KEYS: Disallow keyrings beginning with '.' to be joined as session keyrings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
33
34 /*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 {
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54 }
55
56 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57 {
58 return 0;
59 }
60
61 /**
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
67 *
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
70 *
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
75 */
76 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 int cap, int audit)
78 {
79 struct user_namespace *ns = targ_ns;
80
81 /* See if cred has the capability in the target user namespace
82 * by examining the target user namespace and all of the target
83 * user namespace's parents.
84 */
85 for (;;) {
86 /* Do we have the necessary capabilities? */
87 if (ns == cred->user_ns)
88 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
89
90 /* Have we tried all of the parent namespaces? */
91 if (ns == &init_user_ns)
92 return -EPERM;
93
94 /*
95 * The owner of the user namespace in the parent of the
96 * user namespace has all caps.
97 */
98 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
99 return 0;
100
101 /*
102 * If you have a capability in a parent user ns, then you have
103 * it over all children user namespaces as well.
104 */
105 ns = ns->parent;
106 }
107
108 /* We never get here */
109 }
110
111 /**
112 * cap_settime - Determine whether the current process may set the system clock
113 * @ts: The time to set
114 * @tz: The timezone to set
115 *
116 * Determine whether the current process may set the system clock and timezone
117 * information, returning 0 if permission granted, -ve if denied.
118 */
119 int cap_settime(const struct timespec *ts, const struct timezone *tz)
120 {
121 if (!capable(CAP_SYS_TIME))
122 return -EPERM;
123 return 0;
124 }
125
126 /**
127 * cap_ptrace_access_check - Determine whether the current process may access
128 * another
129 * @child: The process to be accessed
130 * @mode: The mode of attachment.
131 *
132 * If we are in the same or an ancestor user_ns and have all the target
133 * task's capabilities, then ptrace access is allowed.
134 * If we have the ptrace capability to the target user_ns, then ptrace
135 * access is allowed.
136 * Else denied.
137 *
138 * Determine whether a process may access another, returning 0 if permission
139 * granted, -ve if denied.
140 */
141 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
142 {
143 int ret = 0;
144 const struct cred *cred, *child_cred;
145 const kernel_cap_t *caller_caps;
146
147 rcu_read_lock();
148 cred = current_cred();
149 child_cred = __task_cred(child);
150 if (mode & PTRACE_MODE_FSCREDS)
151 caller_caps = &cred->cap_effective;
152 else
153 caller_caps = &cred->cap_permitted;
154 if (cred->user_ns == child_cred->user_ns &&
155 cap_issubset(child_cred->cap_permitted, *caller_caps))
156 goto out;
157 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
158 goto out;
159 ret = -EPERM;
160 out:
161 rcu_read_unlock();
162 return ret;
163 }
164
165 /**
166 * cap_ptrace_traceme - Determine whether another process may trace the current
167 * @parent: The task proposed to be the tracer
168 *
169 * If parent is in the same or an ancestor user_ns and has all current's
170 * capabilities, then ptrace access is allowed.
171 * If parent has the ptrace capability to current's user_ns, then ptrace
172 * access is allowed.
173 * Else denied.
174 *
175 * Determine whether the nominated task is permitted to trace the current
176 * process, returning 0 if permission is granted, -ve if denied.
177 */
178 int cap_ptrace_traceme(struct task_struct *parent)
179 {
180 int ret = 0;
181 const struct cred *cred, *child_cred;
182
183 rcu_read_lock();
184 cred = __task_cred(parent);
185 child_cred = current_cred();
186 if (cred->user_ns == child_cred->user_ns &&
187 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
188 goto out;
189 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
190 goto out;
191 ret = -EPERM;
192 out:
193 rcu_read_unlock();
194 return ret;
195 }
196
197 /**
198 * cap_capget - Retrieve a task's capability sets
199 * @target: The task from which to retrieve the capability sets
200 * @effective: The place to record the effective set
201 * @inheritable: The place to record the inheritable set
202 * @permitted: The place to record the permitted set
203 *
204 * This function retrieves the capabilities of the nominated task and returns
205 * them to the caller.
