Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227 {
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc) + 1;
246 quotalen = desclen + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 if (desc) {
280 key->description = kmemdup(desc, desclen, GFP_KERNEL);
281 if (!key->description)
282 goto no_memory_3;
283 }
284
285 atomic_set(&key->usage, 1);
286 init_rwsem(&key->sem);
287 lockdep_set_class(&key->sem, &type->lock_class);
288 key->type = type;
289 key->user = user;
290 key->quotalen = quotalen;
291 key->datalen = type->def_datalen;
292 key->uid = uid;
293 key->gid = gid;
294 key->perm = perm;
295 key->flags = 0;
296 key->expiry = 0;
297 key->payload.data = NULL;
298 key->security = NULL;
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_UID_KEYRING)
303 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
304
305 memset(&key->type_data, 0, sizeof(key->type_data));
306
307 #ifdef KEY_DEBUGGING
308 key->magic = KEY_DEBUG_MAGIC;
309 #endif
310
311 /* let the security module know about the key */
312 ret = security_key_alloc(key, cred, flags);
313 if (ret < 0)
314 goto security_error;
315
316 /* publish the key by giving it a serial number */
317 atomic_inc(&user->nkeys);
318 key_alloc_serial(key);
319
320 error:
321 return key;
322
323 security_error:
324 kfree(key->description);
325 kmem_cache_free(key_jar, key);
326 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
327 spin_lock(&user->lock);
328 user->qnkeys--;
329 user->qnbytes -= quotalen;
330 spin_unlock(&user->lock);
331 }
332 key_user_put(user);
333 key = ERR_PTR(ret);
334 goto error;
335
336 no_memory_3:
337 kmem_cache_free(key_jar, key);
338 no_memory_2:
339 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
340 spin_lock(&user->lock);
341 user->qnkeys--;
342 user->qnbytes -= quotalen;
343 spin_unlock(&user->lock);
344 }
345 key_user_put(user);
346 no_memory_1:
347 key = ERR_PTR(-ENOMEM);
348 goto error;
349
350 no_quota:
351 spin_unlock(&user->lock);
352 key_user_put(user);
353 key = ERR_PTR(-EDQUOT);
354 goto error;
355 }
356 EXPORT_SYMBOL(key_alloc);
357
358 /**
359 * key_payload_reserve - Adjust data quota reservation for the key's payload
360 * @key: The key to make the reservation for.
361 * @datalen: The amount of data payload the caller now wants.
362 *
363 * Adjust the amount of the owning user's key data quota that a key reserves.
364 * If the amount is increased, then -EDQUOT may be returned if there isn't
365 * enough free quota available.
366 *
367 * If successful, 0 is returned.
368 */
369 int key_payload_reserve(struct key *key, size_t datalen)
370 {
371 int delta = (int)datalen - key->datalen;
372 int ret = 0;
373
374 key_check(key);
375
376 /* contemplate the quota adjustment */
377 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
379 key_quota_root_maxbytes : key_quota_maxbytes;
380
381 spin_lock(&key->user->lock);
382
383 if (delta > 0 &&
384 (key->user->qnbytes + delta >= maxbytes ||
385 key->user->qnbytes + delta < key->user->qnbytes)) {
386 ret = -EDQUOT;
387 }
388 else {
389 key->user->qnbytes += delta;
390 key->quotalen += delta;
391 }
392 spin_unlock(&key->user->lock);
393 }
394
395 /* change the recorded data length if that didn't generate an error */
396 if (ret == 0)
397 key->datalen = datalen;
398
399 return ret;
400 }
401 EXPORT_SYMBOL(key_payload_reserve);
402
403 /*
404 * Instantiate a key and link it into the target keyring atomically. Must be
405 * called with the target keyring's semaphore writelocked. The target key's
406 * semaphore need not be locked as instantiation is serialised by
407 * key_construction_mutex.
