Merge /spare/repo/linux-2.6/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/security.h>
29 #include <linux/xattr.h>
30 #include <linux/capability.h>
31 #include <linux/unistd.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/slab.h>
35 #include <linux/pagemap.h>
36 #include <linux/swap.h>
37 #include <linux/smp_lock.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/semaphore.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71
72 #include "avc.h"
73 #include "objsec.h"
74 #include "netif.h"
75
76 #define XATTR_SELINUX_SUFFIX "selinux"
77 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
78
79 extern unsigned int policydb_loaded_version;
80 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
81
82 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
83 int selinux_enforcing = 0;
84
85 static int __init enforcing_setup(char *str)
86 {
87 selinux_enforcing = simple_strtol(str,NULL,0);
88 return 1;
89 }
90 __setup("enforcing=", enforcing_setup);
91 #endif
92
93 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
94 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
95
96 static int __init selinux_enabled_setup(char *str)
97 {
98 selinux_enabled = simple_strtol(str, NULL, 0);
99 return 1;
100 }
101 __setup("selinux=", selinux_enabled_setup);
102 #endif
103
104 /* Original (dummy) security module. */
105 static struct security_operations *original_ops = NULL;
106
107 /* Minimal support for a secondary security module,
108 just to allow the use of the dummy or capability modules.
109 The owlsm module can alternatively be used as a secondary
110 module as long as CONFIG_OWLSM_FD is not enabled. */
111 static struct security_operations *secondary_ops = NULL;
112
113 /* Lists of inode and superblock security structures initialized
114 before the policy was loaded. */
115 static LIST_HEAD(superblock_security_head);
116 static DEFINE_SPINLOCK(sb_security_lock);
117
118 /* Allocate and free functions for each kind of security blob. */
119
120 static int task_alloc_security(struct task_struct *task)
121 {
122 struct task_security_struct *tsec;
123
124 tsec = kmalloc(sizeof(struct task_security_struct), GFP_KERNEL);
125 if (!tsec)
126 return -ENOMEM;
127
128 memset(tsec, 0, sizeof(struct task_security_struct));
129 tsec->magic = SELINUX_MAGIC;
130 tsec->task = task;
131 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
132 task->security = tsec;
133
134 return 0;
135 }
136
137 static void task_free_security(struct task_struct *task)
138 {
139 struct task_security_struct *tsec = task->security;
140
141 if (!tsec || tsec->magic != SELINUX_MAGIC)
142 return;
143
144 task->security = NULL;
145 kfree(tsec);
146 }
147
148 static int inode_alloc_security(struct inode *inode)
149 {
150 struct task_security_struct *tsec = current->security;
151 struct inode_security_struct *isec;
152
153 isec = kmalloc(sizeof(struct inode_security_struct), GFP_KERNEL);
154 if (!isec)
155 return -ENOMEM;
156
157 memset(isec, 0, sizeof(struct inode_security_struct));
158 init_MUTEX(&isec->sem);
159 INIT_LIST_HEAD(&isec->list);
160 isec->magic = SELINUX_MAGIC;
161 isec->inode = inode;
162 isec->sid = SECINITSID_UNLABELED;
163 isec->sclass = SECCLASS_FILE;
164 if (tsec && tsec->magic == SELINUX_MAGIC)
165 isec->task_sid = tsec->sid;
166 else
167 isec->task_sid = SECINITSID_UNLABELED;
168 inode->i_security = isec;
169
170 return 0;
171 }
172
173 static void inode_free_security(struct inode *inode)
174 {
175 struct inode_security_struct *isec = inode->i_security;
176 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
177
178 if (!isec || isec->magic != SELINUX_MAGIC)
179 return;
180
181 spin_lock(&sbsec->isec_lock);
182 if (!list_empty(&isec->list))
183 list_del_init(&isec->list);
184 spin_unlock(&sbsec->isec_lock);
185
186 inode->i_security = NULL;
187 kfree(isec);
188 }
189
190 static int file_alloc_security(struct file *file)
191 {
192 struct task_security_struct *tsec = current->security;
193 struct file_security_struct *fsec;
194
195 fsec = kmalloc(sizeof(struct file_security_struct), GFP_ATOMIC);
196 if (!fsec)
197 return -ENOMEM;
198
199 memset(fsec, 0, sizeof(struct file_security_struct));
200 fsec->magic = SELINUX_MAGIC;
201 fsec->file = file;
202 if (tsec && tsec->magic == SELINUX_MAGIC) {
203 fsec->sid = tsec->sid;
204 fsec->fown_sid = tsec->sid;
205 } else {
206 fsec->sid = SECINITSID_UNLABELED;
207 fsec->fown_sid = SECINITSID_UNLABELED;
208 }
209 file->f_security = fsec;
210
211 return 0;
212 }
213
214 static void file_free_security(struct file *file)
215 {
216 struct file_security_struct *fsec = file->f_security;
217
218 if (!fsec || fsec->magic != SELINUX_MAGIC)
219 return;
220
221 file->f_security = NULL;
222 kfree(fsec);
223 }
224
225 static int superblock_alloc_security(struct super_block *sb)
226 {
227 struct superblock_security_struct *sbsec;
228
229 sbsec = kmalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
230 if (!sbsec)
231 return -ENOMEM;
232
233 memset(sbsec, 0, sizeof(struct superblock_security_struct));
234 init_MUTEX(&sbsec->sem);
235 INIT_LIST_HEAD(&sbsec->list);
236 INIT_LIST_HEAD(&sbsec->isec_head);
237 spin_lock_init(&sbsec->isec_lock);
238 sbsec->magic = SELINUX_MAGIC;
239 sbsec->sb = sb;
240 sbsec->sid = SECINITSID_UNLABELED;
241 sbsec->def_sid = SECINITSID_FILE;
242 sb->s_security = sbsec;
243
244 return 0;
245 }
246
247 static void superblock_free_security(struct super_block *sb)
248 {
249 struct superblock_security_struct *sbsec = sb->s_security;
250
251 if (!sbsec || sbsec->magic != SELINUX_MAGIC)
252 return;
253
254 spin_lock(&sb_security_lock);
255 if (!list_empty(&sbsec->list))
256 list_del_init(&sbsec->list);
257 spin_unlock(&sb_security_lock);
258
259 sb->s_security = NULL;
260 kfree(sbsec);
261 }
262
263 #ifdef CONFIG_SECURITY_NETWORK
264 static int sk_alloc_security(struct sock *sk, int family, int priority)
265 {
266 struct sk_security_struct *ssec;
267
268 if (family != PF_UNIX)
269 return 0;
270
271 ssec = kmalloc(sizeof(*ssec), priority);
272 if (!ssec)
273 return -ENOMEM;
274
275 memset(ssec, 0, sizeof(*ssec));
276 ssec->magic = SELINUX_MAGIC;
277 ssec->sk = sk;
278 ssec->peer_sid = SECINITSID_UNLABELED;
279 sk->sk_security = ssec;
280
281 return 0;
282 }
283
284 static void sk_free_security(struct sock *sk)
285 {
286 struct sk_security_struct *ssec = sk->sk_security;
287
288 if (sk->sk_family != PF_UNIX || ssec->magic != SELINUX_MAGIC)
289 return;
290
291 sk->sk_security = NULL;
292 kfree(ssec);
293 }
294 #endif /* CONFIG_SECURITY_NETWORK */
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_context = 1,
320 Opt_fscontext = 2,
321 Opt_defcontext = 4,
322 };
323
324 static match_table_t tokens = {
325 {Opt_context, "context=%s"},
326 {Opt_fscontext, "fscontext=%s"},
327 {Opt_defcontext, "defcontext=%s"},
328 };
329
330 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
331
332 static int try_context_mount(struct super_block *sb, void *data)
333 {
334 char *context = NULL, *defcontext = NULL;
335 const char *name;
336 u32 sid;
337 int alloc = 0, rc = 0, seen = 0;
338 struct task_security_struct *tsec = current->security;
339 struct superblock_security_struct *sbsec = sb->s_security;
340
341 if (!data)
342 goto out;
343
344 name = sb->s_type->name;
345
346 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
347
348 /* NFS we understand. */
349 if (!strcmp(name, "nfs")) {
350 struct nfs_mount_data *d = data;
351
352 if (d->version < NFS_MOUNT_VERSION)
353 goto out;
354
355 if (d->context[0]) {
356 context = d->context;
357 seen |= Opt_context;
358 }
359 } else
360 goto out;
361
362 } else {
363 /* Standard string-based options. */
364 char *p, *options = data;
365
366 while ((p = strsep(&options, ",")) != NULL) {
367 int token;
368 substring_t args[MAX_OPT_ARGS];
369
370 if (!*p)
371 continue;
372
373 token = match_token(p, tokens, args);
374
375 switch (token) {
376 case Opt_context:
377 if (seen) {
378 rc = -EINVAL;
379 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
380 goto out_free;
381 }
382 context = match_strdup(&args[0]);
383 if (!context) {
384 rc = -ENOMEM;
385 goto out_free;
386 }
387 if (!alloc)
388 alloc = 1;
389 seen |= Opt_context;
390 break;
391
392 case Opt_fscontext:
393 if (seen & (Opt_context|Opt_fscontext)) {
394 rc = -EINVAL;
395 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
396 goto out_free;
397 }
398 context = match_strdup(&args[0]);
399 if (!context) {
400 rc = -ENOMEM;
401 goto out_free;
402 }
403 if (!alloc)
404 alloc = 1;
405 seen |= Opt_fscontext;
406 break;
407
408 case Opt_defcontext:
409 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
410 rc = -EINVAL;
411 printk(KERN_WARNING "SELinux: "
412 "defcontext option is invalid "
413 "for this filesystem type\n");
414 goto out_free;
415 }
416 if (seen & (Opt_context|Opt_defcontext)) {
417 rc = -EINVAL;
418 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
419 goto out_free;
420 }
421 defcontext = match_strdup(&args[0]);
422 if (!defcontext) {
423 rc = -ENOMEM;
424 goto out_free;
425 }
426 if (!alloc)
427 alloc = 1;
428 seen |= Opt_defcontext;
429 break;
430
431 default:
432 rc = -EINVAL;
433 printk(KERN_WARNING "SELinux: unknown mount "
434 "option\n");
435 goto out_free;
436
437 }
438 }
439 }
440
441 if (!seen)
442 goto out;
443
444 if (context) {
445 rc = security_context_to_sid(context, strlen(context), &sid);
446 if (rc) {
447 printk(KERN_WARNING "SELinux: security_context_to_sid"
448 "(%s) failed for (dev %s, type %s) errno=%d\n",
449 context, sb->s_id, name, rc);
450 goto out_free;
451 }
452
453 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
454 FILESYSTEM__RELABELFROM, NULL);
455 if (rc)
456 goto out_free;
457
458 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
459 FILESYSTEM__RELABELTO, NULL);
460 if (rc)
461 goto out_free;
462
463 sbsec->sid = sid;
464
465 if (seen & Opt_context)
466 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
467 }
468
469 if (defcontext) {
470 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
471 if (rc) {
472 printk(KERN_WARNING "SELinux: security_context_to_sid"
473 "(%s) failed for (dev %s, type %s) errno=%d\n",
474 defcontext, sb->s_id, name, rc);
475 goto out_free;
476 }
477
478 if (sid == sbsec->def_sid)
479 goto out_free;
480
481 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
482 FILESYSTEM__RELABELFROM, NULL);
483 if (rc)
484 goto out_free;
485
486 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
487 FILESYSTEM__ASSOCIATE, NULL);
488 if (rc)
489 goto out_free;
490
491 sbsec->def_sid = sid;
492 }
493
494 out_free:
495 if (alloc) {
496 kfree(context);
497 kfree(defcontext);
498 }
499 out:
500 return rc;
501 }
502
503 static int superblock_doinit(struct super_block *sb, void *data)
504 {
505 struct superblock_security_struct *sbsec = sb->s_security;
506 struct dentry *root = sb->s_root;
507 struct inode *inode = root->d_inode;
508 int rc = 0;
509
510 down(&sbsec->sem);
511 if (sbsec->initialized)
512 goto out;
513
514 if (!ss_initialized) {
515 /* Defer initialization until selinux_complete_init,
516 after the initial policy is loaded and the security
517 server is ready to handle calls. */
518 spin_lock(&sb_security_lock);
519 if (list_empty(&sbsec->list))
520 list_add(&sbsec->list, &superblock_security_head);
521 spin_unlock(&sb_security_lock);
522 goto out;
523 }
524
525 /* Determine the labeling behavior to use for this filesystem type. */
526 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
527 if (rc) {
528 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
529 __FUNCTION__, sb->s_type->name, rc);
530 goto out;
531 }
532
533 rc = try_context_mount(sb, data);
534 if (rc)
535 goto out;
536
537 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
538 /* Make sure that the xattr handler exists and that no
539 error other than -ENODATA is returned by getxattr on
540 the root directory. -ENODATA is ok, as this may be
541 the first boot of the SELinux kernel before we have
542 assigned xattr values to the filesystem. */
543 if (!inode->i_op->getxattr) {
544 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
545 "xattr support\n", sb->s_id, sb->s_type->name);
546 rc = -EOPNOTSUPP;
547 goto out;
548 }
549 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
550 if (rc < 0 && rc != -ENODATA) {
551 if (rc == -EOPNOTSUPP)
552 printk(KERN_WARNING "SELinux: (dev %s, type "
553 "%s) has no security xattr handler\n",
554 sb->s_id, sb->s_type->name);
555 else
556 printk(KERN_WARNING "SELinux: (dev %s, type "
557 "%s) getxattr errno %d\n", sb->s_id,
558 sb->s_type->name, -rc);
559 goto out;
560 }
561 }
562
563 if (strcmp(sb->s_type->name, "proc") == 0)
564 sbsec->proc = 1;
565
566 sbsec->initialized = 1;
567
568 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
569 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
570 sb->s_id, sb->s_type->name);
571 }
572 else {
573 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
574 sb->s_id, sb->s_type->name,
575 labeling_behaviors[sbsec->behavior-1]);
576 }
577
578 /* Initialize the root inode. */
579 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
580
581 /* Initialize any other inodes associated with the superblock, e.g.
