Merge tag 'v3.10.63' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / keys / keyring.c
1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <linux/uaccess.h>
21 #include "internal.h"
22
23 #define rcu_dereference_locked_keyring(keyring) \
24 (rcu_dereference_protected( \
25 (keyring)->payload.subscriptions, \
26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27
28 #define rcu_deref_link_locked(klist, index, keyring) \
29 (rcu_dereference_protected( \
30 (klist)->keys[index], \
31 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
32
33 #define MAX_KEYRING_LINKS \
34 min_t(size_t, USHRT_MAX - 1, \
35 ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *)))
36
37 #define KEY_LINK_FIXQUOTA 1UL
38
39 /*
40 * When plumbing the depths of the key tree, this sets a hard limit
41 * set on how deep we're willing to go.
42 */
43 #define KEYRING_SEARCH_MAX_DEPTH 6
44
45 /*
46 * We keep all named keyrings in a hash to speed looking them up.
47 */
48 #define KEYRING_NAME_HASH_SIZE (1 << 5)
49
50 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
51 static DEFINE_RWLOCK(keyring_name_lock);
52
53 static inline unsigned keyring_hash(const char *desc)
54 {
55 unsigned bucket = 0;
56
57 for (; *desc; desc++)
58 bucket += (unsigned char)*desc;
59
60 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
61 }
62
63 /*
64 * The keyring key type definition. Keyrings are simply keys of this type and
65 * can be treated as ordinary keys in addition to having their own special
66 * operations.
67 */
68 static int keyring_instantiate(struct key *keyring,
69 struct key_preparsed_payload *prep);
70 static int keyring_match(const struct key *keyring, const void *criterion);
71 static void keyring_revoke(struct key *keyring);
72 static void keyring_destroy(struct key *keyring);
73 static void keyring_describe(const struct key *keyring, struct seq_file *m);
74 static long keyring_read(const struct key *keyring,
75 char __user *buffer, size_t buflen);
76
77 struct key_type key_type_keyring = {
78 .name = "keyring",
79 .def_datalen = sizeof(struct keyring_list),
80 .instantiate = keyring_instantiate,
81 .match = keyring_match,
82 .revoke = keyring_revoke,
83 .destroy = keyring_destroy,
84 .describe = keyring_describe,
85 .read = keyring_read,
86 };
87 EXPORT_SYMBOL(key_type_keyring);
88
89 /*
90 * Semaphore to serialise link/link calls to prevent two link calls in parallel
91 * introducing a cycle.
92 */
93 static DECLARE_RWSEM(keyring_serialise_link_sem);
94
95 /*
96 * Publish the name of a keyring so that it can be found by name (if it has
97 * one).
98 */
99 static void keyring_publish_name(struct key *keyring)
100 {
101 int bucket;
102
103 if (keyring->description) {
104 bucket = keyring_hash(keyring->description);
105
106 write_lock(&keyring_name_lock);
107
108 if (!keyring_name_hash[bucket].next)
109 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
110
111 list_add_tail(&keyring->type_data.link,
112 &keyring_name_hash[bucket]);
113
114 write_unlock(&keyring_name_lock);
115 }
116 }
117
118 /*
119 * Initialise a keyring.
120 *
121 * Returns 0 on success, -EINVAL if given any data.
122 */
123 static int keyring_instantiate(struct key *keyring,
124 struct key_preparsed_payload *prep)
125 {
126 int ret;
127
128 ret = -EINVAL;
129 if (prep->datalen == 0) {
130 /* make the keyring available by name if it has one */
131 keyring_publish_name(keyring);
132 ret = 0;
133 }
134
135 return ret;
136 }
137
138 /*
139 * Match keyrings on their name
140 */
141 static int keyring_match(const struct key *keyring, const void *description)
142 {
143 return keyring->description &&
144 strcmp(keyring->description, description) == 0;
145 }
146
147 /*
148 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
149 * and dispose of its data.
150 *
151 * The garbage collector detects the final key_put(), removes the keyring from
152 * the serial number tree and then does RCU synchronisation before coming here,
153 * so we shouldn't need to worry about code poking around here with the RCU
154 * readlock held by this time.
155 */
156 static void keyring_destroy(struct key *keyring)
157 {
158 struct keyring_list *klist;
159 int loop;
160
161 if (keyring->description) {
162 write_lock(&keyring_name_lock);
163
164 if (keyring->type_data.link.next != NULL &&
165 !list_empty(&keyring->type_data.link))
166 list_del(&keyring->type_data.link);
167
168 write_unlock(&keyring_name_lock);
169 }
170
171 klist = rcu_access_pointer(keyring->payload.subscriptions);
172 if (klist) {
173 for (loop = klist->nkeys - 1; loop >= 0; loop--)
174 key_put(rcu_access_pointer(klist->keys[loop]));
175 kfree(klist);
176 }
177 }
178
179 /*
180 * Describe a keyring for /proc.