408 */
409 static int __key_instantiate_and_link(struct key *key,
410 struct key_preparsed_payload *prep,
411 struct key *keyring,
412 struct key *authkey,
413 unsigned long *_prealloc)
414 {
415 int ret, awaken;
416
417 key_check(key);
418 key_check(keyring);
419
420 awaken = 0;
421 ret = -EBUSY;
422
423 mutex_lock(&key_construction_mutex);
424
425 /* can't instantiate twice */
426 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
427 /* instantiate the key */
428 ret = key->type->instantiate(key, prep);
429
430 if (ret == 0) {
431 /* mark the key as being instantiated */
432 atomic_inc(&key->user->nikeys);
433 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
434
435 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
436 awaken = 1;
437
438 /* and link it into the destination keyring */
439 if (keyring)
440 __key_link(keyring, key, _prealloc);
441
442 /* disable the authorisation key */
443 if (authkey)
444 key_revoke(authkey);
445 }
446 }
447
448 mutex_unlock(&key_construction_mutex);
449
450 /* wake up anyone waiting for a key to be constructed */
451 if (awaken)
452 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
453
454 return ret;
455 }
456
457 /**
458 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
459 * @key: The key to instantiate.
460 * @data: The data to use to instantiate the keyring.
461 * @datalen: The length of @data.
462 * @keyring: Keyring to create a link in on success (or NULL).
463 * @authkey: The authorisation token permitting instantiation.
464 *
465 * Instantiate a key that's in the uninstantiated state using the provided data
466 * and, if successful, link it in to the destination keyring if one is
467 * supplied.
468 *
469 * If successful, 0 is returned, the authorisation token is revoked and anyone
470 * waiting for the key is woken up. If the key was already instantiated,
471 * -EBUSY will be returned.
472 */
473 int key_instantiate_and_link(struct key *key,
474 const void *data,
475 size_t datalen,
476 struct key *keyring,
477 struct key *authkey)
478 {
479 struct key_preparsed_payload prep;
480 unsigned long prealloc;
481 int ret;
482
483 memset(&prep, 0, sizeof(prep));
484 prep.data = data;
485 prep.datalen = datalen;
486 prep.quotalen = key->type->def_datalen;
487 if (key->type->preparse) {
488 ret = key->type->preparse(&prep);
489 if (ret < 0)
490 goto error;
491 }
492
493 if (keyring) {
494 ret = __key_link_begin(keyring, key->type, key->description,
495 &prealloc);
496 if (ret < 0)
497 goto error_free_preparse;
498 }
499
500 ret = __key_instantiate_and_link(key, &prep, keyring, authkey,
501 &prealloc);
502
503 if (keyring)
504 __key_link_end(keyring, key->type, prealloc);
505
506 error_free_preparse:
507 if (key->type->preparse)
508 key->type->free_preparse(&prep);
509 error:
510 return ret;
511 }
512
513 EXPORT_SYMBOL(key_instantiate_and_link);
514
515 /**
516 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
517 * @key: The key to instantiate.
518 * @timeout: The timeout on the negative key.
519 * @error: The error to return when the key is hit.
520 * @keyring: Keyring to create a link in on success (or NULL).
521 * @authkey: The authorisation token permitting instantiation.
522 *
523 * Negatively instantiate a key that's in the uninstantiated state and, if
524 * successful, set its timeout and stored error and link it in to the
525 * destination keyring if one is supplied. The key and any links to the key
526 * will be automatically garbage collected after the timeout expires.
527 *
528 * Negative keys are used to rate limit repeated request_key() calls by causing
529 * them to return the stored error code (typically ENOKEY) until the negative
530 * key expires.
531 *
532 * If successful, 0 is returned, the authorisation token is revoked and anyone
533 * waiting for the key is woken up. If the key was already instantiated,
534 * -EBUSY will be returned.