582 inodes created prior to initial policy load or inodes created
583 during get_sb by a pseudo filesystem that directly
584 populates itself. */
585 spin_lock(&sbsec->isec_lock);
586 next_inode:
587 if (!list_empty(&sbsec->isec_head)) {
588 struct inode_security_struct *isec =
589 list_entry(sbsec->isec_head.next,
590 struct inode_security_struct, list);
591 struct inode *inode = isec->inode;
592 spin_unlock(&sbsec->isec_lock);
593 inode = igrab(inode);
594 if (inode) {
595 if (!IS_PRIVATE (inode))
596 inode_doinit(inode);
597 iput(inode);
598 }
599 spin_lock(&sbsec->isec_lock);
600 list_del_init(&isec->list);
601 goto next_inode;
602 }
603 spin_unlock(&sbsec->isec_lock);
604 out:
605 up(&sbsec->sem);
606 return rc;
607 }
608
609 static inline u16 inode_mode_to_security_class(umode_t mode)
610 {
611 switch (mode & S_IFMT) {
612 case S_IFSOCK:
613 return SECCLASS_SOCK_FILE;
614 case S_IFLNK:
615 return SECCLASS_LNK_FILE;
616 case S_IFREG:
617 return SECCLASS_FILE;
618 case S_IFBLK:
619 return SECCLASS_BLK_FILE;
620 case S_IFDIR:
621 return SECCLASS_DIR;
622 case S_IFCHR:
623 return SECCLASS_CHR_FILE;
624 case S_IFIFO:
625 return SECCLASS_FIFO_FILE;
626
627 }
628
629 return SECCLASS_FILE;
630 }
631
632 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
633 {
634 switch (family) {
635 case PF_UNIX:
636 switch (type) {
637 case SOCK_STREAM:
638 case SOCK_SEQPACKET:
639 return SECCLASS_UNIX_STREAM_SOCKET;
640 case SOCK_DGRAM:
641 return SECCLASS_UNIX_DGRAM_SOCKET;
642 }
643 break;
644 case PF_INET:
645 case PF_INET6:
646 switch (type) {
647 case SOCK_STREAM:
648 return SECCLASS_TCP_SOCKET;
649 case SOCK_DGRAM:
650 return SECCLASS_UDP_SOCKET;
651 case SOCK_RAW:
652 return SECCLASS_RAWIP_SOCKET;
653 }
654 break;
655 case PF_NETLINK:
656 switch (protocol) {
657 case NETLINK_ROUTE:
658 return SECCLASS_NETLINK_ROUTE_SOCKET;
659 case NETLINK_FIREWALL:
660 return SECCLASS_NETLINK_FIREWALL_SOCKET;
661 case NETLINK_TCPDIAG:
662 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
663 case NETLINK_NFLOG:
664 return SECCLASS_NETLINK_NFLOG_SOCKET;
665 case NETLINK_XFRM:
666 return SECCLASS_NETLINK_XFRM_SOCKET;
667 case NETLINK_SELINUX:
668 return SECCLASS_NETLINK_SELINUX_SOCKET;
669 case NETLINK_AUDIT:
670 return SECCLASS_NETLINK_AUDIT_SOCKET;
671 case NETLINK_IP6_FW:
672 return SECCLASS_NETLINK_IP6FW_SOCKET;
673 case NETLINK_DNRTMSG:
674 return SECCLASS_NETLINK_DNRT_SOCKET;
675 case NETLINK_KOBJECT_UEVENT:
676 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
677 default:
678 return SECCLASS_NETLINK_SOCKET;
679 }
680 case PF_PACKET:
681 return SECCLASS_PACKET_SOCKET;
682 case PF_KEY:
683 return SECCLASS_KEY_SOCKET;
684 }
685
686 return SECCLASS_SOCKET;
687 }
688
689 #ifdef CONFIG_PROC_FS
690 static int selinux_proc_get_sid(struct proc_dir_entry *de,
691 u16 tclass,
692 u32 *sid)
693 {
694 int buflen, rc;
695 char *buffer, *path, *end;
696
697 buffer = (char*)__get_free_page(GFP_KERNEL);
698 if (!buffer)
699 return -ENOMEM;
700
701 buflen = PAGE_SIZE;
702 end = buffer+buflen;
703 *--end = '\0';
704 buflen--;
705 path = end-1;
706 *path = '/';
707 while (de && de != de->parent) {
708 buflen -= de->namelen + 1;
709 if (buflen < 0)
710 break;
711 end -= de->namelen;
712 memcpy(end, de->name, de->namelen);
713 *--end = '/';
714 path = end;
715 de = de->parent;
716 }
717 rc = security_genfs_sid("proc", path, tclass, sid);
718 free_page((unsigned long)buffer);
719 return rc;
720 }
721 #else
722 static int selinux_proc_get_sid(struct proc_dir_entry *de,
723 u16 tclass,
724 u32 *sid)
725 {
726 return -EINVAL;
727 }
728 #endif
729
730 /* The inode's security attributes must be initialized before first use. */
731 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
732 {
733 struct superblock_security_struct *sbsec = NULL;
734 struct inode_security_struct *isec = inode->i_security;
735 u32 sid;
736 struct dentry *dentry;
737 #define INITCONTEXTLEN 255
738 char *context = NULL;
739 unsigned len = 0;
740 int rc = 0;
741 int hold_sem = 0;
742
743 if (isec->initialized)
744 goto out;
745
746 down(&isec->sem);
747 hold_sem = 1;
748 if (isec->initialized)
749 goto out;
750
751 sbsec = inode->i_sb->s_security;
752 if (!sbsec->initialized) {
753 /* Defer initialization until selinux_complete_init,
754 after the initial policy is loaded and the security
755 server is ready to handle calls. */
756 spin_lock(&sbsec->isec_lock);
757 if (list_empty(&isec->list))
758 list_add(&isec->list, &sbsec->isec_head);
759 spin_unlock(&sbsec->isec_lock);
760 goto out;
761 }
762
763 switch (sbsec->behavior) {
764 case SECURITY_FS_USE_XATTR:
765 if (!inode->i_op->getxattr) {
766 isec->sid = sbsec->def_sid;
767 break;
768 }
769
770 /* Need a dentry, since the xattr API requires one.
771 Life would be simpler if we could just pass the inode. */
772 if (opt_dentry) {
773 /* Called from d_instantiate or d_splice_alias. */
774 dentry = dget(opt_dentry);
775 } else {
776 /* Called from selinux_complete_init, try to find a dentry. */
777 dentry = d_find_alias(inode);
778 }
779 if (!dentry) {
780 printk(KERN_WARNING "%s: no dentry for dev=%s "
781 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
782 inode->i_ino);
783 goto out;
784 }
785
786 len = INITCONTEXTLEN;
787 context = kmalloc(len, GFP_KERNEL);
788 if (!context) {
789 rc = -ENOMEM;
790 dput(dentry);
791 goto out;
792 }
793 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
794 context, len);
795 if (rc == -ERANGE) {
796 /* Need a larger buffer. Query for the right size. */
797 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
798 NULL, 0);
799 if (rc < 0) {
800 dput(dentry);
801 goto out;
802 }
803 kfree(context);
804 len = rc;
805 context = kmalloc(len, GFP_KERNEL);
806 if (!context) {
807 rc = -ENOMEM;
808 dput(dentry);
809 goto out;
810 }
811 rc = inode->i_op->getxattr(dentry,
812 XATTR_NAME_SELINUX,
813 context, len);
814 }
815 dput(dentry);
816 if (rc < 0) {
817 if (rc != -ENODATA) {
818 printk(KERN_WARNING "%s: getxattr returned "
819 "%d for dev=%s ino=%ld\n", __FUNCTION__,
820 -rc, inode->i_sb->s_id, inode->i_ino);
821 kfree(context);
822 goto out;
823 }
824 /* Map ENODATA to the default file SID */
825 sid = sbsec->def_sid;
826 rc = 0;
827 } else {
828 rc = security_context_to_sid(context, rc, &sid);
829 if (rc) {
830 printk(KERN_WARNING "%s: context_to_sid(%s) "
831 "returned %d for dev=%s ino=%ld\n",
832 __FUNCTION__, context, -rc,
833 inode->i_sb->s_id, inode->i_ino);
834 kfree(context);
835 /* Leave with the unlabeled SID */
836 rc = 0;
837 break;
838 }
839 }
840 kfree(context);
841 isec->sid = sid;
842 break;
843 case SECURITY_FS_USE_TASK:
844 isec->sid = isec->task_sid;
845 break;
846 case SECURITY_FS_USE_TRANS:
847 /* Default to the fs SID. */
848 isec->sid = sbsec->sid;
849
850 /* Try to obtain a transition SID. */
851 isec->sclass = inode_mode_to_security_class(inode->i_mode);
852 rc = security_transition_sid(isec->task_sid,
853 sbsec->sid,
854 isec->sclass,
855 &sid);
856 if (rc)
857 goto out;
858 isec->sid = sid;
859 break;
860 default:
861 /* Default to the fs SID. */
862 isec->sid = sbsec->sid;
863
864 if (sbsec->proc) {
865 struct proc_inode *proci = PROC_I(inode);
866 if (proci->pde) {
867 isec->sclass = inode_mode_to_security_class(inode->i_mode);
868 rc = selinux_proc_get_sid(proci->pde,
869 isec->sclass,
870 &sid);
871 if (rc)
872 goto out;
873 isec->sid = sid;
874 }
875 }
876 break;
877 }
878
879 isec->initialized = 1;
880
881 out:
882 if (isec->sclass == SECCLASS_FILE)
883 isec->sclass = inode_mode_to_security_class(inode->i_mode);
884
885 if (hold_sem)
886 up(&isec->sem);
887 return rc;
888 }
889
890 /* Convert a Linux signal to an access vector. */
891 static inline u32 signal_to_av(int sig)
892 {
893 u32 perm = 0;
894
895 switch (sig) {
896 case SIGCHLD:
897 /* Commonly granted from child to parent. */
898 perm = PROCESS__SIGCHLD;
899 break;
900 case SIGKILL:
901 /* Cannot be caught or ignored */
902 perm = PROCESS__SIGKILL;
903 break;
904 case SIGSTOP:
905 /* Cannot be caught or ignored */
906 perm = PROCESS__SIGSTOP;
907 break;
908 default:
909 /* All other signals. */
910 perm = PROCESS__SIGNAL;
911 break;
912 }
913
914 return perm;
915 }
916
917 /* Check permission betweeen a pair of tasks, e.g. signal checks,
918 fork check, ptrace check, etc. */
919 static int task_has_perm(struct task_struct *tsk1,
920 struct task_struct *tsk2,
921 u32 perms)
922 {
923 struct task_security_struct *tsec1, *tsec2;
924
925 tsec1 = tsk1->security;
926 tsec2 = tsk2->security;
927 return avc_has_perm(tsec1->sid, tsec2->sid,
928 SECCLASS_PROCESS, perms, NULL);
929 }
930
931 /* Check whether a task is allowed to use a capability. */
932 static int task_has_capability(struct task_struct *tsk,
933 int cap)
934 {
935 struct task_security_struct *tsec;
936 struct avc_audit_data ad;
937
938 tsec = tsk->security;
939
940 AVC_AUDIT_DATA_INIT(&ad,CAP);
941 ad.tsk = tsk;
942 ad.u.cap = cap;
943
944 return avc_has_perm(tsec->sid, tsec->sid,
945 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
946 }
947
948 /* Check whether a task is allowed to use a system operation. */
949 static int task_has_system(struct task_struct *tsk,
950 u32 perms)
951 {
952 struct task_security_struct *tsec;
953
954 tsec = tsk->security;
955
956 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
957 SECCLASS_SYSTEM, perms, NULL);
958 }
959
960 /* Check whether a task has a particular permission to an inode.
961 The 'adp' parameter is optional and allows other audit
962 data to be passed (e.g. the dentry). */
963 static int inode_has_perm(struct task_struct *tsk,
964 struct inode *inode,
965 u32 perms,
966 struct avc_audit_data *adp)
967 {
968 struct task_security_struct *tsec;
969 struct inode_security_struct *isec;
970 struct avc_audit_data ad;
971
972 tsec = tsk->security;
973 isec = inode->i_security;
974
975 if (!adp) {
976 adp = &ad;
977 AVC_AUDIT_DATA_INIT(&ad, FS);
978 ad.u.fs.inode = inode;
979 }
980
981 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
982 }
983
984 /* Same as inode_has_perm, but pass explicit audit data containing
985 the dentry to help the auditing code to more easily generate the
986 pathname if needed. */
987 static inline int dentry_has_perm(struct task_struct *tsk,
988 struct vfsmount *mnt,
989 struct dentry *dentry,
990 u32 av)
991 {
992 struct inode *inode = dentry->d_inode;
993 struct avc_audit_data ad;
994 AVC_AUDIT_DATA_INIT(&ad,FS);
995 ad.u.fs.mnt = mnt;
996 ad.u.fs.dentry = dentry;
997 return inode_has_perm(tsk, inode, av, &ad);
998 }
999
1000 /* Check whether a task can use an open file descriptor to
1001 access an inode in a given way. Check access to the
1002 descriptor itself, and then use dentry_has_perm to
1003 check a particular permission to the file.
1004 Access to the descriptor is implicitly granted if it
1005 has the same SID as the process. If av is zero, then
1006 access to the file is not checked, e.g. for cases
1007 where only the descriptor is affected like seek. */
1008 static inline int file_has_perm(struct task_struct *tsk,
1009 struct file *file,
1010 u32 av)
1011 {
1012 struct task_security_struct *tsec = tsk->security;
1013 struct file_security_struct *fsec = file->f_security;
1014 struct vfsmount *mnt = file->f_vfsmnt;
1015 struct dentry *dentry = file->f_dentry;
1016 struct inode *inode = dentry->d_inode;
1017 struct avc_audit_data ad;
1018 int rc;
1019
1020 AVC_AUDIT_DATA_INIT(&ad, FS);
1021 ad.u.fs.mnt = mnt;
1022 ad.u.fs.dentry = dentry;
1023
1024 if (tsec->sid != fsec->sid) {
1025 rc = avc_has_perm(tsec->sid, fsec->sid,
1026 SECCLASS_FD,
1027 FD__USE,
1028 &ad);
1029 if (rc)
1030 return rc;
1031 }
1032
1033 /* av is zero if only checking access to the descriptor. */
1034 if (av)
1035 return inode_has_perm(tsk, inode, av, &ad);
1036
1037 return 0;
1038 }
1039
1040 /* Check whether a task can create a file. */
1041 static int may_create(struct inode *dir,
1042 struct dentry *dentry,
1043 u16 tclass)
1044 {
1045 struct task_security_struct *tsec;
1046 struct inode_security_struct *dsec;
1047 struct superblock_security_struct *sbsec;
1048 u32 newsid;
1049 struct avc_audit_data ad;
1050 int rc;
1051
1052 tsec = current->security;
1053 dsec = dir->i_security;
1054 sbsec = dir->i_sb->s_security;
1055
1056 AVC_AUDIT_DATA_INIT(&ad, FS);
1057 ad.u.fs.dentry = dentry;
1058
1059 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1060 DIR__ADD_NAME | DIR__SEARCH,
1061 &ad);
1062 if (rc)
1063 return rc;
1064
1065 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1066 newsid = tsec->create_sid;
1067 } else {
1068 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1069 &newsid);
1070 if (rc)
1071 return rc;
1072 }
1073
1074 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1075 if (rc)
1076 return rc;
1077
1078 return avc_has_perm(newsid, sbsec->sid,
1079 SECCLASS_FILESYSTEM,
1080 FILESYSTEM__ASSOCIATE, &ad);
1081 }
1082
1083 #define MAY_LINK 0
1084 #define MAY_UNLINK 1
1085 #define MAY_RMDIR 2
1086
1087 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1088 static int may_link(struct inode *dir,
1089 struct dentry *dentry,
1090 int kind)
1091
1092 {
1093 struct task_security_struct *tsec;
1094 struct inode_security_struct *dsec, *isec;
1095 struct avc_audit_data ad;
1096 u32 av;
1097 int rc;
1098
1099 tsec = current->security;
1100 dsec = dir->i_security;
1101 isec = dentry->d_inode->i_security;
1102
1103 AVC_AUDIT_DATA_INIT(&ad, FS);
1104 ad.u.fs.dentry = dentry;
1105
1106 av = DIR__SEARCH;
1107 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1108 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1109 if (rc)
1110 return rc;
1111
1112 switch (kind) {
1113 case MAY_LINK:
1114 av = FILE__LINK;
1115 break;
1116 case MAY_UNLINK:
1117 av = FILE__UNLINK;
1118 break;
1119 case MAY_RMDIR:
1120 av = DIR__RMDIR;
1121 break;
1122 default:
1123 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1124 return 0;
1125 }
1126
1127 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1128 return rc;
1129 }
1130
1131 static inline int may_rename(struct inode *old_dir,
1132 struct dentry *old_dentry,
1133 struct inode *new_dir,
1134 struct dentry *new_dentry)
1135 {
1136 struct task_security_struct *tsec;
1137 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1138 struct avc_audit_data ad;
1139 u32 av;
1140 int old_is_dir, new_is_dir;
1141 int rc;
1142
1143 tsec = current->security;
1144 old_dsec = old_dir->i_security;
1145 old_isec = old_dentry->d_inode->i_security;
1146 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1147 new_dsec = new_dir->i_security;
1148
1149 AVC_AUDIT_DATA_INIT(&ad, FS);
1150
1151 ad.u.fs.dentry = old_dentry;
1152 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1153 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1154 if (rc)
1155 return rc;
1156 rc = avc_has_perm(tsec->sid, old_isec->sid,
1157 old_isec->sclass, FILE__RENAME, &ad);
1158 if (rc)
1159 return rc;
1160 if (old_is_dir && new_dir != old_dir) {
1161 rc = avc_has_perm(tsec->sid, old_isec->sid,
1162 old_isec->sclass, DIR__REPARENT, &ad);
1163 if (rc)
1164 return rc;
1165 }
1166
1167 ad.u.fs.dentry = new_dentry;
1168 av = DIR__ADD_NAME | DIR__SEARCH;
1169 if (new_dentry->d_inode)
1170 av |= DIR__REMOVE_NAME;
1171 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1172 if (rc)
1173 return rc;
1174 if (new_dentry->d_inode) {
1175 new_isec = new_dentry->d_inode->i_security;
1176 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1177 rc = avc_has_perm(tsec->sid, new_isec->sid,
1178 new_isec->sclass,
1179 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1180 if (rc)
1181 return rc;
1182 }
1183
1184 return 0;
1185 }
