locking, lockdep: Convert sprintf_symbol to %pS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 .name = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35 /* verify the security_operations structure exists */
36 if (!ops)
37 return -EINVAL;
38 security_fixup_ops(ops);
39 return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44 initcall_t *call;
45 call = __security_initcall_start;
46 while (call < __security_initcall_end) {
47 (*call) ();
48 call++;
49 }
50 }
51
52 /**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57 int __init security_init(void)
58 {
59 printk(KERN_INFO "Security Framework initialized\n");
60
61 security_fixup_ops(&default_security_ops);
62 security_ops = &default_security_ops;
63 do_security_initcalls();
64
65 return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70 security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time.
93 * Otherwise, return false.
94 */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise %0 is returned on success.
111 */
112 int __init register_security(struct security_operations *ops)
113 {
114 if (verify(ops)) {
115 printk(KERN_DEBUG "%s could not verify "
116 "security_operations structure.\n", __func__);
117 return -EINVAL;
118 }
119
120 if (security_ops != &default_security_ops)
121 return -EAGAIN;
122
123 security_ops = ops;
124
125 return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141 kernel_cap_t *effective,
142 kernel_cap_t *inheritable,
143 kernel_cap_t *permitted)
144 {
145 return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149 const kernel_cap_t *effective,
150 const kernel_cap_t *inheritable,
151 const kernel_cap_t *permitted)
152 {
153 return security_ops->capset(new, old,
154 effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159 return security_ops->capable(current, current_cred(), cap,
160 SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165 const struct cred *cred;
166 int ret;
167
168 cred = get_task_cred(tsk);
169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170 put_cred(cred);
171 return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176 const struct cred *cred;
177 int ret;
178
179 cred = get_task_cred(tsk);
180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181 put_cred(cred);
182 return ret;
183 }
184
185 int security_sysctl(struct ctl_table *table, int op)
186 {
187 return security_ops->sysctl(table, op);
188 }
189
190 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
191 {
192 return security_ops->quotactl(cmds, type, id, sb);
193 }
194
195 int security_quota_on(struct dentry *dentry)
196 {
197 return security_ops->quota_on(dentry);
198 }
199
200 int security_syslog(int type, bool from_file)
201 {
202 return security_ops->syslog(type, from_file);
203 }
204
205 int security_settime(struct timespec *ts, struct timezone *tz)
206 {
207 return security_ops->settime(ts, tz);
208 }
209
210 int security_vm_enough_memory(long pages)
211 {
212 WARN_ON(current->mm == NULL);
213 return security_ops->vm_enough_memory(current->mm, pages);
214 }
215
216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
217 {
218 WARN_ON(mm == NULL);
219 return security_ops->vm_enough_memory(mm, pages);
220 }
221
222 int security_vm_enough_memory_kern(long pages)
223 {
224 /* If current->mm is a kernel thread then we will pass NULL,
225 for this specific case that is fine */
226 return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_bprm_set_creds(struct linux_binprm *bprm)
230 {
231 return security_ops->bprm_set_creds(bprm);
232 }
233
234 int security_bprm_check(struct linux_binprm *bprm)
235 {
236 int ret;
237
238 ret = security_ops->bprm_check_security(bprm);
239 if (ret)
240 return ret;
241 return ima_bprm_check(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246 security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251 security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256 return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261 return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266 security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271 return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277 return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282 return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287 return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291 char *type, unsigned long flags, void *data)
292 {
293 return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_umount(struct vfsmount *mnt, int flags)
297 {
298 return security_ops->sb_umount(mnt, flags);
