[PATCH] split linux/file.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
16 * Paul Moore <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
23 */
24
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/fdtable.h>
43 #include <linux/namei.h>
44 #include <linux/mount.h>
45 #include <linux/ext2_fs.h>
46 #include <linux/proc_fs.h>
47 #include <linux/kd.h>
48 #include <linux/netfilter_ipv4.h>
49 #include <linux/netfilter_ipv6.h>
50 #include <linux/tty.h>
51 #include <net/icmp.h>
52 #include <net/ip.h> /* for local_port_range[] */
53 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
54 #include <net/net_namespace.h>
55 #include <net/netlabel.h>
56 #include <asm/uaccess.h>
57 #include <asm/ioctls.h>
58 #include <asm/atomic.h>
59 #include <linux/bitops.h>
60 #include <linux/interrupt.h>
61 #include <linux/netdevice.h> /* for network interface checks */
62 #include <linux/netlink.h>
63 #include <linux/tcp.h>
64 #include <linux/udp.h>
65 #include <linux/dccp.h>
66 #include <linux/quota.h>
67 #include <linux/un.h> /* for Unix socket types */
68 #include <net/af_unix.h> /* for Unix socket types */
69 #include <linux/parser.h>
70 #include <linux/nfs_mount.h>
71 #include <net/ipv6.h>
72 #include <linux/hugetlb.h>
73 #include <linux/personality.h>
74 #include <linux/sysctl.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107 selinux_enforcing = simple_strtol(str, NULL, 0);
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 selinux_enabled = simple_strtol(str, NULL, 0);
119 return 1;
120 }
121 __setup("selinux=", selinux_enabled_setup);
122 #else
123 int selinux_enabled = 1;
124 #endif
125
126 /* Original (dummy) security module. */
127 static struct security_operations *original_ops;
128
129 /* Minimal support for a secondary security module,
130 just to allow the use of the dummy or capability modules.
131 The owlsm module can alternatively be used as a secondary
132 module as long as CONFIG_OWLSM_FD is not enabled. */
133 static struct security_operations *secondary_ops;
134
135 /* Lists of inode and superblock security structures initialized
136 before the policy was loaded. */
137 static LIST_HEAD(superblock_security_head);
138 static DEFINE_SPINLOCK(sb_security_lock);
139
140 static struct kmem_cache *sel_inode_cache;
141
142 /**
143 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
144 *
145 * Description:
146 * This function checks the SECMARK reference counter to see if any SECMARK
147 * targets are currently configured, if the reference counter is greater than
148 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
149 * enabled, false (0) if SECMARK is disabled.
150 *
151 */
152 static int selinux_secmark_enabled(void)
153 {
154 return (atomic_read(&selinux_secmark_refcount) > 0);
155 }
156
157 /* Allocate and free functions for each kind of security blob. */
158
159 static int task_alloc_security(struct task_struct *task)
160 {
161 struct task_security_struct *tsec;
162
163 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
164 if (!tsec)
165 return -ENOMEM;
166
167 tsec->osid = tsec->sid = SECINITSID_UNLABELED;
168 task->security = tsec;
169
170 return 0;
171 }
172
173 static void task_free_security(struct task_struct *task)
174 {
175 struct task_security_struct *tsec = task->security;
176 task->security = NULL;
177 kfree(tsec);
178 }
179
180 static int inode_alloc_security(struct inode *inode)
181 {
182 struct task_security_struct *tsec = current->security;
183 struct inode_security_struct *isec;
184
185 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
186 if (!isec)
187 return -ENOMEM;
188
189 mutex_init(&isec->lock);
190 INIT_LIST_HEAD(&isec->list);
191 isec->inode = inode;
192 isec->sid = SECINITSID_UNLABELED;
193 isec->sclass = SECCLASS_FILE;
194 isec->task_sid = tsec->sid;
195 inode->i_security = isec;
196
197 return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202 struct inode_security_struct *isec = inode->i_security;
203 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205 spin_lock(&sbsec->isec_lock);
206 if (!list_empty(&isec->list))
207 list_del_init(&isec->list);
208 spin_unlock(&sbsec->isec_lock);
209
210 inode->i_security = NULL;
211 kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216 struct task_security_struct *tsec = current->security;
217 struct file_security_struct *fsec;
218
219 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220 if (!fsec)
221 return -ENOMEM;
222
223 fsec->sid = tsec->sid;
224 fsec->fown_sid = tsec->sid;
225 file->f_security = fsec;
226
227 return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232 struct file_security_struct *fsec = file->f_security;
233 file->f_security = NULL;
234 kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239 struct superblock_security_struct *sbsec;
240
241 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242 if (!sbsec)
243 return -ENOMEM;
244
245 mutex_init(&sbsec->lock);
246 INIT_LIST_HEAD(&sbsec->list);
247 INIT_LIST_HEAD(&sbsec->isec_head);
248 spin_lock_init(&sbsec->isec_lock);
249 sbsec->sb = sb;
250 sbsec->sid = SECINITSID_UNLABELED;
251 sbsec->def_sid = SECINITSID_FILE;
252 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253 sb->s_security = sbsec;
254
255 return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260 struct superblock_security_struct *sbsec = sb->s_security;
261
262 spin_lock(&sb_security_lock);
263 if (!list_empty(&sbsec->list))
264 list_del_init(&sbsec->list);
265 spin_unlock(&sb_security_lock);
266
267 sb->s_security = NULL;
268 kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273 struct sk_security_struct *ssec;
274
275 ssec = kzalloc(sizeof(*ssec), priority);
276 if (!ssec)
277 return -ENOMEM;
278
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 ssec->sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
282
283 selinux_netlbl_sk_security_reset(ssec, family);
284
285 return 0;
286 }
287
288 static void sk_free_security(struct sock *sk)
289 {
290 struct sk_security_struct *ssec = sk->sk_security;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_error = -1,
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 3,
323 Opt_rootcontext = 4,
324 };
325
326 static match_table_t tokens = {
327 {Opt_context, CONTEXT_STR "%s"},
328 {Opt_fscontext, FSCONTEXT_STR "%s"},
329 {Opt_defcontext, DEFCONTEXT_STR "%s"},
330 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
331 {Opt_error, NULL},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337 struct superblock_security_struct *sbsec,
338 struct task_security_struct *tsec)
339 {
340 int rc;
341
342 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 FILESYSTEM__RELABELFROM, NULL);
344 if (rc)
345 return rc;
346
347 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELTO, NULL);
349 return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353 struct superblock_security_struct *sbsec,
354 struct task_security_struct *tsec)
355 {
356 int rc;
357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 FILESYSTEM__RELABELFROM, NULL);
359 if (rc)
360 return rc;
361
362 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 FILESYSTEM__ASSOCIATE, NULL);
364 return rc;
365 }
366
367 static int sb_finish_set_opts(struct super_block *sb)
368 {
369 struct superblock_security_struct *sbsec = sb->s_security;
370 struct dentry *root = sb->s_root;
371 struct inode *root_inode = root->d_inode;
372 int rc = 0;
373
374 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
375 /* Make sure that the xattr handler exists and that no
376 error other than -ENODATA is returned by getxattr on
377 the root directory. -ENODATA is ok, as this may be
378 the first boot of the SELinux kernel before we have
379 assigned xattr values to the filesystem. */
380 if (!root_inode->i_op->getxattr) {
381 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
382 "xattr support\n", sb->s_id, sb->s_type->name);
383 rc = -EOPNOTSUPP;
384 goto out;
385 }
386 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
387 if (rc < 0 && rc != -ENODATA) {
388 if (rc == -EOPNOTSUPP)
389 printk(KERN_WARNING "SELinux: (dev %s, type "
390 "%s) has no security xattr handler\n",
391 sb->s_id, sb->s_type->name);
392 else
393 printk(KERN_WARNING "SELinux: (dev %s, type "
394 "%s) getxattr errno %d\n", sb->s_id,
395 sb->s_type->name, -rc);
396 goto out;
397 }
398 }
399
400 sbsec->initialized = 1;
401
402 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
404 sb->s_id, sb->s_type->name);
405 else
406 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
407 sb->s_id, sb->s_type->name,
408 labeling_behaviors[sbsec->behavior-1]);
409
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
412
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
416 populates itself. */
417 spin_lock(&sbsec->isec_lock);
418 next_inode:
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
426 if (inode) {
427 if (!IS_PRIVATE(inode))
428 inode_doinit(inode);
429 iput(inode);
430 }
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
433 goto next_inode;
434 }
435 spin_unlock(&sbsec->isec_lock);
436 out:
437 return rc;
438 }
439
440 /*
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
444 */
445 static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
447 {
448 int rc = 0, i;
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
451 u32 len;
452 char tmp;
453
454 security_init_mnt_opts(opts);
455
456 if (!sbsec->initialized)
457 return -EINVAL;
458
459 if (!ss_initialized)
460 return -EINVAL;
461
462 /*
463 * if we ever use sbsec flags for anything other than tracking mount
464 * settings this is going to need a mask
465 */
466 tmp = sbsec->flags;
467 /* count the number of mount options for this sb */
468 for (i = 0; i < 8; i++) {
469 if (tmp & 0x01)
470 opts->num_mnt_opts++;
471 tmp >>= 1;
472 }
473
474 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
475 if (!opts->mnt_opts) {
476 rc = -ENOMEM;
477 goto out_free;
478 }
479
480 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
481 if (!opts->mnt_opts_flags) {
482 rc = -ENOMEM;
483 goto out_free;
484 }
485
486 i = 0;
487 if (sbsec->flags & FSCONTEXT_MNT) {
488 rc = security_sid_to_context(sbsec->sid, &context, &len);
489 if (rc)
490 goto out_free;
491 opts->mnt_opts[i] = context;
492 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
493 }
494 if (sbsec->flags & CONTEXT_MNT) {
495 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
496 if (rc)
497 goto out_free;
498 opts->mnt_opts[i] = context;
499 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
500 }
501 if (sbsec->flags & DEFCONTEXT_MNT) {
502 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
503 if (rc)
504 goto out_free;
505 opts->mnt_opts[i] = context;
506 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
507 }
508 if (sbsec->flags & ROOTCONTEXT_MNT) {
509 struct inode *root = sbsec->sb->s_root->d_inode;
510 struct inode_security_struct *isec = root->i_security;
511
512 rc = security_sid_to_context(isec->sid, &context, &len);
513 if (rc)
514 goto out_free;
515 opts->mnt_opts[i] = context;
516 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
517 }
518
519 BUG_ON(i != opts->num_mnt_opts);
520
521 return 0;
522
523 out_free:
524 security_free_mnt_opts(opts);
525 return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529 u32 old_sid, u32 new_sid)
530 {
531 /* check if the old mount command had the same options */
532 if (sbsec->initialized)
533 if (!(sbsec->flags & flag) ||
534 (old_sid != new_sid))
535 return 1;
536
537 /* check if we were passed the same options twice,
538 * aka someone passed context=a,context=b
539 */
540 if (!sbsec->initialized)
541 if (sbsec->flags & flag)
542 return 1;
543 return 0;
544 }
545
546 /*
547 * Allow filesystems with binary mount data to explicitly set mount point
548 * labeling information.
549 */
550 static int selinux_set_mnt_opts(struct super_block *sb,
551 struct security_mnt_opts *opts)
552 {
553 int rc = 0, i;
554 struct task_security_struct *tsec = current->security;
555 struct superblock_security_struct *sbsec = sb->s_security;
556 const char *name = sb->s_type->name;
557 struct inode *inode = sbsec->sb->s_root->d_inode;
558 struct inode_security_struct *root_isec = inode->i_security;
559 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
560 u32 defcontext_sid = 0;
561 char **mount_options = opts->mnt_opts;
562 int *flags = opts->mnt_opts_flags;
563 int num_opts = opts->num_mnt_opts;
564
565 mutex_lock(&sbsec->lock);
566
567 if (!ss_initialized) {
568 if (!num_opts) {
569 /* Defer initialization until selinux_complete_init,
570 after the initial policy is loaded and the security
571 server is ready to handle calls. */
572 spin_lock(&sb_security_lock);
573 if (list_empty(&sbsec->list))
574 list_add(&sbsec->list, &superblock_security_head);
575 spin_unlock(&sb_security_lock);
576 goto out;
577 }
578 rc = -EINVAL;
579 printk(KERN_WARNING "SELinux: Unable to set superblock options "
580 "before the security server is initialized\n");
581 goto out;
582 }
583
584 /*
585 * Binary mount data FS will come through this function twice. Once
586 * from an explicit call and once from the generic calls from the vfs.
587 * Since the generic VFS calls will not contain any security mount data
588 * we need to skip the double mount verification.
589 *
590 * This does open a hole in which we will not notice if the first
591 * mount using this sb set explict options and a second mount using
592 * this sb does not set any security options. (The first options
593 * will be used for both mounts)
594 */
595 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596 && (num_opts == 0))
597 goto out;
598
599 /*
600 * parse the mount options, check if they are valid sids.
601 * also check if someone is trying to mount the same sb more
602 * than once with different security options.
603 */
604 for (i = 0; i < num_opts; i++) {
605 u32 sid;
606 rc = security_context_to_sid(mount_options[i],
607 strlen(mount_options[i]), &sid);
608 if (rc) {
609 printk(KERN_WARNING "SELinux: security_context_to_sid"
610 "(%s) failed for (dev %s, type %s) errno=%d\n",
611 mount_options[i], sb->s_id, name, rc);
612 goto out;
613 }
614 switch (flags[i]) {
615 case FSCONTEXT_MNT:
616 fscontext_sid = sid;
617
618 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
619 fscontext_sid))
620 goto out_double_mount;
621
622 sbsec->flags |= FSCONTEXT_MNT;
623 break;
624 case CONTEXT_MNT:
625 context_sid = sid;
626
627 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
628 context_sid))
629 goto out_double_mount;
630
631 sbsec->flags |= CONTEXT_MNT;
632 break;
633 case ROOTCONTEXT_MNT:
634 rootcontext_sid = sid;
635
636 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
637 rootcontext_sid))
638 goto out_double_mount;
639
640 sbsec->flags |= ROOTCONTEXT_MNT;
641
642 break;
643 case DEFCONTEXT_MNT:
644 defcontext_sid = sid;
645
646 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
647 defcontext_sid))
648 goto out_double_mount;
649
650 sbsec->flags |= DEFCONTEXT_MNT;
651
652 break;
653 default:
654 rc = -EINVAL;
655 goto out;
656 }
657 }
658
659 if (sbsec->initialized) {
660 /* previously mounted with options, but not on this attempt? */
661 if (sbsec->flags && !num_opts)
662 goto out_double_mount;
663 rc = 0;
664 goto out;
665 }
666
667 if (strcmp(sb->s_type->name, "proc") == 0)
668 sbsec->proc = 1;
669
670 /* Determine the labeling behavior to use for this filesystem type. */
671 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
672 if (rc) {
673 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
674 __func__, sb->s_type->name, rc);
675 goto out;
676 }
677
678 /* sets the context of the superblock for the fs being mounted. */
679 if (fscontext_sid) {
680
681 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
682 if (rc)
683 goto out;
684
685 sbsec->sid = fscontext_sid;
686 }
687
688 /*
689 * Switch to using mount point labeling behavior.
690 * sets the label used on all file below the mountpoint, and will set
691 * the superblock context if not already set.