1186
1187 /* Check whether a task can perform a filesystem operation. */
1188 static int superblock_has_perm(struct task_struct *tsk,
1189 struct super_block *sb,
1190 u32 perms,
1191 struct avc_audit_data *ad)
1192 {
1193 struct task_security_struct *tsec;
1194 struct superblock_security_struct *sbsec;
1195
1196 tsec = tsk->security;
1197 sbsec = sb->s_security;
1198 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1199 perms, ad);
1200 }
1201
1202 /* Convert a Linux mode and permission mask to an access vector. */
1203 static inline u32 file_mask_to_av(int mode, int mask)
1204 {
1205 u32 av = 0;
1206
1207 if ((mode & S_IFMT) != S_IFDIR) {
1208 if (mask & MAY_EXEC)
1209 av |= FILE__EXECUTE;
1210 if (mask & MAY_READ)
1211 av |= FILE__READ;
1212
1213 if (mask & MAY_APPEND)
1214 av |= FILE__APPEND;
1215 else if (mask & MAY_WRITE)
1216 av |= FILE__WRITE;
1217
1218 } else {
1219 if (mask & MAY_EXEC)
1220 av |= DIR__SEARCH;
1221 if (mask & MAY_WRITE)
1222 av |= DIR__WRITE;
1223 if (mask & MAY_READ)
1224 av |= DIR__READ;
1225 }
1226
1227 return av;
1228 }
1229
1230 /* Convert a Linux file to an access vector. */
1231 static inline u32 file_to_av(struct file *file)
1232 {
1233 u32 av = 0;
1234
1235 if (file->f_mode & FMODE_READ)
1236 av |= FILE__READ;
1237 if (file->f_mode & FMODE_WRITE) {
1238 if (file->f_flags & O_APPEND)
1239 av |= FILE__APPEND;
1240 else
1241 av |= FILE__WRITE;
1242 }
1243
1244 return av;
1245 }
1246
1247 /* Set an inode's SID to a specified value. */
1248 static int inode_security_set_sid(struct inode *inode, u32 sid)
1249 {
1250 struct inode_security_struct *isec = inode->i_security;
1251 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1252
1253 if (!sbsec->initialized) {
1254 /* Defer initialization to selinux_complete_init. */
1255 return 0;
1256 }
1257
1258 down(&isec->sem);
1259 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1260 isec->sid = sid;
1261 isec->initialized = 1;
1262 up(&isec->sem);
1263 return 0;
1264 }
1265
1266 /* Set the security attributes on a newly created file. */
1267 static int post_create(struct inode *dir,
1268 struct dentry *dentry)
1269 {
1270
1271 struct task_security_struct *tsec;
1272 struct inode *inode;
1273 struct inode_security_struct *dsec;
1274 struct superblock_security_struct *sbsec;
1275 u32 newsid;
1276 char *context;
1277 unsigned int len;
1278 int rc;
1279
1280 tsec = current->security;
1281 dsec = dir->i_security;
1282 sbsec = dir->i_sb->s_security;
1283
1284 inode = dentry->d_inode;
1285 if (!inode) {
1286 /* Some file system types (e.g. NFS) may not instantiate
1287 a dentry for all create operations (e.g. symlink),
1288 so we have to check to see if the inode is non-NULL. */
1289 printk(KERN_WARNING "post_create: no inode, dir (dev=%s, "
1290 "ino=%ld)\n", dir->i_sb->s_id, dir->i_ino);
1291 return 0;
1292 }
1293
1294 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1295 newsid = tsec->create_sid;
1296 } else {
1297 rc = security_transition_sid(tsec->sid, dsec->sid,
1298 inode_mode_to_security_class(inode->i_mode),
1299 &newsid);
1300 if (rc) {
1301 printk(KERN_WARNING "post_create: "
1302 "security_transition_sid failed, rc=%d (dev=%s "
1303 "ino=%ld)\n",
1304 -rc, inode->i_sb->s_id, inode->i_ino);
1305 return rc;
1306 }
1307 }
1308
1309 rc = inode_security_set_sid(inode, newsid);
1310 if (rc) {
1311 printk(KERN_WARNING "post_create: inode_security_set_sid "
1312 "failed, rc=%d (dev=%s ino=%ld)\n",
1313 -rc, inode->i_sb->s_id, inode->i_ino);
1314 return rc;
1315 }
1316
1317 if (sbsec->behavior == SECURITY_FS_USE_XATTR &&
1318 inode->i_op->setxattr) {
1319 /* Use extended attributes. */
1320 rc = security_sid_to_context(newsid, &context, &len);
1321 if (rc) {
1322 printk(KERN_WARNING "post_create: sid_to_context "
1323 "failed, rc=%d (dev=%s ino=%ld)\n",
1324 -rc, inode->i_sb->s_id, inode->i_ino);
1325 return rc;
1326 }
1327 down(&inode->i_sem);
1328 rc = inode->i_op->setxattr(dentry,
1329 XATTR_NAME_SELINUX,
1330 context, len, 0);
1331 up(&inode->i_sem);
1332 kfree(context);
1333 if (rc < 0) {
1334 printk(KERN_WARNING "post_create: setxattr failed, "
1335 "rc=%d (dev=%s ino=%ld)\n",
1336 -rc, inode->i_sb->s_id, inode->i_ino);
1337 return rc;
1338 }
1339 }
1340
1341 return 0;
1342 }
1343
1344
1345 /* Hook functions begin here. */
1346
1347 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1348 {
1349 struct task_security_struct *psec = parent->security;
1350 struct task_security_struct *csec = child->security;
1351 int rc;
1352
1353 rc = secondary_ops->ptrace(parent,child);
1354 if (rc)
1355 return rc;
1356
1357 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1358 /* Save the SID of the tracing process for later use in apply_creds. */
1359 if (!rc)
1360 csec->ptrace_sid = psec->sid;
1361 return rc;
1362 }
1363
1364 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1365 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1366 {
1367 int error;
1368
1369 error = task_has_perm(current, target, PROCESS__GETCAP);
1370 if (error)
1371 return error;
1372
1373 return secondary_ops->capget(target, effective, inheritable, permitted);
1374 }
1375
1376 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1377 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1378 {
1379 int error;
1380
1381 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1382 if (error)
1383 return error;
1384
1385 return task_has_perm(current, target, PROCESS__SETCAP);
1386 }
1387
1388 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1389 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1390 {
1391 secondary_ops->capset_set(target, effective, inheritable, permitted);
1392 }
1393
1394 static int selinux_capable(struct task_struct *tsk, int cap)
1395 {
1396 int rc;
1397
1398 rc = secondary_ops->capable(tsk, cap);
1399 if (rc)
1400 return rc;
1401
1402 return task_has_capability(tsk,cap);
1403 }
1404
1405 static int selinux_sysctl(ctl_table *table, int op)
1406 {
1407 int error = 0;
1408 u32 av;
1409 struct task_security_struct *tsec;
1410 u32 tsid;
1411 int rc;
1412
1413 rc = secondary_ops->sysctl(table, op);
1414 if (rc)
1415 return rc;
1416
1417 tsec = current->security;
1418
1419 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1420 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1421 if (rc) {
1422 /* Default to the well-defined sysctl SID. */
1423 tsid = SECINITSID_SYSCTL;
1424 }
1425
1426 /* The op values are "defined" in sysctl.c, thereby creating
1427 * a bad coupling between this module and sysctl.c */
1428 if(op == 001) {
1429 error = avc_has_perm(tsec->sid, tsid,
1430 SECCLASS_DIR, DIR__SEARCH, NULL);
1431 } else {
1432 av = 0;
1433 if (op & 004)
1434 av |= FILE__READ;
1435 if (op & 002)
1436 av |= FILE__WRITE;
1437 if (av)
1438 error = avc_has_perm(tsec->sid, tsid,
1439 SECCLASS_FILE, av, NULL);
1440 }
1441
1442 return error;
1443 }
1444
1445 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1446 {
1447 int rc = 0;
1448
1449 if (!sb)
1450 return 0;
1451
1452 switch (cmds) {
1453 case Q_SYNC:
1454 case Q_QUOTAON:
1455 case Q_QUOTAOFF:
1456 case Q_SETINFO:
1457 case Q_SETQUOTA:
1458 rc = superblock_has_perm(current,
1459 sb,
1460 FILESYSTEM__QUOTAMOD, NULL);
1461 break;
1462 case Q_GETFMT:
1463 case Q_GETINFO:
1464 case Q_GETQUOTA:
1465 rc = superblock_has_perm(current,
1466 sb,
1467 FILESYSTEM__QUOTAGET, NULL);
1468 break;
1469 default:
1470 rc = 0; /* let the kernel handle invalid cmds */
1471 break;
1472 }
1473 return rc;
1474 }
1475
1476 static int selinux_quota_on(struct dentry *dentry)
1477 {
1478 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1479 }
1480
1481 static int selinux_syslog(int type)
1482 {
1483 int rc;
1484
1485 rc = secondary_ops->syslog(type);
1486 if (rc)
1487 return rc;
1488
1489 switch (type) {
1490 case 3: /* Read last kernel messages */
1491 case 10: /* Return size of the log buffer */
1492 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1493 break;
1494 case 6: /* Disable logging to console */
1495 case 7: /* Enable logging to console */
1496 case 8: /* Set level of messages printed to console */
1497 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1498 break;
1499 case 0: /* Close log */
1500 case 1: /* Open log */
1501 case 2: /* Read from log */
1502 case 4: /* Read/clear last kernel messages */
1503 case 5: /* Clear ring buffer */
1504 default:
1505 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1506 break;
1507 }
1508 return rc;
1509 }
1510
1511 /*
1512 * Check that a process has enough memory to allocate a new virtual
1513 * mapping. 0 means there is enough memory for the allocation to
1514 * succeed and -ENOMEM implies there is not.
1515 *
1516 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1517 * if the capability is granted, but __vm_enough_memory requires 1 if
1518 * the capability is granted.
1519 *
1520 * Do not audit the selinux permission check, as this is applied to all
1521 * processes that allocate mappings.
1522 */
1523 static int selinux_vm_enough_memory(long pages)
1524 {
1525 int rc, cap_sys_admin = 0;
1526 struct task_security_struct *tsec = current->security;
1527
1528 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1529 if (rc == 0)
1530 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1531 SECCLASS_CAPABILITY,
1532 CAP_TO_MASK(CAP_SYS_ADMIN),
1533 NULL);
1534
1535 if (rc == 0)
1536 cap_sys_admin = 1;
1537
1538 return __vm_enough_memory(pages, cap_sys_admin);
1539 }
1540
1541 /* binprm security operations */
1542
1543 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1544 {
1545 struct bprm_security_struct *bsec;
1546
1547 bsec = kmalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1548 if (!bsec)
1549 return -ENOMEM;
1550
1551 memset(bsec, 0, sizeof *bsec);
1552 bsec->magic = SELINUX_MAGIC;
1553 bsec->bprm = bprm;
1554 bsec->sid = SECINITSID_UNLABELED;
1555 bsec->set = 0;
1556
1557 bprm->security = bsec;
1558 return 0;
1559 }
1560
1561 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1562 {
1563 struct task_security_struct *tsec;
1564 struct inode *inode = bprm->file->f_dentry->d_inode;
1565 struct inode_security_struct *isec;
1566 struct bprm_security_struct *bsec;
1567 u32 newsid;
1568 struct avc_audit_data ad;
1569 int rc;
1570
1571 rc = secondary_ops->bprm_set_security(bprm);
1572 if (rc)
1573 return rc;
1574
1575 bsec = bprm->security;
1576
1577 if (bsec->set)
1578 return 0;
1579
1580 tsec = current->security;
1581 isec = inode->i_security;
1582
1583 /* Default to the current task SID. */
1584 bsec->sid = tsec->sid;
1585
1586 /* Reset create SID on execve. */
1587 tsec->create_sid = 0;
1588
1589 if (tsec->exec_sid) {
1590 newsid = tsec->exec_sid;
1591 /* Reset exec SID on execve. */
1592 tsec->exec_sid = 0;
1593 } else {
1594 /* Check for a default transition on this program. */
1595 rc = security_transition_sid(tsec->sid, isec->sid,
1596 SECCLASS_PROCESS, &newsid);
1597 if (rc)
1598 return rc;
1599 }
1600
1601 AVC_AUDIT_DATA_INIT(&ad, FS);
1602 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1603 ad.u.fs.dentry = bprm->file->f_dentry;
1604
1605 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1606 newsid = tsec->sid;
1607
1608 if (tsec->sid == newsid) {
1609 rc = avc_has_perm(tsec->sid, isec->sid,
1610 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1611 if (rc)
1612 return rc;
1613 } else {
1614 /* Check permissions for the transition. */
1615 rc = avc_has_perm(tsec->sid, newsid,
1616 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1617 if (rc)
1618 return rc;
1619
1620 rc = avc_has_perm(newsid, isec->sid,
1621 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1622 if (rc)
1623 return rc;
1624
1625 /* Clear any possibly unsafe personality bits on exec: */
1626 current->personality &= ~PER_CLEAR_ON_SETID;
1627
1628 /* Set the security field to the new SID. */
1629 bsec->sid = newsid;
1630 }
1631
1632 bsec->set = 1;
1633 return 0;
1634 }
1635
1636 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1637 {
1638 return secondary_ops->bprm_check_security(bprm);
1639 }
1640
1641
1642 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1643 {
1644 struct task_security_struct *tsec = current->security;
1645 int atsecure = 0;
1646
1647 if (tsec->osid != tsec->sid) {
1648 /* Enable secure mode for SIDs transitions unless
1649 the noatsecure permission is granted between
1650 the two SIDs, i.e. ahp returns 0. */
1651 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1652 SECCLASS_PROCESS,
1653 PROCESS__NOATSECURE, NULL);
1654 }
1655
1656 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1657 }
1658
1659 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1660 {
1661 kfree(bprm->security);
1662 bprm->security = NULL;
1663 }
1664
1665 extern struct vfsmount *selinuxfs_mount;
1666 extern struct dentry *selinux_null;
1667
1668 /* Derived from fs/exec.c:flush_old_files. */
1669 static inline void flush_unauthorized_files(struct files_struct * files)
1670 {
1671 struct avc_audit_data ad;
1672 struct file *file, *devnull = NULL;
1673 struct tty_struct *tty = current->signal->tty;
1674 long j = -1;
1675
1676 if (tty) {
1677 file_list_lock();
1678 file = list_entry(tty->tty_files.next, typeof(*file), f_list);
1679 if (file) {
1680 /* Revalidate access to controlling tty.
1681 Use inode_has_perm on the tty inode directly rather
1682 than using file_has_perm, as this particular open
1683 file may belong to another process and we are only
1684 interested in the inode-based check here. */
1685 struct inode *inode = file->f_dentry->d_inode;
1686 if (inode_has_perm(current, inode,
1687 FILE__READ | FILE__WRITE, NULL)) {
1688 /* Reset controlling tty. */
1689 current->signal->tty = NULL;
1690 current->signal->tty_old_pgrp = 0;
1691 }
1692 }
1693 file_list_unlock();
1694 }
1695
1696 /* Revalidate access to inherited open files. */
1697
1698 AVC_AUDIT_DATA_INIT(&ad,FS);
1699
1700 spin_lock(&files->file_lock);
1701 for (;;) {
1702 unsigned long set, i;
1703 int fd;
1704
1705 j++;
1706 i = j * __NFDBITS;
1707 if (i >= files->max_fds || i >= files->max_fdset)
1708 break;
1709 set = files->open_fds->fds_bits[j];
1710 if (!set)
1711 continue;
1712 spin_unlock(&files->file_lock);
1713 for ( ; set ; i++,set >>= 1) {
1714 if (set & 1) {
1715 file = fget(i);
1716 if (!file)
1717 continue;
1718 if (file_has_perm(current,
1719 file,
1720 file_to_av(file))) {
1721 sys_close(i);
1722 fd = get_unused_fd();
1723 if (fd != i) {
1724 if (fd >= 0)
1725 put_unused_fd(fd);
1726 fput(file);
1727 continue;
1728 }
1729 if (devnull) {
1730 atomic_inc(&devnull->f_count);
1731 } else {
1732 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1733 if (!devnull) {
1734 put_unused_fd(fd);
1735 fput(file);
1736 continue;
1737 }
1738 }
1739 fd_install(fd, devnull);
1740 }
1741 fput(file);
1742 }
1743 }
1744 spin_lock(&files->file_lock);
1745
1746 }
1747 spin_unlock(&files->file_lock);
1748 }
1749
1750 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1751 {
1752 struct task_security_struct *tsec;
1753 struct bprm_security_struct *bsec;
1754 u32 sid;
1755 int rc;
1756
1757 secondary_ops->bprm_apply_creds(bprm, unsafe);
1758
1759 tsec = current->security;
1760
1761 bsec = bprm->security;
1762 sid = bsec->sid;
1763
1764 tsec->osid = tsec->sid;
1765 bsec->unsafe = 0;
1766 if (tsec->sid != sid) {
1767 /* Check for shared state. If not ok, leave SID
1768 unchanged and kill. */
1769 if (unsafe & LSM_UNSAFE_SHARE) {
1770 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1771 PROCESS__SHARE, NULL);
1772 if (rc) {
1773 bsec->unsafe = 1;
1774 return;
1775 }
1776 }
1777
1778 /* Check for ptracing, and update the task SID if ok.