181 */
182 static void keyring_describe(const struct key *keyring, struct seq_file *m)
183 {
184 struct keyring_list *klist;
185
186 if (keyring->description)
187 seq_puts(m, keyring->description);
188 else
189 seq_puts(m, "[anon]");
190
191 if (key_is_instantiated(keyring)) {
192 rcu_read_lock();
193 klist = rcu_dereference(keyring->payload.subscriptions);
194 if (klist)
195 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
196 else
197 seq_puts(m, ": empty");
198 rcu_read_unlock();
199 }
200 }
201
202 /*
203 * Read a list of key IDs from the keyring's contents in binary form
204 *
205 * The keyring's semaphore is read-locked by the caller.
206 */
207 static long keyring_read(const struct key *keyring,
208 char __user *buffer, size_t buflen)
209 {
210 struct keyring_list *klist;
211 struct key *key;
212 size_t qty, tmp;
213 int loop, ret;
214
215 ret = 0;
216 klist = rcu_dereference_locked_keyring(keyring);
217 if (klist) {
218 /* calculate how much data we could return */
219 qty = klist->nkeys * sizeof(key_serial_t);
220
221 if (buffer && buflen > 0) {
222 if (buflen > qty)
223 buflen = qty;
224
225 /* copy the IDs of the subscribed keys into the
226 * buffer */
227 ret = -EFAULT;
228
229 for (loop = 0; loop < klist->nkeys; loop++) {
230 key = rcu_deref_link_locked(klist, loop,
231 keyring);
232
233 tmp = sizeof(key_serial_t);
234 if (tmp > buflen)
235 tmp = buflen;
236
237 if (copy_to_user(buffer,
238 &key->serial,
239 tmp) != 0)
240 goto error;
241
242 buflen -= tmp;
243 if (buflen == 0)
244 break;
245 buffer += tmp;
246 }
247 }
248
249 ret = qty;
250 }
251
252 error:
253 return ret;
254 }
255
256 /*
257 * Allocate a keyring and link into the destination keyring.
258 */
259 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
260 const struct cred *cred, key_perm_t perm,
261 unsigned long flags, struct key *dest)
262 {
263 struct key *keyring;
264 int ret;
265
266 keyring = key_alloc(&key_type_keyring, description,
267 uid, gid, cred, perm, flags);
268 if (!IS_ERR(keyring)) {
269 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
270 if (ret < 0) {
271 key_put(keyring);
272 keyring = ERR_PTR(ret);
273 }
274 }
275
276 return keyring;
277 }
278 EXPORT_SYMBOL(keyring_alloc);
279
280 /**
281 * keyring_search_aux - Search a keyring tree for a key matching some criteria
282 * @keyring_ref: A pointer to the keyring with possession indicator.
283 * @cred: The credentials to use for permissions checks.
284 * @type: The type of key to search for.
285 * @description: Parameter for @match.
286 * @match: Function to rule on whether or not a key is the one required.
287 * @no_state_check: Don't check if a matching key is bad
288 *
289 * Search the supplied keyring tree for a key that matches the criteria given.
290 * The root keyring and any linked keyrings must grant Search permission to the
291 * caller to be searchable and keys can only be found if they too grant Search
292 * to the caller. The possession flag on the root keyring pointer controls use
293 * of the possessor bits in permissions checking of the entire tree. In
294 * addition, the LSM gets to forbid keyring searches and key matches.
295 *
296 * The search is performed as a breadth-then-depth search up to the prescribed
297 * limit (KEYRING_SEARCH_MAX_DEPTH).
298 *
299 * Keys are matched to the type provided and are then filtered by the match
300 * function, which is given the description to use in any way it sees fit. The
301 * match function may use any attributes of a key that it wishes to to
302 * determine the match. Normally the match function from the key type would be
303 * used.
304 *
305 * RCU is used to prevent the keyring key lists from disappearing without the
306 * need to take lots of locks.
307 *
308 * Returns a pointer to the found key and increments the key usage count if
309 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
310 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
311 * specified keyring wasn't a keyring.
312 *
313 * In the case of a successful return, the possession attribute from
314 * @keyring_ref is propagated to the returned key reference.