692 */
693 if (context_sid) {
694 if (!fscontext_sid) {
695 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
696 if (rc)
697 goto out;
698 sbsec->sid = context_sid;
699 } else {
700 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
701 if (rc)
702 goto out;
703 }
704 if (!rootcontext_sid)
705 rootcontext_sid = context_sid;
706
707 sbsec->mntpoint_sid = context_sid;
708 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
709 }
710
711 if (rootcontext_sid) {
712 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
713 if (rc)
714 goto out;
715
716 root_isec->sid = rootcontext_sid;
717 root_isec->initialized = 1;
718 }
719
720 if (defcontext_sid) {
721 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
722 rc = -EINVAL;
723 printk(KERN_WARNING "SELinux: defcontext option is "
724 "invalid for this filesystem type\n");
725 goto out;
726 }
727
728 if (defcontext_sid != sbsec->def_sid) {
729 rc = may_context_mount_inode_relabel(defcontext_sid,
730 sbsec, tsec);
731 if (rc)
732 goto out;
733 }
734
735 sbsec->def_sid = defcontext_sid;
736 }
737
738 rc = sb_finish_set_opts(sb);
739 out:
740 mutex_unlock(&sbsec->lock);
741 return rc;
742 out_double_mount:
743 rc = -EINVAL;
744 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
745 "security settings for (dev %s, type %s)\n", sb->s_id, name);
746 goto out;
747 }
748
749 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
750 struct super_block *newsb)
751 {
752 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
753 struct superblock_security_struct *newsbsec = newsb->s_security;
754
755 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
756 int set_context = (oldsbsec->flags & CONTEXT_MNT);
757 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
758
759 /*
760 * if the parent was able to be mounted it clearly had no special lsm
761 * mount options. thus we can safely put this sb on the list and deal
762 * with it later
763 */
764 if (!ss_initialized) {
765 spin_lock(&sb_security_lock);
766 if (list_empty(&newsbsec->list))
767 list_add(&newsbsec->list, &superblock_security_head);
768 spin_unlock(&sb_security_lock);
769 return;
770 }
771
772 /* how can we clone if the old one wasn't set up?? */
773 BUG_ON(!oldsbsec->initialized);
774
775 /* if fs is reusing a sb, just let its options stand... */
776 if (newsbsec->initialized)
777 return;
778
779 mutex_lock(&newsbsec->lock);
780
781 newsbsec->flags = oldsbsec->flags;
782
783 newsbsec->sid = oldsbsec->sid;
784 newsbsec->def_sid = oldsbsec->def_sid;
785 newsbsec->behavior = oldsbsec->behavior;
786
787 if (set_context) {
788 u32 sid = oldsbsec->mntpoint_sid;
789
790 if (!set_fscontext)
791 newsbsec->sid = sid;
792 if (!set_rootcontext) {
793 struct inode *newinode = newsb->s_root->d_inode;
794 struct inode_security_struct *newisec = newinode->i_security;
795 newisec->sid = sid;
796 }
797 newsbsec->mntpoint_sid = sid;
798 }
799 if (set_rootcontext) {
800 const struct inode *oldinode = oldsb->s_root->d_inode;
801 const struct inode_security_struct *oldisec = oldinode->i_security;
802 struct inode *newinode = newsb->s_root->d_inode;
803 struct inode_security_struct *newisec = newinode->i_security;
804
805 newisec->sid = oldisec->sid;
806 }
807
808 sb_finish_set_opts(newsb);
809 mutex_unlock(&newsbsec->lock);
810 }
811
812 static int selinux_parse_opts_str(char *options,
813 struct security_mnt_opts *opts)
814 {
815 char *p;
816 char *context = NULL, *defcontext = NULL;
817 char *fscontext = NULL, *rootcontext = NULL;
818 int rc, num_mnt_opts = 0;
819
820 opts->num_mnt_opts = 0;
821
822 /* Standard string-based options. */
823 while ((p = strsep(&options, "|")) != NULL) {
824 int token;
825 substring_t args[MAX_OPT_ARGS];
826
827 if (!*p)
828 continue;
829
830 token = match_token(p, tokens, args);
831
832 switch (token) {
833 case Opt_context:
834 if (context || defcontext) {
835 rc = -EINVAL;
836 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
837 goto out_err;
838 }
839 context = match_strdup(&args[0]);
840 if (!context) {
841 rc = -ENOMEM;
842 goto out_err;
843 }
844 break;
845
846 case Opt_fscontext:
847 if (fscontext) {
848 rc = -EINVAL;
849 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
850 goto out_err;
851 }
852 fscontext = match_strdup(&args[0]);
853 if (!fscontext) {
854 rc = -ENOMEM;
855 goto out_err;
856 }
857 break;
858
859 case Opt_rootcontext:
860 if (rootcontext) {
861 rc = -EINVAL;
862 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863 goto out_err;
864 }
865 rootcontext = match_strdup(&args[0]);
866 if (!rootcontext) {
867 rc = -ENOMEM;
868 goto out_err;
869 }
870 break;
871
872 case Opt_defcontext:
873 if (context || defcontext) {
874 rc = -EINVAL;
875 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876 goto out_err;
877 }
878 defcontext = match_strdup(&args[0]);
879 if (!defcontext) {
880 rc = -ENOMEM;
881 goto out_err;
882 }
883 break;
884
885 default:
886 rc = -EINVAL;
887 printk(KERN_WARNING "SELinux: unknown mount option\n");
888 goto out_err;
889
890 }
891 }
892
893 rc = -ENOMEM;
894 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895 if (!opts->mnt_opts)
896 goto out_err;
897
898 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899 if (!opts->mnt_opts_flags) {
900 kfree(opts->mnt_opts);
901 goto out_err;
902 }
903
904 if (fscontext) {
905 opts->mnt_opts[num_mnt_opts] = fscontext;
906 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907 }
908 if (context) {
909 opts->mnt_opts[num_mnt_opts] = context;
910 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911 }
912 if (rootcontext) {
913 opts->mnt_opts[num_mnt_opts] = rootcontext;
914 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915 }
916 if (defcontext) {
917 opts->mnt_opts[num_mnt_opts] = defcontext;
918 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919 }
920
921 opts->num_mnt_opts = num_mnt_opts;
922 return 0;
923
924 out_err:
925 kfree(context);
926 kfree(defcontext);
927 kfree(fscontext);
928 kfree(rootcontext);
929 return rc;
930 }
931 /*
932 * string mount options parsing and call set the sbsec
933 */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936 int rc = 0;
937 char *options = data;
938 struct security_mnt_opts opts;
939
940 security_init_mnt_opts(&opts);
941
942 if (!data)
943 goto out;
944
945 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946
947 rc = selinux_parse_opts_str(options, &opts);
948 if (rc)
949 goto out_err;
950
951 out:
952 rc = selinux_set_mnt_opts(sb, &opts);
953
954 out_err:
955 security_free_mnt_opts(&opts);
956 return rc;
957 }
958
959 static inline u16 inode_mode_to_security_class(umode_t mode)
960 {
961 switch (mode & S_IFMT) {
962 case S_IFSOCK:
963 return SECCLASS_SOCK_FILE;
964 case S_IFLNK:
965 return SECCLASS_LNK_FILE;
966 case S_IFREG:
967 return SECCLASS_FILE;
968 case S_IFBLK:
969 return SECCLASS_BLK_FILE;
970 case S_IFDIR:
971 return SECCLASS_DIR;
972 case S_IFCHR:
973 return SECCLASS_CHR_FILE;
974 case S_IFIFO:
975 return SECCLASS_FIFO_FILE;
976
977 }
978
979 return SECCLASS_FILE;
980 }
981
982 static inline int default_protocol_stream(int protocol)
983 {
984 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
985 }
986
987 static inline int default_protocol_dgram(int protocol)
988 {
989 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
990 }
991
992 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
993 {
994 switch (family) {
995 case PF_UNIX:
996 switch (type) {
997 case SOCK_STREAM:
998 case SOCK_SEQPACKET:
999 return SECCLASS_UNIX_STREAM_SOCKET;
1000 case SOCK_DGRAM:
1001 return SECCLASS_UNIX_DGRAM_SOCKET;
1002 }
1003 break;
1004 case PF_INET:
1005 case PF_INET6:
1006 switch (type) {
1007 case SOCK_STREAM:
1008 if (default_protocol_stream(protocol))
1009 return SECCLASS_TCP_SOCKET;
1010 else
1011 return SECCLASS_RAWIP_SOCKET;
1012 case SOCK_DGRAM:
1013 if (default_protocol_dgram(protocol))
1014 return SECCLASS_UDP_SOCKET;
1015 else
1016 return SECCLASS_RAWIP_SOCKET;
1017 case SOCK_DCCP:
1018 return SECCLASS_DCCP_SOCKET;
1019 default:
1020 return SECCLASS_RAWIP_SOCKET;
1021 }
1022 break;
1023 case PF_NETLINK:
1024 switch (protocol) {
1025 case NETLINK_ROUTE:
1026 return SECCLASS_NETLINK_ROUTE_SOCKET;
1027 case NETLINK_FIREWALL:
1028 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1029 case NETLINK_INET_DIAG:
1030 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1031 case NETLINK_NFLOG:
1032 return SECCLASS_NETLINK_NFLOG_SOCKET;
1033 case NETLINK_XFRM:
1034 return SECCLASS_NETLINK_XFRM_SOCKET;
1035 case NETLINK_SELINUX:
1036 return SECCLASS_NETLINK_SELINUX_SOCKET;
1037 case NETLINK_AUDIT:
1038 return SECCLASS_NETLINK_AUDIT_SOCKET;
1039 case NETLINK_IP6_FW:
1040 return SECCLASS_NETLINK_IP6FW_SOCKET;
1041 case NETLINK_DNRTMSG:
1042 return SECCLASS_NETLINK_DNRT_SOCKET;
1043 case NETLINK_KOBJECT_UEVENT:
1044 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1045 default:
1046 return SECCLASS_NETLINK_SOCKET;
1047 }
1048 case PF_PACKET:
1049 return SECCLASS_PACKET_SOCKET;
1050 case PF_KEY:
1051 return SECCLASS_KEY_SOCKET;
1052 case PF_APPLETALK:
1053 return SECCLASS_APPLETALK_SOCKET;
1054 }
1055
1056 return SECCLASS_SOCKET;
1057 }
1058
1059 #ifdef CONFIG_PROC_FS
1060 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1061 u16 tclass,
1062 u32 *sid)
1063 {
1064 int buflen, rc;
1065 char *buffer, *path, *end;
1066
1067 buffer = (char *)__get_free_page(GFP_KERNEL);
1068 if (!buffer)
1069 return -ENOMEM;
1070
1071 buflen = PAGE_SIZE;
1072 end = buffer+buflen;
1073 *--end = '\0';
1074 buflen--;
1075 path = end-1;
1076 *path = '/';
1077 while (de && de != de->parent) {
1078 buflen -= de->namelen + 1;
1079 if (buflen < 0)
1080 break;
1081 end -= de->namelen;
1082 memcpy(end, de->name, de->namelen);
1083 *--end = '/';
1084 path = end;
1085 de = de->parent;
1086 }
1087 rc = security_genfs_sid("proc", path, tclass, sid);
1088 free_page((unsigned long)buffer);
1089 return rc;
1090 }
1091 #else
1092 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1093 u16 tclass,
1094 u32 *sid)
1095 {
1096 return -EINVAL;
1097 }
1098 #endif
1099
1100 /* The inode's security attributes must be initialized before first use. */
1101 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1102 {
1103 struct superblock_security_struct *sbsec = NULL;
1104 struct inode_security_struct *isec = inode->i_security;
1105 u32 sid;
1106 struct dentry *dentry;
1107 #define INITCONTEXTLEN 255
1108 char *context = NULL;
1109 unsigned len = 0;
1110 int rc = 0;
1111
1112 if (isec->initialized)
1113 goto out;
1114
1115 mutex_lock(&isec->lock);
1116 if (isec->initialized)
1117 goto out_unlock;
1118
1119 sbsec = inode->i_sb->s_security;
1120 if (!sbsec->initialized) {
1121 /* Defer initialization until selinux_complete_init,
1122 after the initial policy is loaded and the security
1123 server is ready to handle calls. */
1124 spin_lock(&sbsec->isec_lock);
1125 if (list_empty(&isec->list))
1126 list_add(&isec->list, &sbsec->isec_head);
1127 spin_unlock(&sbsec->isec_lock);
1128 goto out_unlock;
1129 }
1130
1131 switch (sbsec->behavior) {
1132 case SECURITY_FS_USE_XATTR:
1133 if (!inode->i_op->getxattr) {
1134 isec->sid = sbsec->def_sid;
1135 break;
1136 }
1137
1138 /* Need a dentry, since the xattr API requires one.
1139 Life would be simpler if we could just pass the inode. */
1140 if (opt_dentry) {
1141 /* Called from d_instantiate or d_splice_alias. */
1142 dentry = dget(opt_dentry);
1143 } else {
1144 /* Called from selinux_complete_init, try to find a dentry. */
1145 dentry = d_find_alias(inode);
1146 }
1147 if (!dentry) {
1148 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s "
1149 "ino=%ld\n", __func__, inode->i_sb->s_id,
1150 inode->i_ino);
1151 goto out_unlock;
1152 }
1153
1154 len = INITCONTEXTLEN;
1155 context = kmalloc(len, GFP_NOFS);
1156 if (!context) {
1157 rc = -ENOMEM;
1158 dput(dentry);
1159 goto out_unlock;
1160 }
1161 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1162 context, len);
1163 if (rc == -ERANGE) {
1164 /* Need a larger buffer. Query for the right size. */
1165 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1166 NULL, 0);
1167 if (rc < 0) {
1168 dput(dentry);
1169 goto out_unlock;
1170 }
1171 kfree(context);
1172 len = rc;
1173 context = kmalloc(len, GFP_NOFS);
1174 if (!context) {
1175 rc = -ENOMEM;
1176 dput(dentry);
1177 goto out_unlock;
1178 }
1179 rc = inode->i_op->getxattr(dentry,
1180 XATTR_NAME_SELINUX,
1181 context, len);
1182 }
1183 dput(dentry);
1184 if (rc < 0) {
1185 if (rc != -ENODATA) {
1186 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1187 "%d for dev=%s ino=%ld\n", __func__,
1188 -rc, inode->i_sb->s_id, inode->i_ino);
1189 kfree(context);
1190 goto out_unlock;
1191 }
1192 /* Map ENODATA to the default file SID */
1193 sid = sbsec->def_sid;
1194 rc = 0;
1195 } else {
1196 rc = security_context_to_sid_default(context, rc, &sid,
1197 sbsec->def_sid,
1198 GFP_NOFS);
1199 if (rc) {
1200 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1201 "returned %d for dev=%s ino=%ld\n",
1202 __func__, context, -rc,
1203 inode->i_sb->s_id, inode->i_ino);
1204 kfree(context);
1205 /* Leave with the unlabeled SID */
1206 rc = 0;
1207 break;
1208 }
1209 }
1210 kfree(context);
1211 isec->sid = sid;
1212 break;
1213 case SECURITY_FS_USE_TASK:
1214 isec->sid = isec->task_sid;
1215 break;
1216 case SECURITY_FS_USE_TRANS:
1217 /* Default to the fs SID. */
1218 isec->sid = sbsec->sid;
1219
1220 /* Try to obtain a transition SID. */
1221 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1222 rc = security_transition_sid(isec->task_sid,
1223 sbsec->sid,
1224 isec->sclass,
1225 &sid);
1226 if (rc)
1227 goto out_unlock;
1228 isec->sid = sid;
1229 break;
1230 case SECURITY_FS_USE_MNTPOINT:
1231 isec->sid = sbsec->mntpoint_sid;
1232 break;
1233 default:
1234 /* Default to the fs superblock SID. */
1235 isec->sid = sbsec->sid;
1236
1237 if (sbsec->proc) {
1238 struct proc_inode *proci = PROC_I(inode);
1239 if (proci->pde) {
1240 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1241 rc = selinux_proc_get_sid(proci->pde,
1242 isec->sclass,
1243 &sid);
1244 if (rc)
1245 goto out_unlock;
1246 isec->sid = sid;
1247 }
1248 }
1249 break;
1250 }
1251
1252 isec->initialized = 1;
1253
1254 out_unlock:
1255 mutex_unlock(&isec->lock);
1256 out:
1257 if (isec->sclass == SECCLASS_FILE)
1258 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1259 return rc;
1260 }
1261
1262 /* Convert a Linux signal to an access vector. */
1263 static inline u32 signal_to_av(int sig)
1264 {
1265 u32 perm = 0;
1266
1267 switch (sig) {
1268 case SIGCHLD:
1269 /* Commonly granted from child to parent. */
1270 perm = PROCESS__SIGCHLD;
1271 break;
1272 case SIGKILL:
1273 /* Cannot be caught or ignored */
1274 perm = PROCESS__SIGKILL;
1275 break;
1276 case SIGSTOP:
1277 /* Cannot be caught or ignored */
1278 perm = PROCESS__SIGSTOP;
1279 break;
1280 default:
1281 /* All other signals. */
1282 perm = PROCESS__SIGNAL;
1283 break;
1284 }
1285
1286 return perm;
1287 }
1288
1289 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1290 fork check, ptrace check, etc. */
1291 static int task_has_perm(struct task_struct *tsk1,
1292 struct task_struct *tsk2,
1293 u32 perms)
1294 {
1295 struct task_security_struct *tsec1, *tsec2;
1296
1297 tsec1 = tsk1->security;
1298 tsec2 = tsk2->security;
1299 return avc_has_perm(tsec1->sid, tsec2->sid,
1300 SECCLASS_PROCESS, perms, NULL);
1301 }
1302
1303 #if CAP_LAST_CAP > 63
1304 #error Fix SELinux to handle capabilities > 63.
1305 #endif
1306
1307 /* Check whether a task is allowed to use a capability. */
1308 static int task_has_capability(struct task_struct *tsk,
1309 int cap)
1310 {
1311 struct task_security_struct *tsec;
1312 struct avc_audit_data ad;
1313 u16 sclass;
1314 u32 av = CAP_TO_MASK(cap);
1315
1316 tsec = tsk->security;
1317
1318 AVC_AUDIT_DATA_INIT(&ad, CAP);
1319 ad.tsk = tsk;
1320 ad.u.cap = cap;
1321
1322 switch (CAP_TO_INDEX(cap)) {
1323 case 0:
1324 sclass = SECCLASS_CAPABILITY;
1325 break;
1326 case 1:
1327 sclass = SECCLASS_CAPABILITY2;
1328 break;
1329 default:
1330 printk(KERN_ERR
1331 "SELinux: out of range capability %d\n", cap);
1332 BUG();
1333 }
1334 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1335 }
1336
1337 /* Check whether a task is allowed to use a system operation. */
1338 static int task_has_system(struct task_struct *tsk,
1339 u32 perms)
1340 {
1341 struct task_security_struct *tsec;
1342
1343 tsec = tsk->security;
1344
1345 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1346 SECCLASS_SYSTEM, perms, NULL);
1347 }
1348
1349 /* Check whether a task has a particular permission to an inode.
1350 The 'adp' parameter is optional and allows other audit
1351 data to be passed (e.g. the dentry). */
1352 static int inode_has_perm(struct task_struct *tsk,
1353 struct inode *inode,
1354 u32 perms,
1355 struct avc_audit_data *adp)
1356 {
1357 struct task_security_struct *tsec;
1358 struct inode_security_struct *isec;
1359 struct avc_audit_data ad;
1360
1361 if (unlikely(IS_PRIVATE(inode)))
1362 return 0;
1363
1364 tsec = tsk->security;
1365 isec = inode->i_security;
1366
1367 if (!adp) {
1368 adp = &ad;
1369 AVC_AUDIT_DATA_INIT(&ad, FS);
1370 ad.u.fs.inode = inode;
1371 }
1372
1373 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1374 }
1375
1376 /* Same as inode_has_perm, but pass explicit audit data containing
1377 the dentry to help the auditing code to more easily generate the
1378 pathname if needed. */
1379 static inline int dentry_has_perm(struct task_struct *tsk,
1380 struct vfsmount *mnt,
1381 struct dentry *dentry,
1382 u32 av)
1383 {
1384 struct inode *inode = dentry->d_inode;
1385 struct avc_audit_data ad;
1386 AVC_AUDIT_DATA_INIT(&ad, FS);
1387 ad.u.fs.path.mnt = mnt;
1388 ad.u.fs.path.dentry = dentry;
1389 return inode_has_perm(tsk, inode, av, &ad);
1390 }
1391
1392 /* Check whether a task can use an open file descriptor to
1393 access an inode in a given way. Check access to the
1394 descriptor itself, and then use dentry_has_perm to
1395 check a particular permission to the file.
1396 Access to the descriptor is implicitly granted if it
1397 has the same SID as the process. If av is zero, then
1398 access to the file is not checked, e.g. for cases
1399 where only the descriptor is affected like seek. */
1400 static int file_has_perm(struct task_struct *tsk,
1401 struct file *file,
1402 u32 av)
1403 {
1404 struct task_security_struct *tsec = tsk->security;
1405 struct file_security_struct *fsec = file->f_security;
1406 struct inode *inode = file->f_path.dentry->d_inode;
1407 struct avc_audit_data ad;
1408 int rc;
1409
1410 AVC_AUDIT_DATA_INIT(&ad, FS);
1411 ad.u.fs.path = file->f_path;
1412
1413 if (tsec->sid != fsec->sid) {
1414 rc = avc_has_perm(tsec->sid, fsec->sid,
1415 SECCLASS_FD,
1416 FD__USE,
1417 &ad);
1418 if (rc)
1419 return rc;
1420 }
1421
1422 /* av is zero if only checking access to the descriptor. */
1423 if (av)
1424 return inode_has_perm(tsk, inode, av, &ad);
1425
1426 return 0;
1427 }
1428
1429 /* Check whether a task can create a file. */
1430 static int may_create(struct inode *dir,
1431 struct dentry *dentry,
1432 u16 tclass)
1433 {
1434 struct task_security_struct *tsec;
1435 struct inode_security_struct *dsec;
1436 struct superblock_security_struct *sbsec;
1437 u32 newsid;
1438 struct avc_audit_data ad;
1439 int rc;
1440
1441 tsec = current->security;
1442 dsec = dir->i_security;
1443 sbsec = dir->i_sb->s_security;
1444
1445 AVC_AUDIT_DATA_INIT(&ad, FS);
1446 ad.u.fs.path.dentry = dentry;
1447
1448 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1449 DIR__ADD_NAME | DIR__SEARCH,
1450 &ad);
1451 if (rc)
1452 return rc;
1453
1454 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1455 newsid = tsec->create_sid;
1456 } else {
1457 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1458 &newsid);
1459 if (rc)
1460 return rc;
1461 }
1462
1463 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1464 if (rc)
1465 return rc;
1466
1467 return avc_has_perm(newsid, sbsec->sid,
1468 SECCLASS_FILESYSTEM,
1469 FILESYSTEM__ASSOCIATE, &ad);
1470 }
1471
1472 /* Check whether a task can create a key. */
1473 static int may_create_key(u32 ksid,
1474 struct task_struct *ctx)
1475 {
1476 struct task_security_struct *tsec;
1477
1478 tsec = ctx->security;
1479
1480 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1481 }
1482
1483 #define MAY_LINK 0
1484 #define MAY_UNLINK 1
1485 #define MAY_RMDIR 2
1486
1487 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1488 static int may_link(struct inode *dir,
1489 struct dentry *dentry,
1490 int kind)
1491
1492 {
1493 struct task_security_struct *tsec;
1494 struct inode_security_struct *dsec, *isec;
1495 struct avc_audit_data ad;
1496 u32 av;
1497 int rc;
1498
1499 tsec = current->security;
1500 dsec = dir->i_security;
1501 isec = dentry->d_inode->i_security;
1502
1503 AVC_AUDIT_DATA_INIT(&ad, FS);
1504 ad.u.fs.path.dentry = dentry;
1505
1506 av = DIR__SEARCH;
1507 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1508 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1509 if (rc)
1510 return rc;
1511
1512 switch (kind) {
1513 case MAY_LINK:
1514 av = FILE__LINK;
1515 break;
1516 case MAY_UNLINK:
1517 av = FILE__UNLINK;
1518 break;
1519 case MAY_RMDIR:
1520 av = DIR__RMDIR;
1521 break;
1522 default:
1523 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1524 __func__, kind);
1525 return 0;
1526 }
1527
1528 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1529 return rc;
1530 }
1531
1532 static inline int may_rename(struct inode *old_dir,
1533 struct dentry *old_dentry,
1534 struct inode *new_dir,
1535 struct dentry *new_dentry)
1536 {
1537 struct task_security_struct *tsec;
1538 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1539 struct avc_audit_data ad;
1540 u32 av;
1541 int old_is_dir, new_is_dir;
1542 int rc;
1543
1544 tsec = current->security;
1545 old_dsec = old_dir->i_security;
1546 old_isec = old_dentry->d_inode->i_security;
1547 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1548 new_dsec = new_dir->i_security;
1549
1550 AVC_AUDIT_DATA_INIT(&ad, FS);
1551
1552 ad.u.fs.path.dentry = old_dentry;
1553 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1554 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1555 if (rc)
1556 return rc;
1557 rc = avc_has_perm(tsec->sid, old_isec->sid,
1558 old_isec->sclass, FILE__RENAME, &ad);
1559 if (rc)
1560 return rc;
1561 if (old_is_dir && new_dir != old_dir) {
1562 rc = avc_has_perm(tsec->sid, old_isec->sid,
1563 old_isec->sclass, DIR__REPARENT, &ad);
1564 if (rc)
1565 return rc;
1566 }
1567
1568 ad.u.fs.path.dentry = new_dentry;
1569 av = DIR__ADD_NAME | DIR__SEARCH;
1570 if (new_dentry->d_inode)
1571 av |= DIR__REMOVE_NAME;
1572 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1573 if (rc)
1574 return rc;
1575 if (new_dentry->d_inode) {
1576 new_isec = new_dentry->d_inode->i_security;
1577 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1578 rc = avc_has_perm(tsec->sid, new_isec->sid,
1579 new_isec->sclass,
1580 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1581 if (rc)
1582 return rc;
1583 }
1584
1585 return 0;
1586 }
1587
1588 /* Check whether a task can perform a filesystem operation. */
1589 static int superblock_has_perm(struct task_struct *tsk,
1590 struct super_block *sb,
1591 u32 perms,
1592 struct avc_audit_data *ad)
1593 {
1594 struct task_security_struct *tsec;
1595 struct superblock_security_struct *sbsec;
1596
1597 tsec = tsk->security;
1598 sbsec = sb->s_security;
1599 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1600 perms, ad);
1601 }
1602
1603 /* Convert a Linux mode and permission mask to an access vector. */
1604 static inline u32 file_mask_to_av(int mode, int mask)
1605 {
1606 u32 av = 0;
1607
1608 if ((mode & S_IFMT) != S_IFDIR) {
1609 if (mask & MAY_EXEC)
1610 av |= FILE__EXECUTE;
1611 if (mask & MAY_READ)
1612 av |= FILE__READ;
1613
1614 if (mask & MAY_APPEND)
1615 av |= FILE__APPEND;
1616 else if (mask & MAY_WRITE)
1617 av |= FILE__WRITE;
1618
1619 } else {
1620 if (mask & MAY_EXEC)
1621 av |= DIR__SEARCH;
1622 if (mask & MAY_WRITE)
1623 av |= DIR__WRITE;
1624 if (mask & MAY_READ)
1625 av |= DIR__READ;
1626 }
1627
1628 return av;
1629 }
1630
1631 /*
1632 * Convert a file mask to an access vector and include the correct open
1633 * open permission.