206 */
207 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
208 kernel_cap_t *inheritable, kernel_cap_t *permitted)
209 {
210 const struct cred *cred;
211
212 /* Derived from kernel/capability.c:sys_capget. */
213 rcu_read_lock();
214 cred = __task_cred(target);
215 *effective = cred->cap_effective;
216 *inheritable = cred->cap_inheritable;
217 *permitted = cred->cap_permitted;
218 rcu_read_unlock();
219 return 0;
220 }
221
222 /*
223 * Determine whether the inheritable capabilities are limited to the old
224 * permitted set. Returns 1 if they are limited, 0 if they are not.
225 */
226 static inline int cap_inh_is_capped(void)
227 {
228
229 /* they are so limited unless the current task has the CAP_SETPCAP
230 * capability
231 */
232 if (cap_capable(current_cred(), current_cred()->user_ns,
233 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
234 return 0;
235 return 1;
236 }
237
238 /**
239 * cap_capset - Validate and apply proposed changes to current's capabilities
240 * @new: The proposed new credentials; alterations should be made here
241 * @old: The current task's current credentials
242 * @effective: A pointer to the proposed new effective capabilities set
243 * @inheritable: A pointer to the proposed new inheritable capabilities set
244 * @permitted: A pointer to the proposed new permitted capabilities set
245 *
246 * This function validates and applies a proposed mass change to the current
247 * process's capability sets. The changes are made to the proposed new
248 * credentials, and assuming no error, will be committed by the caller of LSM.
249 */
250 int cap_capset(struct cred *new,
251 const struct cred *old,
252 const kernel_cap_t *effective,
253 const kernel_cap_t *inheritable,
254 const kernel_cap_t *permitted)
255 {
256 if (cap_inh_is_capped() &&
257 !cap_issubset(*inheritable,
258 cap_combine(old->cap_inheritable,
259 old->cap_permitted)))
260 /* incapable of using this inheritable set */
261 return -EPERM;
262
263 if (!cap_issubset(*inheritable,
264 cap_combine(old->cap_inheritable,
265 old->cap_bset)))
266 /* no new pI capabilities outside bounding set */
267 return -EPERM;
268
269 /* verify restrictions on target's new Permitted set */
270 if (!cap_issubset(*permitted, old->cap_permitted))
271 return -EPERM;
272
273 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
274 if (!cap_issubset(*effective, *permitted))
275 return -EPERM;
276
277 new->cap_effective = *effective;
278 new->cap_inheritable = *inheritable;
279 new->cap_permitted = *permitted;
280 return 0;
281 }
282
283 /*
284 * Clear proposed capability sets for execve().
285 */
286 static inline void bprm_clear_caps(struct linux_binprm *bprm)
287 {
288 cap_clear(bprm->cred->cap_permitted);
289 bprm->cap_effective = false;
290 }
291
292 /**
293 * cap_inode_need_killpriv - Determine if inode change affects privileges
294 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
295 *
296 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
297 * affects the security markings on that inode, and if it is, should
298 * inode_killpriv() be invoked or the change rejected?
299 *
300 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
301 * -ve to deny the change.
302 */
303 int cap_inode_need_killpriv(struct dentry *dentry)
304 {
305 struct inode *inode = dentry->d_inode;
306 int error;
307
308 if (!inode->i_op->getxattr)
309 return 0;
310
311 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
312 if (error <= 0)
313 return 0;
314 return 1;
315 }
316
317 /**
318 * cap_inode_killpriv - Erase the security markings on an inode
319 * @dentry: The inode/dentry to alter
320 *
321 * Erase the privilege-enhancing security markings on an inode.
322 *
323 * Returns 0 if successful, -ve on error.
324 */
325 int cap_inode_killpriv(struct dentry *dentry)
326 {
327 struct inode *inode = dentry->d_inode;
328
329 if (!inode->i_op->removexattr)
330 return 0;
331
332 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
333 }
334
335 /*
336 * Calculate the new process capability sets from the capability sets attached
337 * to a file.