299 }
300
301 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
302 {
303 return security_ops->sb_pivotroot(old_path, new_path);
304 }
305
306 int security_sb_set_mnt_opts(struct super_block *sb,
307 struct security_mnt_opts *opts)
308 {
309 return security_ops->sb_set_mnt_opts(sb, opts);
310 }
311 EXPORT_SYMBOL(security_sb_set_mnt_opts);
312
313 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
314 struct super_block *newsb)
315 {
316 security_ops->sb_clone_mnt_opts(oldsb, newsb);
317 }
318 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
319
320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
321 {
322 return security_ops->sb_parse_opts_str(options, opts);
323 }
324 EXPORT_SYMBOL(security_sb_parse_opts_str);
325
326 int security_inode_alloc(struct inode *inode)
327 {
328 inode->i_security = NULL;
329 return security_ops->inode_alloc_security(inode);
330 }
331
332 void security_inode_free(struct inode *inode)
333 {
334 ima_inode_free(inode);
335 security_ops->inode_free_security(inode);
336 }
337
338 int security_inode_init_security(struct inode *inode, struct inode *dir,
339 char **name, void **value, size_t *len)
340 {
341 if (unlikely(IS_PRIVATE(inode)))
342 return -EOPNOTSUPP;
343 return security_ops->inode_init_security(inode, dir, name, value, len);
344 }
345 EXPORT_SYMBOL(security_inode_init_security);
346
347 #ifdef CONFIG_SECURITY_PATH
348 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
349 unsigned int dev)
350 {
351 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
352 return 0;
353 return security_ops->path_mknod(dir, dentry, mode, dev);
354 }
355 EXPORT_SYMBOL(security_path_mknod);
356
357 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
358 {
359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
360 return 0;
361 return security_ops->path_mkdir(dir, dentry, mode);
362 }
363
364 int security_path_rmdir(struct path *dir, struct dentry *dentry)
365 {
366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367 return 0;
368 return security_ops->path_rmdir(dir, dentry);
369 }
370
371 int security_path_unlink(struct path *dir, struct dentry *dentry)
372 {
373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
374 return 0;
375 return security_ops->path_unlink(dir, dentry);
376 }
377
378 int security_path_symlink(struct path *dir, struct dentry *dentry,
379 const char *old_name)
380 {
381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
382 return 0;
383 return security_ops->path_symlink(dir, dentry, old_name);
384 }
385
386 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
387 struct dentry *new_dentry)
388 {
389 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
390 return 0;
391 return security_ops->path_link(old_dentry, new_dir, new_dentry);
392 }
393
394 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
395 struct path *new_dir, struct dentry *new_dentry)
396 {
397 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
398 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
399 return 0;
400 return security_ops->path_rename(old_dir, old_dentry, new_dir,
401 new_dentry);
402 }
403
404 int security_path_truncate(struct path *path)
405 {
406 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
407 return 0;
408 return security_ops->path_truncate(path);
409 }
410
411 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
412 mode_t mode)
413 {
414 if (unlikely(IS_PRIVATE(dentry->d_inode)))
415 return 0;
416 return security_ops->path_chmod(dentry, mnt, mode);
417 }
418
419 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
420 {
421 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
422 return 0;
423 return security_ops->path_chown(path, uid, gid);
424 }
425
426 int security_path_chroot(struct path *path)
427 {
428 return security_ops->path_chroot(path);
429 }
430 #endif
431
432 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
433 {
434 if (unlikely(IS_PRIVATE(dir)))
435 return 0;
436 return security_ops->inode_create(dir, dentry, mode);
437 }
438 EXPORT_SYMBOL_GPL(security_inode_create);
439
440 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
441 struct dentry *new_dentry)
442 {
443 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
444 return 0;
445 return security_ops->inode_link(old_dentry, dir, new_dentry);
446 }
447
448 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
449 {
450 if (unlikely(IS_PRIVATE(dentry->d_inode)))
451 return 0;
452 return security_ops->inode_unlink(dir, dentry);
453 }
454
455 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
456 const char *old_name)