315 */
316 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
317 const struct cred *cred,
318 struct key_type *type,
319 const void *description,
320 key_match_func_t match,
321 bool no_state_check)
322 {
323 struct {
324 /* Need a separate keylist pointer for RCU purposes */
325 struct key *keyring;
326 struct keyring_list *keylist;
327 int kix;
328 } stack[KEYRING_SEARCH_MAX_DEPTH];
329
330 struct keyring_list *keylist;
331 struct timespec now;
332 unsigned long possessed, kflags;
333 struct key *keyring, *key;
334 key_ref_t key_ref;
335 long err;
336 int sp, nkeys, kix;
337
338 keyring = key_ref_to_ptr(keyring_ref);
339 possessed = is_key_possessed(keyring_ref);
340 key_check(keyring);
341
342 /* top keyring must have search permission to begin the search */
343 err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
344 if (err < 0) {
345 key_ref = ERR_PTR(err);
346 goto error;
347 }
348
349 key_ref = ERR_PTR(-ENOTDIR);
350 if (keyring->type != &key_type_keyring)
351 goto error;
352
353 rcu_read_lock();
354
355 now = current_kernel_time();
356 err = -EAGAIN;
357 sp = 0;
358
359 /* firstly we should check to see if this top-level keyring is what we
360 * are looking for */
361 key_ref = ERR_PTR(-EAGAIN);
362 kflags = keyring->flags;
363 if (keyring->type == type && match(keyring, description)) {
364 key = keyring;
365 if (no_state_check)
366 goto found;
367
368 /* check it isn't negative and hasn't expired or been
369 * revoked */
370 if (kflags & (1 << KEY_FLAG_REVOKED))
371 goto error_2;
372 if (key->expiry && now.tv_sec >= key->expiry)
373 goto error_2;
374 key_ref = ERR_PTR(key->type_data.reject_error);
375 if (kflags & (1 << KEY_FLAG_NEGATIVE))
376 goto error_2;
377 goto found;
378 }
379
380 /* otherwise, the top keyring must not be revoked, expired, or
381 * negatively instantiated if we are to search it */
382 key_ref = ERR_PTR(-EAGAIN);
383 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
384 (1 << KEY_FLAG_REVOKED) |
385 (1 << KEY_FLAG_NEGATIVE)) ||
386 (keyring->expiry && now.tv_sec >= keyring->expiry))
387 goto error_2;
388
389 /* start processing a new keyring */
390 descend:
391 kflags = keyring->flags;
392 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
393 (1 << KEY_FLAG_REVOKED)))
394 goto not_this_keyring;
395
396 keylist = rcu_dereference(keyring->payload.subscriptions);
397 if (!keylist)
398 goto not_this_keyring;
399
400 /* iterate through the keys in this keyring first */
401 nkeys = keylist->nkeys;
402 smp_rmb();
403 for (kix = 0; kix < nkeys; kix++) {
404 key = rcu_dereference(keylist->keys[kix]);
405 kflags = key->flags;
406
407 /* ignore keys not of this type */
408 if (key->type != type)
409 continue;
410
411 /* skip invalidated, revoked and expired keys */
412 if (!no_state_check) {
413 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
414 (1 << KEY_FLAG_REVOKED)))
415 continue;
416
417 if (key->expiry && now.tv_sec >= key->expiry)
418 continue;
419 }
420
421 /* keys that don't match */
422 if (!match(key, description))
423 continue;
424
425 /* key must have search permissions */
426 if (key_task_permission(make_key_ref(key, possessed),
427 cred, KEY_SEARCH) < 0)
428 continue;
429
430 if (no_state_check)
431 goto found;
432
433 /* we set a different error code if we pass a negative key */
434 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
435 err = key->type_data.reject_error;
436 continue;
437 }
438
439 goto found;
440 }
441
442 /* search through the keyrings nested in this one */
443 kix = 0;
444 ascend:
445 nkeys = keylist->nkeys;
446 smp_rmb();
447 for (; kix < nkeys; kix++) {
448 key = rcu_dereference(keylist->keys[kix]);
449 if (key->type != &key_type_keyring)
450 continue;
451
452 /* recursively search nested keyrings
453 * - only search keyrings for which we have search permission
454 */
455 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
456 continue;
457
458 if (key_task_permission(make_key_ref(key, possessed),
459 cred, KEY_SEARCH) < 0)
460 continue;
461
462 /* stack the current position */
463 stack[sp].keyring = keyring;
464 stack[sp].keylist = keylist;
465 stack[sp].kix = kix;
466 sp++;
467
468 /* begin again with the new keyring */
469 keyring = key;
470 goto descend;
471 }
472
473 /* the keyring we're looking at was disqualified or didn't contain a
474 * matching key */
475 not_this_keyring:
476 if (sp > 0) {
477 /* resume the processing of a keyring higher up in the tree */
478 sp--;
479 keyring = stack[sp].keyring;
480 keylist = stack[sp].keylist;
481 kix = stack[sp].kix + 1;
482 goto ascend;
483 }
484
485 key_ref = ERR_PTR(err);
486 goto error_2;
487
488 /* we found a viable match */
489 found:
490 atomic_inc(&key->usage);
491 key->last_used_at = now.tv_sec;
492 keyring->last_used_at = now.tv_sec;
493 while (sp > 0)
494 stack[--sp].keyring->last_used_at = now.tv_sec;
495 key_check(key);
496 key_ref = make_key_ref(key, possessed);
497 error_2:
498 rcu_read_unlock();
499 error:
500 return key_ref;
501 }
502
503 /**
504 * keyring_search - Search the supplied keyring tree for a matching key
505 * @keyring: The root of the keyring tree to be searched.