1634 */
1635 static inline u32 open_file_mask_to_av(int mode, int mask)
1636 {
1637 u32 av = file_mask_to_av(mode, mask);
1638
1639 if (selinux_policycap_openperm) {
1640 /*
1641 * lnk files and socks do not really have an 'open'
1642 */
1643 if (S_ISREG(mode))
1644 av |= FILE__OPEN;
1645 else if (S_ISCHR(mode))
1646 av |= CHR_FILE__OPEN;
1647 else if (S_ISBLK(mode))
1648 av |= BLK_FILE__OPEN;
1649 else if (S_ISFIFO(mode))
1650 av |= FIFO_FILE__OPEN;
1651 else if (S_ISDIR(mode))
1652 av |= DIR__OPEN;
1653 else
1654 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1655 "unknown mode:%x\n", __func__, mode);
1656 }
1657 return av;
1658 }
1659
1660 /* Convert a Linux file to an access vector. */
1661 static inline u32 file_to_av(struct file *file)
1662 {
1663 u32 av = 0;
1664
1665 if (file->f_mode & FMODE_READ)
1666 av |= FILE__READ;
1667 if (file->f_mode & FMODE_WRITE) {
1668 if (file->f_flags & O_APPEND)
1669 av |= FILE__APPEND;
1670 else
1671 av |= FILE__WRITE;
1672 }
1673 if (!av) {
1674 /*
1675 * Special file opened with flags 3 for ioctl-only use.
1676 */
1677 av = FILE__IOCTL;
1678 }
1679
1680 return av;
1681 }
1682
1683 /* Hook functions begin here. */
1684
1685 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1686 {
1687 int rc;
1688
1689 rc = secondary_ops->ptrace(parent, child);
1690 if (rc)
1691 return rc;
1692
1693 return task_has_perm(parent, child, PROCESS__PTRACE);
1694 }
1695
1696 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1697 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1698 {
1699 int error;
1700
1701 error = task_has_perm(current, target, PROCESS__GETCAP);
1702 if (error)
1703 return error;
1704
1705 return secondary_ops->capget(target, effective, inheritable, permitted);
1706 }
1707
1708 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1709 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1710 {
1711 int error;
1712
1713 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1714 if (error)
1715 return error;
1716
1717 return task_has_perm(current, target, PROCESS__SETCAP);
1718 }
1719
1720 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1721 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1722 {
1723 secondary_ops->capset_set(target, effective, inheritable, permitted);
1724 }
1725
1726 static int selinux_capable(struct task_struct *tsk, int cap)
1727 {
1728 int rc;
1729
1730 rc = secondary_ops->capable(tsk, cap);
1731 if (rc)
1732 return rc;
1733
1734 return task_has_capability(tsk, cap);
1735 }
1736
1737 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1738 {
1739 int buflen, rc;
1740 char *buffer, *path, *end;
1741
1742 rc = -ENOMEM;
1743 buffer = (char *)__get_free_page(GFP_KERNEL);
1744 if (!buffer)
1745 goto out;
1746
1747 buflen = PAGE_SIZE;
1748 end = buffer+buflen;
1749 *--end = '\0';
1750 buflen--;
1751 path = end-1;
1752 *path = '/';
1753 while (table) {
1754 const char *name = table->procname;
1755 size_t namelen = strlen(name);
1756 buflen -= namelen + 1;
1757 if (buflen < 0)
1758 goto out_free;
1759 end -= namelen;
1760 memcpy(end, name, namelen);
1761 *--end = '/';
1762 path = end;
1763 table = table->parent;
1764 }
1765 buflen -= 4;
1766 if (buflen < 0)
1767 goto out_free;
1768 end -= 4;
1769 memcpy(end, "/sys", 4);
1770 path = end;
1771 rc = security_genfs_sid("proc", path, tclass, sid);
1772 out_free:
1773 free_page((unsigned long)buffer);
1774 out:
1775 return rc;
1776 }
1777
1778 static int selinux_sysctl(ctl_table *table, int op)
1779 {
1780 int error = 0;
1781 u32 av;
1782 struct task_security_struct *tsec;
1783 u32 tsid;
1784 int rc;
1785
1786 rc = secondary_ops->sysctl(table, op);
1787 if (rc)
1788 return rc;
1789
1790 tsec = current->security;
1791
1792 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1793 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1794 if (rc) {
1795 /* Default to the well-defined sysctl SID. */
1796 tsid = SECINITSID_SYSCTL;
1797 }
1798
1799 /* The op values are "defined" in sysctl.c, thereby creating
1800 * a bad coupling between this module and sysctl.c */
1801 if (op == 001) {
1802 error = avc_has_perm(tsec->sid, tsid,
1803 SECCLASS_DIR, DIR__SEARCH, NULL);
1804 } else {
1805 av = 0;
1806 if (op & 004)
1807 av |= FILE__READ;
1808 if (op & 002)
1809 av |= FILE__WRITE;
1810 if (av)
1811 error = avc_has_perm(tsec->sid, tsid,
1812 SECCLASS_FILE, av, NULL);
1813 }
1814
1815 return error;
1816 }
1817
1818 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1819 {
1820 int rc = 0;
1821
1822 if (!sb)
1823 return 0;
1824
1825 switch (cmds) {
1826 case Q_SYNC:
1827 case Q_QUOTAON:
1828 case Q_QUOTAOFF:
1829 case Q_SETINFO:
1830 case Q_SETQUOTA:
1831 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1832 NULL);
1833 break;
1834 case Q_GETFMT:
1835 case Q_GETINFO:
1836 case Q_GETQUOTA:
1837 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1838 NULL);
1839 break;
1840 default:
1841 rc = 0; /* let the kernel handle invalid cmds */
1842 break;
1843 }
1844 return rc;
1845 }
1846
1847 static int selinux_quota_on(struct dentry *dentry)
1848 {
1849 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1850 }
1851
1852 static int selinux_syslog(int type)
1853 {
1854 int rc;
1855
1856 rc = secondary_ops->syslog(type);
1857 if (rc)
1858 return rc;
1859
1860 switch (type) {
1861 case 3: /* Read last kernel messages */
1862 case 10: /* Return size of the log buffer */
1863 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1864 break;
1865 case 6: /* Disable logging to console */
1866 case 7: /* Enable logging to console */
1867 case 8: /* Set level of messages printed to console */
1868 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1869 break;
1870 case 0: /* Close log */
1871 case 1: /* Open log */
1872 case 2: /* Read from log */
1873 case 4: /* Read/clear last kernel messages */
1874 case 5: /* Clear ring buffer */
1875 default:
1876 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1877 break;
1878 }
1879 return rc;
1880 }
1881
1882 /*
1883 * Check that a process has enough memory to allocate a new virtual
1884 * mapping. 0 means there is enough memory for the allocation to
1885 * succeed and -ENOMEM implies there is not.
1886 *
1887 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1888 * if the capability is granted, but __vm_enough_memory requires 1 if
1889 * the capability is granted.
1890 *
1891 * Do not audit the selinux permission check, as this is applied to all
1892 * processes that allocate mappings.
1893 */
1894 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1895 {
1896 int rc, cap_sys_admin = 0;
1897 struct task_security_struct *tsec = current->security;
1898
1899 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1900 if (rc == 0)
1901 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1902 SECCLASS_CAPABILITY,
1903 CAP_TO_MASK(CAP_SYS_ADMIN),
1904 0,
1905 NULL);
1906
1907 if (rc == 0)
1908 cap_sys_admin = 1;
1909
1910 return __vm_enough_memory(mm, pages, cap_sys_admin);
1911 }
1912
1913 /**
1914 * task_tracer_task - return the task that is tracing the given task
1915 * @task: task to consider
1916 *
1917 * Returns NULL if noone is tracing @task, or the &struct task_struct
1918 * pointer to its tracer.
1919 *
1920 * Must be called under rcu_read_lock().
1921 */
1922 static struct task_struct *task_tracer_task(struct task_struct *task)
1923 {
1924 if (task->ptrace & PT_PTRACED)
1925 return rcu_dereference(task->parent);
1926 return NULL;
1927 }
1928
1929 /* binprm security operations */
1930
1931 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1932 {
1933 struct bprm_security_struct *bsec;
1934
1935 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1936 if (!bsec)
1937 return -ENOMEM;
1938
1939 bsec->sid = SECINITSID_UNLABELED;
1940 bsec->set = 0;
1941
1942 bprm->security = bsec;
1943 return 0;
1944 }
1945
1946 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1947 {
1948 struct task_security_struct *tsec;
1949 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1950 struct inode_security_struct *isec;
1951 struct bprm_security_struct *bsec;
1952 u32 newsid;
1953 struct avc_audit_data ad;
1954 int rc;
1955
1956 rc = secondary_ops->bprm_set_security(bprm);
1957 if (rc)
1958 return rc;
1959
1960 bsec = bprm->security;
1961
1962 if (bsec->set)
1963 return 0;
1964
1965 tsec = current->security;
1966 isec = inode->i_security;
1967
1968 /* Default to the current task SID. */
1969 bsec->sid = tsec->sid;
1970
1971 /* Reset fs, key, and sock SIDs on execve. */
1972 tsec->create_sid = 0;
1973 tsec->keycreate_sid = 0;
1974 tsec->sockcreate_sid = 0;
1975
1976 if (tsec->exec_sid) {
1977 newsid = tsec->exec_sid;
1978 /* Reset exec SID on execve. */
1979 tsec->exec_sid = 0;
1980 } else {
1981 /* Check for a default transition on this program. */
1982 rc = security_transition_sid(tsec->sid, isec->sid,
1983 SECCLASS_PROCESS, &newsid);
1984 if (rc)
1985 return rc;
1986 }
1987
1988 AVC_AUDIT_DATA_INIT(&ad, FS);
1989 ad.u.fs.path = bprm->file->f_path;
1990
1991 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1992 newsid = tsec->sid;
1993
1994 if (tsec->sid == newsid) {
1995 rc = avc_has_perm(tsec->sid, isec->sid,
1996 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1997 if (rc)
1998 return rc;
1999 } else {
2000 /* Check permissions for the transition. */
2001 rc = avc_has_perm(tsec->sid, newsid,
2002 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2003 if (rc)
2004 return rc;
2005
2006 rc = avc_has_perm(newsid, isec->sid,
2007 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2008 if (rc)
2009 return rc;
2010
2011 /* Clear any possibly unsafe personality bits on exec: */
2012 current->personality &= ~PER_CLEAR_ON_SETID;
2013
2014 /* Set the security field to the new SID. */
2015 bsec->sid = newsid;
2016 }
2017
2018 bsec->set = 1;
2019 return 0;
2020 }
2021
2022 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2023 {
2024 return secondary_ops->bprm_check_security(bprm);
2025 }
2026
2027
2028 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2029 {
2030 struct task_security_struct *tsec = current->security;
2031 int atsecure = 0;
2032
2033 if (tsec->osid != tsec->sid) {
2034 /* Enable secure mode for SIDs transitions unless
2035 the noatsecure permission is granted between
2036 the two SIDs, i.e. ahp returns 0. */
2037 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2038 SECCLASS_PROCESS,
2039 PROCESS__NOATSECURE, NULL);
2040 }
2041
2042 return (atsecure || secondary_ops->bprm_secureexec(bprm));
2043 }
2044
2045 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2046 {
2047 kfree(bprm->security);
2048 bprm->security = NULL;
2049 }
2050
2051 extern struct vfsmount *selinuxfs_mount;
2052 extern struct dentry *selinux_null;
2053
2054 /* Derived from fs/exec.c:flush_old_files. */
2055 static inline void flush_unauthorized_files(struct files_struct *files)
2056 {
2057 struct avc_audit_data ad;
2058 struct file *file, *devnull = NULL;
2059 struct tty_struct *tty;
2060 struct fdtable *fdt;
2061 long j = -1;
2062 int drop_tty = 0;
2063
2064 mutex_lock(&tty_mutex);
2065 tty = get_current_tty();
2066 if (tty) {
2067 file_list_lock();
2068 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2069 if (file) {
2070 /* Revalidate access to controlling tty.
2071 Use inode_has_perm on the tty inode directly rather
2072 than using file_has_perm, as this particular open
2073 file may belong to another process and we are only
2074 interested in the inode-based check here. */
2075 struct inode *inode = file->f_path.dentry->d_inode;
2076 if (inode_has_perm(current, inode,
2077 FILE__READ | FILE__WRITE, NULL)) {
2078 drop_tty = 1;
2079 }
2080 }
2081 file_list_unlock();
2082 }
2083 mutex_unlock(&tty_mutex);
2084 /* Reset controlling tty. */
2085 if (drop_tty)
2086 no_tty();
2087
2088 /* Revalidate access to inherited open files. */
2089
2090 AVC_AUDIT_DATA_INIT(&ad, FS);
2091
2092 spin_lock(&files->file_lock);
2093 for (;;) {
2094 unsigned long set, i;
2095 int fd;
2096
2097 j++;
2098 i = j * __NFDBITS;
2099 fdt = files_fdtable(files);
2100 if (i >= fdt->max_fds)
2101 break;
2102 set = fdt->open_fds->fds_bits[j];
2103 if (!set)
2104 continue;
2105 spin_unlock(&files->file_lock);
2106 for ( ; set ; i++, set >>= 1) {
2107 if (set & 1) {
2108 file = fget(i);
2109 if (!file)
2110 continue;
2111 if (file_has_perm(current,
2112 file,
2113 file_to_av(file))) {
2114 sys_close(i);
2115 fd = get_unused_fd();
2116 if (fd != i) {
2117 if (fd >= 0)
2118 put_unused_fd(fd);
2119 fput(file);
2120 continue;
2121 }
2122 if (devnull) {
2123 get_file(devnull);
2124 } else {
2125 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2126 if (IS_ERR(devnull)) {
2127 devnull = NULL;
2128 put_unused_fd(fd);
2129 fput(file);
2130 continue;
2131 }
2132 }
2133 fd_install(fd, devnull);
2134 }
2135 fput(file);
2136 }
2137 }
2138 spin_lock(&files->file_lock);
2139
2140 }
2141 spin_unlock(&files->file_lock);
2142 }
2143
2144 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2145 {
2146 struct task_security_struct *tsec;
2147 struct bprm_security_struct *bsec;
2148 u32 sid;
2149 int rc;
2150
2151 secondary_ops->bprm_apply_creds(bprm, unsafe);
2152
2153 tsec = current->security;
2154
2155 bsec = bprm->security;
2156 sid = bsec->sid;
2157
2158 tsec->osid = tsec->sid;
2159 bsec->unsafe = 0;
2160 if (tsec->sid != sid) {
2161 /* Check for shared state. If not ok, leave SID
2162 unchanged and kill. */
2163 if (unsafe & LSM_UNSAFE_SHARE) {
2164 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2165 PROCESS__SHARE, NULL);
2166 if (rc) {
2167 bsec->unsafe = 1;
2168 return;
2169 }
2170 }
2171
2172 /* Check for ptracing, and update the task SID if ok.
2173 Otherwise, leave SID unchanged and kill. */
2174 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2175 struct task_struct *tracer;
2176 struct task_security_struct *sec;
2177 u32 ptsid = 0;
2178
2179 rcu_read_lock();
2180 tracer = task_tracer_task(current);
2181 if (likely(tracer != NULL)) {
2182 sec = tracer->security;
2183 ptsid = sec->sid;
2184 }
2185 rcu_read_unlock();
2186
2187 if (ptsid != 0) {
2188 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2189 PROCESS__PTRACE, NULL);
2190 if (rc) {
2191 bsec->unsafe = 1;
2192 return;
2193 }
2194 }
2195 }
2196 tsec->sid = sid;
2197 }
2198 }
2199
2200 /*
2201 * called after apply_creds without the task lock held
2202 */
2203 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2204 {
2205 struct task_security_struct *tsec;
2206 struct rlimit *rlim, *initrlim;
2207 struct itimerval itimer;
2208 struct bprm_security_struct *bsec;
2209 int rc, i;
2210
2211 tsec = current->security;
2212 bsec = bprm->security;
2213
2214 if (bsec->unsafe) {
2215 force_sig_specific(SIGKILL, current);
2216 return;
2217 }
2218 if (tsec->osid == tsec->sid)
2219 return;
2220
2221 /* Close files for which the new task SID is not authorized. */
2222 flush_unauthorized_files(current->files);
2223
2224 /* Check whether the new SID can inherit signal state
2225 from the old SID. If not, clear itimers to avoid
2226 subsequent signal generation and flush and unblock
2227 signals. This must occur _after_ the task SID has
2228 been updated so that any kill done after the flush
2229 will be checked against the new SID. */
2230 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2231 PROCESS__SIGINH, NULL);
2232 if (rc) {
2233 memset(&itimer, 0, sizeof itimer);
2234 for (i = 0; i < 3; i++)
2235 do_setitimer(i, &itimer, NULL);
2236 flush_signals(current);
2237 spin_lock_irq(&current->sighand->siglock);
2238 flush_signal_handlers(current, 1);
2239 sigemptyset(&current->blocked);
2240 recalc_sigpending();
2241 spin_unlock_irq(&current->sighand->siglock);
2242 }
2243
2244 /* Always clear parent death signal on SID transitions. */
2245 current->pdeath_signal = 0;
2246
2247 /* Check whether the new SID can inherit resource limits
2248 from the old SID. If not, reset all soft limits to
2249 the lower of the current task's hard limit and the init
2250 task's soft limit. Note that the setting of hard limits
2251 (even to lower them) can be controlled by the setrlimit
2252 check. The inclusion of the init task's soft limit into
2253 the computation is to avoid resetting soft limits higher
2254 than the default soft limit for cases where the default
2255 is lower than the hard limit, e.g. RLIMIT_CORE or
2256 RLIMIT_STACK.*/
2257 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2258 PROCESS__RLIMITINH, NULL);
2259 if (rc) {
2260 for (i = 0; i < RLIM_NLIMITS; i++) {
2261 rlim = current->signal->rlim + i;
2262 initrlim = init_task.signal->rlim+i;
2263 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2264 }
2265 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2266 /*
2267 * This will cause RLIMIT_CPU calculations
2268 * to be refigured.