535 */
536 int key_reject_and_link(struct key *key,
537 unsigned timeout,
538 unsigned error,
539 struct key *keyring,
540 struct key *authkey)
541 {
542 unsigned long prealloc;
543 struct timespec now;
544 int ret, awaken, link_ret = 0;
545
546 key_check(key);
547 key_check(keyring);
548
549 awaken = 0;
550 ret = -EBUSY;
551
552 if (keyring)
553 link_ret = __key_link_begin(keyring, key->type,
554 key->description, &prealloc);
555
556 mutex_lock(&key_construction_mutex);
557
558 /* can't instantiate twice */
559 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
560 /* mark the key as being negatively instantiated */
561 atomic_inc(&key->user->nikeys);
562 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
563 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
564 key->type_data.reject_error = -error;
565 now = current_kernel_time();
566 key->expiry = now.tv_sec + timeout;
567 key_schedule_gc(key->expiry + key_gc_delay);
568
569 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
570 awaken = 1;
571
572 ret = 0;
573
574 /* and link it into the destination keyring */
575 if (keyring && link_ret == 0)
576 __key_link(keyring, key, &prealloc);
577
578 /* disable the authorisation key */
579 if (authkey)
580 key_revoke(authkey);
581 }
582
583 mutex_unlock(&key_construction_mutex);
584
585 if (keyring && link_ret == 0)
586 __key_link_end(keyring, key->type, prealloc);
587
588 /* wake up anyone waiting for a key to be constructed */
589 if (awaken)
590 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
591
592 return ret == 0 ? link_ret : ret;
593 }
594 EXPORT_SYMBOL(key_reject_and_link);
595
596 /**
597 * key_put - Discard a reference to a key.
598 * @key: The key to discard a reference from.
599 *
600 * Discard a reference to a key, and when all the references are gone, we
601 * schedule the cleanup task to come and pull it out of the tree in process
602 * context at some later time.
603 */
604 void key_put(struct key *key)
605 {
606 if (key) {
607 key_check(key);
608
609 if (atomic_dec_and_test(&key->usage))
610 schedule_work(&key_gc_work);
611 }
612 }
613 EXPORT_SYMBOL(key_put);
614
615 /*
616 * Find a key by its serial number.
617 */
618 struct key *key_lookup(key_serial_t id)
619 {
620 struct rb_node *n;
621 struct key *key;
622
623 spin_lock(&key_serial_lock);
624
625 /* search the tree for the specified key */
626 n = key_serial_tree.rb_node;
627 while (n) {
628 key = rb_entry(n, struct key, serial_node);
629
630 if (id < key->serial)
631 n = n->rb_left;
632 else if (id > key->serial)
633 n = n->rb_right;
634 else
635 goto found;
636 }
637
638 not_found:
639 key = ERR_PTR(-ENOKEY);
640 goto error;
641
642 found:
643 /* pretend it doesn't exist if it is awaiting deletion */
644 if (atomic_read(&key->usage) == 0)
645 goto not_found;
646
647 /* this races with key_put(), but that doesn't matter since key_put()
648 * doesn't actually change the key
649 */
650 atomic_inc(&key->usage);
651
652 error:
653 spin_unlock(&key_serial_lock);
654 return key;
655 }
656
657 /*
658 * Find and lock the specified key type against removal.
659 *
660 * We return with the sem read-locked if successful. If the type wasn't
661 * available -ENOKEY is returned instead.
662 */
663 struct key_type *key_type_lookup(const char *type)
664 {
665 struct key_type *ktype;
666
667 down_read(&key_types_sem);
668
669 /* look up the key type to see if it's one of the registered kernel
670 * types */
671 list_for_each_entry(ktype, &key_types_list, link) {
672 if (strcmp(ktype->name, type) == 0)
673 goto found_kernel_type;
674 }
675
676 up_read(&key_types_sem);
677 ktype = ERR_PTR(-ENOKEY);
678
679 found_kernel_type:
680 return ktype;
681 }
682
683 void key_set_timeout(struct key *key, unsigned timeout)
684 {
685 struct timespec now;
686 time_t expiry = 0;
687
688 /* make the changes with the locks held to prevent races */
689 down_write(&key->sem);
690
691 if (timeout > 0) {
692 now = current_kernel_time();
693 expiry = now.tv_sec + timeout;
694 }
695
696 key->expiry = expiry;
697 key_schedule_gc(key->expiry + key_gc_delay);
698
699 up_write(&key->sem);
700 }
701 EXPORT_SYMBOL_GPL(key_set_timeout);
702
703 /*
704 * Unlock a key type locked by key_type_lookup().