1779 Otherwise, leave SID unchanged and kill. */
1780 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1781 rc = avc_has_perm(tsec->ptrace_sid, sid,
1782 SECCLASS_PROCESS, PROCESS__PTRACE,
1783 NULL);
1784 if (rc) {
1785 bsec->unsafe = 1;
1786 return;
1787 }
1788 }
1789 tsec->sid = sid;
1790 }
1791 }
1792
1793 /*
1794 * called after apply_creds without the task lock held
1795 */
1796 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1797 {
1798 struct task_security_struct *tsec;
1799 struct rlimit *rlim, *initrlim;
1800 struct itimerval itimer;
1801 struct bprm_security_struct *bsec;
1802 int rc, i;
1803
1804 tsec = current->security;
1805 bsec = bprm->security;
1806
1807 if (bsec->unsafe) {
1808 force_sig_specific(SIGKILL, current);
1809 return;
1810 }
1811 if (tsec->osid == tsec->sid)
1812 return;
1813
1814 /* Close files for which the new task SID is not authorized. */
1815 flush_unauthorized_files(current->files);
1816
1817 /* Check whether the new SID can inherit signal state
1818 from the old SID. If not, clear itimers to avoid
1819 subsequent signal generation and flush and unblock
1820 signals. This must occur _after_ the task SID has
1821 been updated so that any kill done after the flush
1822 will be checked against the new SID. */
1823 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1824 PROCESS__SIGINH, NULL);
1825 if (rc) {
1826 memset(&itimer, 0, sizeof itimer);
1827 for (i = 0; i < 3; i++)
1828 do_setitimer(i, &itimer, NULL);
1829 flush_signals(current);
1830 spin_lock_irq(&current->sighand->siglock);
1831 flush_signal_handlers(current, 1);
1832 sigemptyset(&current->blocked);
1833 recalc_sigpending();
1834 spin_unlock_irq(&current->sighand->siglock);
1835 }
1836
1837 /* Check whether the new SID can inherit resource limits
1838 from the old SID. If not, reset all soft limits to
1839 the lower of the current task's hard limit and the init
1840 task's soft limit. Note that the setting of hard limits
1841 (even to lower them) can be controlled by the setrlimit
1842 check. The inclusion of the init task's soft limit into
1843 the computation is to avoid resetting soft limits higher
1844 than the default soft limit for cases where the default
1845 is lower than the hard limit, e.g. RLIMIT_CORE or
1846 RLIMIT_STACK.*/
1847 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1848 PROCESS__RLIMITINH, NULL);
1849 if (rc) {
1850 for (i = 0; i < RLIM_NLIMITS; i++) {
1851 rlim = current->signal->rlim + i;
1852 initrlim = init_task.signal->rlim+i;
1853 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1854 }
1855 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1856 /*
1857 * This will cause RLIMIT_CPU calculations
1858 * to be refigured.
1859 */
1860 current->it_prof_expires = jiffies_to_cputime(1);
1861 }
1862 }
1863
1864 /* Wake up the parent if it is waiting so that it can
1865 recheck wait permission to the new task SID. */
1866 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1867 }
1868
1869 /* superblock security operations */
1870
1871 static int selinux_sb_alloc_security(struct super_block *sb)
1872 {
1873 return superblock_alloc_security(sb);
1874 }
1875
1876 static void selinux_sb_free_security(struct super_block *sb)
1877 {
1878 superblock_free_security(sb);
1879 }
1880
1881 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1882 {
1883 if (plen > olen)
1884 return 0;
1885
1886 return !memcmp(prefix, option, plen);
1887 }
1888
1889 static inline int selinux_option(char *option, int len)
1890 {
1891 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1892 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1893 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len));
1894 }
1895
1896 static inline void take_option(char **to, char *from, int *first, int len)
1897 {
1898 if (!*first) {
1899 **to = ',';
1900 *to += 1;
1901 }
1902 else
1903 *first = 0;
1904 memcpy(*to, from, len);
1905 *to += len;
1906 }
1907
1908 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1909 {
1910 int fnosec, fsec, rc = 0;
1911 char *in_save, *in_curr, *in_end;
1912 char *sec_curr, *nosec_save, *nosec;
1913
1914 in_curr = orig;
1915 sec_curr = copy;
1916
1917 /* Binary mount data: just copy */
1918 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1919 copy_page(sec_curr, in_curr);
1920 goto out;
1921 }
1922
1923 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1924 if (!nosec) {
1925 rc = -ENOMEM;
1926 goto out;
1927 }
1928
1929 nosec_save = nosec;
1930 fnosec = fsec = 1;
1931 in_save = in_end = orig;
1932
1933 do {
1934 if (*in_end == ',' || *in_end == '\0') {
1935 int len = in_end - in_curr;
1936
1937 if (selinux_option(in_curr, len))
1938 take_option(&sec_curr, in_curr, &fsec, len);
1939 else
1940 take_option(&nosec, in_curr, &fnosec, len);
1941
1942 in_curr = in_end + 1;
1943 }
1944 } while (*in_end++);
1945
1946 copy_page(in_save, nosec_save);
1947 free_page((unsigned long)nosec_save);
1948 out:
1949 return rc;
1950 }
1951
1952 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1953 {
1954 struct avc_audit_data ad;
1955 int rc;
1956
1957 rc = superblock_doinit(sb, data);
1958 if (rc)
1959 return rc;
1960
1961 AVC_AUDIT_DATA_INIT(&ad,FS);
1962 ad.u.fs.dentry = sb->s_root;
1963 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1964 }
1965
1966 static int selinux_sb_statfs(struct super_block *sb)
1967 {
1968 struct avc_audit_data ad;
1969
1970 AVC_AUDIT_DATA_INIT(&ad,FS);
1971 ad.u.fs.dentry = sb->s_root;
1972 return superblock_has_perm(current, sb, FILESYSTEM__GETATTR, &ad);
1973 }
1974
1975 static int selinux_mount(char * dev_name,
1976 struct nameidata *nd,
1977 char * type,
1978 unsigned long flags,
1979 void * data)
1980 {
1981 int rc;
1982
1983 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
1984 if (rc)
1985 return rc;
1986
1987 if (flags & MS_REMOUNT)
1988 return superblock_has_perm(current, nd->mnt->mnt_sb,
1989 FILESYSTEM__REMOUNT, NULL);
1990 else
1991 return dentry_has_perm(current, nd->mnt, nd->dentry,
1992 FILE__MOUNTON);
1993 }
1994
1995 static int selinux_umount(struct vfsmount *mnt, int flags)
1996 {
1997 int rc;
1998
1999 rc = secondary_ops->sb_umount(mnt, flags);
2000 if (rc)
2001 return rc;
2002
2003 return superblock_has_perm(current,mnt->mnt_sb,
2004 FILESYSTEM__UNMOUNT,NULL);
2005 }
2006
2007 /* inode security operations */
2008
2009 static int selinux_inode_alloc_security(struct inode *inode)
2010 {
2011 return inode_alloc_security(inode);
2012 }
2013
2014 static void selinux_inode_free_security(struct inode *inode)
2015 {
2016 inode_free_security(inode);
2017 }
2018
2019 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2020 {
2021 return may_create(dir, dentry, SECCLASS_FILE);
2022 }
2023
2024 static void selinux_inode_post_create(struct inode *dir, struct dentry *dentry, int mask)
2025 {
2026 post_create(dir, dentry);
2027 }
2028
2029 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2030 {
2031 int rc;
2032
2033 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2034 if (rc)
2035 return rc;
2036 return may_link(dir, old_dentry, MAY_LINK);
2037 }
2038
2039 static void selinux_inode_post_link(struct dentry *old_dentry, struct inode *inode, struct dentry *new_dentry)
2040 {
2041 return;
2042 }
2043
2044 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2045 {
2046 int rc;
2047
2048 rc = secondary_ops->inode_unlink(dir, dentry);
2049 if (rc)
2050 return rc;
2051 return may_link(dir, dentry, MAY_UNLINK);
2052 }
2053
2054 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2055 {
2056 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2057 }
2058
2059 static void selinux_inode_post_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2060 {
2061 post_create(dir, dentry);
2062 }
2063
2064 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2065 {
2066 return may_create(dir, dentry, SECCLASS_DIR);
2067 }
2068
2069 static void selinux_inode_post_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2070 {
2071 post_create(dir, dentry);
2072 }
2073
2074 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2075 {
2076 return may_link(dir, dentry, MAY_RMDIR);
2077 }
2078
2079 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2080 {
2081 int rc;
2082
2083 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2084 if (rc)
2085 return rc;
2086
2087 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2088 }
2089
2090 static void selinux_inode_post_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2091 {
2092 post_create(dir, dentry);
2093 }
2094
2095 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2096 struct inode *new_inode, struct dentry *new_dentry)
2097 {
2098 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2099 }
2100
2101 static void selinux_inode_post_rename(struct inode *old_inode, struct dentry *old_dentry,
2102 struct inode *new_inode, struct dentry *new_dentry)
2103 {
2104 return;
2105 }
2106
2107 static int selinux_inode_readlink(struct dentry *dentry)
2108 {
2109 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2110 }
2111
2112 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2113 {
2114 int rc;
2115
2116 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2117 if (rc)
2118 return rc;
2119 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2120 }
2121
2122 static int selinux_inode_permission(struct inode *inode, int mask,
2123 struct nameidata *nd)
2124 {
2125 int rc;
2126
2127 rc = secondary_ops->inode_permission(inode, mask, nd);
2128 if (rc)
2129 return rc;
2130
2131 if (!mask) {
2132 /* No permission to check. Existence test. */
2133 return 0;
2134 }
2135
2136 return inode_has_perm(current, inode,
2137 file_mask_to_av(inode->i_mode, mask), NULL);
2138 }
2139
2140 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2141 {
2142 int rc;
2143
2144 rc = secondary_ops->inode_setattr(dentry, iattr);
2145 if (rc)
2146 return rc;
2147
2148 if (iattr->ia_valid & ATTR_FORCE)
2149 return 0;
2150
2151 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2152 ATTR_ATIME_SET | ATTR_MTIME_SET))
2153 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2154
2155 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2156 }
2157
2158 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2159 {
2160 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2161 }
2162
2163 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2164 {
2165 struct task_security_struct *tsec = current->security;
2166 struct inode *inode = dentry->d_inode;
2167 struct inode_security_struct *isec = inode->i_security;
2168 struct superblock_security_struct *sbsec;
2169 struct avc_audit_data ad;
2170 u32 newsid;
2171 int rc = 0;
2172
2173 if (strcmp(name, XATTR_NAME_SELINUX)) {
2174 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2175 sizeof XATTR_SECURITY_PREFIX - 1) &&
2176 !capable(CAP_SYS_ADMIN)) {
2177 /* A different attribute in the security namespace.
2178 Restrict to administrator. */
2179 return -EPERM;
2180 }
2181
2182 /* Not an attribute we recognize, so just check the
2183 ordinary setattr permission. */
2184 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2185 }
2186
2187 sbsec = inode->i_sb->s_security;
2188 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2189 return -EOPNOTSUPP;
2190
2191 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2192 return -EPERM;
2193
2194 AVC_AUDIT_DATA_INIT(&ad,FS);
2195 ad.u.fs.dentry = dentry;
2196
2197 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2198 FILE__RELABELFROM, &ad);
2199 if (rc)
2200 return rc;
2201
2202 rc = security_context_to_sid(value, size, &newsid);
2203 if (rc)
2204 return rc;
2205
2206 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2207 FILE__RELABELTO, &ad);
2208 if (rc)
2209 return rc;
2210
2211 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2212 isec->sclass);
2213 if (rc)
2214 return rc;
2215
2216 return avc_has_perm(newsid,
2217 sbsec->sid,
2218 SECCLASS_FILESYSTEM,
2219 FILESYSTEM__ASSOCIATE,
2220 &ad);
2221 }
2222
2223 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2224 void *value, size_t size, int flags)
2225 {
2226 struct inode *inode = dentry->d_inode;
2227 struct inode_security_struct *isec = inode->i_security;
2228 u32 newsid;
2229 int rc;
2230
2231 if (strcmp(name, XATTR_NAME_SELINUX)) {
2232 /* Not an attribute we recognize, so nothing to do. */
2233 return;
2234 }
2235
2236 rc = security_context_to_sid(value, size, &newsid);
2237 if (rc) {
2238 printk(KERN_WARNING "%s: unable to obtain SID for context "
2239 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2240 return;
2241 }
2242
2243 isec->sid = newsid;
2244 return;
2245 }
2246
2247 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2248 {
2249 struct inode *inode = dentry->d_inode;
2250 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
2251
2252 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2253 return -EOPNOTSUPP;
2254
2255 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2256 }
2257
2258 static int selinux_inode_listxattr (struct dentry *dentry)
2259 {
2260 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2261 }
2262
2263 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2264 {
2265 if (strcmp(name, XATTR_NAME_SELINUX)) {
2266 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2267 sizeof XATTR_SECURITY_PREFIX - 1) &&
2268 !capable(CAP_SYS_ADMIN)) {
2269 /* A different attribute in the security namespace.
2270 Restrict to administrator. */
2271 return -EPERM;
2272 }
2273
2274 /* Not an attribute we recognize, so just check the
2275 ordinary setattr permission. Might want a separate
2276 permission for removexattr. */
2277 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2278 }
2279
2280 /* No one is allowed to remove a SELinux security label.
2281 You can change the label, but all data must be labeled. */
2282 return -EACCES;
2283 }
2284
2285 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size)
2286 {
2287 struct inode_security_struct *isec = inode->i_security;
2288 char *context;
2289 unsigned len;
2290 int rc;
2291
2292 /* Permission check handled by selinux_inode_getxattr hook.*/
2293
2294 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2295 return -EOPNOTSUPP;
2296
2297 rc = security_sid_to_context(isec->sid, &context, &len);
2298 if (rc)
2299 return rc;
2300
2301 if (!buffer || !size) {
2302 kfree(context);
2303 return len;
2304 }
2305 if (size < len) {
2306 kfree(context);
2307 return -ERANGE;
2308 }
2309 memcpy(buffer, context, len);
2310 kfree(context);
2311 return len;
2312 }
2313
2314 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2315 const void *value, size_t size, int flags)
2316 {
2317 struct inode_security_struct *isec = inode->i_security;
2318 u32 newsid;
2319 int rc;
2320
2321 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2322 return -EOPNOTSUPP;
2323
2324 if (!value || !size)
2325 return -EACCES;
2326
2327 rc = security_context_to_sid((void*)value, size, &newsid);
2328 if (rc)
2329 return rc;
2330
2331 isec->sid = newsid;
2332 return 0;
2333 }
2334
2335 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2336 {
2337 const int len = sizeof(XATTR_NAME_SELINUX);
2338 if (buffer && len <= buffer_size)
2339 memcpy(buffer, XATTR_NAME_SELINUX, len);
2340 return len;
2341 }
2342
2343 /* file security operations */
2344
2345 static int selinux_file_permission(struct file *file, int mask)
2346 {
2347 struct inode *inode = file->f_dentry->d_inode;
2348
2349 if (!mask) {
2350 /* No permission to check. Existence test. */
2351 return 0;
2352 }
2353
2354 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2355 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2356 mask |= MAY_APPEND;
2357
2358 return file_has_perm(current, file,
2359 file_mask_to_av(inode->i_mode, mask));
2360 }
2361
2362 static int selinux_file_alloc_security(struct file *file)
2363 {
2364 return file_alloc_security(file);
2365 }
2366
2367 static void selinux_file_free_security(struct file *file)
2368 {
2369 file_free_security(file);
2370 }
2371
2372 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2373 unsigned long arg)
2374 {
2375 int error = 0;
2376
2377 switch (cmd) {
2378 case FIONREAD:
2379 /* fall through */
2380 case FIBMAP:
2381 /* fall through */
2382 case FIGETBSZ:
2383 /* fall through */
2384 case EXT2_IOC_GETFLAGS:
2385 /* fall through */
2386 case EXT2_IOC_GETVERSION:
2387 error = file_has_perm(current, file, FILE__GETATTR);
2388 break;
2389
2390 case EXT2_IOC_SETFLAGS:
2391 /* fall through */
2392 case EXT2_IOC_SETVERSION:
2393 error = file_has_perm(current, file, FILE__SETATTR);
2394 break;
2395
2396 /* sys_ioctl() checks */
2397 case FIONBIO:
2398 /* fall through */
2399 case FIOASYNC:
2400 error = file_has_perm(current, file, 0);
2401 break;
2402
2403 case KDSKBENT:
2404 case KDSKBSENT:
2405 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2406 break;
2407
2408 /* default case assumes that the command will go
2409 * to the file's ioctl() function.