2269 */
2270 current->it_prof_expires = jiffies_to_cputime(1);
2271 }
2272 }
2273
2274 /* Wake up the parent if it is waiting so that it can
2275 recheck wait permission to the new task SID. */
2276 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2277 }
2278
2279 /* superblock security operations */
2280
2281 static int selinux_sb_alloc_security(struct super_block *sb)
2282 {
2283 return superblock_alloc_security(sb);
2284 }
2285
2286 static void selinux_sb_free_security(struct super_block *sb)
2287 {
2288 superblock_free_security(sb);
2289 }
2290
2291 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2292 {
2293 if (plen > olen)
2294 return 0;
2295
2296 return !memcmp(prefix, option, plen);
2297 }
2298
2299 static inline int selinux_option(char *option, int len)
2300 {
2301 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2302 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2303 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2304 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2305 }
2306
2307 static inline void take_option(char **to, char *from, int *first, int len)
2308 {
2309 if (!*first) {
2310 **to = ',';
2311 *to += 1;
2312 } else
2313 *first = 0;
2314 memcpy(*to, from, len);
2315 *to += len;
2316 }
2317
2318 static inline void take_selinux_option(char **to, char *from, int *first,
2319 int len)
2320 {
2321 int current_size = 0;
2322
2323 if (!*first) {
2324 **to = '|';
2325 *to += 1;
2326 } else
2327 *first = 0;
2328
2329 while (current_size < len) {
2330 if (*from != '"') {
2331 **to = *from;
2332 *to += 1;
2333 }
2334 from += 1;
2335 current_size += 1;
2336 }
2337 }
2338
2339 static int selinux_sb_copy_data(char *orig, char *copy)
2340 {
2341 int fnosec, fsec, rc = 0;
2342 char *in_save, *in_curr, *in_end;
2343 char *sec_curr, *nosec_save, *nosec;
2344 int open_quote = 0;
2345
2346 in_curr = orig;
2347 sec_curr = copy;
2348
2349 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2350 if (!nosec) {
2351 rc = -ENOMEM;
2352 goto out;
2353 }
2354
2355 nosec_save = nosec;
2356 fnosec = fsec = 1;
2357 in_save = in_end = orig;
2358
2359 do {
2360 if (*in_end == '"')
2361 open_quote = !open_quote;
2362 if ((*in_end == ',' && open_quote == 0) ||
2363 *in_end == '\0') {
2364 int len = in_end - in_curr;
2365
2366 if (selinux_option(in_curr, len))
2367 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2368 else
2369 take_option(&nosec, in_curr, &fnosec, len);
2370
2371 in_curr = in_end + 1;
2372 }
2373 } while (*in_end++);
2374
2375 strcpy(in_save, nosec_save);
2376 free_page((unsigned long)nosec_save);
2377 out:
2378 return rc;
2379 }
2380
2381 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2382 {
2383 struct avc_audit_data ad;
2384 int rc;
2385
2386 rc = superblock_doinit(sb, data);
2387 if (rc)
2388 return rc;
2389
2390 AVC_AUDIT_DATA_INIT(&ad, FS);
2391 ad.u.fs.path.dentry = sb->s_root;
2392 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2393 }
2394
2395 static int selinux_sb_statfs(struct dentry *dentry)
2396 {
2397 struct avc_audit_data ad;
2398
2399 AVC_AUDIT_DATA_INIT(&ad, FS);
2400 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2401 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2402 }
2403
2404 static int selinux_mount(char *dev_name,
2405 struct path *path,
2406 char *type,
2407 unsigned long flags,
2408 void *data)
2409 {
2410 int rc;
2411
2412 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2413 if (rc)
2414 return rc;
2415
2416 if (flags & MS_REMOUNT)
2417 return superblock_has_perm(current, path->mnt->mnt_sb,
2418 FILESYSTEM__REMOUNT, NULL);
2419 else
2420 return dentry_has_perm(current, path->mnt, path->dentry,
2421 FILE__MOUNTON);
2422 }
2423
2424 static int selinux_umount(struct vfsmount *mnt, int flags)
2425 {
2426 int rc;
2427
2428 rc = secondary_ops->sb_umount(mnt, flags);
2429 if (rc)
2430 return rc;
2431
2432 return superblock_has_perm(current, mnt->mnt_sb,
2433 FILESYSTEM__UNMOUNT, NULL);
2434 }
2435
2436 /* inode security operations */
2437
2438 static int selinux_inode_alloc_security(struct inode *inode)
2439 {
2440 return inode_alloc_security(inode);
2441 }
2442
2443 static void selinux_inode_free_security(struct inode *inode)
2444 {
2445 inode_free_security(inode);
2446 }
2447
2448 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2449 char **name, void **value,
2450 size_t *len)
2451 {
2452 struct task_security_struct *tsec;
2453 struct inode_security_struct *dsec;
2454 struct superblock_security_struct *sbsec;
2455 u32 newsid, clen;
2456 int rc;
2457 char *namep = NULL, *context;
2458
2459 tsec = current->security;
2460 dsec = dir->i_security;
2461 sbsec = dir->i_sb->s_security;
2462
2463 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2464 newsid = tsec->create_sid;
2465 } else {
2466 rc = security_transition_sid(tsec->sid, dsec->sid,
2467 inode_mode_to_security_class(inode->i_mode),
2468 &newsid);
2469 if (rc) {
2470 printk(KERN_WARNING "%s: "
2471 "security_transition_sid failed, rc=%d (dev=%s "
2472 "ino=%ld)\n",
2473 __func__,
2474 -rc, inode->i_sb->s_id, inode->i_ino);
2475 return rc;
2476 }
2477 }
2478
2479 /* Possibly defer initialization to selinux_complete_init. */
2480 if (sbsec->initialized) {
2481 struct inode_security_struct *isec = inode->i_security;
2482 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2483 isec->sid = newsid;
2484 isec->initialized = 1;
2485 }
2486
2487 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2488 return -EOPNOTSUPP;
2489
2490 if (name) {
2491 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2492 if (!namep)
2493 return -ENOMEM;
2494 *name = namep;
2495 }
2496
2497 if (value && len) {
2498 rc = security_sid_to_context(newsid, &context, &clen);
2499 if (rc) {
2500 kfree(namep);
2501 return rc;
2502 }
2503 *value = context;
2504 *len = clen;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2511 {
2512 return may_create(dir, dentry, SECCLASS_FILE);
2513 }
2514
2515 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2516 {
2517 int rc;
2518
2519 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2520 if (rc)
2521 return rc;
2522 return may_link(dir, old_dentry, MAY_LINK);
2523 }
2524
2525 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2526 {
2527 int rc;
2528
2529 rc = secondary_ops->inode_unlink(dir, dentry);
2530 if (rc)
2531 return rc;
2532 return may_link(dir, dentry, MAY_UNLINK);
2533 }
2534
2535 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2536 {
2537 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2538 }
2539
2540 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2541 {
2542 return may_create(dir, dentry, SECCLASS_DIR);
2543 }
2544
2545 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2546 {
2547 return may_link(dir, dentry, MAY_RMDIR);
2548 }
2549
2550 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2551 {
2552 int rc;
2553
2554 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2555 if (rc)
2556 return rc;
2557
2558 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2559 }
2560
2561 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2562 struct inode *new_inode, struct dentry *new_dentry)
2563 {
2564 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2565 }
2566
2567 static int selinux_inode_readlink(struct dentry *dentry)
2568 {
2569 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2570 }
2571
2572 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2573 {
2574 int rc;
2575
2576 rc = secondary_ops->inode_follow_link(dentry, nameidata);
2577 if (rc)
2578 return rc;
2579 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2580 }
2581
2582 static int selinux_inode_permission(struct inode *inode, int mask,
2583 struct nameidata *nd)
2584 {
2585 int rc;
2586
2587 rc = secondary_ops->inode_permission(inode, mask, nd);
2588 if (rc)
2589 return rc;
2590
2591 if (!mask) {
2592 /* No permission to check. Existence test. */
2593 return 0;
2594 }
2595
2596 return inode_has_perm(current, inode,
2597 open_file_mask_to_av(inode->i_mode, mask), NULL);
2598 }
2599
2600 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2601 {
2602 int rc;
2603
2604 rc = secondary_ops->inode_setattr(dentry, iattr);
2605 if (rc)
2606 return rc;
2607
2608 if (iattr->ia_valid & ATTR_FORCE)
2609 return 0;
2610
2611 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2612 ATTR_ATIME_SET | ATTR_MTIME_SET))
2613 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2614
2615 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2616 }
2617
2618 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2619 {
2620 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2621 }
2622
2623 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2624 {
2625 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2626 sizeof XATTR_SECURITY_PREFIX - 1)) {
2627 if (!strcmp(name, XATTR_NAME_CAPS)) {
2628 if (!capable(CAP_SETFCAP))
2629 return -EPERM;
2630 } else if (!capable(CAP_SYS_ADMIN)) {
2631 /* A different attribute in the security namespace.
2632 Restrict to administrator. */
2633 return -EPERM;
2634 }
2635 }
2636
2637 /* Not an attribute we recognize, so just check the
2638 ordinary setattr permission. */
2639 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2640 }
2641
2642 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2643 const void *value, size_t size, int flags)
2644 {
2645 struct task_security_struct *tsec = current->security;
2646 struct inode *inode = dentry->d_inode;
2647 struct inode_security_struct *isec = inode->i_security;
2648 struct superblock_security_struct *sbsec;
2649 struct avc_audit_data ad;
2650 u32 newsid;
2651 int rc = 0;
2652
2653 if (strcmp(name, XATTR_NAME_SELINUX))
2654 return selinux_inode_setotherxattr(dentry, name);
2655
2656 sbsec = inode->i_sb->s_security;
2657 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2658 return -EOPNOTSUPP;
2659
2660 if (!is_owner_or_cap(inode))
2661 return -EPERM;
2662
2663 AVC_AUDIT_DATA_INIT(&ad, FS);
2664 ad.u.fs.path.dentry = dentry;
2665
2666 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2667 FILE__RELABELFROM, &ad);
2668 if (rc)
2669 return rc;
2670
2671 rc = security_context_to_sid(value, size, &newsid);
2672 if (rc)
2673 return rc;
2674
2675 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2676 FILE__RELABELTO, &ad);
2677 if (rc)
2678 return rc;
2679
2680 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2681 isec->sclass);
2682 if (rc)
2683 return rc;
2684
2685 return avc_has_perm(newsid,
2686 sbsec->sid,
2687 SECCLASS_FILESYSTEM,
2688 FILESYSTEM__ASSOCIATE,
2689 &ad);
2690 }
2691
2692 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2693 const void *value, size_t size,
2694 int flags)
2695 {
2696 struct inode *inode = dentry->d_inode;
2697 struct inode_security_struct *isec = inode->i_security;
2698 u32 newsid;
2699 int rc;
2700
2701 if (strcmp(name, XATTR_NAME_SELINUX)) {
2702 /* Not an attribute we recognize, so nothing to do. */
2703 return;
2704 }
2705
2706 rc = security_context_to_sid(value, size, &newsid);
2707 if (rc) {
2708 printk(KERN_WARNING "%s: unable to obtain SID for context "
2709 "%s, rc=%d\n", __func__, (char *)value, -rc);
2710 return;
2711 }
2712
2713 isec->sid = newsid;
2714 return;
2715 }
2716
2717 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2718 {
2719 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2720 }
2721
2722 static int selinux_inode_listxattr(struct dentry *dentry)
2723 {
2724 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2725 }
2726
2727 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2728 {
2729 if (strcmp(name, XATTR_NAME_SELINUX))
2730 return selinux_inode_setotherxattr(dentry, name);
2731
2732 /* No one is allowed to remove a SELinux security label.
2733 You can change the label, but all data must be labeled. */
2734 return -EACCES;
2735 }
2736
2737 /*
2738 * Copy the in-core inode security context value to the user. If the
2739 * getxattr() prior to this succeeded, check to see if we need to
2740 * canonicalize the value to be finally returned to the user.
2741 *
2742 * Permission check is handled by selinux_inode_getxattr hook.
2743 */
2744 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2745 {
2746 u32 size;
2747 int error;
2748 char *context = NULL;
2749 struct inode_security_struct *isec = inode->i_security;
2750
2751 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2752 return -EOPNOTSUPP;
2753
2754 error = security_sid_to_context(isec->sid, &context, &size);
2755 if (error)
2756 return error;
2757 error = size;
2758 if (alloc) {
2759 *buffer = context;
2760 goto out_nofree;
2761 }
2762 kfree(context);
2763 out_nofree:
2764 return error;
2765 }
2766
2767 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2768 const void *value, size_t size, int flags)
2769 {
2770 struct inode_security_struct *isec = inode->i_security;
2771 u32 newsid;
2772 int rc;
2773
2774 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2775 return -EOPNOTSUPP;
2776
2777 if (!value || !size)
2778 return -EACCES;
2779
2780 rc = security_context_to_sid((void *)value, size, &newsid);
2781 if (rc)
2782 return rc;
2783
2784 isec->sid = newsid;
2785 return 0;
2786 }
2787
2788 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2789 {
2790 const int len = sizeof(XATTR_NAME_SELINUX);
2791 if (buffer && len <= buffer_size)
2792 memcpy(buffer, XATTR_NAME_SELINUX, len);
2793 return len;
2794 }
2795
2796 static int selinux_inode_need_killpriv(struct dentry *dentry)
2797 {
2798 return secondary_ops->inode_need_killpriv(dentry);
2799 }
2800
2801 static int selinux_inode_killpriv(struct dentry *dentry)
2802 {
2803 return secondary_ops->inode_killpriv(dentry);
2804 }
2805
2806 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2807 {
2808 struct inode_security_struct *isec = inode->i_security;
2809 *secid = isec->sid;
2810 }
2811
2812 /* file security operations */
2813
2814 static int selinux_revalidate_file_permission(struct file *file, int mask)
2815 {
2816 int rc;
2817 struct inode *inode = file->f_path.dentry->d_inode;
2818
2819 if (!mask) {
2820 /* No permission to check. Existence test. */
2821 return 0;
2822 }
2823
2824 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2825 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2826 mask |= MAY_APPEND;
2827
2828 rc = file_has_perm(current, file,
2829 file_mask_to_av(inode->i_mode, mask));
2830 if (rc)
2831 return rc;
2832
2833 return selinux_netlbl_inode_permission(inode, mask);
2834 }
2835
2836 static int selinux_file_permission(struct file *file, int mask)
2837 {
2838 struct inode *inode = file->f_path.dentry->d_inode;
2839 struct task_security_struct *tsec = current->security;
2840 struct file_security_struct *fsec = file->f_security;
2841 struct inode_security_struct *isec = inode->i_security;
2842
2843 if (!mask) {
2844 /* No permission to check. Existence test. */
2845 return 0;
2846 }
2847
2848 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2849 && fsec->pseqno == avc_policy_seqno())
2850 return selinux_netlbl_inode_permission(inode, mask);
2851
2852 return selinux_revalidate_file_permission(file, mask);
2853 }
2854
2855 static int selinux_file_alloc_security(struct file *file)
2856 {
2857 return file_alloc_security(file);
2858 }
2859
2860 static void selinux_file_free_security(struct file *file)
2861 {
2862 file_free_security(file);
2863 }
2864
2865 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2866 unsigned long arg)
2867 {
2868 int error = 0;
2869
2870 switch (cmd) {
2871 case FIONREAD:
2872 /* fall through */
2873 case FIBMAP:
2874 /* fall through */
2875 case FIGETBSZ:
2876 /* fall through */
2877 case EXT2_IOC_GETFLAGS:
2878 /* fall through */
2879 case EXT2_IOC_GETVERSION:
2880 error = file_has_perm(current, file, FILE__GETATTR);
2881 break;
2882
2883 case EXT2_IOC_SETFLAGS:
2884 /* fall through */
2885 case EXT2_IOC_SETVERSION:
2886 error = file_has_perm(current, file, FILE__SETATTR);
2887 break;
2888
2889 /* sys_ioctl() checks */
2890 case FIONBIO:
2891 /* fall through */
2892 case FIOASYNC:
2893 error = file_has_perm(current, file, 0);
2894 break;
2895
2896 case KDSKBENT:
2897 case KDSKBSENT:
2898 error = task_has_capability(current, CAP_SYS_TTY_CONFIG);
2899 break;
2900
2901 /* default case assumes that the command will go
2902 * to the file's ioctl() function.
2903 */
2904 default:
2905 error = file_has_perm(current, file, FILE__IOCTL);
2906 }
2907 return error;
2908 }
2909
2910 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2911 {
2912 #ifndef CONFIG_PPC32
2913 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2914 /*
2915 * We are making executable an anonymous mapping or a
2916 * private file mapping that will also be writable.
2917 * This has an additional check.
2918 */
2919 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2920 if (rc)
2921 return rc;
2922 }
2923 #endif
2924
2925 if (file) {
2926 /* read access is always possible with a mapping */
2927 u32 av = FILE__READ;
2928
2929 /* write access only matters if the mapping is shared */
2930 if (shared && (prot & PROT_WRITE))
2931 av |= FILE__WRITE;
2932
2933 if (prot & PROT_EXEC)
2934 av |= FILE__EXECUTE;
2935
2936 return file_has_perm(current, file, av);
2937 }
2938 return 0;
2939 }
2940
2941 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2942 unsigned long prot, unsigned long flags,
2943 unsigned long addr, unsigned long addr_only)
2944 {
2945 int rc = 0;
2946 u32 sid = ((struct task_security_struct *)(current->security))->sid;
2947
2948 if (addr < mmap_min_addr)
2949 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2950 MEMPROTECT__MMAP_ZERO, NULL);
2951 if (rc || addr_only)
2952 return rc;
2953
2954 if (selinux_checkreqprot)
2955 prot = reqprot;
2956
2957 return file_map_prot_check(file, prot,
2958 (flags & MAP_TYPE) == MAP_SHARED);
2959 }
2960
2961 static int selinux_file_mprotect(struct vm_area_struct *vma,
2962 unsigned long reqprot,
2963 unsigned long prot)
2964 {
2965 int rc;
2966
2967 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2968 if (rc)
2969 return rc;
2970
2971 if (selinux_checkreqprot)
2972 prot = reqprot;
2973
2974 #ifndef CONFIG_PPC32
2975 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2976 rc = 0;
2977 if (vma->vm_start >= vma->vm_mm->start_brk &&
2978 vma->vm_end <= vma->vm_mm->brk) {
2979 rc = task_has_perm(current, current,
2980 PROCESS__EXECHEAP);
2981 } else if (!vma->vm_file &&
2982 vma->vm_start <= vma->vm_mm->start_stack &&
2983 vma->vm_end >= vma->vm_mm->start_stack) {
2984 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2985 } else if (vma->vm_file && vma->anon_vma) {
2986 /*
2987 * We are making executable a file mapping that has
2988 * had some COW done. Since pages might have been
2989 * written, check ability to execute the possibly
2990 * modified content. This typically should only
2991 * occur for text relocations.