705 */
706 void key_type_put(struct key_type *ktype)
707 {
708 up_read(&key_types_sem);
709 }
710
711 /*
712 * Attempt to update an existing key.
713 *
714 * The key is given to us with an incremented refcount that we need to discard
715 * if we get an error.
716 */
717 static inline key_ref_t __key_update(key_ref_t key_ref,
718 struct key_preparsed_payload *prep)
719 {
720 struct key *key = key_ref_to_ptr(key_ref);
721 int ret;
722
723 /* need write permission on the key to update it */
724 ret = key_permission(key_ref, KEY_WRITE);
725 if (ret < 0)
726 goto error;
727
728 ret = -EEXIST;
729 if (!key->type->update)
730 goto error;
731
732 down_write(&key->sem);
733
734 ret = key->type->update(key, prep);
735 if (ret == 0)
736 /* updating a negative key instantiates it */
737 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
738
739 up_write(&key->sem);
740
741 if (ret < 0)
742 goto error;
743 out:
744 return key_ref;
745
746 error:
747 key_put(key);
748 key_ref = ERR_PTR(ret);
749 goto out;
750 }
751
752 /**
753 * key_create_or_update - Update or create and instantiate a key.
754 * @keyring_ref: A pointer to the destination keyring with possession flag.
755 * @type: The type of key.
756 * @description: The searchable description for the key.
757 * @payload: The data to use to instantiate or update the key.
758 * @plen: The length of @payload.
759 * @perm: The permissions mask for a new key.
760 * @flags: The quota flags for a new key.
761 *
762 * Search the destination keyring for a key of the same description and if one
763 * is found, update it, otherwise create and instantiate a new one and create a
764 * link to it from that keyring.
765 *
766 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
767 * concocted.
768 *
769 * Returns a pointer to the new key if successful, -ENODEV if the key type
770 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
771 * caller isn't permitted to modify the keyring or the LSM did not permit
772 * creation of the key.
773 *
774 * On success, the possession flag from the keyring ref will be tacked on to
775 * the key ref before it is returned.
776 */
777 key_ref_t key_create_or_update(key_ref_t keyring_ref,
778 const char *type,
779 const char *description,
780 const void *payload,
781 size_t plen,
782 key_perm_t perm,
783 unsigned long flags)
784 {
785 unsigned long prealloc;
786 struct key_preparsed_payload prep;
787 const struct cred *cred = current_cred();
788 struct key_type *ktype;
789 struct key *keyring, *key = NULL;
790 key_ref_t key_ref;
791 int ret;
792
793 /* look up the key type to see if it's one of the registered kernel
794 * types */
795 ktype = key_type_lookup(type);
796 if (IS_ERR(ktype)) {
797 key_ref = ERR_PTR(-ENODEV);
798 goto error;
799 }
800
801 key_ref = ERR_PTR(-EINVAL);
802 if (!ktype->match || !ktype->instantiate ||
803 (!description && !ktype->preparse))
804 goto error_put_type;
805
806 keyring = key_ref_to_ptr(keyring_ref);
807
808 key_check(keyring);
809
810 key_ref = ERR_PTR(-ENOTDIR);
811 if (keyring->type != &key_type_keyring)
812 goto error_put_type;
813
814 memset(&prep, 0, sizeof(prep));
815 prep.data = payload;
816 prep.datalen = plen;
817 prep.quotalen = ktype->def_datalen;
818 if (ktype->preparse) {
819 ret = ktype->preparse(&prep);
820 if (ret < 0) {
821 key_ref = ERR_PTR(ret);
822 goto error_put_type;
823 }
824 if (!description)
825 description = prep.description;
826 key_ref = ERR_PTR(-EINVAL);
827 if (!description)
828 goto error_free_prep;
829 }
830
831 ret = __key_link_begin(keyring, ktype, description, &prealloc);
832 if (ret < 0) {
833 key_ref = ERR_PTR(ret);
834 goto error_free_prep;
835 }
836
837 /* if we're going to allocate a new key, we're going to have
838 * to modify the keyring */
839 ret = key_permission(keyring_ref, KEY_WRITE);
840 if (ret < 0) {
841 key_ref = ERR_PTR(ret);
842 goto error_link_end;
843 }
844