506 * @type: The type of keyring we want to find.
507 * @description: The name of the keyring we want to find.
508 *
509 * As keyring_search_aux() above, but using the current task's credentials and
510 * type's default matching function.
511 */
512 key_ref_t keyring_search(key_ref_t keyring,
513 struct key_type *type,
514 const char *description)
515 {
516 if (!type->match)
517 return ERR_PTR(-ENOKEY);
518
519 return keyring_search_aux(keyring, current->cred,
520 type, description, type->match, false);
521 }
522 EXPORT_SYMBOL(keyring_search);
523
524 /*
525 * Search the given keyring only (no recursion).
526 *
527 * The caller must guarantee that the keyring is a keyring and that the
528 * permission is granted to search the keyring as no check is made here.
529 *
530 * RCU is used to make it unnecessary to lock the keyring key list here.
531 *
532 * Returns a pointer to the found key with usage count incremented if
533 * successful and returns -ENOKEY if not found. Revoked keys and keys not
534 * providing the requested permission are skipped over.
535 *
536 * If successful, the possession indicator is propagated from the keyring ref
537 * to the returned key reference.
538 */
539 key_ref_t __keyring_search_one(key_ref_t keyring_ref,
540 const struct key_type *ktype,
541 const char *description,
542 key_perm_t perm)
543 {
544 struct keyring_list *klist;
545 unsigned long possessed;
546 struct key *keyring, *key;
547 int nkeys, loop;
548
549 keyring = key_ref_to_ptr(keyring_ref);
550 possessed = is_key_possessed(keyring_ref);
551
552 rcu_read_lock();
553
554 klist = rcu_dereference(keyring->payload.subscriptions);
555 if (klist) {
556 nkeys = klist->nkeys;
557 smp_rmb();
558 for (loop = 0; loop < nkeys ; loop++) {
559 key = rcu_dereference(klist->keys[loop]);
560 if (key->type == ktype &&
561 (!key->type->match ||
562 key->type->match(key, description)) &&
563 key_permission(make_key_ref(key, possessed),
564 perm) == 0 &&
565 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) |
566 (1 << KEY_FLAG_REVOKED)))
567 )
568 goto found;
569 }
570 }
571
572 rcu_read_unlock();
573 return ERR_PTR(-ENOKEY);
574
575 found:
576 atomic_inc(&key->usage);
577 keyring->last_used_at = key->last_used_at =
578 current_kernel_time().tv_sec;
579 rcu_read_unlock();
580 return make_key_ref(key, possessed);
581 }
582
583 /*
584 * Find a keyring with the specified name.
585 *
586 * All named keyrings in the current user namespace are searched, provided they
587 * grant Search permission directly to the caller (unless this check is
588 * skipped). Keyrings whose usage points have reached zero or who have been
589 * revoked are skipped.
590 *
591 * Returns a pointer to the keyring with the keyring's refcount having being
592 * incremented on success. -ENOKEY is returned if a key could not be found.
593 */
594 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
595 {
596 struct key *keyring;
597 int bucket;
598
599 if (!name)
600 return ERR_PTR(-EINVAL);
601
602 bucket = keyring_hash(name);
603
604 read_lock(&keyring_name_lock);
605
606 if (keyring_name_hash[bucket].next) {
607 /* search this hash bucket for a keyring with a matching name
608 * that's readable and that hasn't been revoked */
609 list_for_each_entry(keyring,
610 &keyring_name_hash[bucket],
611 type_data.link
612 ) {
613 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
614 continue;
615
616 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
617 continue;
618
619 if (strcmp(keyring->description, name) != 0)
620 continue;
621
622 if (!skip_perm_check &&
623 key_permission(make_key_ref(keyring, 0),
624 KEY_SEARCH) < 0)
625 continue;
626
627 /* we've got a match but we might end up racing with
628 * key_cleanup() if the keyring is currently 'dead'
629 * (ie. it has a zero usage count) */
630 if (!atomic_inc_not_zero(&keyring->usage))
631 continue;
632 keyring->last_used_at = current_kernel_time().tv_sec;
633 goto out;
634 }
635 }
636
637 keyring = ERR_PTR(-ENOKEY);
638 out:
639 read_unlock(&keyring_name_lock);
640 return keyring;
641 }
642
643 /*
644 * See if a cycle will will be created by inserting acyclic tree B in acyclic
645 * tree A at the topmost level (ie: as a direct child of A).
