH, NULL);
1439 } else {
1440 av = 0;
1441 if (op & 004)
1442 av |= FILE__READ;
1443 if (op & 002)
1444 av |= FILE__WRITE;
1445 if (av)
1446 error = avc_has_perm(tsec->sid, tsid,
1447 SECCLASS_FILE, av, NULL);
1448 }
1449
1450 return error;
1451 }
1452
1453 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1454 {
1455 int rc = 0;
1456
1457 if (!sb)
1458 return 0;
1459
1460 switch (cmds) {
1461 case Q_SYNC:
1462 case Q_QUOTAON:
1463 case Q_QUOTAOFF:
1464 case Q_SETINFO:
1465 case Q_SETQUOTA:
1466 rc = superblock_has_perm(current,
1467 sb,
1468 FILESYSTEM__QUOTAMOD, NULL);
1469 break;
1470 case Q_GETFMT:
1471 case Q_GETINFO:
1472 case Q_GETQUOTA:
1473 rc = superblock_has_perm(current,
1474 sb,
1475 FILESYSTEM__QUOTAGET, NULL);
1476 break;
1477 default:
1478 rc = 0; /* let the kernel handle invalid cmds */
1479 break;
1480 }
1481 return rc;
1482 }
1483
1484 static int selinux_quota_on(struct dentry *dentry)
1485 {
1486 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1487 }
1488
1489 static int selinux_syslog(int type)
1490 {
1491 int rc;
1492
1493 rc = secondary_ops->syslog(type);
1494 if (rc)
1495 return rc;
1496
1497 switch (type) {
1498 case 3: /* Read last kernel messages */
1499 case 10: /* Return size of the log buffer */
1500 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1501 break;
1502 case 6: /* Disable logging to console */
1503 case 7: /* Enable logging to console */
1504 case 8: /* Set level of messages printed to console */
1505 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1506 break;
1507 case 0: /* Close log */
1508 case 1: /* Open log */
1509 case 2: /* Read from log */
1510 case 4: /* Read/clear last kernel messages */
1511 case 5: /* Clear ring buffer */
1512 default:
1513 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1514 break;
1515 }
1516 return rc;
1517 }
1518
1519 /*
1520 * Check that a process has enough memory to allocate a new virtual
1521 * mapping. 0 means there is enough memory for the allocation to
1522 * succeed and -ENOMEM implies there is not.
1523 *
1524 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1525 * if the capability is granted, but __vm_enough_memory requires 1 if
1526 * the capability is granted.
1527 *
1528 * Do not audit the selinux permission check, as this is applied to all
1529 * processes that allocate mappings.
1530 */
1531 static int selinux_vm_enough_memory(long pages)
1532 {
1533 int rc, cap_sys_admin = 0;
1534 struct task_security_struct *tsec = current->security;
1535
1536 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1537 if (rc == 0)
1538 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1539 SECCLASS_CAPABILITY,
1540 CAP_TO_MASK(CAP_SYS_ADMIN),
1541 NULL);
1542
1543 if (rc == 0)
1544 cap_sys_admin = 1;
1545
1546 return __vm_enough_memory(pages, cap_sys_admin);
1547 }
1548
1549 /* binprm security operations */
1550
1551 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1552 {
1553 struct bprm_security_struct *bsec;
1554
1555 bsec = kmalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1556 if (!bsec)
1557 return -ENOMEM;
1558
1559 memset(bsec, 0, sizeof *bsec);
1560 bsec->magic = SELINUX_MAGIC;
1561 bsec->bprm = bprm;
1562 bsec->sid = SECINITSID_UNLABELED;
1563 bsec->set = 0;
1564
1565 bprm->security = bsec;
1566 return 0;
1567 }
1568
1569 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1570 {
1571 struct task_security_struct *tsec;
1572 struct inode *inode = bprm->file->f_dentry->d_inode;
1573 struct inode_security_struct *isec;
1574 struct bprm_security_struct *bsec;
1575 u32 newsid;
1576 struct avc_audit_data ad;
1577 int rc;
1578
1579 rc = secondary_ops->bprm_set_security(bprm);
1580 if (rc)
1581 return rc;
1582
1583 bsec = bprm->security;
1584
1585 if (bsec->set)
1586 return 0;
1587
1588 tsec = current->security;
1589 isec = inode->i_security;
1590
1591 /* Default to the current task SID. */
1592 bsec->sid = tsec->sid;
1593
1594 /* Reset create SID on execve. */
1595 tsec->create_sid = 0;
1596
1597 if (tsec->exec_sid) {
1598 newsid = tsec->exec_sid;
1599 /* Reset exec SID on execve. */
1600 tsec->exec_sid = 0;
1601 } else {
1602 /* Check for a default transition on this program. */
1603 rc = security_transition_sid(tsec->sid, isec->sid,
1604 SECCLASS_PROCESS, &newsid);
1605 if (rc)
1606 return rc;
1607 }
1608
1609 AVC_AUDIT_DATA_INIT(&ad, FS);
1610 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1611 ad.u.fs.dentry = bprm->file->f_dentry;
1612
1613 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1614 newsid = tsec->sid;
1615
1616 if (tsec->sid == newsid) {
1617 rc = avc_has_perm(tsec->sid, isec->sid,
1618 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1619 if (rc)
1620 return rc;
1621 } else {
1622 /* Check permissions for the transition. */
1623 rc = avc_has_perm(tsec->sid, newsid,
1624 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1625 if (rc)
1626 return rc;
1627
1628 rc = avc_has_perm(newsid, isec->sid,
1629 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1630 if (rc)
1631 return rc;
1632
1633 /* Clear any possibly unsafe personality bits on exec: */
1634 current->personality &= ~PER_CLEAR_ON_SETID;
1635
1636 /* Set the security field to the new SID. */
1637 bsec->sid = newsid;
1638 }
1639
1640 bsec->set = 1;
1641 return 0;
1642 }
1643
1644 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1645 {
1646 return secondary_ops->bprm_check_security(bprm);
1647 }
1648
1649
1650 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1651 {
1652 struct task_security_struct *tsec = current->security;
1653 int atsecure = 0;
1654
1655 if (tsec->osid != tsec->sid) {
1656 /* Enable secure mode for SIDs transitions unless
1657 the noatsecure permission is granted between
1658 the two SIDs, i.e. ahp returns 0. */
1659 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1660 SECCLASS_PROCESS,
1661 PROCESS__NOATSECURE, NULL);
1662 }
1663
1664 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1665 }
1666
1667 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1668 {
1669 kfree(bprm->security);
1670 bprm->security = NULL;
1671 }
1672
1673 extern struct vfsmount *selinuxfs_mount;
1674 extern struct dentry *selinux_null;
1675
1676 /* Derived from fs/exec.c:flush_old_files. */
1677 static inline void flush_unauthorized_files(struct files_struct * files)
1678 {
1679 struct avc_audit_data ad;
1680 struct file *file, *devnull = NULL;
1681 struct tty_struct *tty = current->signal->tty;
1682 long j = -1;
1683
1684 if (tty) {
1685 file_list_lock();
1686 file = list_entry(tty->tty_files.next, typeof(*file), f_list);
1687 if (file) {
1688 /* Revalidate access to controlling tty.
1689 Use inode_has_perm on the tty inode directly rather
1690 than using file_has_perm, as this particular open
1691 file may belong to another process and we are only
1692 interested in the inode-based check here. */
1693 struct inode *inode = file->f_dentry->d_inode;
1694 if (inode_has_perm(current, inode,
1695 FILE__READ | FILE__WRITE, NULL)) {
1696 /* Reset controlling tty. */
1697 current->signal->tty = NULL;
1698 current->signal->tty_old_pgrp = 0;
1699 }
1700 }
1701 file_list_unlock();
1702 }
1703
1704 /* Revalidate access to inherited open files. */
1705
1706 AVC_AUDIT_DATA_INIT(&ad,FS);
1707
1708 spin_lock(&files->file_lock);
1709 for (;;) {
1710 unsigned long set, i;
1711 int fd;
1712
1713 j++;
1714 i = j * __NFDBITS;
1715 if (i >= files->max_fds || i >= files->max_fdset)
1716 break;
1717 set = files->open_fds->fds_bits[j];
1718 if (!set)
1719 continue;
1720 spin_unlock(&files->file_lock);
1721 for ( ; set ; i++,set >>= 1) {
1722 if (set & 1) {
1723 file = fget(i);
1724 if (!file)
1725 continue;
1726 if (file_has_perm(current,
1727 file,
1728 file_to_av(file))) {
1729 sys_close(i);
1730 fd = get_unused_fd();
1731 if (fd != i) {
1732 if (fd >= 0)
1733 put_unused_fd(fd);
1734 fput(file);
1735 continue;
1736 }
1737 if (devnull) {
1738 atomic_inc(&devnull->f_count);
1739 } else {
1740 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1741 if (!devnull) {
1742 put_unused_fd(fd);
1743 fput(file);
1744 continue;
1745 }
1746 }
1747 fd_install(fd, devnull);
1748 }
1749 fput(file);
1750 }
1751 }
1752 spin_lock(&files->file_lock);
1753
1754 }
1755 spin_unlock(&files->file_lock);
1756 }
1757
1758 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1759 {
1760 struct task_security_struct *tsec;
1761 struct bprm_security_struct *bsec;
1762 u32 sid;
1763 int rc;
1764
1765 secondary_ops->bprm_apply_creds(bprm, unsafe);
1766
1767 tsec = current->security;
1768
1769 bsec = bprm->security;
1770 sid = bsec->sid;
1771
1772 tsec->osid = tsec->sid;
1773 bsec->unsafe = 0;
1774 if (tsec->sid != sid) {
1775 /* Check for shared state. If not ok, leave SID
1776 unchanged and kill. */
1777 if (unsafe & LSM_UNSAFE_SHARE) {
1778 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1779 PROCESS__SHARE, NULL);
1780 if (rc) {
1781 bsec->unsafe = 1;
1782 return;
1783 }
1784 }
1785
1786 /* Check for ptracing, and update the task SID if ok.
1787 Otherwise, leave SID unchanged and kill. */
1788 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1789 rc = avc_has_perm(tsec->ptrace_sid, sid,
1790 SECCLASS_PROCESS, PROCESS__PTRACE,
1791 NULL);
1792 if (rc) {
1793 bsec->unsafe = 1;
1794 return;
1795 }
1796 }
1797 tsec->sid = sid;
1798 }
1799 }
1800
1801 /*
1802 * called after apply_creds without the task lock held
1803 */
1804 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1805 {
1806 struct task_security_struct *tsec;
1807 struct rlimit *rlim, *initrlim;
1808 struct itimerval itimer;
1809 struct bprm_security_struct *bsec;
1810 int rc, i;
1811
1812 tsec = current->security;
1813 bsec = bprm->security;
1814
1815 if (bsec->unsafe) {
1816 force_sig_specific(SIGKILL, current);
1817 return;
1818 }
1819 if (tsec->osid == tsec->sid)
1820 return;
1821
1822 /* Close files for which the new task SID is not authorized. */
1823 flush_unauthorized_files(current->files);
1824
1825 /* Check whether the new SID can inherit signal state
1826 from the old SID. If not, clear itimers to avoid
1827 subsequent signal generation and flush and unblock
1828 signals. This must occur _after_ the task SID has
1829 been updated so that any kill done after the flush
1830 will be checked against the new SID. */
1831 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1832 PROCESS__SIGINH, NULL);
1833 if (rc) {
1834 memset(&itimer, 0, sizeof itimer);
1835 for (i = 0; i < 3; i++)
1836 do_setitimer(i, &itimer, NULL);
1837 flush_signals(current);
1838 spin_lock_irq(&current->sighand->siglock);
1839 flush_signal_handlers(current, 1);
1840 sigemptyset(&current->blocked);
1841 recalc_sigpending();
1842 spin_unlock_irq(&current->sighand->siglock);
1843 }
1844
1845 /* Check whether the new SID can inherit resource limits
1846 from the old SID. If not, reset all soft limits to
1847 the lower of the current task's hard limit and the init
1848 task's soft limit. Note that the setting of hard limits
1849 (even to lower them) can be controlled by the setrlimit
1850 check. The inclusion of the init task's soft limit into
1851 the computation is to avoid resetting soft limits higher
1852 than the default soft limit for cases where the default
1853 is lower than the hard limit, e.g. RLIMIT_CORE or
1854 RLIMIT_STACK.*/
1855 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1856 PROCESS__RLIMITINH, NULL);
1857 if (rc) {
1858 for (i = 0; i < RLIM_NLIMITS; i++) {
1859 rlim = current->signal->rlim + i;
1860 initrlim = init_task.signal->rlim+i;
1861 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1862 }
1863 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1864 /*
1865 * This will cause RLIMIT_CPU calculations
1866 * to be refigured.