2410 */
2411 default:
2412 error = file_has_perm(current, file, FILE__IOCTL);
2413
2414 }
2415 return error;
2416 }
2417
2418 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2419 {
2420 #ifndef CONFIG_PPC32
2421 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2422 /*
2423 * We are making executable an anonymous mapping or a
2424 * private file mapping that will also be writable.
2425 * This has an additional check.
2426 */
2427 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2428 if (rc)
2429 return rc;
2430 }
2431 #endif
2432
2433 if (file) {
2434 /* read access is always possible with a mapping */
2435 u32 av = FILE__READ;
2436
2437 /* write access only matters if the mapping is shared */
2438 if (shared && (prot & PROT_WRITE))
2439 av |= FILE__WRITE;
2440
2441 if (prot & PROT_EXEC)
2442 av |= FILE__EXECUTE;
2443
2444 return file_has_perm(current, file, av);
2445 }
2446 return 0;
2447 }
2448
2449 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2450 unsigned long prot, unsigned long flags)
2451 {
2452 int rc;
2453
2454 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2455 if (rc)
2456 return rc;
2457
2458 if (selinux_checkreqprot)
2459 prot = reqprot;
2460
2461 return file_map_prot_check(file, prot,
2462 (flags & MAP_TYPE) == MAP_SHARED);
2463 }
2464
2465 static int selinux_file_mprotect(struct vm_area_struct *vma,
2466 unsigned long reqprot,
2467 unsigned long prot)
2468 {
2469 int rc;
2470
2471 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2472 if (rc)
2473 return rc;
2474
2475 if (selinux_checkreqprot)
2476 prot = reqprot;
2477
2478 #ifndef CONFIG_PPC32
2479 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXECUTABLE) &&
2480 (vma->vm_start >= vma->vm_mm->start_brk &&
2481 vma->vm_end <= vma->vm_mm->brk)) {
2482 /*
2483 * We are making an executable mapping in the brk region.
2484 * This has an additional execheap check.
2485 */
2486 rc = task_has_perm(current, current, PROCESS__EXECHEAP);
2487 if (rc)
2488 return rc;
2489 }
2490 if (vma->vm_file != NULL && vma->anon_vma != NULL && (prot & PROT_EXEC)) {
2491 /*
2492 * We are making executable a file mapping that has
2493 * had some COW done. Since pages might have been written,
2494 * check ability to execute the possibly modified content.
2495 * This typically should only occur for text relocations.
2496 */
2497 int rc = file_has_perm(current, vma->vm_file, FILE__EXECMOD);
2498 if (rc)
2499 return rc;
2500 }
2501 if (!vma->vm_file && (prot & PROT_EXEC) &&
2502 vma->vm_start <= vma->vm_mm->start_stack &&
2503 vma->vm_end >= vma->vm_mm->start_stack) {
2504 /* Attempt to make the process stack executable.
2505 * This has an additional execstack check.
2506 */
2507 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2508 if (rc)
2509 return rc;
2510 }
2511 #endif
2512
2513 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2514 }
2515
2516 static int selinux_file_lock(struct file *file, unsigned int cmd)
2517 {
2518 return file_has_perm(current, file, FILE__LOCK);
2519 }
2520
2521 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2522 unsigned long arg)
2523 {
2524 int err = 0;
2525
2526 switch (cmd) {
2527 case F_SETFL:
2528 if (!file->f_dentry || !file->f_dentry->d_inode) {
2529 err = -EINVAL;
2530 break;
2531 }
2532
2533 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2534 err = file_has_perm(current, file,FILE__WRITE);
2535 break;
2536 }
2537 /* fall through */
2538 case F_SETOWN:
2539 case F_SETSIG:
2540 case F_GETFL:
2541 case F_GETOWN:
2542 case F_GETSIG:
2543 /* Just check FD__USE permission */
2544 err = file_has_perm(current, file, 0);
2545 break;
2546 case F_GETLK:
2547 case F_SETLK:
2548 case F_SETLKW:
2549 #if BITS_PER_LONG == 32
2550 case F_GETLK64:
2551 case F_SETLK64:
2552 case F_SETLKW64:
2553 #endif
2554 if (!file->f_dentry || !file->f_dentry->d_inode) {
2555 err = -EINVAL;
2556 break;
2557 }
2558 err = file_has_perm(current, file, FILE__LOCK);
2559 break;
2560 }
2561
2562 return err;
2563 }
2564
2565 static int selinux_file_set_fowner(struct file *file)
2566 {
2567 struct task_security_struct *tsec;
2568 struct file_security_struct *fsec;
2569
2570 tsec = current->security;
2571 fsec = file->f_security;
2572 fsec->fown_sid = tsec->sid;
2573
2574 return 0;
2575 }
2576
2577 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2578 struct fown_struct *fown, int signum)
2579 {
2580 struct file *file;
2581 u32 perm;
2582 struct task_security_struct *tsec;
2583 struct file_security_struct *fsec;
2584
2585 /* struct fown_struct is never outside the context of a struct file */
2586 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2587
2588 tsec = tsk->security;
2589 fsec = file->f_security;
2590
2591 if (!signum)
2592 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2593 else
2594 perm = signal_to_av(signum);
2595
2596 return avc_has_perm(fsec->fown_sid, tsec->sid,
2597 SECCLASS_PROCESS, perm, NULL);
2598 }
2599
2600 static int selinux_file_receive(struct file *file)
2601 {
2602 return file_has_perm(current, file, file_to_av(file));
2603 }
2604
2605 /* task security operations */
2606
2607 static int selinux_task_create(unsigned long clone_flags)
2608 {
2609 int rc;
2610
2611 rc = secondary_ops->task_create(clone_flags);
2612 if (rc)
2613 return rc;
2614
2615 return task_has_perm(current, current, PROCESS__FORK);
2616 }
2617
2618 static int selinux_task_alloc_security(struct task_struct *tsk)
2619 {
2620 struct task_security_struct *tsec1, *tsec2;
2621 int rc;
2622
2623 tsec1 = current->security;
2624
2625 rc = task_alloc_security(tsk);
2626 if (rc)
2627 return rc;
2628 tsec2 = tsk->security;
2629
2630 tsec2->osid = tsec1->osid;
2631 tsec2->sid = tsec1->sid;
2632
2633 /* Retain the exec and create SIDs across fork */
2634 tsec2->exec_sid = tsec1->exec_sid;
2635 tsec2->create_sid = tsec1->create_sid;
2636
2637 /* Retain ptracer SID across fork, if any.
2638 This will be reset by the ptrace hook upon any
2639 subsequent ptrace_attach operations. */
2640 tsec2->ptrace_sid = tsec1->ptrace_sid;
2641
2642 return 0;
2643 }
2644
2645 static void selinux_task_free_security(struct task_struct *tsk)
2646 {
2647 task_free_security(tsk);
2648 }
2649
2650 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2651 {
2652 /* Since setuid only affects the current process, and
2653 since the SELinux controls are not based on the Linux
2654 identity attributes, SELinux does not need to control
2655 this operation. However, SELinux does control the use
2656 of the CAP_SETUID and CAP_SETGID capabilities using the
2657 capable hook. */
2658 return 0;
2659 }
2660
2661 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2662 {
2663 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2664 }
2665
2666 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2667 {
2668 /* See the comment for setuid above. */
2669 return 0;
2670 }
2671
2672 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2673 {
2674 return task_has_perm(current, p, PROCESS__SETPGID);
2675 }
2676
2677 static int selinux_task_getpgid(struct task_struct *p)
2678 {
2679 return task_has_perm(current, p, PROCESS__GETPGID);
2680 }
2681
2682 static int selinux_task_getsid(struct task_struct *p)
2683 {
2684 return task_has_perm(current, p, PROCESS__GETSESSION);
2685 }
2686
2687 static int selinux_task_setgroups(struct group_info *group_info)
2688 {
2689 /* See the comment for setuid above. */
2690 return 0;
2691 }
2692
2693 static int selinux_task_setnice(struct task_struct *p, int nice)
2694 {
2695 int rc;
2696
2697 rc = secondary_ops->task_setnice(p, nice);
2698 if (rc)
2699 return rc;
2700
2701 return task_has_perm(current,p, PROCESS__SETSCHED);
2702 }
2703
2704 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2705 {
2706 struct rlimit *old_rlim = current->signal->rlim + resource;
2707 int rc;
2708
2709 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2710 if (rc)
2711 return rc;
2712
2713 /* Control the ability to change the hard limit (whether
2714 lowering or raising it), so that the hard limit can
2715 later be used as a safe reset point for the soft limit
2716 upon context transitions. See selinux_bprm_apply_creds. */
2717 if (old_rlim->rlim_max != new_rlim->rlim_max)
2718 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2719
2720 return 0;
2721 }
2722
2723 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2724 {
2725 return task_has_perm(current, p, PROCESS__SETSCHED);
2726 }
2727
2728 static int selinux_task_getscheduler(struct task_struct *p)
2729 {
2730 return task_has_perm(current, p, PROCESS__GETSCHED);
2731 }
2732
2733 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, int sig)
2734 {
2735 u32 perm;
2736 int rc;
2737
2738 rc = secondary_ops->task_kill(p, info, sig);
2739 if (rc)
2740 return rc;
2741
2742 if (info && ((unsigned long)info == 1 ||
2743 (unsigned long)info == 2 || SI_FROMKERNEL(info)))
2744 return 0;
2745
2746 if (!sig)
2747 perm = PROCESS__SIGNULL; /* null signal; existence test */
2748 else
2749 perm = signal_to_av(sig);
2750
2751 return task_has_perm(current, p, perm);
2752 }
2753
2754 static int selinux_task_prctl(int option,
2755 unsigned long arg2,
2756 unsigned long arg3,
2757 unsigned long arg4,
2758 unsigned long arg5)
2759 {
2760 /* The current prctl operations do not appear to require
2761 any SELinux controls since they merely observe or modify
2762 the state of the current process. */
2763 return 0;
2764 }
2765
2766 static int selinux_task_wait(struct task_struct *p)
2767 {
2768 u32 perm;
2769
2770 perm = signal_to_av(p->exit_signal);
2771
2772 return task_has_perm(p, current, perm);
2773 }
2774
2775 static void selinux_task_reparent_to_init(struct task_struct *p)
2776 {
2777 struct task_security_struct *tsec;
2778
2779 secondary_ops->task_reparent_to_init(p);
2780
2781 tsec = p->security;
2782 tsec->osid = tsec->sid;
2783 tsec->sid = SECINITSID_KERNEL;
2784 return;
2785 }
2786
2787 static void selinux_task_to_inode(struct task_struct *p,
2788 struct inode *inode)
2789 {
2790 struct task_security_struct *tsec = p->security;
2791 struct inode_security_struct *isec = inode->i_security;
2792
2793 isec->sid = tsec->sid;
2794 isec->initialized = 1;
2795 return;
2796 }
2797
2798 #ifdef CONFIG_SECURITY_NETWORK
2799
2800 /* Returns error only if unable to parse addresses */
2801 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2802 {
2803 int offset, ihlen, ret = -EINVAL;
2804 struct iphdr _iph, *ih;
2805
2806 offset = skb->nh.raw - skb->data;
2807 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2808 if (ih == NULL)
2809 goto out;
2810
2811 ihlen = ih->ihl * 4;
2812 if (ihlen < sizeof(_iph))
2813 goto out;
2814
2815 ad->u.net.v4info.saddr = ih->saddr;
2816 ad->u.net.v4info.daddr = ih->daddr;
2817 ret = 0;
2818
2819 switch (ih->protocol) {
2820 case IPPROTO_TCP: {
2821 struct tcphdr _tcph, *th;
2822
2823 if (ntohs(ih->frag_off) & IP_OFFSET)
2824 break;
2825
2826 offset += ihlen;
2827 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2828 if (th == NULL)
2829 break;
2830
2831 ad->u.net.sport = th->source;
2832 ad->u.net.dport = th->dest;
2833 break;
2834 }
2835
2836 case IPPROTO_UDP: {
2837 struct udphdr _udph, *uh;
2838
2839 if (ntohs(ih->frag_off) & IP_OFFSET)
2840 break;
2841
2842 offset += ihlen;
2843 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2844 if (uh == NULL)
2845 break;
2846
2847 ad->u.net.sport = uh->source;
2848 ad->u.net.dport = uh->dest;
2849 break;
2850 }
2851
2852 default:
2853 break;
2854 }
2855 out:
2856 return ret;
2857 }
2858
2859 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2860
2861 /* Returns error only if unable to parse addresses */
2862 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2863 {
2864 u8 nexthdr;
2865 int ret = -EINVAL, offset;
2866 struct ipv6hdr _ipv6h, *ip6;
2867
2868 offset = skb->nh.raw - skb->data;
2869 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2870 if (ip6 == NULL)
2871 goto out;
2872
2873 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2874 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2875 ret = 0;
2876
2877 nexthdr = ip6->nexthdr;
2878 offset += sizeof(_ipv6h);
2879 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2880 if (offset < 0)
2881 goto out;
2882
2883 switch (nexthdr) {
2884 case IPPROTO_TCP: {
2885 struct tcphdr _tcph, *th;
2886
2887 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2888 if (th == NULL)
2889 break;
2890
2891 ad->u.net.sport = th->source;
2892 ad->u.net.dport = th->dest;
2893 break;
2894 }
2895
2896 case IPPROTO_UDP: {
2897 struct udphdr _udph, *uh;
2898
2899 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2900 if (uh == NULL)
2901 break;
2902
2903 ad->u.net.sport = uh->source;
2904 ad->u.net.dport = uh->dest;
2905 break;
2906 }
2907
2908 /* includes fragments */
2909 default:
2910 break;
2911 }
2912 out:
2913 return ret;
2914 }
2915
2916 #endif /* IPV6 */
2917
2918 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2919 char **addrp, int *len, int src)
2920 {
2921 int ret = 0;
2922
2923 switch (ad->u.net.family) {
2924 case PF_INET:
2925 ret = selinux_parse_skb_ipv4(skb, ad);
2926 if (ret || !addrp)
2927 break;
2928 *len = 4;
2929 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2930 &ad->u.net.v4info.daddr);
2931 break;
2932
2933 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2934 case PF_INET6:
2935 ret = selinux_parse_skb_ipv6(skb, ad);
2936 if (ret || !addrp)
2937 break;
2938 *len = 16;
2939 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
2940 &ad->u.net.v6info.daddr);
2941 break;
2942 #endif /* IPV6 */
2943 default:
2944 break;
2945 }
2946
2947 return ret;
2948 }
2949
2950 /* socket security operations */
2951 static int socket_has_perm(struct task_struct *task, struct socket *sock,
2952 u32 perms)
2953 {
2954 struct inode_security_struct *isec;
2955 struct task_security_struct *tsec;
2956 struct avc_audit_data ad;
2957 int err = 0;
2958
2959 tsec = task->security;
2960 isec = SOCK_INODE(sock)->i_security;
2961
2962 if (isec->sid == SECINITSID_KERNEL)
2963 goto out;
2964
2965 AVC_AUDIT_DATA_INIT(&ad,NET);
2966 ad.u.net.sk = sock->sk;
2967 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
2968
2969 out:
2970 return err;
2971 }
2972
2973 static int selinux_socket_create(int family, int type,
2974 int protocol, int kern)
2975 {
2976 int err = 0;
2977 struct task_security_struct *tsec;
2978
2979 if (kern)
2980 goto out;
2981
2982 tsec = current->security;
2983 err = avc_has_perm(tsec->sid, tsec->sid,
2984 socket_type_to_security_class(family, type,
2985 protocol), SOCKET__CREATE, NULL);
2986
2987 out:
2988 return err;
2989 }
2990
2991 static void selinux_socket_post_create(struct socket *sock, int family,
2992 int type, int protocol, int kern)
2993 {
2994 struct inode_security_struct *isec;
2995 struct task_security_struct *tsec;
2996
2997 isec = SOCK_INODE(sock)->i_security;
2998
2999 tsec = current->security;
3000 isec->sclass = socket_type_to_security_class(family, type, protocol);
3001 isec->sid = kern ? SECINITSID_KERNEL : tsec->sid;
3002 isec->initialized = 1;
3003
3004 return;
3005 }
3006
3007 /* Range of port numbers used to automatically bind.