646 *
647 * Since we are adding B to A at the top level, checking for cycles should just
648 * be a matter of seeing if node A is somewhere in tree B.
649 */
650 static int keyring_detect_cycle(struct key *A, struct key *B)
651 {
652 struct {
653 struct keyring_list *keylist;
654 int kix;
655 } stack[KEYRING_SEARCH_MAX_DEPTH];
656
657 struct keyring_list *keylist;
658 struct key *subtree, *key;
659 int sp, nkeys, kix, ret;
660
661 rcu_read_lock();
662
663 ret = -EDEADLK;
664 if (A == B)
665 goto cycle_detected;
666
667 subtree = B;
668 sp = 0;
669
670 /* start processing a new keyring */
671 descend:
672 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
673 goto not_this_keyring;
674
675 keylist = rcu_dereference(subtree->payload.subscriptions);
676 if (!keylist)
677 goto not_this_keyring;
678 kix = 0;
679
680 ascend:
681 /* iterate through the remaining keys in this keyring */
682 nkeys = keylist->nkeys;
683 smp_rmb();
684 for (; kix < nkeys; kix++) {
685 key = rcu_dereference(keylist->keys[kix]);
686
687 if (key == A)
688 goto cycle_detected;
689
690 /* recursively check nested keyrings */
691 if (key->type == &key_type_keyring) {
692 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
693 goto too_deep;
694
695 /* stack the current position */
696 stack[sp].keylist = keylist;
697 stack[sp].kix = kix;
698 sp++;
699
700 /* begin again with the new keyring */
701 subtree = key;
702 goto descend;
703 }
704 }
705
706 /* the keyring we're looking at was disqualified or didn't contain a
707 * matching key */
708 not_this_keyring:
709 if (sp > 0) {
710 /* resume the checking of a keyring higher up in the tree */
711 sp--;
712 keylist = stack[sp].keylist;
713 kix = stack[sp].kix + 1;
714 goto ascend;
715 }
716
717 ret = 0; /* no cycles detected */
718
719 error:
720 rcu_read_unlock();
721 return ret;
722
723 too_deep:
724 ret = -ELOOP;
725 goto error;
726
727 cycle_detected:
728 ret = -EDEADLK;
729 goto error;
730 }
731
732 /*
733 * Dispose of a keyring list after the RCU grace period, freeing the unlinked
734 * key
735 */
736 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
737 {
738 struct keyring_list *klist =
739 container_of(rcu, struct keyring_list, rcu);
740
741 if (klist->delkey != USHRT_MAX)
742 key_put(rcu_access_pointer(klist->keys[klist->delkey]));
743 kfree(klist);
744 }
745
746 /*
747 * Preallocate memory so that a key can be linked into to a keyring.
748 */
749 int __key_link_begin(struct key *keyring, const struct key_type *type,
750 const char *description, unsigned long *_prealloc)
751 __acquires(&keyring->sem)
752 __acquires(&keyring_serialise_link_sem)
753 {
754 struct keyring_list *klist, *nklist;
755 unsigned long prealloc;
756 unsigned max;
757 time_t lowest_lru;
758 size_t size;
759 int loop, lru, ret;
760
761 kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
762
763 if (keyring->type != &key_type_keyring)
764 return -ENOTDIR;
765
766 down_write(&keyring->sem);
767
768 ret = -EKEYREVOKED;
769 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
770 goto error_krsem;
771
772 /* serialise link/link calls to prevent parallel calls causing a cycle
773 * when linking two keyring in opposite orders */
774 if (type == &key_type_keyring)
775 down_write(&keyring_serialise_link_sem);
776
777 klist = rcu_dereference_locked_keyring(keyring);
778
779 /* see if there's a matching key we can displace */
780 lru = -1;
781 if (klist && klist->nkeys > 0) {
782 lowest_lru = TIME_T_MAX;
783 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
784 struct key *key = rcu_deref_link_locked(klist, loop,
785 keyring);
786 if (key->type == type &&
787 strcmp(key->description, description) == 0) {
788 /* Found a match - we'll replace the link with
789 * one to the new key. We record the slot
790 * position.