1867 */
1868 current->it_prof_expires = jiffies_to_cputime(1);
1869 }
1870 }
1871
1872 /* Wake up the parent if it is waiting so that it can
1873 recheck wait permission to the new task SID. */
1874 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1875 }
1876
1877 /* superblock security operations */
1878
1879 static int selinux_sb_alloc_security(struct super_block *sb)
1880 {
1881 return superblock_alloc_security(sb);
1882 }
1883
1884 static void selinux_sb_free_security(struct super_block *sb)
1885 {
1886 superblock_free_security(sb);
1887 }
1888
1889 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1890 {
1891 if (plen > olen)
1892 return 0;
1893
1894 return !memcmp(prefix, option, plen);
1895 }
1896
1897 static inline int selinux_option(char *option, int len)
1898 {
1899 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1900 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1901 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len));
1902 }
1903
1904 static inline void take_option(char **to, char *from, int *first, int len)
1905 {
1906 if (!*first) {
1907 **to = ',';
1908 *to += 1;
1909 }
1910 else
1911 *first = 0;
1912 memcpy(*to, from, len);
1913 *to += len;
1914 }
1915
1916 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1917 {
1918 int fnosec, fsec, rc = 0;
1919 char *in_save, *in_curr, *in_end;
1920 char *sec_curr, *nosec_save, *nosec;
1921
1922 in_curr = orig;
1923 sec_curr = copy;
1924
1925 /* Binary mount data: just copy */
1926 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1927 copy_page(sec_curr, in_curr);
1928 goto out;
1929 }
1930
1931 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1932 if (!nosec) {
1933 rc = -ENOMEM;
1934 goto out;
1935 }
1936
1937 nosec_save = nosec;
1938 fnosec = fsec = 1;
1939 in_save = in_end = orig;
1940
1941 do {
1942 if (*in_end == ',' || *in_end == '\0') {
1943 int len = in_end - in_curr;
1944
1945 if (selinux_option(in_curr, len))
1946 take_option(&sec_curr, in_curr, &fsec, len);
1947 else
1948 take_option(&nosec, in_curr, &fnosec, len);
1949
1950 in_curr = in_end + 1;
1951 }
1952 } while (*in_end++);
1953
1954 strcpy(in_save, nosec_save);
1955 free_page((unsigned long)nosec_save);
1956 out:
1957 return rc;
1958 }
1959
1960 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1961 {
1962 struct avc_audit_data ad;
1963 int rc;
1964
1965 rc = superblock_doinit(sb, data);
1966 if (rc)
1967 return rc;
1968
1969 AVC_AUDIT_DATA_INIT(&ad,FS);
1970 ad.u.fs.dentry = sb->s_root;
1971 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1972 }
1973
1974 static int selinux_sb_statfs(struct super_block *sb)
1975 {
1976 struct avc_audit_data ad;
1977
1978 AVC_AUDIT_DATA_INIT(&ad,FS);
1979 ad.u.fs.dentry = sb->s_root;
1980 return superblock_has_perm(current, sb, FILESYSTEM__GETATTR, &ad);
1981 }
1982
1983 static int selinux_mount(char * dev_name,
1984 struct nameidata *nd,
1985 char * type,
1986 unsigned long flags,
1987 void * data)
1988 {
1989 int rc;
1990
1991 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
1992 if (rc)
1993 return rc;
1994
1995 if (flags & MS_REMOUNT)
1996 return superblock_has_perm(current, nd->mnt->mnt_sb,
1997 FILESYSTEM__REMOUNT, NULL);
1998 else
1999 return dentry_has_perm(current, nd->mnt, nd->dentry,
2000 FILE__MOUNTON);
2001 }
2002
2003 static int selinux_umount(struct vfsmount *mnt, int flags)
2004 {
2005 int rc;
2006
2007 rc = secondary_ops->sb_umount(mnt, flags);
2008 if (rc)
2009 return rc;
2010
2011 return superblock_has_perm(current,mnt->mnt_sb,
2012 FILESYSTEM__UNMOUNT,NULL);
2013 }
2014
2015 /* inode security operations */
2016
2017 static int selinux_inode_alloc_security(struct inode *inode)
2018 {
2019 return inode_alloc_security(inode);
2020 }
2021
2022 static void selinux_inode_free_security(struct inode *inode)
2023 {
2024 inode_free_security(inode);
2025 }
2026
2027 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2028 char **name, void **value,
2029 size_t *len)
2030 {
2031 struct task_security_struct *tsec;
2032 struct inode_security_struct *dsec;
2033 struct superblock_security_struct *sbsec;
2034 struct inode_security_struct *isec;
2035 u32 newsid;
2036 int rc;
2037 char *namep, *context;
2038
2039 tsec = current->security;
2040 dsec = dir->i_security;
2041 sbsec = dir->i_sb->s_security;
2042 isec = inode->i_security;
2043
2044 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2045 newsid = tsec->create_sid;
2046 } else {
2047 rc = security_transition_sid(tsec->sid, dsec->sid,
2048 inode_mode_to_security_class(inode->i_mode),
2049 &newsid);
2050 if (rc) {
2051 printk(KERN_WARNING "%s: "
2052 "security_transition_sid failed, rc=%d (dev=%s "
2053 "ino=%ld)\n",
2054 __FUNCTION__,
2055 -rc, inode->i_sb->s_id, inode->i_ino);
2056 return rc;
2057 }
2058 }
2059
2060 inode_security_set_sid(inode, newsid);
2061
2062 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2063 if (!namep)
2064 return -ENOMEM;
2065 *name = namep;
2066
2067 rc = security_sid_to_context(newsid, &context, len);
2068 if (rc) {
2069 kfree(namep);
2070 return rc;
2071 }
2072 *value = context;
2073
2074 isec->security_attr_init = 1;
2075
2076 return 0;
2077 }
2078
2079 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2080 {
2081 return may_create(dir, dentry, SECCLASS_FILE);
2082 }
2083
2084 static void selinux_inode_post_create(struct inode *dir, struct dentry *dentry, int mask)
2085 {
2086 post_create(dir, dentry);
2087 }
2088
2089 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2090 {
2091 int rc;
2092
2093 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2094 if (rc)
2095 return rc;
2096 return may_link(dir, old_dentry, MAY_LINK);
2097 }
2098
2099 static void selinux_inode_post_link(struct dentry *old_dentry, struct inode *inode, struct dentry *new_dentry)
2100 {
2101 return;
2102 }
2103
2104 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2105 {
2106 int rc;
2107
2108 rc = secondary_ops->inode_unlink(dir, dentry);
2109 if (rc)
2110 return rc;
2111 return may_link(dir, dentry, MAY_UNLINK);
2112 }
2113
2114 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2115 {
2116 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2117 }
2118
2119 static void selinux_inode_post_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2120 {
2121 post_create(dir, dentry);
2122 }
2123
2124 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2125 {
2126 return may_create(dir, dentry, SECCLASS_DIR);
2127 }
2128
2129 static void selinux_inode_post_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2130 {
2131 post_create(dir, dentry);
2132 }
2133
2134 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2135 {
2136 return may_link(dir, dentry, MAY_RMDIR);
2137 }
2138
2139 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2140 {
2141 int rc;
2142
2143 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2144 if (rc)
2145 return rc;
2146
2147 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2148 }
2149
2150 static void selinux_inode_post_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2151 {
2152 post_create(dir, dentry);
2153 }
2154
2155 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2156 struct inode *new_inode, struct dentry *new_dentry)
2157 {
2158 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2159 }
2160
2161 static void selinux_inode_post_rename(struct inode *old_inode, struct dentry *old_dentry,
2162 struct inode *new_inode, struct dentry *new_dentry)
2163 {
2164 return;
2165 }
2166
2167 static int selinux_inode_readlink(struct dentry *dentry)
2168 {
2169 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2170 }
2171
2172 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2173 {
2174 int rc;
2175
2176 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2177 if (rc)
2178 return rc;
2179 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2180 }
2181
2182 static int selinux_inode_permission(struct inode *inode, int mask,
2183 struct nameidata *nd)
2184 {
2185 int rc;
2186
2187 rc = secondary_ops->inode_permission(inode, mask, nd);
2188 if (rc)
2189 return rc;
2190
2191 if (!mask) {
2192 /* No permission to check. Existence test. */
2193 return 0;
2194 }
2195
2196 return inode_has_perm(current, inode,
2197 file_mask_to_av(inode->i_mode, mask), NULL);
2198 }
2199
2200 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2201 {
2202 int rc;
2203
2204 rc = secondary_ops->inode_setattr(dentry, iattr);
2205 if (rc)
2206 return rc;
2207
2208 if (iattr->ia_valid & ATTR_FORCE)
2209 return 0;
2210
2211 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2212 ATTR_ATIME_SET | ATTR_MTIME_SET))
2213 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2214
2215 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2216 }
2217
2218 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2219 {
2220 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2221 }
2222
2223 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2224 {
2225 struct task_security_struct *tsec = current->security;
2226 struct inode *inode = dentry->d_inode;
2227 struct inode_security_struct *isec = inode->i_security;
2228 struct superblock_security_struct *sbsec;
2229 struct avc_audit_data ad;
2230 u32 newsid;
2231 int rc = 0;
2232
2233 if (strcmp(name, XATTR_NAME_SELINUX)) {
2234 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2235 sizeof XATTR_SECURITY_PREFIX - 1) &&
2236 !capable(CAP_SYS_ADMIN)) {
2237 /* A different attribute in the security namespace.