457 {
458 if (unlikely(IS_PRIVATE(dir)))
459 return 0;
460 return security_ops->inode_symlink(dir, dentry, old_name);
461 }
462
463 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
464 {
465 if (unlikely(IS_PRIVATE(dir)))
466 return 0;
467 return security_ops->inode_mkdir(dir, dentry, mode);
468 }
469 EXPORT_SYMBOL_GPL(security_inode_mkdir);
470
471 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
472 {
473 if (unlikely(IS_PRIVATE(dentry->d_inode)))
474 return 0;
475 return security_ops->inode_rmdir(dir, dentry);
476 }
477
478 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
479 {
480 if (unlikely(IS_PRIVATE(dir)))
481 return 0;
482 return security_ops->inode_mknod(dir, dentry, mode, dev);
483 }
484
485 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
486 struct inode *new_dir, struct dentry *new_dentry)
487 {
488 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
489 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
490 return 0;
491 return security_ops->inode_rename(old_dir, old_dentry,
492 new_dir, new_dentry);
493 }
494
495 int security_inode_readlink(struct dentry *dentry)
496 {
497 if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 return 0;
499 return security_ops->inode_readlink(dentry);
500 }
501
502 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
503 {
504 if (unlikely(IS_PRIVATE(dentry->d_inode)))
505 return 0;
506 return security_ops->inode_follow_link(dentry, nd);
507 }
508
509 int security_inode_permission(struct inode *inode, int mask)
510 {
511 if (unlikely(IS_PRIVATE(inode)))
512 return 0;
513 return security_ops->inode_permission(inode, mask);
514 }
515
516 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
517 {
518 if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 return 0;
520 return security_ops->inode_setattr(dentry, attr);
521 }
522 EXPORT_SYMBOL_GPL(security_inode_setattr);
523
524 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
525 {
526 if (unlikely(IS_PRIVATE(dentry->d_inode)))
527 return 0;
528 return security_ops->inode_getattr(mnt, dentry);
529 }
530
531 int security_inode_setxattr(struct dentry *dentry, const char *name,
532 const void *value, size_t size, int flags)
533 {
534 if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 return 0;
536 return security_ops->inode_setxattr(dentry, name, value, size, flags);
537 }
538
539 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
540 const void *value, size_t size, int flags)
541 {
542 if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 return;
544 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
545 }
546
547 int security_inode_getxattr(struct dentry *dentry, const char *name)
548 {
549 if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 return 0;
551 return security_ops->inode_getxattr(dentry, name);
552 }
553
554 int security_inode_listxattr(struct dentry *dentry)
555 {
556 if (unlikely(IS_PRIVATE(dentry->d_inode)))
557 return 0;
558 return security_ops->inode_listxattr(dentry);
559 }
560
561 int security_inode_removexattr(struct dentry *dentry, const char *name)
562 {
563 if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 return 0;
565 return security_ops->inode_removexattr(dentry, name);
566 }
567
568 int security_inode_need_killpriv(struct dentry *dentry)
569 {
570 return security_ops->inode_need_killpriv(dentry);
571 }
572
573 int security_inode_killpriv(struct dentry *dentry)
574 {
575 return security_ops->inode_killpriv(dentry);
576 }
577
578 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
579 {
580 if (unlikely(IS_PRIVATE(inode)))
581 return -EOPNOTSUPP;
582 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
583 }
584
585 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
586 {
587 if (unlikely(IS_PRIVATE(inode)))
588 return -EOPNOTSUPP;
589 return security_ops->inode_setsecurity(inode, name, value, size, flags);
590 }
591
592 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
593 {
594 if (unlikely(IS_PRIVATE(inode)))
595 return 0;
596 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
597 }
598
599 void security_inode_getsecid(const struct inode *inode, u32 *secid)
600 {
601 security_ops->inode_getsecid(inode, secid);
602 }
603
604 int security_file_permission(struct file *file, int mask)
605 {
606 int ret;
607
608 ret = security_ops->file_permission(file, mask);
609 if (ret)
610 return ret;
611
612 return fsnotify_perm(file, mask);
613 }
614
615 int security_file_alloc(struct file *file)
616 {
617 return security_ops->file_alloc_security(file);
618 }
619