338 */
339 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
340 struct linux_binprm *bprm,
341 bool *effective,
342 bool *has_cap)
343 {
344 struct cred *new = bprm->cred;
345 unsigned i;
346 int ret = 0;
347
348 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
349 *effective = true;
350
351 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
352 *has_cap = true;
353
354 CAP_FOR_EACH_U32(i) {
355 __u32 permitted = caps->permitted.cap[i];
356 __u32 inheritable = caps->inheritable.cap[i];
357
358 /*
359 * pP' = (X & fP) | (pI & fI)
360 */
361 new->cap_permitted.cap[i] =
362 (new->cap_bset.cap[i] & permitted) |
363 (new->cap_inheritable.cap[i] & inheritable);
364
365 if (permitted & ~new->cap_permitted.cap[i])
366 /* insufficient to execute correctly */
367 ret = -EPERM;
368 }
369
370 /*
371 * For legacy apps, with no internal support for recognizing they
372 * do not have enough capabilities, we return an error if they are
373 * missing some "forced" (aka file-permitted) capabilities.
374 */
375 return *effective ? ret : 0;
376 }
377
378 /*
379 * Extract the on-exec-apply capability sets for an executable file.
380 */
381 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
382 {
383 struct inode *inode = dentry->d_inode;
384 __u32 magic_etc;
385 unsigned tocopy, i;
386 int size;
387 struct vfs_cap_data caps;
388
389 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
390
391 if (!inode || !inode->i_op->getxattr)
392 return -ENODATA;
393
394 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
395 XATTR_CAPS_SZ);
396 if (size == -ENODATA || size == -EOPNOTSUPP)
397 /* no data, that's ok */
398 return -ENODATA;
399 if (size < 0)
400 return size;
401
402 if (size < sizeof(magic_etc))
403 return -EINVAL;
404
405 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
406
407 switch (magic_etc & VFS_CAP_REVISION_MASK) {
408 case VFS_CAP_REVISION_1:
409 if (size != XATTR_CAPS_SZ_1)
410 return -EINVAL;
411 tocopy = VFS_CAP_U32_1;
412 break;
413 case VFS_CAP_REVISION_2:
414 if (size != XATTR_CAPS_SZ_2)
415 return -EINVAL;
416 tocopy = VFS_CAP_U32_2;
417 break;
418 default:
419 return -EINVAL;
420 }
421
422 CAP_FOR_EACH_U32(i) {
423 if (i >= tocopy)
424 break;
425 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
426 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
427 }
428
429 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
430 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
431
432 return 0;
433 }
434
435 /*
436 * Attempt to get the on-exec apply capability sets for an executable file from
437 * its xattrs and, if present, apply them to the proposed credentials being
438 * constructed by execve().
439 */
440 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
441 {
442 struct dentry *dentry;
443 int rc = 0;
444 struct cpu_vfs_cap_data vcaps;
445
446 bprm_clear_caps(bprm);
447
448 if (!file_caps_enabled)
449 return 0;
450
451 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
452 return 0;
453
454 dentry = dget(bprm->file->f_dentry);
455
456 rc = get_vfs_caps_from_disk(dentry, &vcaps);
457 if (rc < 0) {
458 if (rc == -EINVAL)
459 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
460 __func__, rc, bprm->filename);
461 else if (rc == -ENODATA)
462 rc = 0;
463 goto out;
464 }
465
466 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
467 if (rc == -EINVAL)
468 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
469 __func__, rc, bprm->filename);
470
471 out:
472 dput(dentry);
473 if (rc)
474 bprm_clear_caps(bprm);
475
476 return rc;
477 }
478
479 /**
480 * cap_bprm_set_creds - Set up the proposed credentials for execve().