2238 Restrict to administrator. */
2239 return -EPERM;
2240 }
2241
2242 /* Not an attribute we recognize, so just check the
2243 ordinary setattr permission. */
2244 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2245 }
2246
2247 sbsec = inode->i_sb->s_security;
2248 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2249 return -EOPNOTSUPP;
2250
2251 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2252 return -EPERM;
2253
2254 AVC_AUDIT_DATA_INIT(&ad,FS);
2255 ad.u.fs.dentry = dentry;
2256
2257 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2258 FILE__RELABELFROM, &ad);
2259 if (rc)
2260 return rc;
2261
2262 rc = security_context_to_sid(value, size, &newsid);
2263 if (rc)
2264 return rc;
2265
2266 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2267 FILE__RELABELTO, &ad);
2268 if (rc)
2269 return rc;
2270
2271 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2272 isec->sclass);
2273 if (rc)
2274 return rc;
2275
2276 return avc_has_perm(newsid,
2277 sbsec->sid,
2278 SECCLASS_FILESYSTEM,
2279 FILESYSTEM__ASSOCIATE,
2280 &ad);
2281 }
2282
2283 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2284 void *value, size_t size, int flags)
2285 {
2286 struct inode *inode = dentry->d_inode;
2287 struct inode_security_struct *isec = inode->i_security;
2288 u32 newsid;
2289 int rc;
2290
2291 if (strcmp(name, XATTR_NAME_SELINUX)) {
2292 /* Not an attribute we recognize, so nothing to do. */
2293 return;
2294 }
2295
2296 rc = security_context_to_sid(value, size, &newsid);
2297 if (rc) {
2298 printk(KERN_WARNING "%s: unable to obtain SID for context "
2299 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2300 return;
2301 }
2302
2303 isec->sid = newsid;
2304 return;
2305 }
2306
2307 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2308 {
2309 struct inode *inode = dentry->d_inode;
2310 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
2311
2312 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2313 return -EOPNOTSUPP;
2314
2315 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2316 }
2317
2318 static int selinux_inode_listxattr (struct dentry *dentry)
2319 {
2320 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2321 }
2322
2323 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2324 {
2325 if (strcmp(name, XATTR_NAME_SELINUX)) {
2326 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2327 sizeof XATTR_SECURITY_PREFIX - 1) &&
2328 !capable(CAP_SYS_ADMIN)) {
2329 /* A different attribute in the security namespace.
2330 Restrict to administrator. */
2331 return -EPERM;
2332 }
2333
2334 /* Not an attribute we recognize, so just check the
2335 ordinary setattr permission. Might want a separate
2336 permission for removexattr. */
2337 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2338 }
2339
2340 /* No one is allowed to remove a SELinux security label.
2341 You can change the label, but all data must be labeled. */
2342 return -EACCES;
2343 }
2344
2345 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size)
2346 {
2347 struct inode_security_struct *isec = inode->i_security;
2348 char *context;
2349 unsigned len;
2350 int rc;
2351
2352 /* Permission check handled by selinux_inode_getxattr hook.*/
2353
2354 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2355 return -EOPNOTSUPP;
2356
2357 rc = security_sid_to_context(isec->sid, &context, &len);
2358 if (rc)
2359 return rc;
2360
2361 if (!buffer || !size) {
2362 kfree(context);
2363 return len;
2364 }
2365 if (size < len) {
2366 kfree(context);
2367 return -ERANGE;
2368 }
2369 memcpy(buffer, context, len);
2370 kfree(context);
2371 return len;
2372 }
2373
2374 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2375 const void *value, size_t size, int flags)
2376 {
2377 struct inode_security_struct *isec = inode->i_security;
2378 u32 newsid;
2379 int rc;
2380
2381 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2382 return -EOPNOTSUPP;
2383
2384 if (!value || !size)
2385 return -EACCES;
2386
2387 rc = security_context_to_sid((void*)value, size, &newsid);
2388 if (rc)
2389 return rc;
2390
2391 isec->sid = newsid;
2392 return 0;
2393 }
2394
2395 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2396 {
2397 const int len = sizeof(XATTR_NAME_SELINUX);
2398 if (buffer && len <= buffer_size)
2399 memcpy(buffer, XATTR_NAME_SELINUX, len);
2400 return len;
2401 }
2402
2403 /* file security operations */
2404
2405 static int selinux_file_permission(struct file *file, int mask)
2406 {
2407 struct inode *inode = file->f_dentry->d_inode;
2408
2409 if (!mask) {
2410 /* No permission to check. Existence test. */
2411 return 0;
2412 }
2413
2414 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2415 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2416 mask |= MAY_APPEND;
2417
2418 return file_has_perm(current, file,
2419 file_mask_to_av(inode->i_mode, mask));
2420 }
2421
2422 static int selinux_file_alloc_security(struct file *file)
2423 {
2424 return file_alloc_security(file);
2425 }
2426
2427 static void selinux_file_free_security(struct file *file)
2428 {
2429 file_free_security(file);
2430 }
2431
2432 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2433 unsigned long arg)
2434 {
2435 int error = 0;
2436
2437 switch (cmd) {
2438 case FIONREAD:
2439 /* fall through */
2440 case FIBMAP:
2441 /* fall through */
2442 case FIGETBSZ:
2443 /* fall through */
2444 case EXT2_IOC_GETFLAGS:
2445 /* fall through */
2446 case EXT2_IOC_GETVERSION:
2447 error = file_has_perm(current, file, FILE__GETATTR);
2448 break;
2449
2450 case EXT2_IOC_SETFLAGS:
2451 /* fall through */
2452 case EXT2_IOC_SETVERSION:
2453 error = file_has_perm(current, file, FILE__SETATTR);
2454 break;
2455
2456 /* sys_ioctl() checks */
2457 case FIONBIO:
2458 /* fall through */
2459 case FIOASYNC:
2460 error = file_has_perm(current, file, 0);
2461 break;
2462
2463 case KDSKBENT:
2464 case KDSKBSENT:
2465 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2466 break;
2467
2468 /* default case assumes that the command will go
2469 * to the file's ioctl() function.
2470 */
2471 default:
2472 error = file_has_perm(current, file, FILE__IOCTL);
2473
2474 }
2475 return error;
2476 }
2477
2478 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2479 {
2480 #ifndef CONFIG_PPC32
2481 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2482 /*
2483 * We are making executable an anonymous mapping or a
2484 * private file mapping that will also be writable.
2485 * This has an additional check.
2486 */
2487 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2488 if (rc)
2489 return rc;
2490 }
2491 #endif
2492
2493 if (file) {
2494 /* read access is always possible with a mapping */
2495 u32 av = FILE__READ;
2496
2497 /* write access only matters if the mapping is shared */
2498 if (shared && (prot & PROT_WRITE))
2499 av |= FILE__WRITE;
2500
2501 if (prot & PROT_EXEC)
2502 av |= FILE__EXECUTE;
2503
2504 return file_has_perm(current, file, av);
2505 }
2506 return 0;
2507 }
2508
2509 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2510 unsigned long prot, unsigned long flags)
2511 {
2512 int rc;
2513
2514 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2515 if (rc)
2516 return rc;
2517
2518 if (selinux_checkreqprot)
2519 prot = reqprot;
2520
2521 return file_map_prot_check(file, prot,
2522 (flags & MAP_TYPE) == MAP_SHARED);
2523 }
2524
2525 static int selinux_file_mprotect(struct vm_area_struct *vma,
2526 unsigned long reqprot,
2527 unsigned long prot)
2528 {
2529 int rc;
2530
2531 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2532 if (rc)
2533 return rc;
2534
2535 if (selinux_checkreqprot)
2536 prot = reqprot;
2537
2538 #ifndef CONFIG_PPC32
2539 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXECUTABLE) &&
2540 (vma->vm_start >= vma->vm_mm->start_brk &&
2541 vma->vm_end <= vma->vm_mm->brk)) {
2542 /*
2543 * We are making an executable mapping in the brk region.
2544 * This has an additional execheap check.
2545 */
2546 rc = task_has_perm(current, current, PROCESS__EXECHEAP);
2547 if (rc)
2548 return rc;
2549 }
2550 if (vma->vm_file != NULL && vma->anon_vma != NULL && (prot & PROT_EXEC)) {
2551 /*
2552 * We are making executable a file mapping that has
2553 * had some COW done. Since pages might have been written,
2554 * check ability to execute the possibly modified content.
2555 * This typically should only occur for text relocations.
2556 */
2557 int rc = file_has_perm(current, vma->vm_file, FILE__EXECMOD);
2558 if (rc)
2559 return rc;
2560 }
2561 if (!vma->vm_file && (prot & PROT_EXEC) &&
2562 vma->vm_start <= vma->vm_mm->start_stack &&
2563 vma->vm_end >= vma->vm_mm->start_stack) {
2564 /* Attempt to make the process stack executable.
2565 * This has an additional execstack check.
2566 */
2567 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2568 if (rc)
2569 return rc;
2570 }
2571 #endif
2572
2573 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2574 }
2575
2576 static int selinux_file_lock(struct file *file, unsigned int cmd)
2577 {
2578 return file_has_perm(current, file, FILE__LOCK);
2579 }
2580
2581 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2582 unsigned long arg)
2583 {
2584 int err = 0;
2585
2586 switch (cmd) {
2587 case F_SETFL:
2588 if (!file->f_dentry || !file->f_dentry->d_inode) {
2589 err = -EINVAL;
2590 break;
2591 }
2592
2593 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2594 err = file_has_perm(current, file,FILE__WRITE);
2595 break;
2596 }
2597 /* fall through */
2598 case F_SETOWN:
2599 case F_SETSIG:
2600 case F_GETFL:
2601 case F_GETOWN:
2602 case F_GETSIG:
2603 /* Just check FD__USE permission */
2604 err = file_has_perm(current, file, 0);
2605 break;
2606 case F_GETLK:
2607 case F_SETLK:
2608 case F_SETLKW:
2609 #if BITS_PER_LONG == 32
2610 case F_GETLK64:
2611 case F_SETLK64:
2612 case F_SETLKW64:
2613 #endif
2614 if (!file->f_dentry || !file->f_dentry->d_inode) {
2615 err = -EINVAL;
2616 break;
2617 }
2618 err = file_has_perm(current, file, FILE__LOCK);
2619 break;
2620 }
2621
2622 return err;
2623 }
2624
2625 static int selinux_file_set_fowner(struct file *file)
2626 {
2627 struct task_security_struct *tsec;
2628 struct file_security_struct *fsec;
2629
2630 tsec = current->security;
2631 fsec = file->f_security;
2632 fsec->fown_sid = tsec->sid;
2633
2634 return 0;
2635 }
2636
2637 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2638 struct fown_struct *fown, int signum)
2639 {
2640 struct file *file;
2641 u32 perm;
2642 struct task_security_struct *tsec;
2643 struct file_security_struct *fsec;
2644
2645 /* struct fown_struct is never outside the context of a struct file */
2646 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2647
2648 tsec = tsk->security;
2649 fsec = file->f_security;
2650
2651 if (!signum)
2652 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2653 else
2654 perm = signal_to_av(signum);
2655
2656 return avc_has_perm(fsec->fown_sid, tsec->sid,
2657 SECCLASS_PROCESS, perm, NULL);
2658 }
2659
2660 static int selinux_file_receive(struct file *file)
2661 {
2662 return file_has_perm(current, file, file_to_av(file));
2663 }
2664
2665 /* task security operations */
2666
2667 static int selinux_task_create(unsigned long clone_flags)
2668 {
2669 int rc;
2670
2671 rc = secondary_ops->task_create(clone_flags);
2672 if (rc)
2673 return rc;
2674
2675 return task_has_perm(current, current, PROCESS__FORK);
2676 }
2677
2678 static int selinux_task_alloc_security(struct task_struct *tsk)
2679 {
2680 struct task_security_struct *tsec1, *tsec2;
2681 int rc;
2682
2683 tsec1 = current->security;
2684
2685 rc = task_alloc_security(tsk);
2686 if (rc)
2687 return rc;
2688 tsec2 = tsk->security;
2689
2690 tsec2->osid = tsec1->osid;
2691 tsec2->sid = tsec1->sid;
2692
2693 /* Retain the exec and create SIDs across fork */
2694 tsec2->exec_sid = tsec1->exec_sid;
2695 tsec2->create_sid = tsec1->create_sid;
2696
2697 /* Retain ptracer SID across fork, if any.