620 void security_file_free(struct file *file)
621 {
622 security_ops->file_free_security(file);
623 }
624
625 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
626 {
627 return security_ops->file_ioctl(file, cmd, arg);
628 }
629
630 int security_file_mmap(struct file *file, unsigned long reqprot,
631 unsigned long prot, unsigned long flags,
632 unsigned long addr, unsigned long addr_only)
633 {
634 int ret;
635
636 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
637 if (ret)
638 return ret;
639 return ima_file_mmap(file, prot);
640 }
641
642 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
643 unsigned long prot)
644 {
645 return security_ops->file_mprotect(vma, reqprot, prot);
646 }
647
648 int security_file_lock(struct file *file, unsigned int cmd)
649 {
650 return security_ops->file_lock(file, cmd);
651 }
652
653 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
654 {
655 return security_ops->file_fcntl(file, cmd, arg);
656 }
657
658 int security_file_set_fowner(struct file *file)
659 {
660 return security_ops->file_set_fowner(file);
661 }
662
663 int security_file_send_sigiotask(struct task_struct *tsk,
664 struct fown_struct *fown, int sig)
665 {
666 return security_ops->file_send_sigiotask(tsk, fown, sig);
667 }
668
669 int security_file_receive(struct file *file)
670 {
671 return security_ops->file_receive(file);
672 }
673
674 int security_dentry_open(struct file *file, const struct cred *cred)
675 {
676 int ret;
677
678 ret = security_ops->dentry_open(file, cred);
679 if (ret)
680 return ret;
681
682 return fsnotify_perm(file, MAY_OPEN);
683 }
684
685 int security_task_create(unsigned long clone_flags)
686 {
687 return security_ops->task_create(clone_flags);
688 }
689
690 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
691 {
692 return security_ops->cred_alloc_blank(cred, gfp);
693 }
694
695 void security_cred_free(struct cred *cred)
696 {
697 security_ops->cred_free(cred);
698 }
699
700 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
701 {
702 return security_ops->cred_prepare(new, old, gfp);
703 }
704
705 void security_transfer_creds(struct cred *new, const struct cred *old)
706 {
707 security_ops->cred_transfer(new, old);
708 }
709
710 int security_kernel_act_as(struct cred *new, u32 secid)
711 {
712 return security_ops->kernel_act_as(new, secid);
713 }
714
715 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
716 {
717 return security_ops->kernel_create_files_as(new, inode);
718 }
719
720 int security_kernel_module_request(char *kmod_name)
721 {
722 return security_ops->kernel_module_request(kmod_name);
723 }
724
725 int security_task_fix_setuid(struct cred *new, const struct cred *old,
726 int flags)
727 {
728 return security_ops->task_fix_setuid(new, old, flags);
729 }
730
731 int security_task_setpgid(struct task_struct *p, pid_t pgid)
732 {
733 return security_ops->task_setpgid(p, pgid);
734 }
735
736 int security_task_getpgid(struct task_struct *p)
737 {
738 return security_ops->task_getpgid(p);
739 }
740
741 int security_task_getsid(struct task_struct *p)
742 {
743 return security_ops->task_getsid(p);
744 }
745
746 void security_task_getsecid(struct task_struct *p, u32 *secid)
747 {
748 security_ops->task_getsecid(p, secid);
749 }
750 EXPORT_SYMBOL(security_task_getsecid);
751
752 int security_task_setnice(struct task_struct *p, int nice)
753 {
754 return security_ops->task_setnice(p, nice);
755 }
756
757 int security_task_setioprio(struct task_struct *p, int ioprio)
758 {
759 return security_ops->task_setioprio(p, ioprio);
760 }
761
762 int security_task_getioprio(struct task_struct *p)
763 {
764 return security_ops->task_getioprio(p);
765 }
766
767 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
768 struct rlimit *new_rlim)
769 {
770 return security_ops->task_setrlimit(p, resource, new_rlim);
771 }
772
773 int security_task_setscheduler(struct task_struct *p)
774 {
775 return security_ops->task_setscheduler(p);
776 }
777
778 int security_task_getscheduler(struct task_struct *p)
779 {
780 return security_ops->task_getscheduler(p);
781 }
782
783 int security_task_movememory(struct task_struct *p)
784 {
785 return security_ops->task_movememory(p);
786 }
787
788 int security_task_kill(struct task_struct *p, struct siginfo *info,
789 int sig, u32 secid)
790 {
791 return security_ops->task_kill(p, info, sig, secid);
792 }
793
794 int security_task_wait(struct task_struct *p)
795 {
796 return security_ops->task_wait(p);
797 }
798
799 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
800 unsigned long arg4, unsigned long arg5)