481 * @bprm: The execution parameters, including the proposed creds
482 *
483 * Set up the proposed credentials for a new execution context being
484 * constructed by execve(). The proposed creds in @bprm->cred is altered,
485 * which won't take effect immediately. Returns 0 if successful, -ve on error.
486 */
487 int cap_bprm_set_creds(struct linux_binprm *bprm)
488 {
489 const struct cred *old = current_cred();
490 struct cred *new = bprm->cred;
491 bool effective, has_cap = false;
492 int ret;
493 kuid_t root_uid;
494
495 effective = false;
496 ret = get_file_caps(bprm, &effective, &has_cap);
497 if (ret < 0)
498 return ret;
499
500 root_uid = make_kuid(new->user_ns, 0);
501
502 if (!issecure(SECURE_NOROOT)) {
503 /*
504 * If the legacy file capability is set, then don't set privs
505 * for a setuid root binary run by a non-root user. Do set it
506 * for a root user just to cause least surprise to an admin.
507 */
508 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
509 warn_setuid_and_fcaps_mixed(bprm->filename);
510 goto skip;
511 }
512 /*
513 * To support inheritance of root-permissions and suid-root
514 * executables under compatibility mode, we override the
515 * capability sets for the file.
516 *
517 * If only the real uid is 0, we do not set the effective bit.
518 */
519 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
520 /* pP' = (cap_bset & ~0) | (pI & ~0) */
521 new->cap_permitted = cap_combine(old->cap_bset,
522 old->cap_inheritable);
523 }
524 if (uid_eq(new->euid, root_uid))
525 effective = true;
526 }
527 skip:
528
529 /* if we have fs caps, clear dangerous personality flags */
530 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
531 bprm->per_clear |= PER_CLEAR_ON_SETID;
532
533
534 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
535 * credentials unless they have the appropriate permit.
536 *
537 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
538 */
539 if ((!uid_eq(new->euid, old->uid) ||
540 !gid_eq(new->egid, old->gid) ||
541 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
542 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
543 /* downgrade; they get no more than they had, and maybe less */
544 if (!capable(CAP_SETUID) ||
545 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
546 new->euid = new->uid;
547 new->egid = new->gid;
548 }
549 new->cap_permitted = cap_intersect(new->cap_permitted,
550 old->cap_permitted);
551 }
552
553 new->suid = new->fsuid = new->euid;
554 new->sgid = new->fsgid = new->egid;
555
556 if (effective)
557 new->cap_effective = new->cap_permitted;
558 else
559 cap_clear(new->cap_effective);
560 bprm->cap_effective = effective;
561
562 /*
563 * Audit candidate if current->cap_effective is set
564 *
565 * We do not bother to audit if 3 things are true:
566 * 1) cap_effective has all caps
567 * 2) we are root
568 * 3) root is supposed to have all caps (SECURE_NOROOT)
569 * Since this is just a normal root execing a process.
570 *
571 * Number 1 above might fail if you don't have a full bset, but I think
572 * that is interesting information to audit.
573 */
574 if (!cap_isclear(new->cap_effective)) {
575 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
576 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
577 issecure(SECURE_NOROOT)) {
578 ret = audit_log_bprm_fcaps(bprm, new, old);
579 if (ret < 0)
580 return ret;
581 }
582 }
583
584 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
585 return 0;
586 }
587
588 /**
589 * cap_bprm_secureexec - Determine whether a secure execution is required
590 * @bprm: The execution parameters
591 *
592 * Determine whether a secure execution is required, return 1 if it is, and 0
593 * if it is not.
594 *
595 * The credentials have been committed by this point, and so are no longer
596 * available through @bprm->cred.