2698 This will be reset by the ptrace hook upon any
2699 subsequent ptrace_attach operations. */
2700 tsec2->ptrace_sid = tsec1->ptrace_sid;
2701
2702 return 0;
2703 }
2704
2705 static void selinux_task_free_security(struct task_struct *tsk)
2706 {
2707 task_free_security(tsk);
2708 }
2709
2710 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2711 {
2712 /* Since setuid only affects the current process, and
2713 since the SELinux controls are not based on the Linux
2714 identity attributes, SELinux does not need to control
2715 this operation. However, SELinux does control the use
2716 of the CAP_SETUID and CAP_SETGID capabilities using the
2717 capable hook. */
2718 return 0;
2719 }
2720
2721 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2722 {
2723 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2724 }
2725
2726 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2727 {
2728 /* See the comment for setuid above. */
2729 return 0;
2730 }
2731
2732 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2733 {
2734 return task_has_perm(current, p, PROCESS__SETPGID);
2735 }
2736
2737 static int selinux_task_getpgid(struct task_struct *p)
2738 {
2739 return task_has_perm(current, p, PROCESS__GETPGID);
2740 }
2741
2742 static int selinux_task_getsid(struct task_struct *p)
2743 {
2744 return task_has_perm(current, p, PROCESS__GETSESSION);
2745 }
2746
2747 static int selinux_task_setgroups(struct group_info *group_info)
2748 {
2749 /* See the comment for setuid above. */
2750 return 0;
2751 }
2752
2753 static int selinux_task_setnice(struct task_struct *p, int nice)
2754 {
2755 int rc;
2756
2757 rc = secondary_ops->task_setnice(p, nice);
2758 if (rc)
2759 return rc;
2760
2761 return task_has_perm(current,p, PROCESS__SETSCHED);
2762 }
2763
2764 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2765 {
2766 struct rlimit *old_rlim = current->signal->rlim + resource;
2767 int rc;
2768
2769 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2770 if (rc)
2771 return rc;
2772
2773 /* Control the ability to change the hard limit (whether
2774 lowering or raising it), so that the hard limit can
2775 later be used as a safe reset point for the soft limit
2776 upon context transitions. See selinux_bprm_apply_creds. */
2777 if (old_rlim->rlim_max != new_rlim->rlim_max)
2778 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2779
2780 return 0;
2781 }
2782
2783 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2784 {
2785 return task_has_perm(current, p, PROCESS__SETSCHED);
2786 }
2787
2788 static int selinux_task_getscheduler(struct task_struct *p)
2789 {
2790 return task_has_perm(current, p, PROCESS__GETSCHED);
2791 }
2792
2793 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, int sig)
2794 {
2795 u32 perm;
2796 int rc;
2797
2798 rc = secondary_ops->task_kill(p, info, sig);
2799 if (rc)
2800 return rc;
2801
2802 if (info && ((unsigned long)info == 1 ||
2803 (unsigned long)info == 2 || SI_FROMKERNEL(info)))
2804 return 0;
2805
2806 if (!sig)
2807 perm = PROCESS__SIGNULL; /* null signal; existence test */
2808 else
2809 perm = signal_to_av(sig);
2810
2811 return task_has_perm(current, p, perm);
2812 }
2813
2814 static int selinux_task_prctl(int option,
2815 unsigned long arg2,
2816 unsigned long arg3,
2817 unsigned long arg4,
2818 unsigned long arg5)
2819 {
2820 /* The current prctl operations do not appear to require
2821 any SELinux controls since they merely observe or modify
2822 the state of the current process. */
2823 return 0;
2824 }
2825
2826 static int selinux_task_wait(struct task_struct *p)
2827 {
2828 u32 perm;
2829
2830 perm = signal_to_av(p->exit_signal);
2831
2832 return task_has_perm(p, current, perm);
2833 }
2834
2835 static void selinux_task_reparent_to_init(struct task_struct *p)
2836 {
2837 struct task_security_struct *tsec;
2838
2839 secondary_ops->task_reparent_to_init(p);
2840
2841 tsec = p->security;
2842 tsec->osid = tsec->sid;
2843 tsec->sid = SECINITSID_KERNEL;
2844 return;
2845 }
2846
2847 static void selinux_task_to_inode(struct task_struct *p,
2848 struct inode *inode)
2849 {
2850 struct task_security_struct *tsec = p->security;
2851 struct inode_security_struct *isec = inode->i_security;
2852
2853 isec->sid = tsec->sid;
2854 isec->initialized = 1;
2855 return;
2856 }
2857
2858 #ifdef CONFIG_SECURITY_NETWORK
2859
2860 /* Returns error only if unable to parse addresses */
2861 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2862 {
2863 int offset, ihlen, ret = -EINVAL;
2864 struct iphdr _iph, *ih;
2865
2866 offset = skb->nh.raw - skb->data;
2867 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2868 if (ih == NULL)
2869 goto out;
2870
2871 ihlen = ih->ihl * 4;
2872 if (ihlen < sizeof(_iph))
2873 goto out;
2874
2875 ad->u.net.v4info.saddr = ih->saddr;
2876 ad->u.net.v4info.daddr = ih->daddr;
2877 ret = 0;
2878
2879 switch (ih->protocol) {
2880 case IPPROTO_TCP: {
2881 struct tcphdr _tcph, *th;
2882
2883 if (ntohs(ih->frag_off) & IP_OFFSET)
2884 break;
2885
2886 offset += ihlen;
2887 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2888 if (th == NULL)
2889 break;
2890
2891 ad->u.net.sport = th->source;
2892 ad->u.net.dport = th->dest;
2893 break;
2894 }
2895
2896 case IPPROTO_UDP: {
2897 struct udphdr _udph, *uh;
2898
2899 if (ntohs(ih->frag_off) & IP_OFFSET)
2900 break;
2901
2902 offset += ihlen;
2903 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2904 if (uh == NULL)
2905 break;
2906
2907 ad->u.net.sport = uh->source;
2908 ad->u.net.dport = uh->dest;
2909 break;
2910 }
2911
2912 default:
2913 break;
2914 }
2915 out:
2916 return ret;
2917 }
2918
2919 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2920
2921 /* Returns error only if unable to parse addresses */
2922 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2923 {
2924 u8 nexthdr;
2925 int ret = -EINVAL, offset;
2926 struct ipv6hdr _ipv6h, *ip6;
2927
2928 offset = skb->nh.raw - skb->data;
2929 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2930 if (ip6 == NULL)
2931 goto out;
2932
2933 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2934 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2935 ret = 0;
2936
2937 nexthdr = ip6->nexthdr;
2938 offset += sizeof(_ipv6h);
2939 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2940 if (offset < 0)
2941 goto out;
2942
2943 switch (nexthdr) {
2944 case IPPROTO_TCP: {
2945 struct tcphdr _tcph, *th;
2946
2947 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2948 if (th == NULL)
2949 break;
2950
2951 ad->u.net.sport = th->source;
2952 ad->u.net.dport = th->dest;
2953 break;
2954 }
2955
2956 case IPPROTO_UDP: {
2957 struct udphdr _udph, *uh;
2958
2959 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2960 if (uh == NULL)
2961 break;
2962
2963 ad->u.net.sport = uh->source;
2964 ad->u.net.dport = uh->dest;
2965 break;
2966 }
2967
2968 /* includes fragments */
2969 default:
2970 break;
2971 }
2972 out:
2973 return ret;
2974 }
2975
2976 #endif /* IPV6 */
2977
2978 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2979 char **addrp, int *len, int src)
2980 {
2981 int ret = 0;
2982
2983 switch (ad->u.net.family) {
2984 case PF_INET:
2985 ret = selinux_parse_skb_ipv4(skb, ad);
2986 if (ret || !addrp)
2987 break;
2988 *len = 4;
2989 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2990 &ad->u.net.v4info.daddr);
2991 break;
2992
2993 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2994 case PF_INET6:
2995 ret = selinux_parse_skb_ipv6(skb, ad);
2996 if (ret || !addrp)
2997 break;
2998 *len = 16;
2999 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3000 &ad->u.net.v6info.daddr);
3001 break;
3002 #endif /* IPV6 */
3003 default:
3004 break;
3005 }
3006
3007 return ret;
3008 }
3009
3010 /* socket security operations */
3011 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3012 u32 perms)
3013 {
3014 struct inode_security_struct *isec;
3015 struct task_security_struct *tsec;
3016 struct avc_audit_data ad;
3017 int err = 0;
3018
3019 tsec = task->security;
3020 isec = SOCK_INODE(sock)->i_security;
3021
3022 if (isec->sid == SECINITSID_KERNEL)
3023 goto out;
3024
3025 AVC_AUDIT_DATA_INIT(&ad,NET);
3026 ad.u.net.sk = sock->sk;
3027 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3028
3029 out:
3030 return err;
3031 }
3032
3033 static int selinux_socket_create(int family, int type,
3034 int protocol, int kern)
3035 {
3036 int err = 0;
3037 struct task_security_struct *tsec;
3038
3039 if (kern)
3040 goto out;
3041
3042 tsec = current->security;
3043 err = avc_has_perm(tsec->sid, tsec->sid,
3044 socket_type_to_security_class(family, type,
3045 protocol), SOCKET__CREATE, NULL);
3046
3047 out:
3048 return err;
3049 }
3050
3051 static void selinux_socket_post_create(struct socket *sock, int family,
3052 int type, int protocol, int kern)
3053 {
3054 struct inode_security_struct *isec;
3055 struct task_security_struct *tsec;
3056
3057 isec = SOCK_INODE(sock)->i_security;
3058
3059 tsec = current->security;
3060 isec->sclass = socket_type_to_security_class(family, type, protocol);
3061 isec->sid = kern ? SECINITSID_KERNEL : tsec->sid;
3062 isec->initialized = 1;
3063
3064 return;
3065 }
3066
3067 /* Range of port numbers used to automatically bind.
3068 Need to determine whether we should perform a name_bind
3069 permission check between the socket and the port number. */
3070 #define ip_local_port_range_0 sysctl_local_port_range[0]
3071 #define ip_local_port_range_1 sysctl_local_port_range[1]
3072
3073 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3074 {
3075 u16 family;
3076 int err;
3077
3078 err = socket_has_perm(current, sock, SOCKET__BIND);
3079 if (err)
3080 goto out;
3081
3082 /*
3083 * If PF_INET or PF_INET6, check name_bind permission for the port.
3084 */
3085 family = sock->sk->sk_family;
3086 if (family == PF_INET || family == PF_INET6) {
3087 char *addrp;
3088 struct inode_security_struct *isec;
3089 struct task_security_struct *tsec;
3090 struct avc_audit_data ad;
3091 struct sockaddr_in *addr4 = NULL;
3092 struct sockaddr_in6 *addr6 = NULL;
3093 unsigned short snum;
3094 struct sock *sk = sock->sk;
3095 u32 sid, node_perm, addrlen;
3096
3097 tsec = current->security;
3098 isec = SOCK_INODE(sock)->i_security;
3099
3100 if (family == PF_INET) {
3101 addr4 = (struct sockaddr_in *)address;
3102 snum = ntohs(addr4->sin_port);
3103 addrlen = sizeof(addr4->sin_addr.s_addr);
3104 addrp = (char *)&addr4->sin_addr.s_addr;
3105 } else {
3106 addr6 = (struct sockaddr_in6 *)address;
3107 snum = ntohs(addr6->sin6_port);
3108 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3109 addrp = (char *)&addr6->sin6_addr.s6_addr;
3110 }
3111
3112 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3113 snum > ip_local_port_range_1)) {
3114 err = security_port_sid(sk->sk_family, sk->sk_type,
3115 sk->sk_protocol, snum, &sid);
3116 if (err)
3117 goto out;
3118 AVC_AUDIT_DATA_INIT(&ad,NET);
3119 ad.u.net.sport = htons(snum);
3120 ad.u.net.family = family;
3121 err = avc_has_perm(isec->sid, sid,
3122 isec->sclass,
3123 SOCKET__NAME_BIND, &ad);
3124 if (err)
3125 goto out;
3126 }
3127
3128 switch(sk->sk_protocol) {
3129 case IPPROTO_TCP:
3130 node_perm = TCP_SOCKET__NODE_BIND;
3131 break;
3132
3133 case IPPROTO_UDP:
3134 node_perm = UDP_SOCKET__NODE_BIND;
3135 break;
3136
3137 default:
3138 node_perm = RAWIP_SOCKET__NODE_BIND;
3139 break;
3140 }
3141
3142 err = security_node_sid(family, addrp, addrlen, &sid);
3143 if (err)
3144 goto out;
3145
3146 AVC_AUDIT_DATA_INIT(&ad,NET);
3147 ad.u.net.sport = htons(snum);
3148 ad.u.net.family = family;
3149
3150 if (family == PF_INET)
3151 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3152 else
3153 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3154
3155 err = avc_has_perm(isec->sid, sid,
3156 isec->sclass, node_perm, &ad);
3157 if (err)
3158 goto out;
3159 }
3160 out:
3161 return err;
3162 }
3163
3164 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3165 {
3166 struct inode_security_struct *isec;
3167 int err;
3168
3169 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3170 if (err)
3171 return err;
3172
3173 /*
3174 * If a TCP socket, check name_connect permission for the port.