801 {
802 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
803 }
804
805 void security_task_to_inode(struct task_struct *p, struct inode *inode)
806 {
807 security_ops->task_to_inode(p, inode);
808 }
809
810 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
811 {
812 return security_ops->ipc_permission(ipcp, flag);
813 }
814
815 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
816 {
817 security_ops->ipc_getsecid(ipcp, secid);
818 }
819
820 int security_msg_msg_alloc(struct msg_msg *msg)
821 {
822 return security_ops->msg_msg_alloc_security(msg);
823 }
824
825 void security_msg_msg_free(struct msg_msg *msg)
826 {
827 security_ops->msg_msg_free_security(msg);
828 }
829
830 int security_msg_queue_alloc(struct msg_queue *msq)
831 {
832 return security_ops->msg_queue_alloc_security(msq);
833 }
834
835 void security_msg_queue_free(struct msg_queue *msq)
836 {
837 security_ops->msg_queue_free_security(msq);
838 }
839
840 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
841 {
842 return security_ops->msg_queue_associate(msq, msqflg);
843 }
844
845 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
846 {
847 return security_ops->msg_queue_msgctl(msq, cmd);
848 }
849
850 int security_msg_queue_msgsnd(struct msg_queue *msq,
851 struct msg_msg *msg, int msqflg)
852 {
853 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
854 }
855
856 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
857 struct task_struct *target, long type, int mode)
858 {
859 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
860 }
861
862 int security_shm_alloc(struct shmid_kernel *shp)
863 {
864 return security_ops->shm_alloc_security(shp);
865 }
866
867 void security_shm_free(struct shmid_kernel *shp)
868 {
869 security_ops->shm_free_security(shp);
870 }
871
872 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
873 {
874 return security_ops->shm_associate(shp, shmflg);
875 }
876
877 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
878 {
879 return security_ops->shm_shmctl(shp, cmd);
880 }
881
882 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
883 {
884 return security_ops->shm_shmat(shp, shmaddr, shmflg);
885 }
886
887 int security_sem_alloc(struct sem_array *sma)
888 {
889 return security_ops->sem_alloc_security(sma);
890 }
891
892 void security_sem_free(struct sem_array *sma)
893 {
894 security_ops->sem_free_security(sma);
895 }
896
897 int security_sem_associate(struct sem_array *sma, int semflg)
898 {
899 return security_ops->sem_associate(sma, semflg);
900 }
901
902 int security_sem_semctl(struct sem_array *sma, int cmd)
903 {
904 return security_ops->sem_semctl(sma, cmd);
905 }
906
907 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
908 unsigned nsops, int alter)
909 {
910 return security_ops->sem_semop(sma, sops, nsops, alter);
911 }
912
913 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
914 {
915 if (unlikely(inode && IS_PRIVATE(inode)))
916 return;
917 security_ops->d_instantiate(dentry, inode);
918 }
919 EXPORT_SYMBOL(security_d_instantiate);
920
921 int security_getprocattr(struct task_struct *p, char *name, char **value)
922 {
923 return security_ops->getprocattr(p, name, value);
924 }
925
926 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
927 {
928 return security_ops->setprocattr(p, name, value, size);
929 }
930
931 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
932 {
933 return security_ops->netlink_send(sk, skb);
934 }
935
936 int security_netlink_recv(struct sk_buff *skb, int cap)
937 {
938 return security_ops->netlink_recv(skb, cap);
939 }
940 EXPORT_SYMBOL(security_netlink_recv);
941
942 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
943 {
944 return security_ops->secid_to_secctx(secid, secdata, seclen);
945 }
946 EXPORT_SYMBOL(security_secid_to_secctx);
947
948 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
949 {
950 return security_ops->secctx_to_secid(secdata, seclen, secid);
951 }
952 EXPORT_SYMBOL(security_secctx_to_secid);
953
954 void security_release_secctx(char *secdata, u32 seclen)
955 {
956 security_ops->release_secctx(secdata, seclen);
957 }
958 EXPORT_SYMBOL(security_release_secctx);
959
960 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
961 {
962 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
963 }
964 EXPORT_SYMBOL(security_inode_notifysecctx);
965
966 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
967 {
968 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
969 }
970 EXPORT_SYMBOL(security_inode_setsecctx);
971
972 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