597 */
598 int cap_bprm_secureexec(struct linux_binprm *bprm)
599 {
600 const struct cred *cred = current_cred();
601 kuid_t root_uid = make_kuid(cred->user_ns, 0);
602
603 if (!uid_eq(cred->uid, root_uid)) {
604 if (bprm->cap_effective)
605 return 1;
606 if (!cap_isclear(cred->cap_permitted))
607 return 1;
608 }
609
610 return (!uid_eq(cred->euid, cred->uid) ||
611 !gid_eq(cred->egid, cred->gid));
612 }
613
614 /**
615 * cap_inode_setxattr - Determine whether an xattr may be altered
616 * @dentry: The inode/dentry being altered
617 * @name: The name of the xattr to be changed
618 * @value: The value that the xattr will be changed to
619 * @size: The size of value
620 * @flags: The replacement flag
621 *
622 * Determine whether an xattr may be altered or set on an inode, returning 0 if
623 * permission is granted, -ve if denied.
624 *
625 * This is used to make sure security xattrs don't get updated or set by those
626 * who aren't privileged to do so.
627 */
628 int cap_inode_setxattr(struct dentry *dentry, const char *name,
629 const void *value, size_t size, int flags)
630 {
631 if (!strcmp(name, XATTR_NAME_CAPS)) {
632 if (!capable(CAP_SETFCAP))
633 return -EPERM;
634 return 0;
635 }
636
637 if (!strncmp(name, XATTR_SECURITY_PREFIX,
638 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
639 !capable(CAP_SYS_ADMIN))
640 return -EPERM;
641 return 0;
642 }
643
644 /**
645 * cap_inode_removexattr - Determine whether an xattr may be removed
646 * @dentry: The inode/dentry being altered
647 * @name: The name of the xattr to be changed
648 *
649 * Determine whether an xattr may be removed from an inode, returning 0 if
650 * permission is granted, -ve if denied.
651 *
652 * This is used to make sure security xattrs don't get removed by those who
653 * aren't privileged to remove them.
654 */
655 int cap_inode_removexattr(struct dentry *dentry, const char *name)
656 {
657 if (!strcmp(name, XATTR_NAME_CAPS)) {
658 if (!capable(CAP_SETFCAP))
659 return -EPERM;
660 return 0;
661 }
662
663 if (!strncmp(name, XATTR_SECURITY_PREFIX,
664 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
665 !capable(CAP_SYS_ADMIN))
666 return -EPERM;
667 return 0;
668 }
669
670 /*
671 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
672 * a process after a call to setuid, setreuid, or setresuid.
673 *
674 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
675 * {r,e,s}uid != 0, the permitted and effective capabilities are
676 * cleared.
677 *
678 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
679 * capabilities of the process are cleared.
680 *
681 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
682 * capabilities are set to the permitted capabilities.
683 *
684 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
685 * never happen.
686 *
687 * -astor
688 *
689 * cevans - New behaviour, Oct '99
690 * A process may, via prctl(), elect to keep its capabilities when it
691 * calls setuid() and switches away from uid==0. Both permitted and
692 * effective sets will be retained.
693 * Without this change, it was impossible for a daemon to drop only some
694 * of its privilege. The call to setuid(!=0) would drop all privileges!
695 * Keeping uid 0 is not an option because uid 0 owns too many vital
696 * files..
697 * Thanks to Olaf Kirch and Peter Benie for spotting this.
698 */
699 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
700 {
701 kuid_t root_uid = make_kuid(old->user_ns, 0);
702
703 if ((uid_eq(old->uid, root_uid) ||
704 uid_eq(old->euid, root_uid) ||
705 uid_eq(old->suid, root_uid)) &&
706 (!uid_eq(new->uid, root_uid) &&
707 !uid_eq(new->euid, root_uid) &&
708 !uid_eq(new->suid, root_uid)) &&
709 !issecure(SECURE_KEEP_CAPS)) {
710 cap_clear(new->cap_permitted);
711 cap_clear(new->cap_effective);
712 }
713 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
714 cap_clear(new->cap_effective);
715 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
716 new->cap_effective = new->cap_permitted;
717 }
718
719 /**
720 * cap_task_fix_setuid - Fix up the results of setuid() call
721 * @new: The proposed credentials
722 * @old: The current task's current credentials
723 * @flags: Indications of what has changed
724 *
725 * Fix up the results of setuid() call before the credential changes are
726 * actually applied, returning 0 to grant the changes, -ve to deny them.