3175 */
3176 isec = SOCK_INODE(sock)->i_security;
3177 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3178 struct sock *sk = sock->sk;
3179 struct avc_audit_data ad;
3180 struct sockaddr_in *addr4 = NULL;
3181 struct sockaddr_in6 *addr6 = NULL;
3182 unsigned short snum;
3183 u32 sid;
3184
3185 if (sk->sk_family == PF_INET) {
3186 addr4 = (struct sockaddr_in *)address;
3187 if (addrlen < sizeof(struct sockaddr_in))
3188 return -EINVAL;
3189 snum = ntohs(addr4->sin_port);
3190 } else {
3191 addr6 = (struct sockaddr_in6 *)address;
3192 if (addrlen < SIN6_LEN_RFC2133)
3193 return -EINVAL;
3194 snum = ntohs(addr6->sin6_port);
3195 }
3196
3197 err = security_port_sid(sk->sk_family, sk->sk_type,
3198 sk->sk_protocol, snum, &sid);
3199 if (err)
3200 goto out;
3201
3202 AVC_AUDIT_DATA_INIT(&ad,NET);
3203 ad.u.net.dport = htons(snum);
3204 ad.u.net.family = sk->sk_family;
3205 err = avc_has_perm(isec->sid, sid, isec->sclass,
3206 TCP_SOCKET__NAME_CONNECT, &ad);
3207 if (err)
3208 goto out;
3209 }
3210
3211 out:
3212 return err;
3213 }
3214
3215 static int selinux_socket_listen(struct socket *sock, int backlog)
3216 {
3217 return socket_has_perm(current, sock, SOCKET__LISTEN);
3218 }
3219
3220 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3221 {
3222 int err;
3223 struct inode_security_struct *isec;
3224 struct inode_security_struct *newisec;
3225
3226 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3227 if (err)
3228 return err;
3229
3230 newisec = SOCK_INODE(newsock)->i_security;
3231
3232 isec = SOCK_INODE(sock)->i_security;
3233 newisec->sclass = isec->sclass;
3234 newisec->sid = isec->sid;
3235 newisec->initialized = 1;
3236
3237 return 0;
3238 }
3239
3240 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3241 int size)
3242 {
3243 return socket_has_perm(current, sock, SOCKET__WRITE);
3244 }
3245
3246 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3247 int size, int flags)
3248 {
3249 return socket_has_perm(current, sock, SOCKET__READ);
3250 }
3251
3252 static int selinux_socket_getsockname(struct socket *sock)
3253 {
3254 return socket_has_perm(current, sock, SOCKET__GETATTR);
3255 }
3256
3257 static int selinux_socket_getpeername(struct socket *sock)
3258 {
3259 return socket_has_perm(current, sock, SOCKET__GETATTR);
3260 }
3261
3262 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3263 {
3264 return socket_has_perm(current, sock, SOCKET__SETOPT);
3265 }
3266
3267 static int selinux_socket_getsockopt(struct socket *sock, int level,
3268 int optname)
3269 {
3270 return socket_has_perm(current, sock, SOCKET__GETOPT);
3271 }
3272
3273 static int selinux_socket_shutdown(struct socket *sock, int how)
3274 {
3275 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3276 }
3277
3278 static int selinux_socket_unix_stream_connect(struct socket *sock,
3279 struct socket *other,
3280 struct sock *newsk)
3281 {
3282 struct sk_security_struct *ssec;
3283 struct inode_security_struct *isec;
3284 struct inode_security_struct *other_isec;
3285 struct avc_audit_data ad;
3286 int err;
3287
3288 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3289 if (err)
3290 return err;
3291
3292 isec = SOCK_INODE(sock)->i_security;
3293 other_isec = SOCK_INODE(other)->i_security;
3294
3295 AVC_AUDIT_DATA_INIT(&ad,NET);
3296 ad.u.net.sk = other->sk;
3297
3298 err = avc_has_perm(isec->sid, other_isec->sid,
3299 isec->sclass,
3300 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3301 if (err)
3302 return err;
3303
3304 /* connecting socket */
3305 ssec = sock->sk->sk_security;
3306 ssec->peer_sid = other_isec->sid;
3307
3308 /* server child socket */
3309 ssec = newsk->sk_security;
3310 ssec->peer_sid = isec->sid;
3311
3312 return 0;
3313 }
3314
3315 static int selinux_socket_unix_may_send(struct socket *sock,
3316 struct socket *other)
3317 {
3318 struct inode_security_struct *isec;
3319 struct inode_security_struct *other_isec;
3320 struct avc_audit_data ad;
3321 int err;
3322
3323 isec = SOCK_INODE(sock)->i_security;
3324 other_isec = SOCK_INODE(other)->i_security;
3325
3326 AVC_AUDIT_DATA_INIT(&ad,NET);
3327 ad.u.net.sk = other->sk;
3328
3329 err = avc_has_perm(isec->sid, other_isec->sid,
3330 isec->sclass, SOCKET__SENDTO, &ad);
3331 if (err)
3332 return err;
3333
3334 return 0;
3335 }
3336
3337 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3338 {
3339 u16 family;
3340 char *addrp;
3341 int len, err = 0;
3342 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3343 u32 sock_sid = 0;
3344 u16 sock_class = 0;
3345 struct socket *sock;
3346 struct net_device *dev;
3347 struct avc_audit_data ad;
3348
3349 family = sk->sk_family;
3350 if (family != PF_INET && family != PF_INET6)
3351 goto out;
3352
3353 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3354 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3355 family = PF_INET;
3356
3357 read_lock_bh(&sk->sk_callback_lock);
3358 sock = sk->sk_socket;
3359 if (sock) {
3360 struct inode *inode;
3361 inode = SOCK_INODE(sock);
3362 if (inode) {
3363 struct inode_security_struct *isec;
3364 isec = inode->i_security;
3365 sock_sid = isec->sid;
3366 sock_class = isec->sclass;
3367 }
3368 }
3369 read_unlock_bh(&sk->sk_callback_lock);
3370 if (!sock_sid)
3371 goto out;
3372
3373 dev = skb->dev;
3374 if (!dev)
3375 goto out;
3376
3377 err = sel_netif_sids(dev, &if_sid, NULL);
3378 if (err)
3379 goto out;
3380
3381 switch (sock_class) {
3382 case SECCLASS_UDP_SOCKET:
3383 netif_perm = NETIF__UDP_RECV;
3384 node_perm = NODE__UDP_RECV;
3385 recv_perm = UDP_SOCKET__RECV_MSG;
3386 break;
3387
3388 case SECCLASS_TCP_SOCKET:
3389 netif_perm = NETIF__TCP_RECV;
3390 node_perm = NODE__TCP_RECV;
3391 recv_perm = TCP_SOCKET__RECV_MSG;
3392 break;
3393
3394 default:
3395 netif_perm = NETIF__RAWIP_RECV;
3396 node_perm = NODE__RAWIP_RECV;
3397 break;
3398 }
3399
3400 AVC_AUDIT_DATA_INIT(&ad, NET);
3401 ad.u.net.netif = dev->name;
3402 ad.u.net.family = family;
3403
3404 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3405 if (err)
3406 goto out;
3407
3408 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, &ad);
3409 if (err)
3410 goto out;
3411
3412 /* Fixme: this lookup is inefficient */
3413 err = security_node_sid(family, addrp, len, &node_sid);
3414 if (err)
3415 goto out;
3416
3417 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, &ad);
3418 if (err)
3419 goto out;
3420
3421 if (recv_perm) {
3422 u32 port_sid;
3423
3424 /* Fixme: make this more efficient */
3425 err = security_port_sid(sk->sk_family, sk->sk_type,
3426 sk->sk_protocol, ntohs(ad.u.net.sport),
3427 &port_sid);
3428 if (err)
3429 goto out;
3430
3431 err = avc_has_perm(sock_sid, port_sid,
3432 sock_class, recv_perm, &ad);
3433 }
3434 out:
3435 return err;
3436 }
3437
3438 static int selinux_socket_getpeersec(struct socket *sock, char __user *optval,
3439 int __user *optlen, unsigned len)
3440 {
3441 int err = 0;
3442 char *scontext;
3443 u32 scontext_len;
3444 struct sk_security_struct *ssec;
3445 struct inode_security_struct *isec;
3446
3447 isec = SOCK_INODE(sock)->i_security;
3448 if (isec->sclass != SECCLASS_UNIX_STREAM_SOCKET) {
3449 err = -ENOPROTOOPT;
3450 goto out;
3451 }
3452
3453 ssec = sock->sk->sk_security;
3454
3455 err = security_sid_to_context(ssec->peer_sid, &scontext, &scontext_len);
3456 if (err)
3457 goto out;
3458
3459 if (scontext_len > len) {
3460 err = -ERANGE;
3461 goto out_len;
3462 }
3463
3464 if (copy_to_user(optval, scontext, scontext_len))
3465 err = -EFAULT;
3466
3467 out_len:
3468 if (put_user(scontext_len, optlen))
3469 err = -EFAULT;
3470
3471 kfree(scontext);
3472 out:
3473 return err;
3474 }
3475
3476 static int selinux_sk_alloc_security(struct sock *sk, int family, int priority)
3477 {
3478 return sk_alloc_security(sk, family, priority);
3479 }
3480
3481 static void selinux_sk_free_security(struct sock *sk)
3482 {
3483 sk_free_security(sk);
3484 }
3485
3486 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3487 {
3488 int err = 0;
3489 u32 perm;
3490 struct nlmsghdr *nlh;
3491 struct socket *sock = sk->sk_socket;
3492 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3493
3494 if (skb->len < NLMSG_SPACE(0)) {
3495 err = -EINVAL;
3496 goto out;
3497 }
3498 nlh = (struct nlmsghdr *)skb->data;
3499
3500 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3501 if (err) {
3502 if (err == -EINVAL) {
3503 audit_log(current->audit_context, AUDIT_SELINUX_ERR,
3504 "SELinux: unrecognized netlink message"
3505 " type=%hu for sclass=%hu\n",
3506 nlh->nlmsg_type, isec->sclass);
3507 if (!selinux_enforcing)
3508 err = 0;
3509 }
3510
3511 /* Ignore */
3512 if (err == -ENOENT)
3513 err = 0;
3514 goto out;
3515 }
3516
3517 err = socket_has_perm(current, sock, perm);
3518 out:
3519 return err;
3520 }
3521
3522 #ifdef CONFIG_NETFILTER
3523
3524 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3525 struct sk_buff **pskb,
3526 const struct net_device *in,
3527 const struct net_device *out,
3528 int (*okfn)(struct sk_buff *),
3529 u16 family)
3530 {
3531 char *addrp;
3532 int len, err = NF_ACCEPT;
3533 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3534 struct sock *sk;
3535 struct socket *sock;
3536 struct inode *inode;
3537 struct sk_buff *skb = *pskb;
3538 struct inode_security_struct *isec;
3539 struct avc_audit_data ad;
3540 struct net_device *dev = (struct net_device *)out;
3541
3542 sk = skb->sk;
3543 if (!sk)
3544 goto out;
3545
3546 sock = sk->sk_socket;
3547 if (!sock)
3548 goto out;