845 /* if it's possible to update this type of key, search for an existing
846 * key of the same type and description in the destination keyring and
847 * update that instead if possible
848 */
849 if (ktype->update) {
850 key_ref = __keyring_search_one(keyring_ref, ktype, description,
851 0);
852 if (!IS_ERR(key_ref))
853 goto found_matching_key;
854 }
855
856 /* if the client doesn't provide, decide on the permissions we want */
857 if (perm == KEY_PERM_UNDEF) {
858 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
859 perm |= KEY_USR_VIEW;
860
861 if (ktype->read)
862 perm |= KEY_POS_READ;
863
864 if (ktype == &key_type_keyring || ktype->update)
865 perm |= KEY_POS_WRITE;
866 }
867
868 /* allocate a new key */
869 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
870 perm, flags);
871 if (IS_ERR(key)) {
872 key_ref = ERR_CAST(key);
873 goto error_link_end;
874 }
875
876 /* instantiate it and link it into the target keyring */
877 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &prealloc);
878 if (ret < 0) {
879 key_put(key);
880 key_ref = ERR_PTR(ret);
881 goto error_link_end;
882 }
883
884 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
885
886 error_link_end:
887 __key_link_end(keyring, ktype, prealloc);
888 error_free_prep:
889 if (ktype->preparse)
890 ktype->free_preparse(&prep);
891 error_put_type:
892 key_type_put(ktype);
893 error:
894 return key_ref;
895
896 found_matching_key:
897 /* we found a matching key, so we're going to try to update it
898 * - we can drop the locks first as we have the key pinned
899 */
900 __key_link_end(keyring, ktype, prealloc);
901
902 key = key_ref_to_ptr(key_ref);
903 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
904 ret = wait_for_key_construction(key, true);
905 if (ret < 0) {
906 key_ref_put(key_ref);
907 key_ref = ERR_PTR(ret);
908 goto error_free_prep;
909 }
910 }
911
912 key_ref = __key_update(key_ref, &prep);
913 goto error_free_prep;
914 }
915 EXPORT_SYMBOL(key_create_or_update);
916
917 /**
918 * key_update - Update a key's contents.
919 * @key_ref: The pointer (plus possession flag) to the key.
920 * @payload: The data to be used to update the key.
921 * @plen: The length of @payload.
922 *
923 * Attempt to update the contents of a key with the given payload data. The
924 * caller must be granted Write permission on the key. Negative keys can be
925 * instantiated by this method.
926 *
927 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
928 * type does not support updating. The key type may return other errors.
929 */
930 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
931 {
932 struct key_preparsed_payload prep;
933 struct key *key = key_ref_to_ptr(key_ref);
934 int ret;
935
936 key_check(key);
937
938 /* the key must be writable */
939 ret = key_permission(key_ref, KEY_WRITE);
940 if (ret < 0)
941 goto error;
942
943 /* attempt to update it if supported */
944 ret = -EOPNOTSUPP;
945 if (!key->type->update)
946 goto error;
947
948 memset(&prep, 0, sizeof(prep));
949 prep.data = payload;
950 prep.datalen = plen;
951 prep.quotalen = key->type->def_datalen;
952 if (key->type->preparse) {
953 ret = key->type->preparse(&prep);
954 if (ret < 0)
955 goto error;
956 }
957
958 down_write(&key->sem);
959
960 ret = key->type->update(key, &prep);
961 if (ret == 0)
962 /* updating a negative key instantiates it */
963 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
964
965 up_write(&key->sem);
966
967 if (key->type->preparse)
968 key->type->free_preparse(&prep);
969 error:
970 return ret;
971 }
972 EXPORT_SYMBOL(key_update);
973
974 /**
975 * key_revoke - Revoke a key.
976 * @key: The key to be revoked.
977 *
978 * Mark a key as being revoked and ask the type to free up its resources. The
979 * revocation timeout is set and the key and all its links will be
980 * automatically garbage collected after key_gc_delay amount of time if they
981 * are not manually dealt with first.