791 */
792 klist->delkey = loop;
793 prealloc = 0;
794 goto done;
795 }
796 if (key->last_used_at < lowest_lru) {
797 lowest_lru = key->last_used_at;
798 lru = loop;
799 }
800 }
801 }
802
803 /* If the keyring is full then do an LRU discard */
804 if (klist &&
805 klist->nkeys == klist->maxkeys &&
806 klist->maxkeys >= MAX_KEYRING_LINKS) {
807 kdebug("LRU discard %d\n", lru);
808 klist->delkey = lru;
809 prealloc = 0;
810 goto done;
811 }
812
813 /* check that we aren't going to overrun the user's quota */
814 ret = key_payload_reserve(keyring,
815 keyring->datalen + KEYQUOTA_LINK_BYTES);
816 if (ret < 0)
817 goto error_sem;
818
819 if (klist && klist->nkeys < klist->maxkeys) {
820 /* there's sufficient slack space to append directly */
821 klist->delkey = klist->nkeys;
822 prealloc = KEY_LINK_FIXQUOTA;
823 } else {
824 /* grow the key list */
825 max = 4;
826 if (klist) {
827 max += klist->maxkeys;
828 if (max > MAX_KEYRING_LINKS)
829 max = MAX_KEYRING_LINKS;
830 BUG_ON(max <= klist->maxkeys);
831 }
832
833 size = sizeof(*klist) + sizeof(struct key *) * max;
834
835 ret = -ENOMEM;
836 nklist = kmalloc(size, GFP_KERNEL);
837 if (!nklist)
838 goto error_quota;
839
840 nklist->maxkeys = max;
841 if (klist) {
842 memcpy(nklist->keys, klist->keys,
843 sizeof(struct key *) * klist->nkeys);
844 nklist->delkey = klist->nkeys;
845 nklist->nkeys = klist->nkeys + 1;
846 klist->delkey = USHRT_MAX;
847 } else {
848 nklist->nkeys = 1;
849 nklist->delkey = 0;
850 }
851
852 /* add the key into the new space */
853 RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL);
854 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
855 }
856
857 done:
858 *_prealloc = prealloc;
859 kleave(" = 0");
860 return 0;
861
862 error_quota:
863 /* undo the quota changes */
864 key_payload_reserve(keyring,
865 keyring->datalen - KEYQUOTA_LINK_BYTES);
866 error_sem:
867 if (type == &key_type_keyring)
868 up_write(&keyring_serialise_link_sem);
869 error_krsem:
870 up_write(&keyring->sem);
871 kleave(" = %d", ret);
872 return ret;
873 }
874
875 /*
876 * Check already instantiated keys aren't going to be a problem.
877 *
878 * The caller must have called __key_link_begin(). Don't need to call this for
879 * keys that were created since __key_link_begin() was called.
880 */
881 int __key_link_check_live_key(struct key *keyring, struct key *key)
882 {
883 if (key->type == &key_type_keyring)
884 /* check that we aren't going to create a cycle by linking one
885 * keyring to another */
886 return keyring_detect_cycle(keyring, key);
887 return 0;
888 }
889
890 /*
891 * Link a key into to a keyring.
892 *
893 * Must be called with __key_link_begin() having being called. Discards any
894 * already extant link to matching key if there is one, so that each keyring
895 * holds at most one link to any given key of a particular type+description
896 * combination.
897 */
898 void __key_link(struct key *keyring, struct key *key,
899 unsigned long *_prealloc)
900 {
901 struct keyring_list *klist, *nklist;
902 struct key *discard;
903
904 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
905 *_prealloc = 0;
906
907 kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
908
909 klist = rcu_dereference_locked_keyring(keyring);
910
911 atomic_inc(&key->usage);
912 keyring->last_used_at = key->last_used_at =
913 current_kernel_time().tv_sec;
914
915 /* there's a matching key we can displace or an empty slot in a newly
916 * allocated list we can fill */
917 if (nklist) {
918 kdebug("reissue %hu/%hu/%hu",
919 nklist->delkey, nklist->nkeys, nklist->maxkeys);
920
921 RCU_INIT_POINTER(nklist->keys[nklist->delkey], key);
922
923 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
924
925 /* dispose of the old keyring list and, if there was one, the
926 * displaced key */
927 if (klist) {
928 kdebug("dispose %hu/%hu/%hu",
929 klist->delkey, klist->nkeys, klist->maxkeys);
930 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
931 }
932 } else if (klist->delkey < klist->nkeys) {
933 kdebug("replace %hu/%hu/%hu",
934 klist->delkey, klist->nkeys, klist->maxkeys);
935
936 discard = rcu_dereference_protected(
937 klist->keys[klist->delkey],
938 rwsem_is_locked(&keyring->sem));
939 rcu_assign_pointer(klist->keys[klist->delkey], key);
940 /* The garbage collector will take care of RCU
941 * synchronisation */
942 key_put(discard);
943 } else {
944 /* there's sufficient slack space to append directly */
945 kdebug("append %hu/%hu/%hu",
946 klist->delkey, klist->nkeys, klist->maxkeys);
947
948 RCU_INIT_POINTER(klist->keys[klist->delkey], key);
949 smp_wmb();
950 klist->nkeys++;
951 }
952 }
953
954 /*
955 * Finish linking a key into to a keyring.
956 *
957 * Must be called with __key_link_begin() having being called.