3549
3550 inode = SOCK_INODE(sock);
3551 if (!inode)
3552 goto out;
3553
3554 err = sel_netif_sids(dev, &if_sid, NULL);
3555 if (err)
3556 goto out;
3557
3558 isec = inode->i_security;
3559
3560 switch (isec->sclass) {
3561 case SECCLASS_UDP_SOCKET:
3562 netif_perm = NETIF__UDP_SEND;
3563 node_perm = NODE__UDP_SEND;
3564 send_perm = UDP_SOCKET__SEND_MSG;
3565 break;
3566
3567 case SECCLASS_TCP_SOCKET:
3568 netif_perm = NETIF__TCP_SEND;
3569 node_perm = NODE__TCP_SEND;
3570 send_perm = TCP_SOCKET__SEND_MSG;
3571 break;
3572
3573 default:
3574 netif_perm = NETIF__RAWIP_SEND;
3575 node_perm = NODE__RAWIP_SEND;
3576 break;
3577 }
3578
3579
3580 AVC_AUDIT_DATA_INIT(&ad, NET);
3581 ad.u.net.netif = dev->name;
3582 ad.u.net.family = family;
3583
3584 err = selinux_parse_skb(skb, &ad, &addrp,
3585 &len, 0) ? NF_DROP : NF_ACCEPT;
3586 if (err != NF_ACCEPT)
3587 goto out;
3588
3589 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF,
3590 netif_perm, &ad) ? NF_DROP : NF_ACCEPT;
3591 if (err != NF_ACCEPT)
3592 goto out;
3593
3594 /* Fixme: this lookup is inefficient */
3595 err = security_node_sid(family, addrp, len,
3596 &node_sid) ? NF_DROP : NF_ACCEPT;
3597 if (err != NF_ACCEPT)
3598 goto out;
3599
3600 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE,
3601 node_perm, &ad) ? NF_DROP : NF_ACCEPT;
3602 if (err != NF_ACCEPT)
3603 goto out;
3604
3605 if (send_perm) {
3606 u32 port_sid;
3607
3608 /* Fixme: make this more efficient */
3609 err = security_port_sid(sk->sk_family,
3610 sk->sk_type,
3611 sk->sk_protocol,
3612 ntohs(ad.u.net.dport),
3613 &port_sid) ? NF_DROP : NF_ACCEPT;
3614 if (err != NF_ACCEPT)
3615 goto out;
3616
3617 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3618 send_perm, &ad) ? NF_DROP : NF_ACCEPT;
3619 }
3620
3621 out:
3622 return err;
3623 }
3624
3625 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3626 struct sk_buff **pskb,
3627 const struct net_device *in,
3628 const struct net_device *out,
3629 int (*okfn)(struct sk_buff *))
3630 {
3631 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3632 }
3633
3634 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3635
3636 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3637 struct sk_buff **pskb,
3638 const struct net_device *in,
3639 const struct net_device *out,
3640 int (*okfn)(struct sk_buff *))
3641 {
3642 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3643 }
3644
3645 #endif /* IPV6 */
3646
3647 #endif /* CONFIG_NETFILTER */
3648
3649 #else
3650
3651 static inline int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3652 {
3653 return 0;
3654 }
3655
3656 #endif /* CONFIG_SECURITY_NETWORK */
3657
3658 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3659 {
3660 struct task_security_struct *tsec;
3661 struct av_decision avd;
3662 int err;
3663
3664 err = secondary_ops->netlink_send(sk, skb);
3665 if (err)
3666 return err;
3667
3668 tsec = current->security;
3669
3670 avd.allowed = 0;
3671 avc_has_perm_noaudit(tsec->sid, tsec->sid,
3672 SECCLASS_CAPABILITY, ~0, &avd);
3673 cap_mask(NETLINK_CB(skb).eff_cap, avd.allowed);
3674
3675 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3676 err = selinux_nlmsg_perm(sk, skb);
3677
3678 return err;
3679 }
3680
3681 static int selinux_netlink_recv(struct sk_buff *skb)
3682 {
3683 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
3684 return -EPERM;
3685 return 0;
3686 }
3687
3688 static int ipc_alloc_security(struct task_struct *task,
3689 struct kern_ipc_perm *perm,
3690 u16 sclass)
3691 {
3692 struct task_security_struct *tsec = task->security;
3693 struct ipc_security_struct *isec;
3694
3695 isec = kmalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3696 if (!isec)
3697 return -ENOMEM;
3698
3699 memset(isec, 0, sizeof(struct ipc_security_struct));
3700 isec->magic = SELINUX_MAGIC;
3701 isec->sclass = sclass;
3702 isec->ipc_perm = perm;
3703 if (tsec) {
3704 isec->sid = tsec->sid;
3705 } else {
3706 isec->sid = SECINITSID_UNLABELED;
3707 }
3708 perm->security = isec;
3709
3710 return 0;
3711 }
3712
3713 static void ipc_free_security(struct kern_ipc_perm *perm)
3714 {
3715 struct ipc_security_struct *isec = perm->security;
3716 if (!isec || isec->magic != SELINUX_MAGIC)
3717 return;
3718
3719 perm->security = NULL;
3720 kfree(isec);
3721 }
3722
3723 static int msg_msg_alloc_security(struct msg_msg *msg)
3724 {
3725 struct msg_security_struct *msec;
3726
3727 msec = kmalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3728 if (!msec)
3729 return -ENOMEM;
3730
3731 memset(msec, 0, sizeof(struct msg_security_struct));
3732 msec->magic = SELINUX_MAGIC;
3733 msec->msg = msg;
3734 msec->sid = SECINITSID_UNLABELED;
3735 msg->security = msec;
3736
3737 return 0;
3738 }
3739
3740 static void msg_msg_free_security(struct msg_msg *msg)
3741 {
3742 struct msg_security_struct *msec = msg->security;
3743 if (!msec || msec->magic != SELINUX_MAGIC)
3744 return;
3745
3746 msg->security = NULL;
3747 kfree(msec);
3748 }
3749
3750 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3751 u32 perms)
3752 {
3753 struct task_security_struct *tsec;
3754 struct ipc_security_struct *isec;
3755 struct avc_audit_data ad;
3756
3757 tsec = current->security;
3758 isec = ipc_perms->security;
3759
3760 AVC_AUDIT_DATA_INIT(&ad, IPC);
3761 ad.u.ipc_id = ipc_perms->key;
3762
3763 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3764 }
3765
3766 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3767 {
3768 return msg_msg_alloc_security(msg);
3769 }
3770
3771 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3772 {
3773 msg_msg_free_security(msg);
3774 }
3775
3776 /* message queue security operations */
3777 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3778 {
3779 struct task_security_struct *tsec;
3780 struct ipc_security_struct *isec;
3781 struct avc_audit_data ad;
3782 int rc;
3783
3784 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3785 if (rc)
3786 return rc;
3787
3788 tsec = current->security;
3789 isec = msq->q_perm.security;
3790
3791 AVC_AUDIT_DATA_INIT(&ad, IPC);
3792 ad.u.ipc_id = msq->q_perm.key;
3793
3794 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3795 MSGQ__CREATE, &ad);
3796 if (rc) {
3797 ipc_free_security(&msq->q_perm);
3798 return rc;
3799 }
3800 return 0;
3801 }
3802
3803 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3804 {
3805 ipc_free_security(&msq->q_perm);
3806 }
3807
3808 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3809 {
3810 struct task_security_struct *tsec;
3811 struct ipc_security_struct *isec;
3812 struct avc_audit_data ad;
3813
3814 tsec = current->security;
3815 isec = msq->q_perm.security;
3816
3817 AVC_AUDIT_DATA_INIT(&ad, IPC);
3818 ad.u.ipc_id = msq->q_perm.key;
3819
3820 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3821 MSGQ__ASSOCIATE, &ad);
3822 }
3823
3824 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3825 {
3826 int err;
3827 int perms;
3828
3829 switch(cmd) {
3830 case IPC_INFO:
3831 case MSG_INFO:
3832 /* No specific object, just general system-wide information. */
3833 return task_has_system(current, SYSTEM__IPC_INFO);
3834 case IPC_STAT:
3835 case MSG_STAT:
3836 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3837 break;
3838 case IPC_SET:
3839 perms = MSGQ__SETATTR;
3840 break;
3841 case IPC_RMID:
3842 perms = MSGQ__DESTROY;
3843 break;
3844 default:
3845 return 0;
3846 }
3847
3848 err = ipc_has_perm(&msq->q_perm, perms);
3849 return err;
3850 }
3851
3852 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3853 {
3854 struct task_security_struct *tsec;
3855 struct ipc_security_struct *isec;
3856 struct msg_security_struct *msec;
3857 struct avc_audit_data ad;
3858 int rc;
3859
3860 tsec = current->security;
3861 isec = msq->q_perm.security;
3862 msec = msg->security;
3863
3864 /*
3865 * First time through, need to assign label to the message
3866 */
3867 if (msec->sid == SECINITSID_UNLABELED) {
3868 /*
3869 * Compute new sid based on current process and
3870 * message queue this message will be stored in
3871 */
3872 rc = security_transition_sid(tsec->sid,
3873 isec->sid,
3874 SECCLASS_MSG,
3875 &msec->sid);
3876 if (rc)
3877 return rc;
3878 }
3879
3880 AVC_AUDIT_DATA_INIT(&ad, IPC);
3881 ad.u.ipc_id = msq->q_perm.key;
3882
3883 /* Can this process write to the queue? */
3884 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3885 MSGQ__WRITE, &ad);
3886 if (!rc)
3887 /* Can this process send the message */
3888 rc = avc_has_perm(tsec->sid, msec->sid,
3889 SECCLASS_MSG, MSG__SEND, &ad);
3890 if (!rc)
3891 /* Can the message be put in the queue? */
3892 rc = avc_has_perm(msec->sid, isec->sid,
3893 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3894
3895 return rc;
3896 }
3897
3898 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3899 struct task_struct *target,
3900 long type, int mode)
3901 {
3902 struct task_security_struct *tsec;
3903 struct ipc_security_struct *isec;
3904 struct msg_security_struct *msec;
3905 struct avc_audit_data ad;
3906 int rc;
3907
3908 tsec = target->security;
3909 isec = msq->q_perm.security;
3910 msec = msg->security;
3911
3912 AVC_AUDIT_DATA_INIT(&ad, IPC);
3913 ad.u.ipc_id = msq->q_perm.key;
3914
3915 rc = avc_has_perm(tsec->sid, isec->sid,
3916 SECCLASS_MSGQ, MSGQ__READ, &ad);
3917 if (!rc)
3918 rc = avc_has_perm(tsec->sid, msec->sid,
3919 SECCLASS_MSG, MSG__RECEIVE, &ad);
3920 return rc;
3921 }
3922
3923 /* Shared Memory security operations */