727 */
728 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
729 {
730 switch (flags) {
731 case LSM_SETID_RE:
732 case LSM_SETID_ID:
733 case LSM_SETID_RES:
734 /* juggle the capabilities to follow [RES]UID changes unless
735 * otherwise suppressed */
736 if (!issecure(SECURE_NO_SETUID_FIXUP))
737 cap_emulate_setxuid(new, old);
738 break;
739
740 case LSM_SETID_FS:
741 /* juggle the capabilties to follow FSUID changes, unless
742 * otherwise suppressed
743 *
744 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
745 * if not, we might be a bit too harsh here.
746 */
747 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
748 kuid_t root_uid = make_kuid(old->user_ns, 0);
749 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
750 new->cap_effective =
751 cap_drop_fs_set(new->cap_effective);
752
753 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
754 new->cap_effective =
755 cap_raise_fs_set(new->cap_effective,
756 new->cap_permitted);
757 }
758 break;
759
760 default:
761 return -EINVAL;
762 }
763
764 return 0;
765 }
766
767 /*
768 * Rationale: code calling task_setscheduler, task_setioprio, and
769 * task_setnice, assumes that
770 * . if capable(cap_sys_nice), then those actions should be allowed
771 * . if not capable(cap_sys_nice), but acting on your own processes,
772 * then those actions should be allowed
773 * This is insufficient now since you can call code without suid, but
774 * yet with increased caps.
775 * So we check for increased caps on the target process.
776 */
777 static int cap_safe_nice(struct task_struct *p)
778 {
779 int is_subset;
780
781 rcu_read_lock();
782 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
783 current_cred()->cap_permitted);
784 rcu_read_unlock();
785
786 if (!is_subset && !capable(CAP_SYS_NICE))
787 return -EPERM;
788 return 0;
789 }
790
791 /**
792 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
793 * @p: The task to affect
794 *
795 * Detemine if the requested scheduler policy change is permitted for the
796 * specified task, returning 0 if permission is granted, -ve if denied.
797 */
798 int cap_task_setscheduler(struct task_struct *p)
799 {
800 return cap_safe_nice(p);
801 }
802
803 /**
804 * cap_task_ioprio - Detemine if I/O priority change is permitted
805 * @p: The task to affect
806 * @ioprio: The I/O priority to set
807 *
808 * Detemine if the requested I/O priority change is permitted for the specified
809 * task, returning 0 if permission is granted, -ve if denied.
810 */
811 int cap_task_setioprio(struct task_struct *p, int ioprio)
812 {
813 return cap_safe_nice(p);
814 }
815
816 /**
817 * cap_task_ioprio - Detemine if task priority change is permitted
818 * @p: The task to affect
819 * @nice: The nice value to set
820 *
821 * Detemine if the requested task priority change is permitted for the
822 * specified task, returning 0 if permission is granted, -ve if denied.
823 */
824 int cap_task_setnice(struct task_struct *p, int nice)
825 {
826 return cap_safe_nice(p);
827 }
828
829 /*
830 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
831 * the current task's bounding set. Returns 0 on success, -ve on error.
832 */
833 static long cap_prctl_drop(struct cred *new, unsigned long cap)
834 {
835 if (!capable(CAP_SETPCAP))
836 return -EPERM;
837 if (!cap_valid(cap))
838 return -EINVAL;
839
840 cap_lower(new->cap_bset, cap);
841 return 0;
842 }
843
844 /**
845 * cap_task_prctl - Implement process control functions for this security module
846 * @option: The process control function requested
847 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
848 *
849 * Allow process control functions (sys_prctl()) to alter capabilities; may
850 * also deny access to other functions not otherwise implemented here.
851 *
852 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
853 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
854 * modules will consider performing the function.