3008 Need to determine whether we should perform a name_bind
3009 permission check between the socket and the port number. */
3010 #define ip_local_port_range_0 sysctl_local_port_range[0]
3011 #define ip_local_port_range_1 sysctl_local_port_range[1]
3012
3013 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3014 {
3015 u16 family;
3016 int err;
3017
3018 err = socket_has_perm(current, sock, SOCKET__BIND);
3019 if (err)
3020 goto out;
3021
3022 /*
3023 * If PF_INET or PF_INET6, check name_bind permission for the port.
3024 */
3025 family = sock->sk->sk_family;
3026 if (family == PF_INET || family == PF_INET6) {
3027 char *addrp;
3028 struct inode_security_struct *isec;
3029 struct task_security_struct *tsec;
3030 struct avc_audit_data ad;
3031 struct sockaddr_in *addr4 = NULL;
3032 struct sockaddr_in6 *addr6 = NULL;
3033 unsigned short snum;
3034 struct sock *sk = sock->sk;
3035 u32 sid, node_perm, addrlen;
3036
3037 tsec = current->security;
3038 isec = SOCK_INODE(sock)->i_security;
3039
3040 if (family == PF_INET) {
3041 addr4 = (struct sockaddr_in *)address;
3042 snum = ntohs(addr4->sin_port);
3043 addrlen = sizeof(addr4->sin_addr.s_addr);
3044 addrp = (char *)&addr4->sin_addr.s_addr;
3045 } else {
3046 addr6 = (struct sockaddr_in6 *)address;
3047 snum = ntohs(addr6->sin6_port);
3048 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3049 addrp = (char *)&addr6->sin6_addr.s6_addr;
3050 }
3051
3052 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3053 snum > ip_local_port_range_1)) {
3054 err = security_port_sid(sk->sk_family, sk->sk_type,
3055 sk->sk_protocol, snum, &sid);
3056 if (err)
3057 goto out;
3058 AVC_AUDIT_DATA_INIT(&ad,NET);
3059 ad.u.net.sport = htons(snum);
3060 ad.u.net.family = family;
3061 err = avc_has_perm(isec->sid, sid,
3062 isec->sclass,
3063 SOCKET__NAME_BIND, &ad);
3064 if (err)
3065 goto out;
3066 }
3067
3068 switch(sk->sk_protocol) {
3069 case IPPROTO_TCP:
3070 node_perm = TCP_SOCKET__NODE_BIND;
3071 break;
3072
3073 case IPPROTO_UDP:
3074 node_perm = UDP_SOCKET__NODE_BIND;
3075 break;
3076
3077 default:
3078 node_perm = RAWIP_SOCKET__NODE_BIND;
3079 break;
3080 }
3081
3082 err = security_node_sid(family, addrp, addrlen, &sid);
3083 if (err)
3084 goto out;
3085
3086 AVC_AUDIT_DATA_INIT(&ad,NET);
3087 ad.u.net.sport = htons(snum);
3088 ad.u.net.family = family;
3089
3090 if (family == PF_INET)
3091 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3092 else
3093 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3094
3095 err = avc_has_perm(isec->sid, sid,
3096 isec->sclass, node_perm, &ad);
3097 if (err)
3098 goto out;
3099 }
3100 out:
3101 return err;
3102 }
3103
3104 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3105 {
3106 struct inode_security_struct *isec;
3107 int err;
3108
3109 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3110 if (err)
3111 return err;
3112
3113 /*
3114 * If a TCP socket, check name_connect permission for the port.
3115 */
3116 isec = SOCK_INODE(sock)->i_security;
3117 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3118 struct sock *sk = sock->sk;
3119 struct avc_audit_data ad;
3120 struct sockaddr_in *addr4 = NULL;
3121 struct sockaddr_in6 *addr6 = NULL;
3122 unsigned short snum;
3123 u32 sid;
3124
3125 if (sk->sk_family == PF_INET) {
3126 addr4 = (struct sockaddr_in *)address;
3127 if (addrlen != sizeof(struct sockaddr_in))
3128 return -EINVAL;
3129 snum = ntohs(addr4->sin_port);
3130 } else {
3131 addr6 = (struct sockaddr_in6 *)address;
3132 if (addrlen != sizeof(struct sockaddr_in6))
3133 return -EINVAL;
3134 snum = ntohs(addr6->sin6_port);
3135 }
3136
3137 err = security_port_sid(sk->sk_family, sk->sk_type,
3138 sk->sk_protocol, snum, &sid);
3139 if (err)
3140 goto out;
3141
3142 AVC_AUDIT_DATA_INIT(&ad,NET);
3143 ad.u.net.dport = htons(snum);
3144 ad.u.net.family = sk->sk_family;
3145 err = avc_has_perm(isec->sid, sid, isec->sclass,
3146 TCP_SOCKET__NAME_CONNECT, &ad);
3147 if (err)
3148 goto out;
3149 }
3150
3151 out:
3152 return err;
3153 }
3154
3155 static int selinux_socket_listen(struct socket *sock, int backlog)
3156 {
3157 return socket_has_perm(current, sock, SOCKET__LISTEN);
3158 }
3159
3160 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3161 {
3162 int err;
3163 struct inode_security_struct *isec;
3164 struct inode_security_struct *newisec;
3165
3166 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3167 if (err)
3168 return err;
3169
3170 newisec = SOCK_INODE(newsock)->i_security;
3171
3172 isec = SOCK_INODE(sock)->i_security;
3173 newisec->sclass = isec->sclass;
3174 newisec->sid = isec->sid;
3175 newisec->initialized = 1;
3176
3177 return 0;
3178 }
3179
3180 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3181 int size)
3182 {
3183 return socket_has_perm(current, sock, SOCKET__WRITE);
3184 }
3185
3186 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3187 int size, int flags)
3188 {
3189 return socket_has_perm(current, sock, SOCKET__READ);
3190 }
3191
3192 static int selinux_socket_getsockname(struct socket *sock)
3193 {
3194 return socket_has_perm(current, sock, SOCKET__GETATTR);
3195 }
3196
3197 static int selinux_socket_getpeername(struct socket *sock)
3198 {
3199 return socket_has_perm(current, sock, SOCKET__GETATTR);
3200 }
3201
3202 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3203 {
3204 return socket_has_perm(current, sock, SOCKET__SETOPT);
3205 }
3206
3207 static int selinux_socket_getsockopt(struct socket *sock, int level,
3208 int optname)
3209 {
3210 return socket_has_perm(current, sock, SOCKET__GETOPT);
3211 }
3212
3213 static int selinux_socket_shutdown(struct socket *sock, int how)
3214 {
3215 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3216 }
3217
3218 static int selinux_socket_unix_stream_connect(struct socket *sock,
3219 struct socket *other,
3220 struct sock *newsk)
3221 {
3222 struct sk_security_struct *ssec;
3223 struct inode_security_struct *isec;
3224 struct inode_security_struct *other_isec;
3225 struct avc_audit_data ad;
3226 int err;
3227
3228 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3229 if (err)
3230 return err;
3231
3232 isec = SOCK_INODE(sock)->i_security;
3233 other_isec = SOCK_INODE(other)->i_security;
3234
3235 AVC_AUDIT_DATA_INIT(&ad,NET);
3236 ad.u.net.sk = other->sk;
3237
3238 err = avc_has_perm(isec->sid, other_isec->sid,
3239 isec->sclass,
3240 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3241 if (err)
3242 return err;
3243
3244 /* connecting socket */
3245 ssec = sock->sk->sk_security;
3246 ssec->peer_sid = other_isec->sid;
3247
3248 /* server child socket */
3249 ssec = newsk->sk_security;
3250 ssec->peer_sid = isec->sid;
3251
3252 return 0;
3253 }
3254
3255 static int selinux_socket_unix_may_send(struct socket *sock,
3256 struct socket *other)
3257 {
3258 struct inode_security_struct *isec;
3259 struct inode_security_struct *other_isec;
3260 struct avc_audit_data ad;
3261 int err;
3262
3263 isec = SOCK_INODE(sock)->i_security;
3264 other_isec = SOCK_INODE(other)->i_security;
3265
3266 AVC_AUDIT_DATA_INIT(&ad,NET);
3267 ad.u.net.sk = other->sk;
3268
3269 err = avc_has_perm(isec->sid, other_isec->sid,
3270 isec->sclass, SOCKET__SENDTO, &ad);
3271 if (err)
3272 return err;
3273
3274 return 0;
3275 }
3276
3277 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3278 {
3279 u16 family;
3280 char *addrp;
3281 int len, err = 0;
3282 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3283 u32 sock_sid = 0;
3284 u16 sock_class = 0;
3285 struct socket *sock;
3286 struct net_device *dev;
3287 struct avc_audit_data ad;
3288
3289 family = sk->sk_family;
3290 if (family != PF_INET && family != PF_INET6)
3291 goto out;
3292
3293 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3294 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3295 family = PF_INET;
3296
3297 read_lock_bh(&sk->sk_callback_lock);
3298 sock = sk->sk_socket;
3299 if (sock) {
3300 struct inode *inode;
3301 inode = SOCK_INODE(sock);
3302 if (inode) {
3303 struct inode_security_struct *isec;
3304 isec = inode->i_security;
3305 sock_sid = isec->sid;
3306 sock_class = isec->sclass;
3307 }
3308 }
3309 read_unlock_bh(&sk->sk_callback_lock);
3310 if (!sock_sid)
3311 goto out;
3312
3313 dev = skb->dev;
3314 if (!dev)
3315 goto out;
3316
3317 err = sel_netif_sids(dev, &if_sid, NULL);
3318 if (err)
3319 goto out;
3320
3321 switch (sock_class) {
3322 case SECCLASS_UDP_SOCKET:
3323 netif_perm = NETIF__UDP_RECV;
3324 node_perm = NODE__UDP_RECV;
3325 recv_perm = UDP_SOCKET__RECV_MSG;
3326 break;
3327
3328 case SECCLASS_TCP_SOCKET:
3329 netif_perm = NETIF__TCP_RECV;
3330 node_perm = NODE__TCP_RECV;
3331 recv_perm = TCP_SOCKET__RECV_MSG;
3332 break;
3333
3334 default:
3335 netif_perm = NETIF__RAWIP_RECV;
3336 node_perm = NODE__RAWIP_RECV;
3337 break;
3338 }
3339
3340 AVC_AUDIT_DATA_INIT(&ad, NET);
3341 ad.u.net.netif = dev->name;
3342 ad.u.net.family = family;
3343
3344 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3345 if (err)
3346 goto out;
3347
3348 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, &ad);
3349 if (err)
3350 goto out;
3351
3352 /* Fixme: this lookup is inefficient */
3353 err = security_node_sid(family, addrp, len, &node_sid);
3354 if (err)
3355 goto out;
3356
3357 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, &ad);
3358 if (err)
3359 goto out;
3360
3361 if (recv_perm) {
3362 u32 port_sid;
3363
3364 /* Fixme: make this more efficient */
3365 err = security_port_sid(sk->sk_family, sk->sk_type,
3366 sk->sk_protocol, ntohs(ad.u.net.sport),
3367 &port_sid);
3368 if (err)
3369 goto out;
3370
3371 err = avc_has_perm(sock_sid, port_sid,
3372 sock_class, recv_perm, &ad);
3373 }
3374 out:
3375 return err;
3376 }
3377
3378 static int selinux_socket_getpeersec(struct socket *sock, char __user *optval,
3379 int __user *optlen, unsigned len)
3380 {
3381 int err = 0;
3382 char *scontext;
3383 u32 scontext_len;
3384 struct sk_security_struct *ssec;
3385 struct inode_security_struct *isec;
3386
3387 isec = SOCK_INODE(sock)->i_security;
3388 if (isec->sclass != SECCLASS_UNIX_STREAM_SOCKET) {
3389 err = -ENOPROTOOPT;
3390 goto out;
3391 }
3392
3393 ssec = sock->sk->sk_security;
3394
3395 err = security_sid_to_context(ssec->peer_sid, &scontext, &scontext_len);
3396 if (err)
3397 goto out;
3398
3399 if (scontext_len > len) {
3400 err = -ERANGE;
3401 goto out_len;
3402 }
3403
3404 if (copy_to_user(optval, scontext, scontext_len))
3405 err = -EFAULT;
3406
3407 out_len:
3408 if (put_user(scontext_len, optlen))
3409 err = -EFAULT;
3410
3411 kfree(scontext);
3412 out:
3413 return err;
3414 }
3415
3416 static int selinux_sk_alloc_security(struct sock *sk, int family, int priority)
3417 {
3418 return sk_alloc_security(sk, family, priority);
3419 }
3420
3421 static void selinux_sk_free_security(struct sock *sk)
3422 {
3423 sk_free_security(sk);
3424 }
3425
3426 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3427 {
3428 int err = 0;
3429 u32 perm;
3430 struct nlmsghdr *nlh;
3431 struct socket *sock = sk->sk_socket;
3432 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3433
3434 if (skb->len < NLMSG_SPACE(0)) {
3435 err = -EINVAL;
3436 goto out;
3437 }
3438 nlh = (struct nlmsghdr *)skb->data;
3439
3440 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3441 if (err) {
3442 if (err == -EINVAL) {
3443 audit_log(current->audit_context, AUDIT_SELINUX_ERR,
3444 "SELinux: unrecognized netlink message"
3445 " type=%hu for sclass=%hu\n",
3446 nlh->nlmsg_type, isec->sclass);
3447 if (!selinux_enforcing)
3448 err = 0;
3449 }
3450
3451 /* Ignore */
3452 if (err == -ENOENT)
3453 err = 0;
3454 goto out;
3455 }
3456
3457 err = socket_has_perm(current, sock, perm);
3458 out:
3459 return err;
3460 }
3461
3462 #ifdef CONFIG_NETFILTER
3463
3464 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3465 struct sk_buff **pskb,
3466 const struct net_device *in,
3467 const struct net_device *out,
3468 int (*okfn)(struct sk_buff *),
3469 u16 family)
3470 {
3471 char *addrp;
3472 int len, err = NF_ACCEPT;
3473 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3474 struct sock *sk;
3475 struct socket *sock;
3476 struct inode *inode;
3477 struct sk_buff *skb = *pskb;
3478 struct inode_security_struct *isec;
3479 struct avc_audit_data ad;
3480 struct net_device *dev = (struct net_device *)out;
3481
3482 sk = skb->sk;
3483 if (!sk)
3484 goto out;
3485
3486 sock = sk->sk_socket;
3487 if (!sock)
3488 goto out;
3489
3490 inode = SOCK_INODE(sock);
3491 if (!inode)
3492 goto out;
3493
3494 err = sel_netif_sids(dev, &if_sid, NULL);
3495 if (err)
3496 goto out;
3497
3498 isec = inode->i_security;
3499
3500 switch (isec->sclass) {
3501 case SECCLASS_UDP_SOCKET:
3502 netif_perm = NETIF__UDP_SEND;
3503 node_perm = NODE__UDP_SEND;
3504 send_perm = UDP_SOCKET__SEND_MSG;
3505 break;
3506
3507 case SECCLASS_TCP_SOCKET:
3508 netif_perm = NETIF__TCP_SEND;
3509 node_perm = NODE__TCP_SEND;
3510 send_perm = TCP_SOCKET__SEND_MSG;
3511 break;
3512
3513 default:
3514 netif_perm = NETIF__RAWIP_SEND;
3515 node_perm = NODE__RAWIP_SEND;
3516 break;
3517 }
3518
3519
3520 AVC_AUDIT_DATA_INIT(&ad, NET);
3521 ad.u.net.netif = dev->name;
3522 ad.u.net.family = family;
3523
3524 err = selinux_parse_skb(skb, &ad, &addrp,
3525 &len, 0) ? NF_DROP : NF_ACCEPT;
3526 if (err != NF_ACCEPT)
3527 goto out;
3528
3529 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF,
3530 netif_perm, &ad) ? NF_DROP : NF_ACCEPT;
3531 if (err != NF_ACCEPT)
3532 goto out;
3533
3534 /* Fixme: this lookup is inefficient */
3535 err = security_node_sid(family, addrp, len,
3536 &node_sid) ? NF_DROP : NF_ACCEPT;
3537 if (err != NF_ACCEPT)
3538 goto out;
3539
3540 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE,
3541 node_perm, &ad) ? NF_DROP : NF_ACCEPT;
3542 if (err != NF_ACCEPT)
3543 goto out;
3544
3545 if (send_perm) {
3546 u32 port_sid;
3547
3548 /* Fixme: make this more efficient */
3549 err = security_port_sid(sk->sk_family,
3550 sk->sk_type,
3551 sk->sk_protocol,
3552 ntohs(ad.u.net.dport),
3553 &port_sid) ? NF_DROP : NF_ACCEPT;
3554 if (err != NF_ACCEPT)
3555 goto out;
3556
3557 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3558 send_perm, &ad) ? NF_DROP : NF_ACCEPT;
3559 }
3560
3561 out:
3562 return err;
3563 }
3564
3565 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3566 struct sk_buff **pskb,
3567 const struct net_device *in,
3568 const struct net_device *out,
3569 int (*okfn)(struct sk_buff *))
3570 {
3571 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3572 }
3573
3574 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3575
3576 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3577 struct sk_buff **pskb,