2992 */
2993 rc = file_has_perm(current, vma->vm_file,
2994 FILE__EXECMOD);
2995 }
2996 if (rc)
2997 return rc;
2998 }
2999 #endif
3000
3001 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3002 }
3003
3004 static int selinux_file_lock(struct file *file, unsigned int cmd)
3005 {
3006 return file_has_perm(current, file, FILE__LOCK);
3007 }
3008
3009 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3010 unsigned long arg)
3011 {
3012 int err = 0;
3013
3014 switch (cmd) {
3015 case F_SETFL:
3016 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3017 err = -EINVAL;
3018 break;
3019 }
3020
3021 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3022 err = file_has_perm(current, file, FILE__WRITE);
3023 break;
3024 }
3025 /* fall through */
3026 case F_SETOWN:
3027 case F_SETSIG:
3028 case F_GETFL:
3029 case F_GETOWN:
3030 case F_GETSIG:
3031 /* Just check FD__USE permission */
3032 err = file_has_perm(current, file, 0);
3033 break;
3034 case F_GETLK:
3035 case F_SETLK:
3036 case F_SETLKW:
3037 #if BITS_PER_LONG == 32
3038 case F_GETLK64:
3039 case F_SETLK64:
3040 case F_SETLKW64:
3041 #endif
3042 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3043 err = -EINVAL;
3044 break;
3045 }
3046 err = file_has_perm(current, file, FILE__LOCK);
3047 break;
3048 }
3049
3050 return err;
3051 }
3052
3053 static int selinux_file_set_fowner(struct file *file)
3054 {
3055 struct task_security_struct *tsec;
3056 struct file_security_struct *fsec;
3057
3058 tsec = current->security;
3059 fsec = file->f_security;
3060 fsec->fown_sid = tsec->sid;
3061
3062 return 0;
3063 }
3064
3065 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3066 struct fown_struct *fown, int signum)
3067 {
3068 struct file *file;
3069 u32 perm;
3070 struct task_security_struct *tsec;
3071 struct file_security_struct *fsec;
3072
3073 /* struct fown_struct is never outside the context of a struct file */
3074 file = container_of(fown, struct file, f_owner);
3075
3076 tsec = tsk->security;
3077 fsec = file->f_security;
3078
3079 if (!signum)
3080 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3081 else
3082 perm = signal_to_av(signum);
3083
3084 return avc_has_perm(fsec->fown_sid, tsec->sid,
3085 SECCLASS_PROCESS, perm, NULL);
3086 }
3087
3088 static int selinux_file_receive(struct file *file)
3089 {
3090 return file_has_perm(current, file, file_to_av(file));
3091 }
3092
3093 static int selinux_dentry_open(struct file *file)
3094 {
3095 struct file_security_struct *fsec;
3096 struct inode *inode;
3097 struct inode_security_struct *isec;
3098 inode = file->f_path.dentry->d_inode;
3099 fsec = file->f_security;
3100 isec = inode->i_security;
3101 /*
3102 * Save inode label and policy sequence number
3103 * at open-time so that selinux_file_permission
3104 * can determine whether revalidation is necessary.
3105 * Task label is already saved in the file security
3106 * struct as its SID.
3107 */
3108 fsec->isid = isec->sid;
3109 fsec->pseqno = avc_policy_seqno();
3110 /*
3111 * Since the inode label or policy seqno may have changed
3112 * between the selinux_inode_permission check and the saving
3113 * of state above, recheck that access is still permitted.
3114 * Otherwise, access might never be revalidated against the
3115 * new inode label or new policy.
3116 * This check is not redundant - do not remove.
3117 */
3118 return inode_has_perm(current, inode, file_to_av(file), NULL);
3119 }
3120
3121 /* task security operations */
3122
3123 static int selinux_task_create(unsigned long clone_flags)
3124 {
3125 int rc;
3126
3127 rc = secondary_ops->task_create(clone_flags);
3128 if (rc)
3129 return rc;
3130
3131 return task_has_perm(current, current, PROCESS__FORK);
3132 }
3133
3134 static int selinux_task_alloc_security(struct task_struct *tsk)
3135 {
3136 struct task_security_struct *tsec1, *tsec2;
3137 int rc;
3138
3139 tsec1 = current->security;
3140
3141 rc = task_alloc_security(tsk);
3142 if (rc)
3143 return rc;
3144 tsec2 = tsk->security;
3145
3146 tsec2->osid = tsec1->osid;
3147 tsec2->sid = tsec1->sid;
3148
3149 /* Retain the exec, fs, key, and sock SIDs across fork */
3150 tsec2->exec_sid = tsec1->exec_sid;
3151 tsec2->create_sid = tsec1->create_sid;
3152 tsec2->keycreate_sid = tsec1->keycreate_sid;
3153 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3154
3155 return 0;
3156 }
3157
3158 static void selinux_task_free_security(struct task_struct *tsk)
3159 {
3160 task_free_security(tsk);
3161 }
3162
3163 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3164 {
3165 /* Since setuid only affects the current process, and
3166 since the SELinux controls are not based on the Linux
3167 identity attributes, SELinux does not need to control
3168 this operation. However, SELinux does control the use
3169 of the CAP_SETUID and CAP_SETGID capabilities using the
3170 capable hook. */
3171 return 0;
3172 }
3173
3174 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3175 {
3176 return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3177 }
3178
3179 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3180 {
3181 /* See the comment for setuid above. */
3182 return 0;
3183 }
3184
3185 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3186 {
3187 return task_has_perm(current, p, PROCESS__SETPGID);
3188 }
3189
3190 static int selinux_task_getpgid(struct task_struct *p)
3191 {
3192 return task_has_perm(current, p, PROCESS__GETPGID);
3193 }
3194
3195 static int selinux_task_getsid(struct task_struct *p)
3196 {
3197 return task_has_perm(current, p, PROCESS__GETSESSION);
3198 }
3199
3200 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3201 {
3202 struct task_security_struct *tsec = p->security;
3203 *secid = tsec->sid;
3204 }
3205
3206 static int selinux_task_setgroups(struct group_info *group_info)
3207 {
3208 /* See the comment for setuid above. */
3209 return 0;
3210 }
3211
3212 static int selinux_task_setnice(struct task_struct *p, int nice)
3213 {
3214 int rc;
3215
3216 rc = secondary_ops->task_setnice(p, nice);
3217 if (rc)
3218 return rc;
3219
3220 return task_has_perm(current, p, PROCESS__SETSCHED);
3221 }
3222
3223 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3224 {
3225 int rc;
3226
3227 rc = secondary_ops->task_setioprio(p, ioprio);
3228 if (rc)
3229 return rc;
3230
3231 return task_has_perm(current, p, PROCESS__SETSCHED);
3232 }
3233
3234 static int selinux_task_getioprio(struct task_struct *p)
3235 {
3236 return task_has_perm(current, p, PROCESS__GETSCHED);
3237 }
3238
3239 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3240 {
3241 struct rlimit *old_rlim = current->signal->rlim + resource;
3242 int rc;
3243
3244 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3245 if (rc)
3246 return rc;
3247
3248 /* Control the ability to change the hard limit (whether
3249 lowering or raising it), so that the hard limit can
3250 later be used as a safe reset point for the soft limit
3251 upon context transitions. See selinux_bprm_apply_creds. */
3252 if (old_rlim->rlim_max != new_rlim->rlim_max)
3253 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3254
3255 return 0;
3256 }
3257
3258 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3259 {
3260 int rc;
3261
3262 rc = secondary_ops->task_setscheduler(p, policy, lp);
3263 if (rc)
3264 return rc;
3265
3266 return task_has_perm(current, p, PROCESS__SETSCHED);
3267 }
3268
3269 static int selinux_task_getscheduler(struct task_struct *p)
3270 {
3271 return task_has_perm(current, p, PROCESS__GETSCHED);
3272 }
3273
3274 static int selinux_task_movememory(struct task_struct *p)
3275 {
3276 return task_has_perm(current, p, PROCESS__SETSCHED);
3277 }
3278
3279 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3280 int sig, u32 secid)
3281 {
3282 u32 perm;
3283 int rc;
3284 struct task_security_struct *tsec;
3285
3286 rc = secondary_ops->task_kill(p, info, sig, secid);
3287 if (rc)
3288 return rc;
3289
3290 if (!sig)
3291 perm = PROCESS__SIGNULL; /* null signal; existence test */
3292 else
3293 perm = signal_to_av(sig);
3294 tsec = p->security;
3295 if (secid)
3296 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3297 else
3298 rc = task_has_perm(current, p, perm);
3299 return rc;
3300 }
3301
3302 static int selinux_task_prctl(int option,
3303 unsigned long arg2,
3304 unsigned long arg3,
3305 unsigned long arg4,
3306 unsigned long arg5,
3307 long *rc_p)
3308 {
3309 /* The current prctl operations do not appear to require
3310 any SELinux controls since they merely observe or modify
3311 the state of the current process. */
3312 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3313 }
3314
3315 static int selinux_task_wait(struct task_struct *p)
3316 {
3317 return task_has_perm(p, current, PROCESS__SIGCHLD);
3318 }
3319
3320 static void selinux_task_reparent_to_init(struct task_struct *p)
3321 {
3322 struct task_security_struct *tsec;
3323
3324 secondary_ops->task_reparent_to_init(p);
3325
3326 tsec = p->security;
3327 tsec->osid = tsec->sid;
3328 tsec->sid = SECINITSID_KERNEL;
3329 return;
3330 }
3331
3332 static void selinux_task_to_inode(struct task_struct *p,
3333 struct inode *inode)
3334 {
3335 struct task_security_struct *tsec = p->security;
3336 struct inode_security_struct *isec = inode->i_security;
3337
3338 isec->sid = tsec->sid;
3339 isec->initialized = 1;
3340 return;
3341 }
3342
3343 /* Returns error only if unable to parse addresses */
3344 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3345 struct avc_audit_data *ad, u8 *proto)
3346 {
3347 int offset, ihlen, ret = -EINVAL;
3348 struct iphdr _iph, *ih;
3349
3350 offset = skb_network_offset(skb);
3351 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3352 if (ih == NULL)
3353 goto out;
3354
3355 ihlen = ih->ihl * 4;
3356 if (ihlen < sizeof(_iph))
3357 goto out;
3358
3359 ad->u.net.v4info.saddr = ih->saddr;
3360 ad->u.net.v4info.daddr = ih->daddr;
3361 ret = 0;
3362
3363 if (proto)
3364 *proto = ih->protocol;
3365
3366 switch (ih->protocol) {
3367 case IPPROTO_TCP: {
3368 struct tcphdr _tcph, *th;
3369
3370 if (ntohs(ih->frag_off) & IP_OFFSET)
3371 break;
3372
3373 offset += ihlen;
3374 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3375 if (th == NULL)
3376 break;
3377
3378 ad->u.net.sport = th->source;
3379 ad->u.net.dport = th->dest;
3380 break;
3381 }
3382
3383 case IPPROTO_UDP: {
3384 struct udphdr _udph, *uh;
3385
3386 if (ntohs(ih->frag_off) & IP_OFFSET)
3387 break;
3388
3389 offset += ihlen;
3390 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3391 if (uh == NULL)
3392 break;
3393
3394 ad->u.net.sport = uh->source;
3395 ad->u.net.dport = uh->dest;
3396 break;
3397 }
3398
3399 case IPPROTO_DCCP: {
3400 struct dccp_hdr _dccph, *dh;
3401
3402 if (ntohs(ih->frag_off) & IP_OFFSET)
3403 break;
3404
3405 offset += ihlen;
3406 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3407 if (dh == NULL)
3408 break;
3409
3410 ad->u.net.sport = dh->dccph_sport;
3411 ad->u.net.dport = dh->dccph_dport;
3412 break;
3413 }
3414
3415 default:
3416 break;
3417 }
3418 out:
3419 return ret;
3420 }
3421
3422 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3423
3424 /* Returns error only if unable to parse addresses */
3425 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3426 struct avc_audit_data *ad, u8 *proto)
3427 {
3428 u8 nexthdr;
3429 int ret = -EINVAL, offset;
3430 struct ipv6hdr _ipv6h, *ip6;
3431
3432 offset = skb_network_offset(skb);
3433 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3434 if (ip6 == NULL)
3435 goto out;
3436
3437 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3438 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3439 ret = 0;
3440
3441 nexthdr = ip6->nexthdr;
3442 offset += sizeof(_ipv6h);
3443 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3444 if (offset < 0)
3445 goto out;
3446
3447 if (proto)
3448 *proto = nexthdr;
3449
3450 switch (nexthdr) {
3451 case IPPROTO_TCP: {
3452 struct tcphdr _tcph, *th;
3453
3454 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3455 if (th == NULL)
3456 break;
3457
3458 ad->u.net.sport = th->source;
3459 ad->u.net.dport = th->dest;
3460 break;
3461 }
3462
3463 case IPPROTO_UDP: {
3464 struct udphdr _udph, *uh;
3465
3466 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3467 if (uh == NULL)
3468 break;
3469
3470 ad->u.net.sport = uh->source;
3471 ad->u.net.dport = uh->dest;
3472 break;
3473 }
3474
3475 case IPPROTO_DCCP: {
3476 struct dccp_hdr _dccph, *dh;
3477
3478 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3479 if (dh == NULL)
3480 break;
3481
3482 ad->u.net.sport = dh->dccph_sport;
3483 ad->u.net.dport = dh->dccph_dport;
3484 break;
3485 }
3486
3487 /* includes fragments */
3488 default:
3489 break;
3490 }
3491 out:
3492 return ret;
3493 }
3494
3495 #endif /* IPV6 */
3496
3497 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3498 char **addrp, int src, u8 *proto)
3499 {
3500 int ret = 0;
3501
3502 switch (ad->u.net.family) {
3503 case PF_INET:
3504 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3505 if (ret || !addrp)
3506 break;
3507 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3508 &ad->u.net.v4info.daddr);
3509 break;
3510
3511 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3512 case PF_INET6:
3513 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3514 if (ret || !addrp)
3515 break;
3516 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3517 &ad->u.net.v6info.daddr);
3518 break;
3519 #endif /* IPV6 */
3520 default:
3521 break;
3522 }
3523
3524 if (unlikely(ret))
3525 printk(KERN_WARNING
3526 "SELinux: failure in selinux_parse_skb(),"
3527 " unable to parse packet\n");
3528
3529 return ret;
3530 }
3531
3532 /**
3533 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3534 * @skb: the packet
3535 * @family: protocol family
3536 * @sid: the packet's peer label SID
3537 *
3538 * Description:
3539 * Check the various different forms of network peer labeling and determine
3540 * the peer label/SID for the packet; most of the magic actually occurs in
3541 * the security server function security_net_peersid_cmp(). The function
3542 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3543 * or -EACCES if @sid is invalid due to inconsistencies with the different
3544 * peer labels.
3545 *
3546 */
3547 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3548 {
3549 int err;
3550 u32 xfrm_sid;
3551 u32 nlbl_sid;
3552 u32 nlbl_type;
3553
3554 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3555 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3556
3557 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3558 if (unlikely(err)) {
3559 printk(KERN_WARNING
3560 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3561 " unable to determine packet's peer label\n");
3562 return -EACCES;
3563 }
3564
3565 return 0;
3566 }
3567
3568 /* socket security operations */
3569 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3570 u32 perms)
3571 {
3572 struct inode_security_struct *isec;
3573 struct task_security_struct *tsec;
3574 struct avc_audit_data ad;
3575 int err = 0;
3576
3577 tsec = task->security;
3578 isec = SOCK_INODE(sock)->i_security;
3579
3580 if (isec->sid == SECINITSID_KERNEL)
3581 goto out;
3582
3583 AVC_AUDIT_DATA_INIT(&ad, NET);
3584 ad.u.net.sk = sock->sk;
3585 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3586
3587 out:
3588 return err;
3589 }
3590
3591 static int selinux_socket_create(int family, int type,
3592 int protocol, int kern)
3593 {
3594 int err = 0;
3595 struct task_security_struct *tsec;
3596 u32 newsid;
3597
3598 if (kern)
3599 goto out;
3600
3601 tsec = current->security;
3602 newsid = tsec->sockcreate_sid ? : tsec->sid;
3603 err = avc_has_perm(tsec->sid, newsid,
3604 socket_type_to_security_class(family, type,
3605 protocol), SOCKET__CREATE, NULL);
3606
3607 out:
3608 return err;
3609 }
3610
3611 static int selinux_socket_post_create(struct socket *sock, int family,
3612 int type, int protocol, int kern)
3613 {
3614 int err = 0;
3615 struct inode_security_struct *isec;
3616 struct task_security_struct *tsec;
3617 struct sk_security_struct *sksec;
3618 u32 newsid;
3619
3620 isec = SOCK_INODE(sock)->i_security;
3621
3622 tsec = current->security;
3623 newsid = tsec->sockcreate_sid ? : tsec->sid;
3624 isec->sclass = socket_type_to_security_class(family, type, protocol);
3625 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3626 isec->initialized = 1;
3627
3628 if (sock->sk) {
3629 sksec = sock->sk->sk_security;
3630 sksec->sid = isec->sid;
3631 sksec->sclass = isec->sclass;
3632 err = selinux_netlbl_socket_post_create(sock);
3633 }
3634
3635 return err;
3636 }
3637
3638 /* Range of port numbers used to automatically bind.
3639 Need to determine whether we should perform a name_bind
3640 permission check between the socket and the port number. */
3641
3642 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3643 {
3644 u16 family;
3645 int err;
3646
3647 err = socket_has_perm(current, sock, SOCKET__BIND);
3648 if (err)
3649 goto out;
3650
3651 /*
3652 * If PF_INET or PF_INET6, check name_bind permission for the port.
3653 * Multiple address binding for SCTP is not supported yet: we just
3654 * check the first address now.
3655 */
3656 family = sock->sk->sk_family;
3657 if (family == PF_INET || family == PF_INET6) {
3658 char *addrp;
3659 struct inode_security_struct *isec;
3660 struct task_security_struct *tsec;
3661 struct avc_audit_data ad;
3662 struct sockaddr_in *addr4 = NULL;
3663 struct sockaddr_in6 *addr6 = NULL;
3664 unsigned short snum;
3665 struct sock *sk = sock->sk;
3666 u32 sid, node_perm, addrlen;
3667
3668 tsec = current->security;
3669 isec = SOCK_INODE(sock)->i_security;
3670
3671 if (family == PF_INET) {
3672 addr4 = (struct sockaddr_in *)address;
3673 snum = ntohs(addr4->sin_port);
3674 addrlen = sizeof(addr4->sin_addr.s_addr);
3675 addrp = (char *)&addr4->sin_addr.s_addr;
3676 } else {
3677 addr6 = (struct sockaddr_in6 *)address;
3678 snum = ntohs(addr6->sin6_port);
3679 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3680 addrp = (char *)&addr6->sin6_addr.s6_addr;
3681 }
3682
3683 if (snum) {
3684 int low, high;
3685
3686 inet_get_local_port_range(&low, &high);
3687
3688 if (snum < max(PROT_SOCK, low) || snum > high) {
3689 err = sel_netport_sid(sk->sk_protocol,
3690 snum, &sid);
3691 if (err)
3692 goto out;
3693 AVC_AUDIT_DATA_INIT(&ad, NET);
3694 ad.u.net.sport = htons(snum);
3695 ad.u.net.family = family;
3696 err = avc_has_perm(isec->sid, sid,
3697 isec->sclass,
3698 SOCKET__NAME_BIND, &ad);
3699 if (err)
3700 goto out;
3701 }
3702 }
3703
3704 switch (isec->sclass) {
3705 case SECCLASS_TCP_SOCKET:
3706 node_perm = TCP_SOCKET__NODE_BIND;
3707 break;
3708
3709 case SECCLASS_UDP_SOCKET:
3710 node_perm = UDP_SOCKET__NODE_BIND;
3711 break;
3712
3713 case SECCLASS_DCCP_SOCKET:
3714 node_perm = DCCP_SOCKET__NODE_BIND;
3715 break;
3716
3717 default:
3718 node_perm = RAWIP_SOCKET__NODE_BIND;
3719 break;
3720 }
3721
3722 err = sel_netnode_sid(addrp, family, &sid);
3723 if (err)
3724 goto out;
3725
3726 AVC_AUDIT_DATA_INIT(&ad, NET);
3727 ad.u.net.sport = htons(snum);
3728 ad.u.net.family = family;
3729
3730 if (family == PF_INET)
3731 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3732 else
3733 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3734
3735 err = avc_has_perm(isec->sid, sid,
3736 isec->sclass, node_perm, &ad);
3737 if (err)
3738 goto out;
3739 }
3740 out:
3741 return err;
3742 }
3743
3744 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3745 {
3746 struct inode_security_struct *isec;
3747 int err;
3748
3749 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3750 if (err)
3751 return err;
3752
3753 /*
3754 * If a TCP or DCCP socket, check name_connect permission for the port.