958 */
959 void __key_link_end(struct key *keyring, struct key_type *type,
960 unsigned long prealloc)
961 __releases(&keyring->sem)
962 __releases(&keyring_serialise_link_sem)
963 {
964 BUG_ON(type == NULL);
965 BUG_ON(type->name == NULL);
966 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
967
968 if (type == &key_type_keyring)
969 up_write(&keyring_serialise_link_sem);
970
971 if (prealloc) {
972 if (prealloc & KEY_LINK_FIXQUOTA)
973 key_payload_reserve(keyring,
974 keyring->datalen -
975 KEYQUOTA_LINK_BYTES);
976 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
977 }
978 up_write(&keyring->sem);
979 }
980
981 /**
982 * key_link - Link a key to a keyring
983 * @keyring: The keyring to make the link in.
984 * @key: The key to link to.
985 *
986 * Make a link in a keyring to a key, such that the keyring holds a reference
987 * on that key and the key can potentially be found by searching that keyring.
988 *
989 * This function will write-lock the keyring's semaphore and will consume some
990 * of the user's key data quota to hold the link.
991 *
992 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
993 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
994 * full, -EDQUOT if there is insufficient key data quota remaining to add
995 * another link or -ENOMEM if there's insufficient memory.
996 *
997 * It is assumed that the caller has checked that it is permitted for a link to
998 * be made (the keyring should have Write permission and the key Link
999 * permission).
1000 */
1001 int key_link(struct key *keyring, struct key *key)
1002 {
1003 unsigned long prealloc;
1004 int ret;
1005
1006 key_check(keyring);
1007 key_check(key);
1008
1009 ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
1010 if (ret == 0) {
1011 ret = __key_link_check_live_key(keyring, key);
1012 if (ret == 0)
1013 __key_link(keyring, key, &prealloc);
1014 __key_link_end(keyring, key->type, prealloc);
1015 }
1016
1017 return ret;
1018 }
1019 EXPORT_SYMBOL(key_link);
1020
1021 /**
1022 * key_unlink - Unlink the first link to a key from a keyring.
1023 * @keyring: The keyring to remove the link from.
1024 * @key: The key the link is to.
1025 *
1026 * Remove a link from a keyring to a key.
1027 *
1028 * This function will write-lock the keyring's semaphore.
1029 *
1030 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1031 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1032 * memory.
1033 *
1034 * It is assumed that the caller has checked that it is permitted for a link to
1035 * be removed (the keyring should have Write permission; no permissions are
1036 * required on the key).
1037 */
1038 int key_unlink(struct key *keyring, struct key *key)
1039 {
1040 struct keyring_list *klist, *nklist;
1041 int loop, ret;
1042
1043 key_check(keyring);
1044 key_check(key);
1045
1046 ret = -ENOTDIR;
1047 if (keyring->type != &key_type_keyring)
1048 goto error;
1049
1050 down_write(&keyring->sem);
1051
1052 klist = rcu_dereference_locked_keyring(keyring);
1053 if (klist) {
1054 /* search the keyring for the key */
1055 for (loop = 0; loop < klist->nkeys; loop++)
1056 if (rcu_access_pointer(klist->keys[loop]) == key)
1057 goto key_is_present;
1058 }
1059
1060 up_write(&keyring->sem);
1061 ret = -ENOENT;
1062 goto error;
1063
1064 key_is_present:
1065 /* we need to copy the key list for RCU purposes */
1066 nklist = kmalloc(sizeof(*klist) +
1067 sizeof(struct key *) * klist->maxkeys,
1068 GFP_KERNEL);
1069 if (!nklist)
1070 goto nomem;
1071 nklist->maxkeys = klist->maxkeys;
1072 nklist->nkeys = klist->nkeys - 1;
1073
1074 if (loop > 0)
1075 memcpy(&nklist->keys[0],
1076 &klist->keys[0],
1077 loop * sizeof(struct key *));
1078
1079 if (loop < nklist->nkeys)
1080 memcpy(&nklist->keys[loop],
1081 &klist->keys[loop + 1],
1082 (nklist->nkeys - loop) * sizeof(struct key *));
1083
1084 /* adjust the user's quota */
1085 key_payload_reserve(keyring,
1086 keyring->datalen - KEYQUOTA_LINK_BYTES);
1087
1088 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1089
1090 up_write(&keyring->sem);
1091
1092 /* schedule for later cleanup */
1093 klist->delkey = loop;
1094 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1095
1096 ret = 0;
1097
1098 error:
1099 return ret;
1100 nomem:
1101 ret = -ENOMEM;
1102 up_write(&keyring->sem);
1103 goto error;
1104 }
1105 EXPORT_SYMBOL(key_unlink);
1106
1107 /*
1108 * Dispose of a keyring list after the RCU grace period, releasing the keys it
1109 * links to.