3578 const struct net_device *in,
3579 const struct net_device *out,
3580 int (*okfn)(struct sk_buff *))
3581 {
3582 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3583 }
3584
3585 #endif /* IPV6 */
3586
3587 #endif /* CONFIG_NETFILTER */
3588
3589 #else
3590
3591 static inline int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3592 {
3593 return 0;
3594 }
3595
3596 #endif /* CONFIG_SECURITY_NETWORK */
3597
3598 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3599 {
3600 struct task_security_struct *tsec;
3601 struct av_decision avd;
3602 int err;
3603
3604 err = secondary_ops->netlink_send(sk, skb);
3605 if (err)
3606 return err;
3607
3608 tsec = current->security;
3609
3610 avd.allowed = 0;
3611 avc_has_perm_noaudit(tsec->sid, tsec->sid,
3612 SECCLASS_CAPABILITY, ~0, &avd);
3613 cap_mask(NETLINK_CB(skb).eff_cap, avd.allowed);
3614
3615 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3616 err = selinux_nlmsg_perm(sk, skb);
3617
3618 return err;
3619 }
3620
3621 static int selinux_netlink_recv(struct sk_buff *skb)
3622 {
3623 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
3624 return -EPERM;
3625 return 0;
3626 }
3627
3628 static int ipc_alloc_security(struct task_struct *task,
3629 struct kern_ipc_perm *perm,
3630 u16 sclass)
3631 {
3632 struct task_security_struct *tsec = task->security;
3633 struct ipc_security_struct *isec;
3634
3635 isec = kmalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3636 if (!isec)
3637 return -ENOMEM;
3638
3639 memset(isec, 0, sizeof(struct ipc_security_struct));
3640 isec->magic = SELINUX_MAGIC;
3641 isec->sclass = sclass;
3642 isec->ipc_perm = perm;
3643 if (tsec) {
3644 isec->sid = tsec->sid;
3645 } else {
3646 isec->sid = SECINITSID_UNLABELED;
3647 }
3648 perm->security = isec;
3649
3650 return 0;
3651 }
3652
3653 static void ipc_free_security(struct kern_ipc_perm *perm)
3654 {
3655 struct ipc_security_struct *isec = perm->security;
3656 if (!isec || isec->magic != SELINUX_MAGIC)
3657 return;
3658
3659 perm->security = NULL;
3660 kfree(isec);
3661 }
3662
3663 static int msg_msg_alloc_security(struct msg_msg *msg)
3664 {
3665 struct msg_security_struct *msec;
3666
3667 msec = kmalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3668 if (!msec)
3669 return -ENOMEM;
3670
3671 memset(msec, 0, sizeof(struct msg_security_struct));
3672 msec->magic = SELINUX_MAGIC;
3673 msec->msg = msg;
3674 msec->sid = SECINITSID_UNLABELED;
3675 msg->security = msec;
3676
3677 return 0;
3678 }
3679
3680 static void msg_msg_free_security(struct msg_msg *msg)
3681 {
3682 struct msg_security_struct *msec = msg->security;
3683 if (!msec || msec->magic != SELINUX_MAGIC)
3684 return;
3685
3686 msg->security = NULL;
3687 kfree(msec);
3688 }
3689
3690 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3691 u32 perms)
3692 {
3693 struct task_security_struct *tsec;
3694 struct ipc_security_struct *isec;
3695 struct avc_audit_data ad;
3696
3697 tsec = current->security;
3698 isec = ipc_perms->security;
3699
3700 AVC_AUDIT_DATA_INIT(&ad, IPC);
3701 ad.u.ipc_id = ipc_perms->key;
3702
3703 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3704 }
3705
3706 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3707 {
3708 return msg_msg_alloc_security(msg);
3709 }
3710
3711 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3712 {
3713 msg_msg_free_security(msg);
3714 }
3715
3716 /* message queue security operations */
3717 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3718 {
3719 struct task_security_struct *tsec;
3720 struct ipc_security_struct *isec;
3721 struct avc_audit_data ad;
3722 int rc;
3723
3724 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3725 if (rc)
3726 return rc;
3727
3728 tsec = current->security;
3729 isec = msq->q_perm.security;
3730
3731 AVC_AUDIT_DATA_INIT(&ad, IPC);
3732 ad.u.ipc_id = msq->q_perm.key;
3733
3734 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3735 MSGQ__CREATE, &ad);
3736 if (rc) {
3737 ipc_free_security(&msq->q_perm);
3738 return rc;
3739 }
3740 return 0;
3741 }
3742
3743 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3744 {
3745 ipc_free_security(&msq->q_perm);
3746 }
3747
3748 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3749 {
3750 struct task_security_struct *tsec;
3751 struct ipc_security_struct *isec;
3752 struct avc_audit_data ad;
3753
3754 tsec = current->security;
3755 isec = msq->q_perm.security;
3756
3757 AVC_AUDIT_DATA_INIT(&ad, IPC);
3758 ad.u.ipc_id = msq->q_perm.key;
3759
3760 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3761 MSGQ__ASSOCIATE, &ad);
3762 }
3763
3764 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3765 {
3766 int err;
3767 int perms;
3768
3769 switch(cmd) {
3770 case IPC_INFO:
3771 case MSG_INFO:
3772 /* No specific object, just general system-wide information. */
3773 return task_has_system(current, SYSTEM__IPC_INFO);
3774 case IPC_STAT:
3775 case MSG_STAT:
3776 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3777 break;
3778 case IPC_SET:
3779 perms = MSGQ__SETATTR;
3780 break;
3781 case IPC_RMID:
3782 perms = MSGQ__DESTROY;
3783 break;
3784 default:
3785 return 0;
3786 }
3787
3788 err = ipc_has_perm(&msq->q_perm, perms);
3789 return err;
3790 }
3791
3792 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3793 {
3794 struct task_security_struct *tsec;
3795 struct ipc_security_struct *isec;
3796 struct msg_security_struct *msec;
3797 struct avc_audit_data ad;
3798 int rc;
3799
3800 tsec = current->security;
3801 isec = msq->q_perm.security;
3802 msec = msg->security;
3803
3804 /*
3805 * First time through, need to assign label to the message
3806 */
3807 if (msec->sid == SECINITSID_UNLABELED) {
3808 /*
3809 * Compute new sid based on current process and
3810 * message queue this message will be stored in
3811 */
3812 rc = security_transition_sid(tsec->sid,
3813 isec->sid,
3814 SECCLASS_MSG,
3815 &msec->sid);
3816 if (rc)
3817 return rc;
3818 }
3819
3820 AVC_AUDIT_DATA_INIT(&ad, IPC);
3821 ad.u.ipc_id = msq->q_perm.key;
3822
3823 /* Can this process write to the queue? */
3824 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3825 MSGQ__WRITE, &ad);
3826 if (!rc)
3827 /* Can this process send the message */
3828 rc = avc_has_perm(tsec->sid, msec->sid,
3829 SECCLASS_MSG, MSG__SEND, &ad);
3830 if (!rc)
3831 /* Can the message be put in the queue? */
3832 rc = avc_has_perm(msec->sid, isec->sid,
3833 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3834
3835 return rc;
3836 }
3837
3838 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3839 struct task_struct *target,
3840 long type, int mode)
3841 {
3842 struct task_security_struct *tsec;
3843 struct ipc_security_struct *isec;
3844 struct msg_security_struct *msec;
3845 struct avc_audit_data ad;
3846 int rc;
3847
3848 tsec = target->security;
3849 isec = msq->q_perm.security;
3850 msec = msg->security;
3851
3852 AVC_AUDIT_DATA_INIT(&ad, IPC);
3853 ad.u.ipc_id = msq->q_perm.key;
3854
3855 rc = avc_has_perm(tsec->sid, isec->sid,
3856 SECCLASS_MSGQ, MSGQ__READ, &ad);
3857 if (!rc)
3858 rc = avc_has_perm(tsec->sid, msec->sid,
3859 SECCLASS_MSG, MSG__RECEIVE, &ad);
3860 return rc;
3861 }
3862
3863 /* Shared Memory security operations */
3864 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
3865 {
3866 struct task_security_struct *tsec;
3867 struct ipc_security_struct *isec;
3868 struct avc_audit_data ad;
3869 int rc;
3870
3871 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
3872 if (rc)
3873 return rc;
3874
3875 tsec = current->security;
3876 isec = shp->shm_perm.security;
3877
3878 AVC_AUDIT_DATA_INIT(&ad, IPC);
3879 ad.u.ipc_id = shp->shm_perm.key;
3880
3881 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3882 SHM__CREATE, &ad);
3883 if (rc) {
3884 ipc_free_security(&shp->shm_perm);
3885 return rc;
3886 }
3887 return 0;
3888 }
3889
3890 static void selinux_shm_free_security(struct shmid_kernel *shp)
3891 {
3892 ipc_free_security(&shp->shm_perm);
3893 }
3894
3895 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
3896 {
3897 struct task_security_struct *tsec;
3898 struct ipc_security_struct *isec;
3899 struct avc_audit_data ad;
3900
3901 tsec = current->security;
3902 isec = shp->shm_perm.security;
3903
3904 AVC_AUDIT_DATA_INIT(&ad, IPC);
3905 ad.u.ipc_id = shp->shm_perm.key;
3906
3907 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3908 SHM__ASSOCIATE, &ad);
3909 }
3910
3911 /* Note, at this point, shp is locked down */
3912 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
3913 {
3914 int perms;
3915 int err;
3916
3917 switch(cmd) {
3918 case IPC_INFO:
3919 case SHM_INFO:
3920 /* No specific object, just general system-wide information. */
3921 return task_has_system(current, SYSTEM__IPC_INFO);
3922 case IPC_STAT:
3923 case SHM_STAT:
3924 perms = SHM__GETATTR | SHM__ASSOCIATE;
3925 break;
3926 case IPC_SET:
3927 perms = SHM__SETATTR;
3928 break;
3929 case SHM_LOCK:
3930 case SHM_UNLOCK:
3931 perms = SHM__LOCK;
3932 break;
3933 case IPC_RMID:
3934 perms = SHM__DESTROY;
3935 break;
3936 default:
3937 return 0;
3938 }
3939
3940 err = ipc_has_perm(&shp->shm_perm, perms);
3941 return err;
3942 }
3943
3944 static int selinux_shm_shmat(struct shmid_kernel *shp,
3945 char __user *shmaddr, int shmflg)
3946 {
3947 u32 perms;
3948 int rc;
3949
3950 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
3951 if (rc)
3952 return rc;
3953
3954 if (shmflg & SHM_RDONLY)
3955 perms = SHM__READ;
3956 else
3957 perms = SHM__READ | SHM__WRITE;
3958
3959 return ipc_has_perm(&shp->shm_perm, perms);
3960 }
3961
3962 /* Semaphore security operations */
3963 static int selinux_sem_alloc_security(struct sem_array *sma)
3964 {
3965 struct task_security_struct *tsec;
3966 struct ipc_security_struct *isec;
3967 struct avc_audit_data ad;
3968 int rc;
3969
3970 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
3971 if (rc)
3972 return rc;
3973
3974 tsec = current->security;
3975 isec = sma->sem_perm.security;
3976
3977 AVC_AUDIT_DATA_INIT(&ad, IPC);
3978 ad.u.ipc_id = sma->sem_perm.key;
3979
3980 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
3981 SEM__CREATE, &ad);
3982 if (rc) {
3983 ipc_free_security(&sma->sem_perm);
3984 return rc;
3985 }
3986 return 0;
3987 }
3988
3989 static void selinux_sem_free_security(struct sem_array *sma)
3990 {
3991 ipc_free_security(&sma->sem_perm);
3992 }
3993
3994 static int selinux_sem_associate(struct sem_array *sma, int semflg)
3995 {
3996 struct task_security_struct *tsec;
3997 struct ipc_security_struct *isec;
3998 struct avc_audit_data ad;
3999
4000 tsec = current->security;
4001 isec = sma->sem_perm.security;
4002
4003 AVC_AUDIT_DATA_INIT(&ad, IPC);
4004 ad.u.ipc_id = sma->sem_perm.key;
4005
4006 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4007 SEM__ASSOCIATE, &ad);
4008 }
4009
4010 /* Note, at this point, sma is locked down */
4011 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4012 {
4013 int err;
4014 u32 perms;
4015
4016 switch(cmd) {
4017 case IPC_INFO:
4018 case SEM_INFO:
4019 /* No specific object, just general system-wide information. */
4020 return task_has_system(current, SYSTEM__IPC_INFO);
4021 case GETPID:
4022 case GETNCNT:
4023 case GETZCNT:
4024 perms = SEM__GETATTR;
4025 break;
4026 case GETVAL:
4027 case GETALL:
4028 perms = SEM__READ;
4029 break;
4030 case SETVAL:
4031 case SETALL:
4032 perms = SEM__WRITE;
4033 break;
4034 case IPC_RMID:
4035 perms = SEM__DESTROY;
4036 break;
4037 case IPC_SET:
4038 perms = SEM__SETATTR;
4039 break;
4040 case IPC_STAT:
4041 case SEM_STAT:
4042 perms = SEM__GETATTR | SEM__ASSOCIATE;
4043 break;
4044 default:
4045 return 0;
4046 }
4047
4048 err = ipc_has_perm(&sma->sem_perm, perms);
4049 return err;
4050 }
4051
4052 static int selinux_sem_semop(struct sem_array *sma,
4053 struct sembuf *sops, unsigned nsops, int alter)
4054 {
4055 u32 perms;
4056
4057 if (alter)
4058 perms = SEM__READ | SEM__WRITE;
4059 else
4060 perms = SEM__READ;
4061
4062 return ipc_has_perm(&sma->sem_perm, perms);
4063 }
4064
4065 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4066 {
4067 u32 av = 0;
4068
4069 av = 0;
4070 if (flag & S_IRUGO)
4071 av |= IPC__UNIX_READ;
4072 if (flag & S_IWUGO)
4073 av |= IPC__UNIX_WRITE;
4074
4075 if (av == 0)
4076 return 0;
4077
4078 return ipc_has_perm(ipcp, av);
4079 }
4080
4081 /* module stacking operations */
4082 static int selinux_register_security (const char *name, struct security_operations *ops)
4083 {
4084 if (secondary_ops != original_ops) {
4085 printk(KERN_INFO "%s: There is already a secondary security "
4086 "module registered.\n", __FUNCTION__);
4087 return -EINVAL;
4088 }
4089
4090 secondary_ops = ops;
4091
4092 printk(KERN_INFO "%s: Registering secondary module %s\n",
4093 __FUNCTION__,
4094 name);
4095
4096 return 0;
4097 }
4098
4099 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4100 {
4101 if (ops != secondary_ops) {
4102 printk (KERN_INFO "%s: trying to unregister a security module "
4103 "that is not registered.\n", __FUNCTION__);
4104 return -EINVAL;
4105 }
4106
4107 secondary_ops = original_ops;
4108
4109 return 0;
4110 }
4111
4112 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4113 {
4114 if (inode)
4115 inode_doinit_with_dentry(inode, dentry);
4116 }
4117
4118 static int selinux_getprocattr(struct task_struct *p,
4119 char *name, void *value, size_t size)
4120 {
4121 struct task_security_struct *tsec;
4122 u32 sid, len;
4123 char *context;
4124 int error;
4125
4126 if (current != p) {
4127 error = task_has_perm(current, p, PROCESS__GETATTR);
4128 if (error)
4129 return error;
4130 }
4131
4132 if (!size)
4133 return -ERANGE;
4134
4135 tsec = p->security;
4136
4137 if (!strcmp(name, "current"))
4138 sid = tsec->sid;
4139 else if (!strcmp(name, "prev"))
4140 sid = tsec->osid;
4141 else if (!strcmp(name, "exec"))
4142 sid = tsec->exec_sid;
4143 else if (!strcmp(name, "fscreate"))
4144 sid = tsec->create_sid;
4145 else
4146 return -EINVAL;
4147
4148 if (!sid)
4149 return 0;
4150
4151 error = security_sid_to_context(sid, &context, &len);
4152 if (error)
4153 return error;
4154 if (len > size) {
4155 kfree(context);
4156 return -ERANGE;
4157 }
4158 memcpy(value, context, len);
4159 kfree(context);
4160 return len;
4161 }
4162
4163 static int selinux_setprocattr(struct task_struct *p,
4164 char *name, void *value, size_t size)
4165 {
4166 struct task_security_struct *tsec;
4167 u32 sid = 0;
4168 int error;
4169 char *str = value;
4170
4171 if (current != p) {
4172 /* SELinux only allows a process to change its own
4173 security attributes. */
4174 return -EACCES;
4175 }
4176
4177 /*
4178 * Basic control over ability to set these attributes at all.