3755 */
3756 isec = SOCK_INODE(sock)->i_security;
3757 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3758 isec->sclass == SECCLASS_DCCP_SOCKET) {
3759 struct sock *sk = sock->sk;
3760 struct avc_audit_data ad;
3761 struct sockaddr_in *addr4 = NULL;
3762 struct sockaddr_in6 *addr6 = NULL;
3763 unsigned short snum;
3764 u32 sid, perm;
3765
3766 if (sk->sk_family == PF_INET) {
3767 addr4 = (struct sockaddr_in *)address;
3768 if (addrlen < sizeof(struct sockaddr_in))
3769 return -EINVAL;
3770 snum = ntohs(addr4->sin_port);
3771 } else {
3772 addr6 = (struct sockaddr_in6 *)address;
3773 if (addrlen < SIN6_LEN_RFC2133)
3774 return -EINVAL;
3775 snum = ntohs(addr6->sin6_port);
3776 }
3777
3778 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3779 if (err)
3780 goto out;
3781
3782 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3783 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3784
3785 AVC_AUDIT_DATA_INIT(&ad, NET);
3786 ad.u.net.dport = htons(snum);
3787 ad.u.net.family = sk->sk_family;
3788 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3789 if (err)
3790 goto out;
3791 }
3792
3793 out:
3794 return err;
3795 }
3796
3797 static int selinux_socket_listen(struct socket *sock, int backlog)
3798 {
3799 return socket_has_perm(current, sock, SOCKET__LISTEN);
3800 }
3801
3802 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3803 {
3804 int err;
3805 struct inode_security_struct *isec;
3806 struct inode_security_struct *newisec;
3807
3808 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3809 if (err)
3810 return err;
3811
3812 newisec = SOCK_INODE(newsock)->i_security;
3813
3814 isec = SOCK_INODE(sock)->i_security;
3815 newisec->sclass = isec->sclass;
3816 newisec->sid = isec->sid;
3817 newisec->initialized = 1;
3818
3819 return 0;
3820 }
3821
3822 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3823 int size)
3824 {
3825 int rc;
3826
3827 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3828 if (rc)
3829 return rc;
3830
3831 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3832 }
3833
3834 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3835 int size, int flags)
3836 {
3837 return socket_has_perm(current, sock, SOCKET__READ);
3838 }
3839
3840 static int selinux_socket_getsockname(struct socket *sock)
3841 {
3842 return socket_has_perm(current, sock, SOCKET__GETATTR);
3843 }
3844
3845 static int selinux_socket_getpeername(struct socket *sock)
3846 {
3847 return socket_has_perm(current, sock, SOCKET__GETATTR);
3848 }
3849
3850 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3851 {
3852 int err;
3853
3854 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3855 if (err)
3856 return err;
3857
3858 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3859 }
3860
3861 static int selinux_socket_getsockopt(struct socket *sock, int level,
3862 int optname)
3863 {
3864 return socket_has_perm(current, sock, SOCKET__GETOPT);
3865 }
3866
3867 static int selinux_socket_shutdown(struct socket *sock, int how)
3868 {
3869 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3870 }
3871
3872 static int selinux_socket_unix_stream_connect(struct socket *sock,
3873 struct socket *other,
3874 struct sock *newsk)
3875 {
3876 struct sk_security_struct *ssec;
3877 struct inode_security_struct *isec;
3878 struct inode_security_struct *other_isec;
3879 struct avc_audit_data ad;
3880 int err;
3881
3882 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3883 if (err)
3884 return err;
3885
3886 isec = SOCK_INODE(sock)->i_security;
3887 other_isec = SOCK_INODE(other)->i_security;
3888
3889 AVC_AUDIT_DATA_INIT(&ad, NET);
3890 ad.u.net.sk = other->sk;
3891
3892 err = avc_has_perm(isec->sid, other_isec->sid,
3893 isec->sclass,
3894 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3895 if (err)
3896 return err;
3897
3898 /* connecting socket */
3899 ssec = sock->sk->sk_security;
3900 ssec->peer_sid = other_isec->sid;
3901
3902 /* server child socket */
3903 ssec = newsk->sk_security;
3904 ssec->peer_sid = isec->sid;
3905 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3906
3907 return err;
3908 }
3909
3910 static int selinux_socket_unix_may_send(struct socket *sock,
3911 struct socket *other)
3912 {
3913 struct inode_security_struct *isec;
3914 struct inode_security_struct *other_isec;
3915 struct avc_audit_data ad;
3916 int err;
3917
3918 isec = SOCK_INODE(sock)->i_security;
3919 other_isec = SOCK_INODE(other)->i_security;
3920
3921 AVC_AUDIT_DATA_INIT(&ad, NET);
3922 ad.u.net.sk = other->sk;
3923
3924 err = avc_has_perm(isec->sid, other_isec->sid,
3925 isec->sclass, SOCKET__SENDTO, &ad);
3926 if (err)
3927 return err;
3928
3929 return 0;
3930 }
3931
3932 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3933 u32 peer_sid,
3934 struct avc_audit_data *ad)
3935 {
3936 int err;
3937 u32 if_sid;
3938 u32 node_sid;
3939
3940 err = sel_netif_sid(ifindex, &if_sid);
3941 if (err)
3942 return err;
3943 err = avc_has_perm(peer_sid, if_sid,
3944 SECCLASS_NETIF, NETIF__INGRESS, ad);
3945 if (err)
3946 return err;
3947
3948 err = sel_netnode_sid(addrp, family, &node_sid);
3949 if (err)
3950 return err;
3951 return avc_has_perm(peer_sid, node_sid,
3952 SECCLASS_NODE, NODE__RECVFROM, ad);
3953 }
3954
3955 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3956 struct sk_buff *skb,
3957 struct avc_audit_data *ad,
3958 u16 family,
3959 char *addrp)
3960 {
3961 int err;
3962 struct sk_security_struct *sksec = sk->sk_security;
3963 u16 sk_class;
3964 u32 netif_perm, node_perm, recv_perm;
3965 u32 port_sid, node_sid, if_sid, sk_sid;
3966
3967 sk_sid = sksec->sid;
3968 sk_class = sksec->sclass;
3969
3970 switch (sk_class) {
3971 case SECCLASS_UDP_SOCKET:
3972 netif_perm = NETIF__UDP_RECV;
3973 node_perm = NODE__UDP_RECV;
3974 recv_perm = UDP_SOCKET__RECV_MSG;
3975 break;
3976 case SECCLASS_TCP_SOCKET:
3977 netif_perm = NETIF__TCP_RECV;
3978 node_perm = NODE__TCP_RECV;
3979 recv_perm = TCP_SOCKET__RECV_MSG;
3980 break;
3981 case SECCLASS_DCCP_SOCKET:
3982 netif_perm = NETIF__DCCP_RECV;
3983 node_perm = NODE__DCCP_RECV;
3984 recv_perm = DCCP_SOCKET__RECV_MSG;
3985 break;
3986 default:
3987 netif_perm = NETIF__RAWIP_RECV;
3988 node_perm = NODE__RAWIP_RECV;
3989 recv_perm = 0;
3990 break;
3991 }
3992
3993 err = sel_netif_sid(skb->iif, &if_sid);
3994 if (err)
3995 return err;
3996 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3997 if (err)
3998 return err;
3999
4000 err = sel_netnode_sid(addrp, family, &node_sid);
4001 if (err)
4002 return err;
4003 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4004 if (err)
4005 return err;
4006
4007 if (!recv_perm)
4008 return 0;
4009 err = sel_netport_sid(sk->sk_protocol,
4010 ntohs(ad->u.net.sport), &port_sid);
4011 if (unlikely(err)) {
4012 printk(KERN_WARNING
4013 "SELinux: failure in"
4014 " selinux_sock_rcv_skb_iptables_compat(),"
4015 " network port label not found\n");
4016 return err;
4017 }
4018 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4019 }
4020
4021 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4022 struct avc_audit_data *ad,
4023 u16 family, char *addrp)
4024 {
4025 int err;
4026 struct sk_security_struct *sksec = sk->sk_security;
4027 u32 peer_sid;
4028 u32 sk_sid = sksec->sid;
4029
4030 if (selinux_compat_net)
4031 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
4032 family, addrp);
4033 else
4034 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4035 PACKET__RECV, ad);
4036 if (err)
4037 return err;
4038
4039 if (selinux_policycap_netpeer) {
4040 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4041 if (err)
4042 return err;
4043 err = avc_has_perm(sk_sid, peer_sid,
4044 SECCLASS_PEER, PEER__RECV, ad);
4045 } else {
4046 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
4047 if (err)
4048 return err;
4049 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
4050 }
4051
4052 return err;
4053 }
4054
4055 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4056 {
4057 int err;
4058 struct sk_security_struct *sksec = sk->sk_security;
4059 u16 family = sk->sk_family;
4060 u32 sk_sid = sksec->sid;
4061 struct avc_audit_data ad;
4062 char *addrp;
4063
4064 if (family != PF_INET && family != PF_INET6)
4065 return 0;
4066
4067 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4068 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4069 family = PF_INET;
4070
4071 AVC_AUDIT_DATA_INIT(&ad, NET);
4072 ad.u.net.netif = skb->iif;
4073 ad.u.net.family = family;
4074 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4075 if (err)
4076 return err;
4077
4078 /* If any sort of compatibility mode is enabled then handoff processing
4079 * to the selinux_sock_rcv_skb_compat() function to deal with the
4080 * special handling. We do this in an attempt to keep this function
4081 * as fast and as clean as possible. */
4082 if (selinux_compat_net || !selinux_policycap_netpeer)
4083 return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4084 family, addrp);
4085
4086 if (netlbl_enabled() || selinux_xfrm_enabled()) {
4087 u32 peer_sid;
4088
4089 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4090 if (err)
4091 return err;
4092 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4093 peer_sid, &ad);
4094 if (err)
4095 return err;
4096 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4097 PEER__RECV, &ad);
4098 }
4099
4100 if (selinux_secmark_enabled()) {
4101 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4102 PACKET__RECV, &ad);
4103 if (err)
4104 return err;
4105 }
4106
4107 return err;
4108 }
4109
4110 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4111 int __user *optlen, unsigned len)
4112 {
4113 int err = 0;
4114 char *scontext;
4115 u32 scontext_len;
4116 struct sk_security_struct *ssec;
4117 struct inode_security_struct *isec;
4118 u32 peer_sid = SECSID_NULL;
4119
4120 isec = SOCK_INODE(sock)->i_security;
4121
4122 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4123 isec->sclass == SECCLASS_TCP_SOCKET) {
4124 ssec = sock->sk->sk_security;
4125 peer_sid = ssec->peer_sid;
4126 }
4127 if (peer_sid == SECSID_NULL) {
4128 err = -ENOPROTOOPT;
4129 goto out;
4130 }
4131
4132 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4133
4134 if (err)
4135 goto out;
4136
4137 if (scontext_len > len) {
4138 err = -ERANGE;
4139 goto out_len;
4140 }
4141
4142 if (copy_to_user(optval, scontext, scontext_len))
4143 err = -EFAULT;
4144
4145 out_len:
4146 if (put_user(scontext_len, optlen))
4147 err = -EFAULT;
4148
4149 kfree(scontext);
4150 out:
4151 return err;
4152 }
4153
4154 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4155 {
4156 u32 peer_secid = SECSID_NULL;
4157 u16 family;
4158
4159 if (sock)
4160 family = sock->sk->sk_family;
4161 else if (skb && skb->sk)
4162 family = skb->sk->sk_family;
4163 else
4164 goto out;
4165
4166 if (sock && family == PF_UNIX)
4167 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4168 else if (skb)
4169 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4170
4171 out:
4172 *secid = peer_secid;
4173 if (peer_secid == SECSID_NULL)
4174 return -EINVAL;
4175 return 0;
4176 }
4177
4178 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4179 {
4180 return sk_alloc_security(sk, family, priority);
4181 }
4182
4183 static void selinux_sk_free_security(struct sock *sk)
4184 {
4185 sk_free_security(sk);
4186 }
4187
4188 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4189 {
4190 struct sk_security_struct *ssec = sk->sk_security;
4191 struct sk_security_struct *newssec = newsk->sk_security;
4192
4193 newssec->sid = ssec->sid;
4194 newssec->peer_sid = ssec->peer_sid;
4195 newssec->sclass = ssec->sclass;
4196
4197 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4198 }
4199
4200 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4201 {
4202 if (!sk)
4203 *secid = SECINITSID_ANY_SOCKET;
4204 else {
4205 struct sk_security_struct *sksec = sk->sk_security;
4206
4207 *secid = sksec->sid;
4208 }
4209 }
4210
4211 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4212 {
4213 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4214 struct sk_security_struct *sksec = sk->sk_security;
4215
4216 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4217 sk->sk_family == PF_UNIX)
4218 isec->sid = sksec->sid;
4219 sksec->sclass = isec->sclass;
4220
4221 selinux_netlbl_sock_graft(sk, parent);
4222 }
4223
4224 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4225 struct request_sock *req)
4226 {
4227 struct sk_security_struct *sksec = sk->sk_security;
4228 int err;
4229 u32 newsid;
4230 u32 peersid;
4231
4232 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4233 if (err)
4234 return err;
4235 if (peersid == SECSID_NULL) {
4236 req->secid = sksec->sid;
4237 req->peer_secid = SECSID_NULL;
4238 return 0;
4239 }
4240
4241 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4242 if (err)
4243 return err;
4244
4245 req->secid = newsid;
4246 req->peer_secid = peersid;
4247 return 0;
4248 }
4249
4250 static void selinux_inet_csk_clone(struct sock *newsk,
4251 const struct request_sock *req)
4252 {
4253 struct sk_security_struct *newsksec = newsk->sk_security;
4254
4255 newsksec->sid = req->secid;
4256 newsksec->peer_sid = req->peer_secid;
4257 /* NOTE: Ideally, we should also get the isec->sid for the
4258 new socket in sync, but we don't have the isec available yet.
4259 So we will wait until sock_graft to do it, by which
4260 time it will have been created and available. */
4261
4262 /* We don't need to take any sort of lock here as we are the only
4263 * thread with access to newsksec */
4264 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4265 }
4266
4267 static void selinux_inet_conn_established(struct sock *sk,
4268 struct sk_buff *skb)
4269 {
4270 struct sk_security_struct *sksec = sk->sk_security;
4271
4272 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4273 }
4274
4275 static void selinux_req_classify_flow(const struct request_sock *req,
4276 struct flowi *fl)
4277 {
4278 fl->secid = req->secid;
4279 }
4280
4281 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4282 {
4283 int err = 0;
4284 u32 perm;
4285 struct nlmsghdr *nlh;
4286 struct socket *sock = sk->sk_socket;
4287 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4288
4289 if (skb->len < NLMSG_SPACE(0)) {
4290 err = -EINVAL;
4291 goto out;
4292 }
4293 nlh = nlmsg_hdr(skb);
4294
4295 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4296 if (err) {
4297 if (err == -EINVAL) {
4298 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4299 "SELinux: unrecognized netlink message"
4300 " type=%hu for sclass=%hu\n",
4301 nlh->nlmsg_type, isec->sclass);
4302 if (!selinux_enforcing)
4303 err = 0;
4304 }
4305
4306 /* Ignore */
4307 if (err == -ENOENT)
4308 err = 0;
4309 goto out;
4310 }
4311
4312 err = socket_has_perm(current, sock, perm);
4313 out:
4314 return err;
4315 }
4316
4317 #ifdef CONFIG_NETFILTER
4318
4319 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4320 u16 family)
4321 {
4322 char *addrp;
4323 u32 peer_sid;
4324 struct avc_audit_data ad;
4325 u8 secmark_active;
4326 u8 peerlbl_active;
4327
4328 if (!selinux_policycap_netpeer)
4329 return NF_ACCEPT;
4330
4331 secmark_active = selinux_secmark_enabled();
4332 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4333 if (!secmark_active && !peerlbl_active)
4334 return NF_ACCEPT;
4335
4336 AVC_AUDIT_DATA_INIT(&ad, NET);
4337 ad.u.net.netif = ifindex;
4338 ad.u.net.family = family;
4339 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4340 return NF_DROP;
4341
4342 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4343 return NF_DROP;
4344
4345 if (peerlbl_active)
4346 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4347 peer_sid, &ad) != 0)
4348 return NF_DROP;
4349
4350 if (secmark_active)
4351 if (avc_has_perm(peer_sid, skb->secmark,
4352 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4353 return NF_DROP;
4354
4355 return NF_ACCEPT;
4356 }
4357
4358 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4359 struct sk_buff *skb,
4360 const struct net_device *in,
4361 const struct net_device *out,
4362 int (*okfn)(struct sk_buff *))
4363 {
4364 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4365 }
4366
4367 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4368 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4369 struct sk_buff *skb,
4370 const struct net_device *in,
4371 const struct net_device *out,
4372 int (*okfn)(struct sk_buff *))
4373 {
4374 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4375 }
4376 #endif /* IPV6 */
4377
4378 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4379 int ifindex,
4380 struct avc_audit_data *ad,
4381 u16 family, char *addrp)
4382 {
4383 int err;
4384 struct sk_security_struct *sksec = sk->sk_security;
4385 u16 sk_class;
4386 u32 netif_perm, node_perm, send_perm;
4387 u32 port_sid, node_sid, if_sid, sk_sid;
4388
4389 sk_sid = sksec->sid;
4390 sk_class = sksec->sclass;
4391
4392 switch (sk_class) {
4393 case SECCLASS_UDP_SOCKET:
4394 netif_perm = NETIF__UDP_SEND;
4395 node_perm = NODE__UDP_SEND;
4396 send_perm = UDP_SOCKET__SEND_MSG;
4397 break;
4398 case SECCLASS_TCP_SOCKET:
4399 netif_perm = NETIF__TCP_SEND;
4400 node_perm = NODE__TCP_SEND;
4401 send_perm = TCP_SOCKET__SEND_MSG;
4402 break;
4403 case SECCLASS_DCCP_SOCKET:
4404 netif_perm = NETIF__DCCP_SEND;
4405 node_perm = NODE__DCCP_SEND;
4406 send_perm = DCCP_SOCKET__SEND_MSG;
4407 break;
4408 default:
4409 netif_perm = NETIF__RAWIP_SEND;
4410 node_perm = NODE__RAWIP_SEND;
4411 send_perm = 0;
4412 break;
4413 }
4414
4415 err = sel_netif_sid(ifindex, &if_sid);
4416 if (err)
4417 return err;
4418 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4419 return err;
4420
4421 err = sel_netnode_sid(addrp, family, &node_sid);
4422 if (err)
4423 return err;
4424 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4425 if (err)
4426 return err;
4427
4428 if (send_perm != 0)
4429 return 0;
4430
4431 err = sel_netport_sid(sk->sk_protocol,
4432 ntohs(ad->u.net.dport), &port_sid);
4433 if (unlikely(err)) {
4434 printk(KERN_WARNING
4435 "SELinux: failure in"
4436 " selinux_ip_postroute_iptables_compat(),"
4437 " network port label not found\n");
4438 return err;
4439 }
4440 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4441 }
4442
4443 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4444 int ifindex,
4445 struct avc_audit_data *ad,
4446 u16 family,
4447 char *addrp,
4448 u8 proto)
4449 {
4450 struct sock *sk = skb->sk;
4451 struct sk_security_struct *sksec;
4452
4453 if (sk == NULL)
4454 return NF_ACCEPT;
4455 sksec = sk->sk_security;
4456
4457 if (selinux_compat_net) {
4458 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4459 ad, family, addrp))
4460 return NF_DROP;
4461 } else {
4462 if (avc_has_perm(sksec->sid, skb->secmark,
4463 SECCLASS_PACKET, PACKET__SEND, ad))
4464 return NF_DROP;
4465 }
4466
4467 if (selinux_policycap_netpeer)
4468 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4469 return NF_DROP;
4470
4471 return NF_ACCEPT;
4472 }
4473
4474 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4475 u16 family)
4476 {
4477 u32 secmark_perm;
4478 u32 peer_sid;
4479 struct sock *sk;
4480 struct avc_audit_data ad;
4481 char *addrp;
4482 u8 proto;
4483 u8 secmark_active;
4484 u8 peerlbl_active;
4485
4486 AVC_AUDIT_DATA_INIT(&ad, NET);
4487 ad.u.net.netif = ifindex;
4488 ad.u.net.family = family;
4489 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4490 return NF_DROP;
4491
4492 /* If any sort of compatibility mode is enabled then handoff processing
4493 * to the selinux_ip_postroute_compat() function to deal with the
4494 * special handling. We do this in an attempt to keep this function
4495 * as fast and as clean as possible. */
4496 if (selinux_compat_net || !selinux_policycap_netpeer)
4497 return selinux_ip_postroute_compat(skb, ifindex, &ad,
4498 family, addrp, proto);
4499
4500 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4501 * packet transformation so allow the packet to pass without any checks
4502 * since we'll have another chance to perform access control checks
4503 * when the packet is on it's final way out.