982 */
983 void key_revoke(struct key *key)
984 {
985 struct timespec now;
986 time_t time;
987
988 key_check(key);
989
990 /* make sure no one's trying to change or use the key when we mark it
991 * - we tell lockdep that we might nest because we might be revoking an
992 * authorisation key whilst holding the sem on a key we've just
993 * instantiated
994 */
995 down_write_nested(&key->sem, 1);
996 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
997 key->type->revoke)
998 key->type->revoke(key);
999
1000 /* set the death time to no more than the expiry time */
1001 now = current_kernel_time();
1002 time = now.tv_sec;
1003 if (key->revoked_at == 0 || key->revoked_at > time) {
1004 key->revoked_at = time;
1005 key_schedule_gc(key->revoked_at + key_gc_delay);
1006 }
1007
1008 up_write(&key->sem);
1009 }
1010 EXPORT_SYMBOL(key_revoke);
1011
1012 /**
1013 * key_invalidate - Invalidate a key.
1014 * @key: The key to be invalidated.
1015 *
1016 * Mark a key as being invalidated and have it cleaned up immediately. The key
1017 * is ignored by all searches and other operations from this point.
1018 */
1019 void key_invalidate(struct key *key)
1020 {
1021 kenter("%d", key_serial(key));
1022
1023 key_check(key);
1024
1025 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1026 down_write_nested(&key->sem, 1);
1027 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1028 key_schedule_gc_links();
1029 up_write(&key->sem);
1030 }
1031 }
1032 EXPORT_SYMBOL(key_invalidate);
1033
1034 /**
1035 * register_key_type - Register a type of key.
1036 * @ktype: The new key type.
1037 *
1038 * Register a new key type.
1039 *
1040 * Returns 0 on success or -EEXIST if a type of this name already exists.
1041 */
1042 int register_key_type(struct key_type *ktype)
1043 {
1044 struct key_type *p;
1045 int ret;
1046
1047 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1048
1049 ret = -EEXIST;
1050 down_write(&key_types_sem);
1051
1052 /* disallow key types with the same name */
1053 list_for_each_entry(p, &key_types_list, link) {
1054 if (strcmp(p->name, ktype->name) == 0)
1055 goto out;
1056 }
1057
1058 /* store the type */
1059 list_add(&ktype->link, &key_types_list);
1060
1061 pr_notice("Key type %s registered\n", ktype->name);
1062 ret = 0;
1063
1064 out:
1065 up_write(&key_types_sem);
1066 return ret;
1067 }
1068 EXPORT_SYMBOL(register_key_type);
1069
1070 /**
1071 * unregister_key_type - Unregister a type of key.
1072 * @ktype: The key type.
1073 *
1074 * Unregister a key type and mark all the extant keys of this type as dead.
1075 * Those keys of this type are then destroyed to get rid of their payloads and
1076 * they and their links will be garbage collected as soon as possible.
1077 */
1078 void unregister_key_type(struct key_type *ktype)
1079 {
1080 down_write(&key_types_sem);
1081 list_del_init(&ktype->link);
1082 downgrade_write(&key_types_sem);
1083 key_gc_keytype(ktype);
1084 pr_notice("Key type %s unregistered\n", ktype->name);
1085 up_read(&key_types_sem);
1086 }
1087 EXPORT_SYMBOL(unregister_key_type);
1088
1089 /*
1090 * Initialise the key management state.
1091 */
1092 void __init key_init(void)
1093 {
1094 /* allocate a slab in which we can store keys */
1095 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1096 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1097
1098 /* add the special key types */
1099 list_add_tail(&key_type_keyring.link, &key_types_list);
1100 list_add_tail(&key_type_dead.link, &key_types_list);
1101 list_add_tail(&key_type_user.link, &key_types_list);
1102 list_add_tail(&key_type_logon.link, &key_types_list);
1103
1104 /* record the root user tracking */
1105 rb_link_node(&root_key_user.node,
1106 NULL,
1107 &key_user_tree.rb_node);
1108
1109 rb_insert_color(&root_key_user.node,
1110 &key_user_tree);
1111 }