3924 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
3925 {
3926 struct task_security_struct *tsec;
3927 struct ipc_security_struct *isec;
3928 struct avc_audit_data ad;
3929 int rc;
3930
3931 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
3932 if (rc)
3933 return rc;
3934
3935 tsec = current->security;
3936 isec = shp->shm_perm.security;
3937
3938 AVC_AUDIT_DATA_INIT(&ad, IPC);
3939 ad.u.ipc_id = shp->shm_perm.key;
3940
3941 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3942 SHM__CREATE, &ad);
3943 if (rc) {
3944 ipc_free_security(&shp->shm_perm);
3945 return rc;
3946 }
3947 return 0;
3948 }
3949
3950 static void selinux_shm_free_security(struct shmid_kernel *shp)
3951 {
3952 ipc_free_security(&shp->shm_perm);
3953 }
3954
3955 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
3956 {
3957 struct task_security_struct *tsec;
3958 struct ipc_security_struct *isec;
3959 struct avc_audit_data ad;
3960
3961 tsec = current->security;
3962 isec = shp->shm_perm.security;
3963
3964 AVC_AUDIT_DATA_INIT(&ad, IPC);
3965 ad.u.ipc_id = shp->shm_perm.key;
3966
3967 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3968 SHM__ASSOCIATE, &ad);
3969 }
3970
3971 /* Note, at this point, shp is locked down */
3972 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
3973 {
3974 int perms;
3975 int err;
3976
3977 switch(cmd) {
3978 case IPC_INFO:
3979 case SHM_INFO:
3980 /* No specific object, just general system-wide information. */
3981 return task_has_system(current, SYSTEM__IPC_INFO);
3982 case IPC_STAT:
3983 case SHM_STAT:
3984 perms = SHM__GETATTR | SHM__ASSOCIATE;
3985 break;
3986 case IPC_SET:
3987 perms = SHM__SETATTR;
3988 break;
3989 case SHM_LOCK:
3990 case SHM_UNLOCK:
3991 perms = SHM__LOCK;
3992 break;
3993 case IPC_RMID:
3994 perms = SHM__DESTROY;
3995 break;
3996 default:
3997 return 0;
3998 }
3999
4000 err = ipc_has_perm(&shp->shm_perm, perms);
4001 return err;
4002 }
4003
4004 static int selinux_shm_shmat(struct shmid_kernel *shp,
4005 char __user *shmaddr, int shmflg)
4006 {
4007 u32 perms;
4008 int rc;
4009
4010 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4011 if (rc)
4012 return rc;
4013
4014 if (shmflg & SHM_RDONLY)
4015 perms = SHM__READ;
4016 else
4017 perms = SHM__READ | SHM__WRITE;
4018
4019 return ipc_has_perm(&shp->shm_perm, perms);
4020 }
4021
4022 /* Semaphore security operations */
4023 static int selinux_sem_alloc_security(struct sem_array *sma)
4024 {
4025 struct task_security_struct *tsec;
4026 struct ipc_security_struct *isec;
4027 struct avc_audit_data ad;
4028 int rc;
4029
4030 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4031 if (rc)
4032 return rc;
4033
4034 tsec = current->security;
4035 isec = sma->sem_perm.security;
4036
4037 AVC_AUDIT_DATA_INIT(&ad, IPC);
4038 ad.u.ipc_id = sma->sem_perm.key;
4039
4040 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4041 SEM__CREATE, &ad);
4042 if (rc) {
4043 ipc_free_security(&sma->sem_perm);
4044 return rc;
4045 }
4046 return 0;
4047 }
4048
4049 static void selinux_sem_free_security(struct sem_array *sma)
4050 {
4051 ipc_free_security(&sma->sem_perm);
4052 }
4053
4054 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4055 {
4056 struct task_security_struct *tsec;
4057 struct ipc_security_struct *isec;
4058 struct avc_audit_data ad;
4059
4060 tsec = current->security;
4061 isec = sma->sem_perm.security;
4062
4063 AVC_AUDIT_DATA_INIT(&ad, IPC);
4064 ad.u.ipc_id = sma->sem_perm.key;
4065
4066 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4067 SEM__ASSOCIATE, &ad);
4068 }
4069
4070 /* Note, at this point, sma is locked down */
4071 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4072 {
4073 int err;
4074 u32 perms;
4075
4076 switch(cmd) {
4077 case IPC_INFO:
4078 case SEM_INFO:
4079 /* No specific object, just general system-wide information. */
4080 return task_has_system(current, SYSTEM__IPC_INFO);
4081 case GETPID:
4082 case GETNCNT:
4083 case GETZCNT:
4084 perms = SEM__GETATTR;
4085 break;
4086 case GETVAL:
4087 case GETALL:
4088 perms = SEM__READ;
4089 break;
4090 case SETVAL:
4091 case SETALL:
4092 perms = SEM__WRITE;
4093 break;
4094 case IPC_RMID:
4095 perms = SEM__DESTROY;
4096 break;
4097 case IPC_SET:
4098 perms = SEM__SETATTR;
4099 break;
4100 case IPC_STAT:
4101 case SEM_STAT:
4102 perms = SEM__GETATTR | SEM__ASSOCIATE;
4103 break;
4104 default:
4105 return 0;
4106 }
4107
4108 err = ipc_has_perm(&sma->sem_perm, perms);
4109 return err;
4110 }
4111
4112 static int selinux_sem_semop(struct sem_array *sma,
4113 struct sembuf *sops, unsigned nsops, int alter)
4114 {
4115 u32 perms;
4116
4117 if (alter)
4118 perms = SEM__READ | SEM__WRITE;
4119 else
4120 perms = SEM__READ;
4121
4122 return ipc_has_perm(&sma->sem_perm, perms);
4123 }
4124
4125 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4126 {
4127 u32 av = 0;
4128
4129 av = 0;
4130 if (flag & S_IRUGO)
4131 av |= IPC__UNIX_READ;
4132 if (flag & S_IWUGO)
4133 av |= IPC__UNIX_WRITE;
4134
4135 if (av == 0)
4136 return 0;
4137
4138 return ipc_has_perm(ipcp, av);
4139 }
4140
4141 /* module stacking operations */
4142 static int selinux_register_security (const char *name, struct security_operations *ops)
4143 {
4144 if (secondary_ops != original_ops) {
4145 printk(KERN_INFO "%s: There is already a secondary security "
4146 "module registered.\n", __FUNCTION__);
4147 return -EINVAL;
4148 }
4149
4150 secondary_ops = ops;
4151
4152 printk(KERN_INFO "%s: Registering secondary module %s\n",
4153 __FUNCTION__,
4154 name);
4155
4156 return 0;
4157 }
4158
4159 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4160 {
4161 if (ops != secondary_ops) {
4162 printk (KERN_INFO "%s: trying to unregister a security module "
4163 "that is not registered.\n", __FUNCTION__);
4164 return -EINVAL;
4165 }
4166
4167 secondary_ops = original_ops;
4168
4169 return 0;
4170 }
4171
4172 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4173 {
4174 if (inode)
4175 inode_doinit_with_dentry(inode, dentry);
4176 }
4177
4178 static int selinux_getprocattr(struct task_struct *p,
4179 char *name, void *value, size_t size)
4180 {
4181 struct task_security_struct *tsec;
4182 u32 sid, len;
4183 char *context;
4184 int error;
4185
4186 if (current != p) {
4187 error = task_has_perm(current, p, PROCESS__GETATTR);
4188 if (error)
4189 return error;
4190 }
4191
4192 if (!size)
4193 return -ERANGE;
4194
4195 tsec = p->security;
4196
4197 if (!strcmp(name, "current"))
4198 sid = tsec->sid;
4199 else if (!strcmp(name, "prev"))
4200 sid = tsec->osid;
4201 else if (!strcmp(name, "exec"))
4202 sid = tsec->exec_sid;
4203 else if (!strcmp(name, "fscreate"))
4204 sid = tsec->create_sid;
4205 else
4206 return -EINVAL;
4207
4208 if (!sid)
4209 return 0;
4210
4211 error = security_sid_to_context(sid, &context, &len);
4212 if (error)
4213 return error;
4214 if (len > size) {
4215 kfree(context);
4216 return -ERANGE;
4217 }
4218 memcpy(value, context, len);
4219 kfree(context);
4220 return len;
4221 }
4222
4223 static int selinux_setprocattr(struct task_struct *p,
4224 char *name, void *value, size_t size)
4225 {
4226 struct task_security_struct *tsec;
4227 u32 sid = 0;
4228 int error;
4229 char *str = value;
4230
4231 if (current != p) {
4232 /* SELinux only allows a process to change its own
4233 security attributes. */
4234 return -EACCES;
4235 }
4236
4237 /*
4238 * Basic control over ability to set these attributes at all.
4239 * current == p, but we'll pass them separately in case the
4240 * above restriction is ever removed.
4241 */
4242 if (!strcmp(name, "exec"))
4243 error = task_has_perm(current, p, PROCESS__SETEXEC);
4244 else if (!strcmp(name, "fscreate"))
4245 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4246 else if (!strcmp(name, "current"))
4247 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4248 else
4249 error = -EINVAL;
4250 if (error)
4251 return error;
4252
4253 /* Obtain a SID for the context, if one was specified. */
4254 if (size && str[1] && str[1] != '\n') {
4255 if (str[size-1] == '\n') {
4256 str[size-1] = 0;
4257 size--;
4258 }
4259 error = security_context_to_sid(value, size, &sid);
4260 if (error)
4261 return error;
4262 }
4263
4264 /* Permission checking based on the specified context is
4265 performed during the actual operation (execve,
4266 open/mkdir/...), when we know the full context of the
4267 operation. See selinux_bprm_set_security for the execve
4268 checks and may_create for the file creation checks. The
4269 operation will then fail if the context is not permitted. */
4270 tsec = p->security;
4271 if (!strcmp(name, "exec"))
4272 tsec->exec_sid = sid;
4273 else if (!strcmp(name, "fscreate"))
4274 tsec->create_sid = sid;
4275 else if (!strcmp(name, "current")) {
4276 struct av_decision avd;
4277
4278 if (sid == 0)
4279 return -EINVAL;
4280
4281 /* Only allow single threaded processes to change context */
4282 if (atomic_read(&p->mm->mm_users) != 1) {
4283 struct task_struct *g, *t;
4284 struct mm_struct *mm = p->mm;
4285 read_lock(&tasklist_lock);
4286 do_each_thread(g, t)
4287 if (t->mm == mm && t != p) {
4288 read_unlock(&tasklist_lock);
4289 return -EPERM;
4290 }
4291 while_each_thread(g, t);
4292 read_unlock(&tasklist_lock);
4293 }
4294
4295 /* Check permissions for the transition. */
4296 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4297 PROCESS__DYNTRANSITION, NULL);
4298 if (error)
4299 return error;
4300
4301 /* Check for ptracing, and update the task SID if ok.