4504 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4505 * is NULL, in this case go ahead and apply access control. */
4506 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4507 return NF_ACCEPT;
4508
4509 secmark_active = selinux_secmark_enabled();
4510 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4511 if (!secmark_active && !peerlbl_active)
4512 return NF_ACCEPT;
4513
4514 /* if the packet is locally generated (skb->sk != NULL) then use the
4515 * socket's label as the peer label, otherwise the packet is being
4516 * forwarded through this system and we need to fetch the peer label
4517 * directly from the packet */
4518 sk = skb->sk;
4519 if (sk) {
4520 struct sk_security_struct *sksec = sk->sk_security;
4521 peer_sid = sksec->sid;
4522 secmark_perm = PACKET__SEND;
4523 } else {
4524 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4525 return NF_DROP;
4526 secmark_perm = PACKET__FORWARD_OUT;
4527 }
4528
4529 if (secmark_active)
4530 if (avc_has_perm(peer_sid, skb->secmark,
4531 SECCLASS_PACKET, secmark_perm, &ad))
4532 return NF_DROP;
4533
4534 if (peerlbl_active) {
4535 u32 if_sid;
4536 u32 node_sid;
4537
4538 if (sel_netif_sid(ifindex, &if_sid))
4539 return NF_DROP;
4540 if (avc_has_perm(peer_sid, if_sid,
4541 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4542 return NF_DROP;
4543
4544 if (sel_netnode_sid(addrp, family, &node_sid))
4545 return NF_DROP;
4546 if (avc_has_perm(peer_sid, node_sid,
4547 SECCLASS_NODE, NODE__SENDTO, &ad))
4548 return NF_DROP;
4549 }
4550
4551 return NF_ACCEPT;
4552 }
4553
4554 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4555 struct sk_buff *skb,
4556 const struct net_device *in,
4557 const struct net_device *out,
4558 int (*okfn)(struct sk_buff *))
4559 {
4560 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4561 }
4562
4563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4564 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4565 struct sk_buff *skb,
4566 const struct net_device *in,
4567 const struct net_device *out,
4568 int (*okfn)(struct sk_buff *))
4569 {
4570 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4571 }
4572 #endif /* IPV6 */
4573
4574 #endif /* CONFIG_NETFILTER */
4575
4576 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4577 {
4578 int err;
4579
4580 err = secondary_ops->netlink_send(sk, skb);
4581 if (err)
4582 return err;
4583
4584 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4585 err = selinux_nlmsg_perm(sk, skb);
4586
4587 return err;
4588 }
4589
4590 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4591 {
4592 int err;
4593 struct avc_audit_data ad;
4594
4595 err = secondary_ops->netlink_recv(skb, capability);
4596 if (err)
4597 return err;
4598
4599 AVC_AUDIT_DATA_INIT(&ad, CAP);
4600 ad.u.cap = capability;
4601
4602 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4603 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4604 }
4605
4606 static int ipc_alloc_security(struct task_struct *task,
4607 struct kern_ipc_perm *perm,
4608 u16 sclass)
4609 {
4610 struct task_security_struct *tsec = task->security;
4611 struct ipc_security_struct *isec;
4612
4613 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4614 if (!isec)
4615 return -ENOMEM;
4616
4617 isec->sclass = sclass;
4618 isec->sid = tsec->sid;
4619 perm->security = isec;
4620
4621 return 0;
4622 }
4623
4624 static void ipc_free_security(struct kern_ipc_perm *perm)
4625 {
4626 struct ipc_security_struct *isec = perm->security;
4627 perm->security = NULL;
4628 kfree(isec);
4629 }
4630
4631 static int msg_msg_alloc_security(struct msg_msg *msg)
4632 {
4633 struct msg_security_struct *msec;
4634
4635 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4636 if (!msec)
4637 return -ENOMEM;
4638
4639 msec->sid = SECINITSID_UNLABELED;
4640 msg->security = msec;
4641
4642 return 0;
4643 }
4644
4645 static void msg_msg_free_security(struct msg_msg *msg)
4646 {
4647 struct msg_security_struct *msec = msg->security;
4648
4649 msg->security = NULL;
4650 kfree(msec);
4651 }
4652
4653 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4654 u32 perms)
4655 {
4656 struct task_security_struct *tsec;
4657 struct ipc_security_struct *isec;
4658 struct avc_audit_data ad;
4659
4660 tsec = current->security;
4661 isec = ipc_perms->security;
4662
4663 AVC_AUDIT_DATA_INIT(&ad, IPC);
4664 ad.u.ipc_id = ipc_perms->key;
4665
4666 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4667 }
4668
4669 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4670 {
4671 return msg_msg_alloc_security(msg);
4672 }
4673
4674 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4675 {
4676 msg_msg_free_security(msg);
4677 }
4678
4679 /* message queue security operations */
4680 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4681 {
4682 struct task_security_struct *tsec;
4683 struct ipc_security_struct *isec;
4684 struct avc_audit_data ad;
4685 int rc;
4686
4687 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4688 if (rc)
4689 return rc;
4690
4691 tsec = current->security;
4692 isec = msq->q_perm.security;
4693
4694 AVC_AUDIT_DATA_INIT(&ad, IPC);
4695 ad.u.ipc_id = msq->q_perm.key;
4696
4697 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4698 MSGQ__CREATE, &ad);
4699 if (rc) {
4700 ipc_free_security(&msq->q_perm);
4701 return rc;
4702 }
4703 return 0;
4704 }
4705
4706 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4707 {
4708 ipc_free_security(&msq->q_perm);
4709 }
4710
4711 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4712 {
4713 struct task_security_struct *tsec;
4714 struct ipc_security_struct *isec;
4715 struct avc_audit_data ad;
4716
4717 tsec = current->security;
4718 isec = msq->q_perm.security;
4719
4720 AVC_AUDIT_DATA_INIT(&ad, IPC);
4721 ad.u.ipc_id = msq->q_perm.key;
4722
4723 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4724 MSGQ__ASSOCIATE, &ad);
4725 }
4726
4727 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4728 {
4729 int err;
4730 int perms;
4731
4732 switch (cmd) {
4733 case IPC_INFO:
4734 case MSG_INFO:
4735 /* No specific object, just general system-wide information. */
4736 return task_has_system(current, SYSTEM__IPC_INFO);
4737 case IPC_STAT:
4738 case MSG_STAT:
4739 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4740 break;
4741 case IPC_SET:
4742 perms = MSGQ__SETATTR;
4743 break;
4744 case IPC_RMID:
4745 perms = MSGQ__DESTROY;
4746 break;
4747 default:
4748 return 0;
4749 }
4750
4751 err = ipc_has_perm(&msq->q_perm, perms);
4752 return err;
4753 }
4754
4755 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4756 {
4757 struct task_security_struct *tsec;
4758 struct ipc_security_struct *isec;
4759 struct msg_security_struct *msec;
4760 struct avc_audit_data ad;
4761 int rc;
4762
4763 tsec = current->security;
4764 isec = msq->q_perm.security;
4765 msec = msg->security;
4766
4767 /*
4768 * First time through, need to assign label to the message
4769 */
4770 if (msec->sid == SECINITSID_UNLABELED) {
4771 /*
4772 * Compute new sid based on current process and
4773 * message queue this message will be stored in
4774 */
4775 rc = security_transition_sid(tsec->sid,
4776 isec->sid,
4777 SECCLASS_MSG,
4778 &msec->sid);
4779 if (rc)
4780 return rc;
4781 }
4782
4783 AVC_AUDIT_DATA_INIT(&ad, IPC);
4784 ad.u.ipc_id = msq->q_perm.key;
4785
4786 /* Can this process write to the queue? */
4787 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4788 MSGQ__WRITE, &ad);
4789 if (!rc)
4790 /* Can this process send the message */
4791 rc = avc_has_perm(tsec->sid, msec->sid,
4792 SECCLASS_MSG, MSG__SEND, &ad);
4793 if (!rc)
4794 /* Can the message be put in the queue? */
4795 rc = avc_has_perm(msec->sid, isec->sid,
4796 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4797
4798 return rc;
4799 }
4800
4801 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4802 struct task_struct *target,
4803 long type, int mode)
4804 {
4805 struct task_security_struct *tsec;
4806 struct ipc_security_struct *isec;
4807 struct msg_security_struct *msec;
4808 struct avc_audit_data ad;
4809 int rc;
4810
4811 tsec = target->security;
4812 isec = msq->q_perm.security;
4813 msec = msg->security;
4814
4815 AVC_AUDIT_DATA_INIT(&ad, IPC);
4816 ad.u.ipc_id = msq->q_perm.key;
4817
4818 rc = avc_has_perm(tsec->sid, isec->sid,
4819 SECCLASS_MSGQ, MSGQ__READ, &ad);
4820 if (!rc)
4821 rc = avc_has_perm(tsec->sid, msec->sid,
4822 SECCLASS_MSG, MSG__RECEIVE, &ad);
4823 return rc;
4824 }
4825
4826 /* Shared Memory security operations */
4827 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4828 {
4829 struct task_security_struct *tsec;
4830 struct ipc_security_struct *isec;
4831 struct avc_audit_data ad;
4832 int rc;
4833
4834 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4835 if (rc)
4836 return rc;
4837
4838 tsec = current->security;
4839 isec = shp->shm_perm.security;
4840
4841 AVC_AUDIT_DATA_INIT(&ad, IPC);
4842 ad.u.ipc_id = shp->shm_perm.key;
4843
4844 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4845 SHM__CREATE, &ad);
4846 if (rc) {
4847 ipc_free_security(&shp->shm_perm);
4848 return rc;
4849 }
4850 return 0;
4851 }
4852
4853 static void selinux_shm_free_security(struct shmid_kernel *shp)
4854 {
4855 ipc_free_security(&shp->shm_perm);
4856 }
4857
4858 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4859 {
4860 struct task_security_struct *tsec;
4861 struct ipc_security_struct *isec;
4862 struct avc_audit_data ad;
4863
4864 tsec = current->security;
4865 isec = shp->shm_perm.security;
4866
4867 AVC_AUDIT_DATA_INIT(&ad, IPC);
4868 ad.u.ipc_id = shp->shm_perm.key;
4869
4870 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4871 SHM__ASSOCIATE, &ad);
4872 }
4873
4874 /* Note, at this point, shp is locked down */
4875 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4876 {
4877 int perms;
4878 int err;
4879
4880 switch (cmd) {
4881 case IPC_INFO:
4882 case SHM_INFO:
4883 /* No specific object, just general system-wide information. */
4884 return task_has_system(current, SYSTEM__IPC_INFO);
4885 case IPC_STAT:
4886 case SHM_STAT:
4887 perms = SHM__GETATTR | SHM__ASSOCIATE;
4888 break;
4889 case IPC_SET:
4890 perms = SHM__SETATTR;
4891 break;
4892 case SHM_LOCK:
4893 case SHM_UNLOCK:
4894 perms = SHM__LOCK;
4895 break;
4896 case IPC_RMID:
4897 perms = SHM__DESTROY;
4898 break;
4899 default:
4900 return 0;
4901 }
4902
4903 err = ipc_has_perm(&shp->shm_perm, perms);
4904 return err;
4905 }
4906
4907 static int selinux_shm_shmat(struct shmid_kernel *shp,
4908 char __user *shmaddr, int shmflg)
4909 {
4910 u32 perms;
4911 int rc;
4912
4913 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4914 if (rc)
4915 return rc;
4916
4917 if (shmflg & SHM_RDONLY)
4918 perms = SHM__READ;
4919 else
4920 perms = SHM__READ | SHM__WRITE;
4921
4922 return ipc_has_perm(&shp->shm_perm, perms);
4923 }
4924
4925 /* Semaphore security operations */
4926 static int selinux_sem_alloc_security(struct sem_array *sma)
4927 {
4928 struct task_security_struct *tsec;
4929 struct ipc_security_struct *isec;
4930 struct avc_audit_data ad;
4931 int rc;
4932
4933 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4934 if (rc)
4935 return rc;
4936
4937 tsec = current->security;
4938 isec = sma->sem_perm.security;
4939
4940 AVC_AUDIT_DATA_INIT(&ad, IPC);
4941 ad.u.ipc_id = sma->sem_perm.key;
4942
4943 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4944 SEM__CREATE, &ad);
4945 if (rc) {
4946 ipc_free_security(&sma->sem_perm);
4947 return rc;
4948 }
4949 return 0;
4950 }
4951
4952 static void selinux_sem_free_security(struct sem_array *sma)
4953 {
4954 ipc_free_security(&sma->sem_perm);
4955 }
4956
4957 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4958 {
4959 struct task_security_struct *tsec;
4960 struct ipc_security_struct *isec;
4961 struct avc_audit_data ad;
4962
4963 tsec = current->security;
4964 isec = sma->sem_perm.security;
4965
4966 AVC_AUDIT_DATA_INIT(&ad, IPC);
4967 ad.u.ipc_id = sma->sem_perm.key;
4968
4969 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4970 SEM__ASSOCIATE, &ad);
4971 }
4972
4973 /* Note, at this point, sma is locked down */
4974 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4975 {
4976 int err;
4977 u32 perms;
4978
4979 switch (cmd) {
4980 case IPC_INFO:
4981 case SEM_INFO:
4982 /* No specific object, just general system-wide information. */
4983 return task_has_system(current, SYSTEM__IPC_INFO);
4984 case GETPID:
4985 case GETNCNT:
4986 case GETZCNT:
4987 perms = SEM__GETATTR;
4988 break;
4989 case GETVAL:
4990 case GETALL:
4991 perms = SEM__READ;
4992 break;
4993 case SETVAL:
4994 case SETALL:
4995 perms = SEM__WRITE;
4996 break;
4997 case IPC_RMID:
4998 perms = SEM__DESTROY;
4999 break;
5000 case IPC_SET:
5001 perms = SEM__SETATTR;
5002 break;
5003 case IPC_STAT:
5004 case SEM_STAT:
5005 perms = SEM__GETATTR | SEM__ASSOCIATE;
5006 break;
5007 default:
5008 return 0;
5009 }
5010
5011 err = ipc_has_perm(&sma->sem_perm, perms);
5012 return err;
5013 }
5014
5015 static int selinux_sem_semop(struct sem_array *sma,
5016 struct sembuf *sops, unsigned nsops, int alter)
5017 {
5018 u32 perms;
5019
5020 if (alter)
5021 perms = SEM__READ | SEM__WRITE;
5022 else
5023 perms = SEM__READ;
5024
5025 return ipc_has_perm(&sma->sem_perm, perms);
5026 }
5027
5028 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5029 {
5030 u32 av = 0;
5031
5032 av = 0;
5033 if (flag & S_IRUGO)
5034 av |= IPC__UNIX_READ;
5035 if (flag & S_IWUGO)
5036 av |= IPC__UNIX_WRITE;
5037
5038 if (av == 0)
5039 return 0;
5040
5041 return ipc_has_perm(ipcp, av);
5042 }
5043
5044 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5045 {
5046 struct ipc_security_struct *isec = ipcp->security;
5047 *secid = isec->sid;
5048 }
5049
5050 /* module stacking operations */
5051 static int selinux_register_security(const char *name, struct security_operations *ops)
5052 {
5053 if (secondary_ops != original_ops) {
5054 printk(KERN_ERR "%s: There is already a secondary security "
5055 "module registered.\n", __func__);
5056 return -EINVAL;
5057 }
5058
5059 secondary_ops = ops;
5060
5061 printk(KERN_INFO "%s: Registering secondary module %s\n",
5062 __func__,
5063 name);
5064
5065 return 0;
5066 }
5067
5068 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5069 {
5070 if (inode)
5071 inode_doinit_with_dentry(inode, dentry);
5072 }
5073
5074 static int selinux_getprocattr(struct task_struct *p,
5075 char *name, char **value)
5076 {
5077 struct task_security_struct *tsec;
5078 u32 sid;
5079 int error;
5080 unsigned len;
5081
5082 if (current != p) {
5083 error = task_has_perm(current, p, PROCESS__GETATTR);
5084 if (error)
5085 return error;
5086 }
5087
5088 tsec = p->security;
5089
5090 if (!strcmp(name, "current"))
5091 sid = tsec->sid;
5092 else if (!strcmp(name, "prev"))
5093 sid = tsec->osid;
5094 else if (!strcmp(name, "exec"))
5095 sid = tsec->exec_sid;
5096 else if (!strcmp(name, "fscreate"))
5097 sid = tsec->create_sid;
5098 else if (!strcmp(name, "keycreate"))
5099 sid = tsec->keycreate_sid;
5100 else if (!strcmp(name, "sockcreate"))
5101 sid = tsec->sockcreate_sid;
5102 else
5103 return -EINVAL;
5104
5105 if (!sid)
5106 return 0;
5107
5108 error = security_sid_to_context(sid, value, &len);
5109 if (error)
5110 return error;
5111 return len;
5112 }
5113
5114 static int selinux_setprocattr(struct task_struct *p,
5115 char *name, void *value, size_t size)
5116 {
5117 struct task_security_struct *tsec;
5118 struct task_struct *tracer;
5119 u32 sid = 0;
5120 int error;
5121 char *str = value;
5122
5123 if (current != p) {
5124 /* SELinux only allows a process to change its own
5125 security attributes. */
5126 return -EACCES;
5127 }
5128
5129 /*
5130 * Basic control over ability to set these attributes at all.
5131 * current == p, but we'll pass them separately in case the
5132 * above restriction is ever removed.