973 {
974 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
975 }
976 EXPORT_SYMBOL(security_inode_getsecctx);
977
978 #ifdef CONFIG_SECURITY_NETWORK
979
980 int security_unix_stream_connect(struct socket *sock, struct socket *other,
981 struct sock *newsk)
982 {
983 return security_ops->unix_stream_connect(sock, other, newsk);
984 }
985 EXPORT_SYMBOL(security_unix_stream_connect);
986
987 int security_unix_may_send(struct socket *sock, struct socket *other)
988 {
989 return security_ops->unix_may_send(sock, other);
990 }
991 EXPORT_SYMBOL(security_unix_may_send);
992
993 int security_socket_create(int family, int type, int protocol, int kern)
994 {
995 return security_ops->socket_create(family, type, protocol, kern);
996 }
997
998 int security_socket_post_create(struct socket *sock, int family,
999 int type, int protocol, int kern)
1000 {
1001 return security_ops->socket_post_create(sock, family, type,
1002 protocol, kern);
1003 }
1004
1005 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1006 {
1007 return security_ops->socket_bind(sock, address, addrlen);
1008 }
1009
1010 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1011 {
1012 return security_ops->socket_connect(sock, address, addrlen);
1013 }
1014
1015 int security_socket_listen(struct socket *sock, int backlog)
1016 {
1017 return security_ops->socket_listen(sock, backlog);
1018 }
1019
1020 int security_socket_accept(struct socket *sock, struct socket *newsock)
1021 {
1022 return security_ops->socket_accept(sock, newsock);
1023 }
1024
1025 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1026 {
1027 return security_ops->socket_sendmsg(sock, msg, size);
1028 }
1029
1030 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1031 int size, int flags)
1032 {
1033 return security_ops->socket_recvmsg(sock, msg, size, flags);
1034 }
1035
1036 int security_socket_getsockname(struct socket *sock)
1037 {
1038 return security_ops->socket_getsockname(sock);
1039 }
1040
1041 int security_socket_getpeername(struct socket *sock)
1042 {
1043 return security_ops->socket_getpeername(sock);
1044 }
1045
1046 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1047 {
1048 return security_ops->socket_getsockopt(sock, level, optname);
1049 }
1050
1051 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1052 {
1053 return security_ops->socket_setsockopt(sock, level, optname);
1054 }
1055
1056 int security_socket_shutdown(struct socket *sock, int how)
1057 {
1058 return security_ops->socket_shutdown(sock, how);
1059 }
1060
1061 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1062 {
1063 return security_ops->socket_sock_rcv_skb(sk, skb);
1064 }
1065 EXPORT_SYMBOL(security_sock_rcv_skb);
1066
1067 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1068 int __user *optlen, unsigned len)
1069 {
1070 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1071 }
1072
1073 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1074 {
1075 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1076 }
1077 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1078
1079 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1080 {
1081 return security_ops->sk_alloc_security(sk, family, priority);
1082 }
1083
1084 void security_sk_free(struct sock *sk)
1085 {
1086 security_ops->sk_free_security(sk);
1087 }
1088
1089 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1090 {
1091 security_ops->sk_clone_security(sk, newsk);
1092 }
1093
1094 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1095 {
1096 security_ops->sk_getsecid(sk, &fl->secid);
1097 }
1098 EXPORT_SYMBOL(security_sk_classify_flow);
1099
1100 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1101 {
1102 security_ops->req_classify_flow(req, fl);
1103 }
1104 EXPORT_SYMBOL(security_req_classify_flow);
1105
1106 void security_sock_graft(struct sock *sk, struct socket *parent)
1107 {
1108 security_ops->sock_graft(sk, parent);
1109 }
1110 EXPORT_SYMBOL(security_sock_graft);
1111
1112 int security_inet_conn_request(struct sock *sk,
1113 struct sk_buff *skb, struct request_sock *req)
1114 {
1115 return security_ops->inet_conn_request(sk, skb, req);
1116 }
1117 EXPORT_SYMBOL(security_inet_conn_request);
1118
1119 void security_inet_csk_clone(struct sock *newsk,
1120 const struct request_sock *req)
1121 {
1122 security_ops->inet_csk_clone(newsk, req);
1123 }
1124
1125 void security_inet_conn_established(struct sock *sk,
1126 struct sk_buff *skb)
1127 {
1128 security_ops->inet_conn_established(sk, skb);
1129 }
1130
1131 int security_secmark_relabel_packet(u32 secid)