1110 */
1111 static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1112 {
1113 struct keyring_list *klist;
1114 int loop;
1115
1116 klist = container_of(rcu, struct keyring_list, rcu);
1117
1118 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1119 key_put(rcu_access_pointer(klist->keys[loop]));
1120
1121 kfree(klist);
1122 }
1123
1124 /**
1125 * keyring_clear - Clear a keyring
1126 * @keyring: The keyring to clear.
1127 *
1128 * Clear the contents of the specified keyring.
1129 *
1130 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1131 */
1132 int keyring_clear(struct key *keyring)
1133 {
1134 struct keyring_list *klist;
1135 int ret;
1136
1137 ret = -ENOTDIR;
1138 if (keyring->type == &key_type_keyring) {
1139 /* detach the pointer block with the locks held */
1140 down_write(&keyring->sem);
1141
1142 klist = rcu_dereference_locked_keyring(keyring);
1143 if (klist) {
1144 /* adjust the quota */
1145 key_payload_reserve(keyring,
1146 sizeof(struct keyring_list));
1147
1148 rcu_assign_pointer(keyring->payload.subscriptions,
1149 NULL);
1150 }
1151
1152 up_write(&keyring->sem);
1153
1154 /* free the keys after the locks have been dropped */
1155 if (klist)
1156 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1157
1158 ret = 0;
1159 }
1160
1161 return ret;
1162 }
1163 EXPORT_SYMBOL(keyring_clear);
1164
1165 /*
1166 * Dispose of the links from a revoked keyring.
1167 *
1168 * This is called with the key sem write-locked.
1169 */
1170 static void keyring_revoke(struct key *keyring)
1171 {
1172 struct keyring_list *klist;
1173
1174 klist = rcu_dereference_locked_keyring(keyring);
1175
1176 /* adjust the quota */
1177 key_payload_reserve(keyring, 0);
1178
1179 if (klist) {
1180 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1181 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1182 }
1183 }
1184
1185 /*
1186 * Collect garbage from the contents of a keyring, replacing the old list with
1187 * a new one with the pointers all shuffled down.
1188 *
1189 * Dead keys are classed as oned that are flagged as being dead or are revoked,
1190 * expired or negative keys that were revoked or expired before the specified
1191 * limit.
1192 */
1193 void keyring_gc(struct key *keyring, time_t limit)
1194 {
1195 struct keyring_list *klist, *new;
1196 struct key *key;
1197 int loop, keep, max;
1198
1199 kenter("{%x,%s}", key_serial(keyring), keyring->description);
1200
1201 down_write(&keyring->sem);
1202
1203 klist = rcu_dereference_locked_keyring(keyring);
1204 if (!klist)
1205 goto no_klist;
1206
1207 /* work out how many subscriptions we're keeping */
1208 keep = 0;
1209 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1210 if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring),
1211 limit))
1212 keep++;
1213
1214 if (keep == klist->nkeys)
1215 goto just_return;
1216
1217 /* allocate a new keyring payload */
1218 max = roundup(keep, 4);
1219 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1220 GFP_KERNEL);
1221 if (!new)
1222 goto nomem;
1223 new->maxkeys = max;
1224 new->nkeys = 0;
1225 new->delkey = 0;
1226
1227 /* install the live keys
1228 * - must take care as expired keys may be updated back to life
1229 */
1230 keep = 0;
1231 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1232 key = rcu_deref_link_locked(klist, loop, keyring);
1233 if (!key_is_dead(key, limit)) {
1234 if (keep >= max)
1235 goto discard_new;
1236 RCU_INIT_POINTER(new->keys[keep++], key_get(key));
1237 }
1238 }
1239 new->nkeys = keep;
1240
1241 /* adjust the quota */
1242 key_payload_reserve(keyring,
1243 sizeof(struct keyring_list) +
1244 KEYQUOTA_LINK_BYTES * keep);
1245
1246 if (keep == 0) {
1247 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1248 kfree(new);
1249 } else {
1250 rcu_assign_pointer(keyring->payload.subscriptions, new);
1251 }
1252
1253 up_write(&keyring->sem);
1254
1255 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1256 kleave(" [yes]");
1257 return;
1258
1259 discard_new:
1260 new->nkeys = keep;
1261 keyring_clear_rcu_disposal(&new->rcu);
1262 up_write(&keyring->sem);
1263 kleave(" [discard]");
1264 return;
1265
1266 just_return:
1267 up_write(&keyring->sem);
1268 kleave(" [no dead]");
1269 return;
1270
1271 no_klist:
1272 up_write(&keyring->sem);
1273 kleave(" [no_klist]");
1274 return;
1275
1276 nomem:
1277 up_write(&keyring->sem);
1278 kleave(" [oom]");
1279 }