5133 */
5134 if (!strcmp(name, "exec"))
5135 error = task_has_perm(current, p, PROCESS__SETEXEC);
5136 else if (!strcmp(name, "fscreate"))
5137 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5138 else if (!strcmp(name, "keycreate"))
5139 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5140 else if (!strcmp(name, "sockcreate"))
5141 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5142 else if (!strcmp(name, "current"))
5143 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5144 else
5145 error = -EINVAL;
5146 if (error)
5147 return error;
5148
5149 /* Obtain a SID for the context, if one was specified. */
5150 if (size && str[1] && str[1] != '\n') {
5151 if (str[size-1] == '\n') {
5152 str[size-1] = 0;
5153 size--;
5154 }
5155 error = security_context_to_sid(value, size, &sid);
5156 if (error)
5157 return error;
5158 }
5159
5160 /* Permission checking based on the specified context is
5161 performed during the actual operation (execve,
5162 open/mkdir/...), when we know the full context of the
5163 operation. See selinux_bprm_set_security for the execve
5164 checks and may_create for the file creation checks. The
5165 operation will then fail if the context is not permitted. */
5166 tsec = p->security;
5167 if (!strcmp(name, "exec"))
5168 tsec->exec_sid = sid;
5169 else if (!strcmp(name, "fscreate"))
5170 tsec->create_sid = sid;
5171 else if (!strcmp(name, "keycreate")) {
5172 error = may_create_key(sid, p);
5173 if (error)
5174 return error;
5175 tsec->keycreate_sid = sid;
5176 } else if (!strcmp(name, "sockcreate"))
5177 tsec->sockcreate_sid = sid;
5178 else if (!strcmp(name, "current")) {
5179 struct av_decision avd;
5180
5181 if (sid == 0)
5182 return -EINVAL;
5183
5184 /* Only allow single threaded processes to change context */
5185 if (atomic_read(&p->mm->mm_users) != 1) {
5186 struct task_struct *g, *t;
5187 struct mm_struct *mm = p->mm;
5188 read_lock(&tasklist_lock);
5189 do_each_thread(g, t)
5190 if (t->mm == mm && t != p) {
5191 read_unlock(&tasklist_lock);
5192 return -EPERM;
5193 }
5194 while_each_thread(g, t);
5195 read_unlock(&tasklist_lock);
5196 }
5197
5198 /* Check permissions for the transition. */
5199 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5200 PROCESS__DYNTRANSITION, NULL);
5201 if (error)
5202 return error;
5203
5204 /* Check for ptracing, and update the task SID if ok.
5205 Otherwise, leave SID unchanged and fail. */
5206 task_lock(p);
5207 rcu_read_lock();
5208 tracer = task_tracer_task(p);
5209 if (tracer != NULL) {
5210 struct task_security_struct *ptsec = tracer->security;
5211 u32 ptsid = ptsec->sid;
5212 rcu_read_unlock();
5213 error = avc_has_perm_noaudit(ptsid, sid,
5214 SECCLASS_PROCESS,
5215 PROCESS__PTRACE, 0, &avd);
5216 if (!error)
5217 tsec->sid = sid;
5218 task_unlock(p);
5219 avc_audit(ptsid, sid, SECCLASS_PROCESS,
5220 PROCESS__PTRACE, &avd, error, NULL);
5221 if (error)
5222 return error;
5223 } else {
5224 rcu_read_unlock();
5225 tsec->sid = sid;
5226 task_unlock(p);
5227 }
5228 } else
5229 return -EINVAL;
5230
5231 return size;
5232 }
5233
5234 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5235 {
5236 return security_sid_to_context(secid, secdata, seclen);
5237 }
5238
5239 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5240 {
5241 return security_context_to_sid(secdata, seclen, secid);
5242 }
5243
5244 static void selinux_release_secctx(char *secdata, u32 seclen)
5245 {
5246 kfree(secdata);
5247 }
5248
5249 #ifdef CONFIG_KEYS
5250
5251 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5252 unsigned long flags)
5253 {
5254 struct task_security_struct *tsec = tsk->security;
5255 struct key_security_struct *ksec;
5256
5257 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5258 if (!ksec)
5259 return -ENOMEM;
5260
5261 if (tsec->keycreate_sid)
5262 ksec->sid = tsec->keycreate_sid;
5263 else
5264 ksec->sid = tsec->sid;
5265 k->security = ksec;
5266
5267 return 0;
5268 }
5269
5270 static void selinux_key_free(struct key *k)
5271 {
5272 struct key_security_struct *ksec = k->security;
5273
5274 k->security = NULL;
5275 kfree(ksec);
5276 }
5277
5278 static int selinux_key_permission(key_ref_t key_ref,
5279 struct task_struct *ctx,
5280 key_perm_t perm)
5281 {
5282 struct key *key;
5283 struct task_security_struct *tsec;
5284 struct key_security_struct *ksec;
5285
5286 key = key_ref_to_ptr(key_ref);
5287
5288 tsec = ctx->security;
5289 ksec = key->security;
5290
5291 /* if no specific permissions are requested, we skip the
5292 permission check. No serious, additional covert channels
5293 appear to be created. */
5294 if (perm == 0)
5295 return 0;
5296
5297 return avc_has_perm(tsec->sid, ksec->sid,
5298 SECCLASS_KEY, perm, NULL);
5299 }
5300
5301 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5302 {
5303 struct key_security_struct *ksec = key->security;
5304 char *context = NULL;
5305 unsigned len;
5306 int rc;
5307
5308 rc = security_sid_to_context(ksec->sid, &context, &len);
5309 if (!rc)
5310 rc = len;
5311 *_buffer = context;
5312 return rc;
5313 }
5314
5315 #endif
5316
5317 static struct security_operations selinux_ops = {
5318 .name = "selinux",
5319
5320 .ptrace = selinux_ptrace,
5321 .capget = selinux_capget,
5322 .capset_check = selinux_capset_check,
5323 .capset_set = selinux_capset_set,
5324 .sysctl = selinux_sysctl,
5325 .capable = selinux_capable,
5326 .quotactl = selinux_quotactl,
5327 .quota_on = selinux_quota_on,
5328 .syslog = selinux_syslog,
5329 .vm_enough_memory = selinux_vm_enough_memory,
5330
5331 .netlink_send = selinux_netlink_send,
5332 .netlink_recv = selinux_netlink_recv,
5333
5334 .bprm_alloc_security = selinux_bprm_alloc_security,
5335 .bprm_free_security = selinux_bprm_free_security,
5336 .bprm_apply_creds = selinux_bprm_apply_creds,
5337 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
5338 .bprm_set_security = selinux_bprm_set_security,
5339 .bprm_check_security = selinux_bprm_check_security,
5340 .bprm_secureexec = selinux_bprm_secureexec,
5341
5342 .sb_alloc_security = selinux_sb_alloc_security,
5343 .sb_free_security = selinux_sb_free_security,
5344 .sb_copy_data = selinux_sb_copy_data,
5345 .sb_kern_mount = selinux_sb_kern_mount,
5346 .sb_statfs = selinux_sb_statfs,
5347 .sb_mount = selinux_mount,
5348 .sb_umount = selinux_umount,
5349 .sb_get_mnt_opts = selinux_get_mnt_opts,
5350 .sb_set_mnt_opts = selinux_set_mnt_opts,
5351 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5352 .sb_parse_opts_str = selinux_parse_opts_str,
5353
5354
5355 .inode_alloc_security = selinux_inode_alloc_security,
5356 .inode_free_security = selinux_inode_free_security,
5357 .inode_init_security = selinux_inode_init_security,
5358 .inode_create = selinux_inode_create,
5359 .inode_link = selinux_inode_link,
5360 .inode_unlink = selinux_inode_unlink,
5361 .inode_symlink = selinux_inode_symlink,
5362 .inode_mkdir = selinux_inode_mkdir,
5363 .inode_rmdir = selinux_inode_rmdir,
5364 .inode_mknod = selinux_inode_mknod,
5365 .inode_rename = selinux_inode_rename,
5366 .inode_readlink = selinux_inode_readlink,
5367 .inode_follow_link = selinux_inode_follow_link,
5368 .inode_permission = selinux_inode_permission,
5369 .inode_setattr = selinux_inode_setattr,
5370 .inode_getattr = selinux_inode_getattr,
5371 .inode_setxattr = selinux_inode_setxattr,
5372 .inode_post_setxattr = selinux_inode_post_setxattr,
5373 .inode_getxattr = selinux_inode_getxattr,
5374 .inode_listxattr = selinux_inode_listxattr,
5375 .inode_removexattr = selinux_inode_removexattr,
5376 .inode_getsecurity = selinux_inode_getsecurity,
5377 .inode_setsecurity = selinux_inode_setsecurity,
5378 .inode_listsecurity = selinux_inode_listsecurity,
5379 .inode_need_killpriv = selinux_inode_need_killpriv,
5380 .inode_killpriv = selinux_inode_killpriv,
5381 .inode_getsecid = selinux_inode_getsecid,
5382
5383 .file_permission = selinux_file_permission,
5384 .file_alloc_security = selinux_file_alloc_security,
5385 .file_free_security = selinux_file_free_security,
5386 .file_ioctl = selinux_file_ioctl,
5387 .file_mmap = selinux_file_mmap,
5388 .file_mprotect = selinux_file_mprotect,
5389 .file_lock = selinux_file_lock,
5390 .file_fcntl = selinux_file_fcntl,
5391 .file_set_fowner = selinux_file_set_fowner,
5392 .file_send_sigiotask = selinux_file_send_sigiotask,
5393 .file_receive = selinux_file_receive,
5394
5395 .dentry_open = selinux_dentry_open,
5396
5397 .task_create = selinux_task_create,
5398 .task_alloc_security = selinux_task_alloc_security,
5399 .task_free_security = selinux_task_free_security,
5400 .task_setuid = selinux_task_setuid,
5401 .task_post_setuid = selinux_task_post_setuid,
5402 .task_setgid = selinux_task_setgid,
5403 .task_setpgid = selinux_task_setpgid,
5404 .task_getpgid = selinux_task_getpgid,
5405 .task_getsid = selinux_task_getsid,
5406 .task_getsecid = selinux_task_getsecid,
5407 .task_setgroups = selinux_task_setgroups,
5408 .task_setnice = selinux_task_setnice,
5409 .task_setioprio = selinux_task_setioprio,
5410 .task_getioprio = selinux_task_getioprio,
5411 .task_setrlimit = selinux_task_setrlimit,
5412 .task_setscheduler = selinux_task_setscheduler,
5413 .task_getscheduler = selinux_task_getscheduler,
5414 .task_movememory = selinux_task_movememory,
5415 .task_kill = selinux_task_kill,
5416 .task_wait = selinux_task_wait,
5417 .task_prctl = selinux_task_prctl,
5418 .task_reparent_to_init = selinux_task_reparent_to_init,
5419 .task_to_inode = selinux_task_to_inode,
5420
5421 .ipc_permission = selinux_ipc_permission,
5422 .ipc_getsecid = selinux_ipc_getsecid,
5423
5424 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5425 .msg_msg_free_security = selinux_msg_msg_free_security,
5426
5427 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5428 .msg_queue_free_security = selinux_msg_queue_free_security,
5429 .msg_queue_associate = selinux_msg_queue_associate,
5430 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5431 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5432 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5433
5434 .shm_alloc_security = selinux_shm_alloc_security,
5435 .shm_free_security = selinux_shm_free_security,
5436 .shm_associate = selinux_shm_associate,
5437 .shm_shmctl = selinux_shm_shmctl,
5438 .shm_shmat = selinux_shm_shmat,
5439
5440 .sem_alloc_security = selinux_sem_alloc_security,
5441 .sem_free_security = selinux_sem_free_security,
5442 .sem_associate = selinux_sem_associate,
5443 .sem_semctl = selinux_sem_semctl,
5444 .sem_semop = selinux_sem_semop,
5445
5446 .register_security = selinux_register_security,
5447
5448 .d_instantiate = selinux_d_instantiate,
5449
5450 .getprocattr = selinux_getprocattr,
5451 .setprocattr = selinux_setprocattr,
5452
5453 .secid_to_secctx = selinux_secid_to_secctx,
5454 .secctx_to_secid = selinux_secctx_to_secid,
5455 .release_secctx = selinux_release_secctx,
5456
5457 .unix_stream_connect = selinux_socket_unix_stream_connect,
5458 .unix_may_send = selinux_socket_unix_may_send,
5459
5460 .socket_create = selinux_socket_create,
5461 .socket_post_create = selinux_socket_post_create,
5462 .socket_bind = selinux_socket_bind,
5463 .socket_connect = selinux_socket_connect,
5464 .socket_listen = selinux_socket_listen,
5465 .socket_accept = selinux_socket_accept,
5466 .socket_sendmsg = selinux_socket_sendmsg,
5467 .socket_recvmsg = selinux_socket_recvmsg,
5468 .socket_getsockname = selinux_socket_getsockname,
5469 .socket_getpeername = selinux_socket_getpeername,
5470 .socket_getsockopt = selinux_socket_getsockopt,
5471 .socket_setsockopt = selinux_socket_setsockopt,
5472 .socket_shutdown = selinux_socket_shutdown,
5473 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5474 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5475 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5476 .sk_alloc_security = selinux_sk_alloc_security,
5477 .sk_free_security = selinux_sk_free_security,
5478 .sk_clone_security = selinux_sk_clone_security,
5479 .sk_getsecid = selinux_sk_getsecid,
5480 .sock_graft = selinux_sock_graft,
5481 .inet_conn_request = selinux_inet_conn_request,
5482 .inet_csk_clone = selinux_inet_csk_clone,
5483 .inet_conn_established = selinux_inet_conn_established,
5484 .req_classify_flow = selinux_req_classify_flow,
5485
5486 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5487 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5488 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5489 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5490 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5491 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5492 .xfrm_state_free_security = selinux_xfrm_state_free,
5493 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5494 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5495 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5496 .xfrm_decode_session = selinux_xfrm_decode_session,
5497 #endif
5498
5499 #ifdef CONFIG_KEYS
5500 .key_alloc = selinux_key_alloc,
5501 .key_free = selinux_key_free,
5502 .key_permission = selinux_key_permission,
5503 .key_getsecurity = selinux_key_getsecurity,
5504 #endif
5505
5506 #ifdef CONFIG_AUDIT
5507 .audit_rule_init = selinux_audit_rule_init,
5508 .audit_rule_known = selinux_audit_rule_known,
5509 .audit_rule_match = selinux_audit_rule_match,
5510 .audit_rule_free = selinux_audit_rule_free,
5511 #endif
5512 };
5513
5514 static __init int selinux_init(void)
5515 {
5516 struct task_security_struct *tsec;
5517
5518 if (!security_module_enable(&selinux_ops)) {
5519 selinux_enabled = 0;
5520 return 0;
5521 }
5522
5523 if (!selinux_enabled) {
5524 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5525 return 0;
5526 }
5527
5528 printk(KERN_INFO "SELinux: Initializing.\n");
5529
5530 /* Set the security state for the initial task. */
5531 if (task_alloc_security(current))
5532 panic("SELinux: Failed to initialize initial task.\n");
5533 tsec = current->security;
5534 tsec->osid = tsec->sid = SECINITSID_KERNEL;
5535
5536 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5537 sizeof(struct inode_security_struct),
5538 0, SLAB_PANIC, NULL);
5539 avc_init();
5540
5541 original_ops = secondary_ops = security_ops;
5542 if (!secondary_ops)
5543 panic("SELinux: No initial security operations\n");
5544 if (register_security(&selinux_ops))
5545 panic("SELinux: Unable to register with kernel.\n");
5546
5547 if (selinux_enforcing)
5548 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5549 else
5550 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5551
5552 return 0;
5553 }
5554
5555 void selinux_complete_init(void)
5556 {
5557 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5558
5559 /* Set up any superblocks initialized prior to the policy load. */
5560 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5561 spin_lock(&sb_lock);
5562 spin_lock(&sb_security_lock);
5563 next_sb:
5564 if (!list_empty(&superblock_security_head)) {
5565 struct superblock_security_struct *sbsec =
5566 list_entry(superblock_security_head.next,
5567 struct superblock_security_struct,
5568 list);
5569 struct super_block *sb = sbsec->sb;
5570 sb->s_count++;
5571 spin_unlock(&sb_security_lock);
5572 spin_unlock(&sb_lock);
5573 down_read(&sb->s_umount);
5574 if (sb->s_root)
5575 superblock_doinit(sb, NULL);
5576 drop_super(sb);
5577 spin_lock(&sb_lock);
5578 spin_lock(&sb_security_lock);
5579 list_del_init(&sbsec->list);
5580 goto next_sb;
5581 }
5582 spin_unlock(&sb_security_lock);
5583 spin_unlock(&sb_lock);
5584 }
5585
5586 /* SELinux requires early initialization in order to label
5587 all processes and objects when they are created. */
5588 security_initcall(selinux_init);
5589
5590 #if defined(CONFIG_NETFILTER)
5591
5592 static struct nf_hook_ops selinux_ipv4_ops[] = {
5593 {
5594 .hook = selinux_ipv4_postroute,
5595 .owner = THIS_MODULE,
5596 .pf = PF_INET,
5597 .hooknum = NF_INET_POST_ROUTING,
5598 .priority = NF_IP_PRI_SELINUX_LAST,
5599 },
5600 {
5601 .hook = selinux_ipv4_forward,
5602 .owner = THIS_MODULE,
5603 .pf = PF_INET,
5604 .hooknum = NF_INET_FORWARD,
5605 .priority = NF_IP_PRI_SELINUX_FIRST,
5606 }
5607 };
5608
5609 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5610
5611 static struct nf_hook_ops selinux_ipv6_ops[] = {
5612 {
5613 .hook = selinux_ipv6_postroute,
5614 .owner = THIS_MODULE,
5615 .pf = PF_INET6,
5616 .hooknum = NF_INET_POST_ROUTING,
5617 .priority = NF_IP6_PRI_SELINUX_LAST,
5618 },
5619 {
5620 .hook = selinux_ipv6_forward,
5621 .owner = THIS_MODULE,
5622 .pf = PF_INET6,
5623 .hooknum = NF_INET_FORWARD,
5624 .priority = NF_IP6_PRI_SELINUX_FIRST,
5625 }
5626 };
5627
5628 #endif /* IPV6 */
5629
5630 static int __init selinux_nf_ip_init(void)
5631 {
5632 int err = 0;
5633 u32 iter;
5634
5635 if (!selinux_enabled)
5636 goto out;
5637
5638 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5639
5640 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) {
5641 err = nf_register_hook(&selinux_ipv4_ops[iter]);
5642 if (err)
5643 panic("SELinux: nf_register_hook for IPv4: error %d\n",
5644 err);
5645 }
5646
5647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5648 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) {
5649 err = nf_register_hook(&selinux_ipv6_ops[iter]);
5650 if (err)
5651 panic("SELinux: nf_register_hook for IPv6: error %d\n",
5652 err);
5653 }
5654 #endif /* IPV6 */
5655
5656 out:
5657 return err;
5658 }
5659
5660 __initcall(selinux_nf_ip_init);
5661
5662 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5663 static void selinux_nf_ip_exit(void)
5664 {
5665 u32 iter;
5666
5667 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5668
5669 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++)
5670 nf_unregister_hook(&selinux_ipv4_ops[iter]);
5671 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5672 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++)
5673 nf_unregister_hook(&selinux_ipv6_ops[iter]);
5674 #endif /* IPV6 */
5675 }
5676 #endif
5677
5678 #else /* CONFIG_NETFILTER */
5679
5680 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5681 #define selinux_nf_ip_exit()
5682 #endif
5683
5684 #endif /* CONFIG_NETFILTER */
5685
5686 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5687 static int selinux_disabled;
5688
5689 int selinux_disable(void)
5690 {
5691 extern void exit_sel_fs(void);
5692
5693 if (ss_initialized) {
5694 /* Not permitted after initial policy load. */
5695 return -EINVAL;
5696 }
5697
5698 if (selinux_disabled) {
5699 /* Only do this once. */
5700 return -EINVAL;
5701 }
5702
5703 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5704
5705 selinux_disabled = 1;
5706 selinux_enabled = 0;
5707
5708 /* Reset security_ops to the secondary module, dummy or capability. */
5709 security_ops = secondary_ops;
5710
5711 /* Unregister netfilter hooks. */
5712 selinux_nf_ip_exit();
5713
5714 /* Unregister selinuxfs. */
5715 exit_sel_fs();
5716
5717 return 0;
5718 }
5719 #endif