4302 Otherwise, leave SID unchanged and fail. */
4303 task_lock(p);
4304 if (p->ptrace & PT_PTRACED) {
4305 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4306 SECCLASS_PROCESS,
4307 PROCESS__PTRACE, &avd);
4308 if (!error)
4309 tsec->sid = sid;
4310 task_unlock(p);
4311 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4312 PROCESS__PTRACE, &avd, error, NULL);
4313 if (error)
4314 return error;
4315 } else {
4316 tsec->sid = sid;
4317 task_unlock(p);
4318 }
4319 }
4320 else
4321 return -EINVAL;
4322
4323 return size;
4324 }
4325
4326 static struct security_operations selinux_ops = {
4327 .ptrace = selinux_ptrace,
4328 .capget = selinux_capget,
4329 .capset_check = selinux_capset_check,
4330 .capset_set = selinux_capset_set,
4331 .sysctl = selinux_sysctl,
4332 .capable = selinux_capable,
4333 .quotactl = selinux_quotactl,
4334 .quota_on = selinux_quota_on,
4335 .syslog = selinux_syslog,
4336 .vm_enough_memory = selinux_vm_enough_memory,
4337
4338 .netlink_send = selinux_netlink_send,
4339 .netlink_recv = selinux_netlink_recv,
4340
4341 .bprm_alloc_security = selinux_bprm_alloc_security,
4342 .bprm_free_security = selinux_bprm_free_security,
4343 .bprm_apply_creds = selinux_bprm_apply_creds,
4344 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4345 .bprm_set_security = selinux_bprm_set_security,
4346 .bprm_check_security = selinux_bprm_check_security,
4347 .bprm_secureexec = selinux_bprm_secureexec,
4348
4349 .sb_alloc_security = selinux_sb_alloc_security,
4350 .sb_free_security = selinux_sb_free_security,
4351 .sb_copy_data = selinux_sb_copy_data,
4352 .sb_kern_mount = selinux_sb_kern_mount,
4353 .sb_statfs = selinux_sb_statfs,
4354 .sb_mount = selinux_mount,
4355 .sb_umount = selinux_umount,
4356
4357 .inode_alloc_security = selinux_inode_alloc_security,
4358 .inode_free_security = selinux_inode_free_security,
4359 .inode_init_security = selinux_inode_init_security,
4360 .inode_create = selinux_inode_create,
4361 .inode_post_create = selinux_inode_post_create,
4362 .inode_link = selinux_inode_link,
4363 .inode_post_link = selinux_inode_post_link,
4364 .inode_unlink = selinux_inode_unlink,
4365 .inode_symlink = selinux_inode_symlink,
4366 .inode_post_symlink = selinux_inode_post_symlink,
4367 .inode_mkdir = selinux_inode_mkdir,
4368 .inode_post_mkdir = selinux_inode_post_mkdir,
4369 .inode_rmdir = selinux_inode_rmdir,
4370 .inode_mknod = selinux_inode_mknod,
4371 .inode_post_mknod = selinux_inode_post_mknod,
4372 .inode_rename = selinux_inode_rename,
4373 .inode_post_rename = selinux_inode_post_rename,
4374 .inode_readlink = selinux_inode_readlink,
4375 .inode_follow_link = selinux_inode_follow_link,
4376 .inode_permission = selinux_inode_permission,
4377 .inode_setattr = selinux_inode_setattr,
4378 .inode_getattr = selinux_inode_getattr,
4379 .inode_setxattr = selinux_inode_setxattr,
4380 .inode_post_setxattr = selinux_inode_post_setxattr,
4381 .inode_getxattr = selinux_inode_getxattr,
4382 .inode_listxattr = selinux_inode_listxattr,
4383 .inode_removexattr = selinux_inode_removexattr,
4384 .inode_getsecurity = selinux_inode_getsecurity,
4385 .inode_setsecurity = selinux_inode_setsecurity,
4386 .inode_listsecurity = selinux_inode_listsecurity,
4387
4388 .file_permission = selinux_file_permission,
4389 .file_alloc_security = selinux_file_alloc_security,
4390 .file_free_security = selinux_file_free_security,
4391 .file_ioctl = selinux_file_ioctl,
4392 .file_mmap = selinux_file_mmap,
4393 .file_mprotect = selinux_file_mprotect,
4394 .file_lock = selinux_file_lock,
4395 .file_fcntl = selinux_file_fcntl,
4396 .file_set_fowner = selinux_file_set_fowner,
4397 .file_send_sigiotask = selinux_file_send_sigiotask,
4398 .file_receive = selinux_file_receive,
4399
4400 .task_create = selinux_task_create,
4401 .task_alloc_security = selinux_task_alloc_security,
4402 .task_free_security = selinux_task_free_security,
4403 .task_setuid = selinux_task_setuid,
4404 .task_post_setuid = selinux_task_post_setuid,
4405 .task_setgid = selinux_task_setgid,
4406 .task_setpgid = selinux_task_setpgid,
4407 .task_getpgid = selinux_task_getpgid,
4408 .task_getsid = selinux_task_getsid,
4409 .task_setgroups = selinux_task_setgroups,
4410 .task_setnice = selinux_task_setnice,
4411 .task_setrlimit = selinux_task_setrlimit,
4412 .task_setscheduler = selinux_task_setscheduler,
4413 .task_getscheduler = selinux_task_getscheduler,
4414 .task_kill = selinux_task_kill,
4415 .task_wait = selinux_task_wait,
4416 .task_prctl = selinux_task_prctl,
4417 .task_reparent_to_init = selinux_task_reparent_to_init,
4418 .task_to_inode = selinux_task_to_inode,
4419
4420 .ipc_permission = selinux_ipc_permission,
4421
4422 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4423 .msg_msg_free_security = selinux_msg_msg_free_security,
4424
4425 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4426 .msg_queue_free_security = selinux_msg_queue_free_security,
4427 .msg_queue_associate = selinux_msg_queue_associate,
4428 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4429 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4430 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4431
4432 .shm_alloc_security = selinux_shm_alloc_security,
4433 .shm_free_security = selinux_shm_free_security,
4434 .shm_associate = selinux_shm_associate,
4435 .shm_shmctl = selinux_shm_shmctl,
4436 .shm_shmat = selinux_shm_shmat,
4437
4438 .sem_alloc_security = selinux_sem_alloc_security,
4439 .sem_free_security = selinux_sem_free_security,
4440 .sem_associate = selinux_sem_associate,
4441 .sem_semctl = selinux_sem_semctl,
4442 .sem_semop = selinux_sem_semop,
4443
4444 .register_security = selinux_register_security,
4445 .unregister_security = selinux_unregister_security,
4446
4447 .d_instantiate = selinux_d_instantiate,
4448
4449 .getprocattr = selinux_getprocattr,
4450 .setprocattr = selinux_setprocattr,
4451
4452 #ifdef CONFIG_SECURITY_NETWORK
4453 .unix_stream_connect = selinux_socket_unix_stream_connect,
4454 .unix_may_send = selinux_socket_unix_may_send,
4455
4456 .socket_create = selinux_socket_create,
4457 .socket_post_create = selinux_socket_post_create,
4458 .socket_bind = selinux_socket_bind,
4459 .socket_connect = selinux_socket_connect,
4460 .socket_listen = selinux_socket_listen,
4461 .socket_accept = selinux_socket_accept,
4462 .socket_sendmsg = selinux_socket_sendmsg,
4463 .socket_recvmsg = selinux_socket_recvmsg,
4464 .socket_getsockname = selinux_socket_getsockname,
4465 .socket_getpeername = selinux_socket_getpeername,
4466 .socket_getsockopt = selinux_socket_getsockopt,
4467 .socket_setsockopt = selinux_socket_setsockopt,
4468 .socket_shutdown = selinux_socket_shutdown,
4469 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4470 .socket_getpeersec = selinux_socket_getpeersec,
4471 .sk_alloc_security = selinux_sk_alloc_security,
4472 .sk_free_security = selinux_sk_free_security,
4473 #endif
4474 };
4475
4476 static __init int selinux_init(void)
4477 {
4478 struct task_security_struct *tsec;
4479
4480 if (!selinux_enabled) {
4481 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4482 return 0;
4483 }
4484
4485 printk(KERN_INFO "SELinux: Initializing.\n");
4486
4487 /* Set the security state for the initial task. */
4488 if (task_alloc_security(current))
4489 panic("SELinux: Failed to initialize initial task.\n");
4490 tsec = current->security;
4491 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4492
4493 avc_init();
4494
4495 original_ops = secondary_ops = security_ops;
4496 if (!secondary_ops)
4497 panic ("SELinux: No initial security operations\n");
4498 if (register_security (&selinux_ops))
4499 panic("SELinux: Unable to register with kernel.\n");
4500
4501 if (selinux_enforcing) {
4502 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4503 } else {
4504 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4505 }
4506 return 0;
4507 }
4508
4509 void selinux_complete_init(void)
4510 {
4511 printk(KERN_INFO "SELinux: Completing initialization.\n");
4512
4513 /* Set up any superblocks initialized prior to the policy load. */
4514 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4515 spin_lock(&sb_security_lock);
4516 next_sb:
4517 if (!list_empty(&superblock_security_head)) {
4518 struct superblock_security_struct *sbsec =
4519 list_entry(superblock_security_head.next,
4520 struct superblock_security_struct,
4521 list);
4522 struct super_block *sb = sbsec->sb;
4523 spin_lock(&sb_lock);
4524 sb->s_count++;
4525 spin_unlock(&sb_lock);
4526 spin_unlock(&sb_security_lock);
4527 down_read(&sb->s_umount);
4528 if (sb->s_root)
4529 superblock_doinit(sb, NULL);
4530 drop_super(sb);
4531 spin_lock(&sb_security_lock);
4532 list_del_init(&sbsec->list);
4533 goto next_sb;
4534 }
4535 spin_unlock(&sb_security_lock);
4536 }
4537
4538 /* SELinux requires early initialization in order to label
4539 all processes and objects when they are created. */
4540 security_initcall(selinux_init);
4541
4542 #if defined(CONFIG_SECURITY_NETWORK) && defined(CONFIG_NETFILTER)
4543
4544 static struct nf_hook_ops selinux_ipv4_op = {
4545 .hook = selinux_ipv4_postroute_last,
4546 .owner = THIS_MODULE,
4547 .pf = PF_INET,
4548 .hooknum = NF_IP_POST_ROUTING,
4549 .priority = NF_IP_PRI_SELINUX_LAST,
4550 };
4551
4552 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4553
4554 static struct nf_hook_ops selinux_ipv6_op = {
4555 .hook = selinux_ipv6_postroute_last,
4556 .owner = THIS_MODULE,
4557 .pf = PF_INET6,
4558 .hooknum = NF_IP6_POST_ROUTING,
4559 .priority = NF_IP6_PRI_SELINUX_LAST,
4560 };
4561
4562 #endif /* IPV6 */
4563
4564 static int __init selinux_nf_ip_init(void)
4565 {
4566 int err = 0;
4567
4568 if (!selinux_enabled)
4569 goto out;
4570
4571 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4572
4573 err = nf_register_hook(&selinux_ipv4_op);
4574 if (err)
4575 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4576
4577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4578
4579 err = nf_register_hook(&selinux_ipv6_op);
4580 if (err)
4581 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4582
4583 #endif /* IPV6 */
4584 out:
4585 return err;
4586 }
4587
4588 __initcall(selinux_nf_ip_init);
4589
4590 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4591 static void selinux_nf_ip_exit(void)
4592 {
4593 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4594
4595 nf_unregister_hook(&selinux_ipv4_op);
4596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4597 nf_unregister_hook(&selinux_ipv6_op);
4598 #endif /* IPV6 */
4599 }
4600 #endif
4601
4602 #else /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */
4603
4604 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4605 #define selinux_nf_ip_exit()
4606 #endif
4607
4608 #endif /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */
4609
4610 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4611 int selinux_disable(void)
4612 {
4613 extern void exit_sel_fs(void);
4614 static int selinux_disabled = 0;
4615
4616 if (ss_initialized) {
4617 /* Not permitted after initial policy load. */
4618 return -EINVAL;
4619 }
4620
4621 if (selinux_disabled) {
4622 /* Only do this once. */
4623 return -EINVAL;
4624 }
4625
4626 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4627
4628 selinux_disabled = 1;
4629
4630 /* Reset security_ops to the secondary module, dummy or capability. */
4631 security_ops = secondary_ops;
4632
4633 /* Unregister netfilter hooks. */
4634 selinux_nf_ip_exit();
4635
4636 /* Unregister selinuxfs. */
4637 exit_sel_fs();
4638
4639 return 0;
4640 }
4641 #endif
4642
4643