4179 * current == p, but we'll pass them separately in case the
4180 * above restriction is ever removed.
4181 */
4182 if (!strcmp(name, "exec"))
4183 error = task_has_perm(current, p, PROCESS__SETEXEC);
4184 else if (!strcmp(name, "fscreate"))
4185 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4186 else if (!strcmp(name, "current"))
4187 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4188 else
4189 error = -EINVAL;
4190 if (error)
4191 return error;
4192
4193 /* Obtain a SID for the context, if one was specified. */
4194 if (size && str[1] && str[1] != '\n') {
4195 if (str[size-1] == '\n') {
4196 str[size-1] = 0;
4197 size--;
4198 }
4199 error = security_context_to_sid(value, size, &sid);
4200 if (error)
4201 return error;
4202 }
4203
4204 /* Permission checking based on the specified context is
4205 performed during the actual operation (execve,
4206 open/mkdir/...), when we know the full context of the
4207 operation. See selinux_bprm_set_security for the execve
4208 checks and may_create for the file creation checks. The
4209 operation will then fail if the context is not permitted. */
4210 tsec = p->security;
4211 if (!strcmp(name, "exec"))
4212 tsec->exec_sid = sid;
4213 else if (!strcmp(name, "fscreate"))
4214 tsec->create_sid = sid;
4215 else if (!strcmp(name, "current")) {
4216 struct av_decision avd;
4217
4218 if (sid == 0)
4219 return -EINVAL;
4220
4221 /* Only allow single threaded processes to change context */
4222 if (atomic_read(&p->mm->mm_users) != 1) {
4223 struct task_struct *g, *t;
4224 struct mm_struct *mm = p->mm;
4225 read_lock(&tasklist_lock);
4226 do_each_thread(g, t)
4227 if (t->mm == mm && t != p) {
4228 read_unlock(&tasklist_lock);
4229 return -EPERM;
4230 }
4231 while_each_thread(g, t);
4232 read_unlock(&tasklist_lock);
4233 }
4234
4235 /* Check permissions for the transition. */
4236 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4237 PROCESS__DYNTRANSITION, NULL);
4238 if (error)
4239 return error;
4240
4241 /* Check for ptracing, and update the task SID if ok.
4242 Otherwise, leave SID unchanged and fail. */
4243 task_lock(p);
4244 if (p->ptrace & PT_PTRACED) {
4245 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4246 SECCLASS_PROCESS,
4247 PROCESS__PTRACE, &avd);
4248 if (!error)
4249 tsec->sid = sid;
4250 task_unlock(p);
4251 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4252 PROCESS__PTRACE, &avd, error, NULL);
4253 if (error)
4254 return error;
4255 } else {
4256 tsec->sid = sid;
4257 task_unlock(p);
4258 }
4259 }
4260 else
4261 return -EINVAL;
4262
4263 return size;
4264 }
4265
4266 static struct security_operations selinux_ops = {
4267 .ptrace = selinux_ptrace,
4268 .capget = selinux_capget,
4269 .capset_check = selinux_capset_check,
4270 .capset_set = selinux_capset_set,
4271 .sysctl = selinux_sysctl,
4272 .capable = selinux_capable,
4273 .quotactl = selinux_quotactl,
4274 .quota_on = selinux_quota_on,
4275 .syslog = selinux_syslog,
4276 .vm_enough_memory = selinux_vm_enough_memory,
4277
4278 .netlink_send = selinux_netlink_send,
4279 .netlink_recv = selinux_netlink_recv,
4280
4281 .bprm_alloc_security = selinux_bprm_alloc_security,
4282 .bprm_free_security = selinux_bprm_free_security,
4283 .bprm_apply_creds = selinux_bprm_apply_creds,
4284 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4285 .bprm_set_security = selinux_bprm_set_security,
4286 .bprm_check_security = selinux_bprm_check_security,
4287 .bprm_secureexec = selinux_bprm_secureexec,
4288
4289 .sb_alloc_security = selinux_sb_alloc_security,
4290 .sb_free_security = selinux_sb_free_security,
4291 .sb_copy_data = selinux_sb_copy_data,
4292 .sb_kern_mount = selinux_sb_kern_mount,
4293 .sb_statfs = selinux_sb_statfs,
4294 .sb_mount = selinux_mount,
4295 .sb_umount = selinux_umount,
4296
4297 .inode_alloc_security = selinux_inode_alloc_security,
4298 .inode_free_security = selinux_inode_free_security,
4299 .inode_create = selinux_inode_create,
4300 .inode_post_create = selinux_inode_post_create,
4301 .inode_link = selinux_inode_link,
4302 .inode_post_link = selinux_inode_post_link,
4303 .inode_unlink = selinux_inode_unlink,
4304 .inode_symlink = selinux_inode_symlink,
4305 .inode_post_symlink = selinux_inode_post_symlink,
4306 .inode_mkdir = selinux_inode_mkdir,
4307 .inode_post_mkdir = selinux_inode_post_mkdir,
4308 .inode_rmdir = selinux_inode_rmdir,
4309 .inode_mknod = selinux_inode_mknod,
4310 .inode_post_mknod = selinux_inode_post_mknod,
4311 .inode_rename = selinux_inode_rename,
4312 .inode_post_rename = selinux_inode_post_rename,
4313 .inode_readlink = selinux_inode_readlink,
4314 .inode_follow_link = selinux_inode_follow_link,
4315 .inode_permission = selinux_inode_permission,
4316 .inode_setattr = selinux_inode_setattr,
4317 .inode_getattr = selinux_inode_getattr,
4318 .inode_setxattr = selinux_inode_setxattr,
4319 .inode_post_setxattr = selinux_inode_post_setxattr,
4320 .inode_getxattr = selinux_inode_getxattr,
4321 .inode_listxattr = selinux_inode_listxattr,
4322 .inode_removexattr = selinux_inode_removexattr,
4323 .inode_getsecurity = selinux_inode_getsecurity,
4324 .inode_setsecurity = selinux_inode_setsecurity,
4325 .inode_listsecurity = selinux_inode_listsecurity,
4326
4327 .file_permission = selinux_file_permission,
4328 .file_alloc_security = selinux_file_alloc_security,
4329 .file_free_security = selinux_file_free_security,
4330 .file_ioctl = selinux_file_ioctl,
4331 .file_mmap = selinux_file_mmap,
4332 .file_mprotect = selinux_file_mprotect,
4333 .file_lock = selinux_file_lock,
4334 .file_fcntl = selinux_file_fcntl,
4335 .file_set_fowner = selinux_file_set_fowner,
4336 .file_send_sigiotask = selinux_file_send_sigiotask,
4337 .file_receive = selinux_file_receive,
4338
4339 .task_create = selinux_task_create,
4340 .task_alloc_security = selinux_task_alloc_security,
4341 .task_free_security = selinux_task_free_security,
4342 .task_setuid = selinux_task_setuid,
4343 .task_post_setuid = selinux_task_post_setuid,
4344 .task_setgid = selinux_task_setgid,
4345 .task_setpgid = selinux_task_setpgid,
4346 .task_getpgid = selinux_task_getpgid,
4347 .task_getsid = selinux_task_getsid,
4348 .task_setgroups = selinux_task_setgroups,
4349 .task_setnice = selinux_task_setnice,
4350 .task_setrlimit = selinux_task_setrlimit,
4351 .task_setscheduler = selinux_task_setscheduler,
4352 .task_getscheduler = selinux_task_getscheduler,
4353 .task_kill = selinux_task_kill,
4354 .task_wait = selinux_task_wait,
4355 .task_prctl = selinux_task_prctl,
4356 .task_reparent_to_init = selinux_task_reparent_to_init,
4357 .task_to_inode = selinux_task_to_inode,
4358
4359 .ipc_permission = selinux_ipc_permission,
4360
4361 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4362 .msg_msg_free_security = selinux_msg_msg_free_security,
4363
4364 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4365 .msg_queue_free_security = selinux_msg_queue_free_security,
4366 .msg_queue_associate = selinux_msg_queue_associate,
4367 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4368 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4369 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4370
4371 .shm_alloc_security = selinux_shm_alloc_security,
4372 .shm_free_security = selinux_shm_free_security,
4373 .shm_associate = selinux_shm_associate,
4374 .shm_shmctl = selinux_shm_shmctl,
4375 .shm_shmat = selinux_shm_shmat,
4376
4377 .sem_alloc_security = selinux_sem_alloc_security,
4378 .sem_free_security = selinux_sem_free_security,
4379 .sem_associate = selinux_sem_associate,
4380 .sem_semctl = selinux_sem_semctl,
4381 .sem_semop = selinux_sem_semop,
4382
4383 .register_security = selinux_register_security,
4384 .unregister_security = selinux_unregister_security,
4385
4386 .d_instantiate = selinux_d_instantiate,
4387
4388 .getprocattr = selinux_getprocattr,
4389 .setprocattr = selinux_setprocattr,
4390
4391 #ifdef CONFIG_SECURITY_NETWORK
4392 .unix_stream_connect = selinux_socket_unix_stream_connect,
4393 .unix_may_send = selinux_socket_unix_may_send,
4394
4395 .socket_create = selinux_socket_create,
4396 .socket_post_create = selinux_socket_post_create,
4397 .socket_bind = selinux_socket_bind,
4398 .socket_connect = selinux_socket_connect,
4399 .socket_listen = selinux_socket_listen,
4400 .socket_accept = selinux_socket_accept,
4401 .socket_sendmsg = selinux_socket_sendmsg,
4402 .socket_recvmsg = selinux_socket_recvmsg,
4403 .socket_getsockname = selinux_socket_getsockname,
4404 .socket_getpeername = selinux_socket_getpeername,
4405 .socket_getsockopt = selinux_socket_getsockopt,
4406 .socket_setsockopt = selinux_socket_setsockopt,
4407 .socket_shutdown = selinux_socket_shutdown,
4408 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4409 .socket_getpeersec = selinux_socket_getpeersec,
4410 .sk_alloc_security = selinux_sk_alloc_security,
4411 .sk_free_security = selinux_sk_free_security,
4412 #endif
4413 };
4414
4415 static __init int selinux_init(void)
4416 {
4417 struct task_security_struct *tsec;
4418
4419 if (!selinux_enabled) {
4420 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4421 return 0;
4422 }
4423
4424 printk(KERN_INFO "SELinux: Initializing.\n");
4425
4426 /* Set the security state for the initial task. */
4427 if (task_alloc_security(current))
4428 panic("SELinux: Failed to initialize initial task.\n");
4429 tsec = current->security;
4430 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4431
4432 avc_init();
4433
4434 original_ops = secondary_ops = security_ops;
4435 if (!secondary_ops)
4436 panic ("SELinux: No initial security operations\n");
4437 if (register_security (&selinux_ops))
4438 panic("SELinux: Unable to register with kernel.\n");
4439
4440 if (selinux_enforcing) {
4441 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4442 } else {
4443 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4444 }
4445 return 0;
4446 }
4447
4448 void selinux_complete_init(void)
4449 {
4450 printk(KERN_INFO "SELinux: Completing initialization.\n");
4451
4452 /* Set up any superblocks initialized prior to the policy load. */
4453 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4454 spin_lock(&sb_security_lock);
4455 next_sb:
4456 if (!list_empty(&superblock_security_head)) {
4457 struct superblock_security_struct *sbsec =
4458 list_entry(superblock_security_head.next,
4459 struct superblock_security_struct,
4460 list);
4461 struct super_block *sb = sbsec->sb;
4462 spin_lock(&sb_lock);
4463 sb->s_count++;
4464 spin_unlock(&sb_lock);
4465 spin_unlock(&sb_security_lock);
4466 down_read(&sb->s_umount);
4467 if (sb->s_root)
4468 superblock_doinit(sb, NULL);
4469 drop_super(sb);
4470 spin_lock(&sb_security_lock);
4471 list_del_init(&sbsec->list);
4472 goto next_sb;
4473 }
4474 spin_unlock(&sb_security_lock);
4475 }
4476
4477 /* SELinux requires early initialization in order to label
4478 all processes and objects when they are created. */
4479 security_initcall(selinux_init);
4480
4481 #if defined(CONFIG_SECURITY_NETWORK) && defined(CONFIG_NETFILTER)
4482
4483 static struct nf_hook_ops selinux_ipv4_op = {
4484 .hook = selinux_ipv4_postroute_last,
4485 .owner = THIS_MODULE,
4486 .pf = PF_INET,
4487 .hooknum = NF_IP_POST_ROUTING,
4488 .priority = NF_IP_PRI_SELINUX_LAST,
4489 };
4490
4491 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4492
4493 static struct nf_hook_ops selinux_ipv6_op = {
4494 .hook = selinux_ipv6_postroute_last,
4495 .owner = THIS_MODULE,
4496 .pf = PF_INET6,
4497 .hooknum = NF_IP6_POST_ROUTING,
4498 .priority = NF_IP6_PRI_SELINUX_LAST,
4499 };
4500
4501 #endif /* IPV6 */
4502
4503 static int __init selinux_nf_ip_init(void)
4504 {
4505 int err = 0;
4506
4507 if (!selinux_enabled)
4508 goto out;
4509
4510 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4511
4512 err = nf_register_hook(&selinux_ipv4_op);
4513 if (err)
4514 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4515
4516 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4517
4518 err = nf_register_hook(&selinux_ipv6_op);
4519 if (err)
4520 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4521
4522 #endif /* IPV6 */
4523 out:
4524 return err;
4525 }
4526
4527 __initcall(selinux_nf_ip_init);
4528
4529 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4530 static void selinux_nf_ip_exit(void)
4531 {
4532 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4533
4534 nf_unregister_hook(&selinux_ipv4_op);
4535 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4536 nf_unregister_hook(&selinux_ipv6_op);
4537 #endif /* IPV6 */
4538 }
4539 #endif
4540
4541 #else /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */
4542
4543 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4544 #define selinux_nf_ip_exit()
4545 #endif
4546
4547 #endif /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */
4548
4549 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4550 int selinux_disable(void)
4551 {
4552 extern void exit_sel_fs(void);
4553 static int selinux_disabled = 0;
4554
4555 if (ss_initialized) {
4556 /* Not permitted after initial policy load. */
4557 return -EINVAL;
4558 }
4559
4560 if (selinux_disabled) {
4561 /* Only do this once. */
4562 return -EINVAL;
4563 }
4564
4565 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4566
4567 selinux_disabled = 1;
4568
4569 /* Reset security_ops to the secondary module, dummy or capability. */
4570 security_ops = secondary_ops;
4571
4572 /* Unregister netfilter hooks. */
4573 selinux_nf_ip_exit();
4574
4575 /* Unregister selinuxfs. */
4576 exit_sel_fs();
4577
4578 return 0;
4579 }
4580 #endif
4581
4582