855 */
856 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
857 unsigned long arg4, unsigned long arg5)
858 {
859 struct cred *new;
860 long error = 0;
861
862 new = prepare_creds();
863 if (!new)
864 return -ENOMEM;
865
866 switch (option) {
867 case PR_CAPBSET_READ:
868 error = -EINVAL;
869 if (!cap_valid(arg2))
870 goto error;
871 error = !!cap_raised(new->cap_bset, arg2);
872 goto no_change;
873
874 case PR_CAPBSET_DROP:
875 error = cap_prctl_drop(new, arg2);
876 if (error < 0)
877 goto error;
878 goto changed;
879
880 /*
881 * The next four prctl's remain to assist with transitioning a
882 * system from legacy UID=0 based privilege (when filesystem
883 * capabilities are not in use) to a system using filesystem
884 * capabilities only - as the POSIX.1e draft intended.
885 *
886 * Note:
887 *
888 * PR_SET_SECUREBITS =
889 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
890 * | issecure_mask(SECURE_NOROOT)
891 * | issecure_mask(SECURE_NOROOT_LOCKED)
892 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
893 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
894 *
895 * will ensure that the current process and all of its
896 * children will be locked into a pure
897 * capability-based-privilege environment.
898 */
899 case PR_SET_SECUREBITS:
900 error = -EPERM;
901 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
902 & (new->securebits ^ arg2)) /*[1]*/
903 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
904 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
905 || (cap_capable(current_cred(),
906 current_cred()->user_ns, CAP_SETPCAP,
907 SECURITY_CAP_AUDIT) != 0) /*[4]*/
908 /*
909 * [1] no changing of bits that are locked
910 * [2] no unlocking of locks
911 * [3] no setting of unsupported bits
912 * [4] doing anything requires privilege (go read about
913 * the "sendmail capabilities bug")
914 */
915 )
916 /* cannot change a locked bit */
917 goto error;
918 new->securebits = arg2;
919 goto changed;
920
921 case PR_GET_SECUREBITS:
922 error = new->securebits;
923 goto no_change;
924
925 case PR_GET_KEEPCAPS:
926 if (issecure(SECURE_KEEP_CAPS))
927 error = 1;
928 goto no_change;
929
930 case PR_SET_KEEPCAPS:
931 error = -EINVAL;
932 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
933 goto error;
934 error = -EPERM;
935 if (issecure(SECURE_KEEP_CAPS_LOCKED))
936 goto error;
937 if (arg2)
938 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
939 else
940 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
941 goto changed;
942
943 default:
944 /* No functionality available - continue with default */
945 error = -ENOSYS;
946 goto error;
947 }
948
949 /* Functionality provided */
950 changed:
951 return commit_creds(new);
952
953 no_change:
954 error:
955 abort_creds(new);
956 return error;
957 }
958
959 /**
960 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
961 * @mm: The VM space in which the new mapping is to be made
962 * @pages: The size of the mapping
963 *
964 * Determine whether the allocation of a new virtual mapping by the current
965 * task is permitted, returning 0 if permission is granted, -ve if not.
966 */
967 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
968 {
969 int cap_sys_admin = 0;
970
971 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
972 SECURITY_CAP_NOAUDIT) == 0)
973 cap_sys_admin = 1;
974 return __vm_enough_memory(mm, pages, cap_sys_admin);
975 }
976
977 /*
978 * cap_mmap_addr - check if able to map given addr
979 * @addr: address attempting to be mapped
980 *
981 * If the process is attempting to map memory below dac_mmap_min_addr they need
982 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
983 * capability security module. Returns 0 if this mapping should be allowed
984 * -EPERM if not.
985 */
986 int cap_mmap_addr(unsigned long addr)
987 {
988 int ret = 0;
989
990 if (addr < dac_mmap_min_addr) {
991 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
992 SECURITY_CAP_AUDIT);
993 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
994 if (ret == 0)
995 current->flags |= PF_SUPERPRIV;
996 }
997 return ret;
998 }
999
1000 int cap_mmap_file(struct file *file, unsigned long reqprot,
1001 unsigned long prot, unsigned long flags)
1002 {
1003 return 0;
1004 }