1132 {
1133 return security_ops->secmark_relabel_packet(secid);
1134 }
1135 EXPORT_SYMBOL(security_secmark_relabel_packet);
1136
1137 void security_secmark_refcount_inc(void)
1138 {
1139 security_ops->secmark_refcount_inc();
1140 }
1141 EXPORT_SYMBOL(security_secmark_refcount_inc);
1142
1143 void security_secmark_refcount_dec(void)
1144 {
1145 security_ops->secmark_refcount_dec();
1146 }
1147 EXPORT_SYMBOL(security_secmark_refcount_dec);
1148
1149 int security_tun_dev_create(void)
1150 {
1151 return security_ops->tun_dev_create();
1152 }
1153 EXPORT_SYMBOL(security_tun_dev_create);
1154
1155 void security_tun_dev_post_create(struct sock *sk)
1156 {
1157 return security_ops->tun_dev_post_create(sk);
1158 }
1159 EXPORT_SYMBOL(security_tun_dev_post_create);
1160
1161 int security_tun_dev_attach(struct sock *sk)
1162 {
1163 return security_ops->tun_dev_attach(sk);
1164 }
1165 EXPORT_SYMBOL(security_tun_dev_attach);
1166
1167 #endif /* CONFIG_SECURITY_NETWORK */
1168
1169 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1170
1171 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1172 {
1173 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1174 }
1175 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1176
1177 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1178 struct xfrm_sec_ctx **new_ctxp)
1179 {
1180 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1181 }
1182
1183 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1184 {
1185 security_ops->xfrm_policy_free_security(ctx);
1186 }
1187 EXPORT_SYMBOL(security_xfrm_policy_free);
1188
1189 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1190 {
1191 return security_ops->xfrm_policy_delete_security(ctx);
1192 }
1193
1194 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1195 {
1196 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1197 }
1198 EXPORT_SYMBOL(security_xfrm_state_alloc);
1199
1200 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1201 struct xfrm_sec_ctx *polsec, u32 secid)
1202 {
1203 if (!polsec)
1204 return 0;
1205 /*
1206 * We want the context to be taken from secid which is usually
1207 * from the sock.
1208 */
1209 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1210 }
1211
1212 int security_xfrm_state_delete(struct xfrm_state *x)
1213 {
1214 return security_ops->xfrm_state_delete_security(x);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_state_delete);
1217
1218 void security_xfrm_state_free(struct xfrm_state *x)
1219 {
1220 security_ops->xfrm_state_free_security(x);
1221 }
1222
1223 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1224 {
1225 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1226 }
1227
1228 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1229 struct xfrm_policy *xp, struct flowi *fl)
1230 {
1231 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1232 }
1233
1234 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1235 {
1236 return security_ops->xfrm_decode_session(skb, secid, 1);
1237 }
1238
1239 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1240 {
1241 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1242
1243 BUG_ON(rc);
1244 }
1245 EXPORT_SYMBOL(security_skb_classify_flow);
1246
1247 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1248
1249 #ifdef CONFIG_KEYS
1250
1251 int security_key_alloc(struct key *key, const struct cred *cred,
1252 unsigned long flags)
1253 {
1254 return security_ops->key_alloc(key, cred, flags);
1255 }
1256
1257 void security_key_free(struct key *key)
1258 {
1259 security_ops->key_free(key);
1260 }
1261
1262 int security_key_permission(key_ref_t key_ref,
1263 const struct cred *cred, key_perm_t perm)
1264 {
1265 return security_ops->key_permission(key_ref, cred, perm);
1266 }
1267
1268 int security_key_getsecurity(struct key *key, char **_buffer)
1269 {
1270 return security_ops->key_getsecurity(key, _buffer);
1271 }
1272
1273 #endif /* CONFIG_KEYS */
1274
1275 #ifdef CONFIG_AUDIT
1276
1277 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1278 {
1279 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1280 }
1281
1282 int security_audit_rule_known(struct audit_krule *krule)
1283 {
1284 return security_ops->audit_rule_known(krule);
1285 }
1286
1287 void security_audit_rule_free(void *lsmrule)
1288 {
1289 security_ops->audit_rule_free(lsmrule);
1290 }
1291
1292 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1293 struct audit_context *actx)
1294 {
1295 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1296 }
1297
1298 #endif /* CONFIG_AUDIT */