disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / xfrm / xfrm_algo.c
1 /*
2 * xfrm algorithm interface
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
19 #include <net/esp.h>
20 #endif
21
22 /*
23 * Algorithms supported by IPsec. These entries contain properties which
24 * are used in key negotiation and xfrm processing, and are used to verify
25 * that instantiated crypto transforms have correct parameters for IPsec
26 * purposes.
27 */
28 static struct xfrm_algo_desc aead_list[] = {
29 {
30 .name = "rfc4106(gcm(aes))",
31
32 .uinfo = {
33 .aead = {
34 .icv_truncbits = 64,
35 }
36 },
37
38 .pfkey_supported = 1,
39
40 .desc = {
41 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
42 .sadb_alg_ivlen = 8,
43 .sadb_alg_minbits = 128,
44 .sadb_alg_maxbits = 256
45 }
46 },
47 {
48 .name = "rfc4106(gcm(aes))",
49
50 .uinfo = {
51 .aead = {
52 .icv_truncbits = 96,
53 }
54 },
55
56 .pfkey_supported = 1,
57
58 .desc = {
59 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
60 .sadb_alg_ivlen = 8,
61 .sadb_alg_minbits = 128,
62 .sadb_alg_maxbits = 256
63 }
64 },
65 {
66 .name = "rfc4106(gcm(aes))",
67
68 .uinfo = {
69 .aead = {
70 .icv_truncbits = 128,
71 }
72 },
73
74 .pfkey_supported = 1,
75
76 .desc = {
77 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
78 .sadb_alg_ivlen = 8,
79 .sadb_alg_minbits = 128,
80 .sadb_alg_maxbits = 256
81 }
82 },
83 {
84 .name = "rfc4309(ccm(aes))",
85
86 .uinfo = {
87 .aead = {
88 .icv_truncbits = 64,
89 }
90 },
91
92 .pfkey_supported = 1,
93
94 .desc = {
95 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
96 .sadb_alg_ivlen = 8,
97 .sadb_alg_minbits = 128,
98 .sadb_alg_maxbits = 256
99 }
100 },
101 {
102 .name = "rfc4309(ccm(aes))",
103
104 .uinfo = {
105 .aead = {
106 .icv_truncbits = 96,
107 }
108 },
109
110 .pfkey_supported = 1,
111
112 .desc = {
113 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
114 .sadb_alg_ivlen = 8,
115 .sadb_alg_minbits = 128,
116 .sadb_alg_maxbits = 256
117 }
118 },
119 {
120 .name = "rfc4309(ccm(aes))",
121
122 .uinfo = {
123 .aead = {
124 .icv_truncbits = 128,
125 }
126 },
127
128 .pfkey_supported = 1,
129
130 .desc = {
131 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
132 .sadb_alg_ivlen = 8,
133 .sadb_alg_minbits = 128,
134 .sadb_alg_maxbits = 256
135 }
136 },
137 {
138 .name = "rfc4543(gcm(aes))",
139
140 .uinfo = {
141 .aead = {
142 .icv_truncbits = 128,
143 }
144 },
145
146 .pfkey_supported = 1,
147
148 .desc = {
149 .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
150 .sadb_alg_ivlen = 8,
151 .sadb_alg_minbits = 128,
152 .sadb_alg_maxbits = 256
153 }
154 },
155 };
156
157 static struct xfrm_algo_desc aalg_list[] = {
158 {
159 .name = "digest_null",
160
161 .uinfo = {
162 .auth = {
163 .icv_truncbits = 0,
164 .icv_fullbits = 0,
165 }
166 },
167
168 .pfkey_supported = 1,
169
170 .desc = {
171 .sadb_alg_id = SADB_X_AALG_NULL,
172 .sadb_alg_ivlen = 0,
173 .sadb_alg_minbits = 0,
174 .sadb_alg_maxbits = 0
175 }
176 },
177 {
178 .name = "hmac(md5)",
179 .compat = "md5",
180
181 .uinfo = {
182 .auth = {
183 .icv_truncbits = 96,
184 .icv_fullbits = 128,
185 }
186 },
187
188 .pfkey_supported = 1,
189
190 .desc = {
191 .sadb_alg_id = SADB_AALG_MD5HMAC,
192 .sadb_alg_ivlen = 0,
193 .sadb_alg_minbits = 128,
194 .sadb_alg_maxbits = 128
195 }
196 },
197 {
198 .name = "hmac(sha1)",
199 .compat = "sha1",
200
201 .uinfo = {
202 .auth = {
203 .icv_truncbits = 96,
204 .icv_fullbits = 160,
205 }
206 },
207
208 .pfkey_supported = 1,
209
210 .desc = {
211 .sadb_alg_id = SADB_AALG_SHA1HMAC,
212 .sadb_alg_ivlen = 0,
213 .sadb_alg_minbits = 160,
214 .sadb_alg_maxbits = 160
215 }
216 },
217 {
218 .name = "hmac(sha256)",
219 .compat = "sha256",
220
221 .uinfo = {
222 .auth = {
223 .icv_truncbits = 96,
224 .icv_fullbits = 256,
225 }
226 },
227
228 .pfkey_supported = 1,
229
230 .desc = {
231 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
232 .sadb_alg_ivlen = 0,
233 .sadb_alg_minbits = 256,
234 .sadb_alg_maxbits = 256
235 }
236 },
237 {
238 .name = "hmac(sha384)",
239
240 .uinfo = {
241 .auth = {
242 .icv_truncbits = 192,
243 .icv_fullbits = 384,
244 }
245 },
246
247 .pfkey_supported = 1,
248
249 .desc = {
250 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
251 .sadb_alg_ivlen = 0,
252 .sadb_alg_minbits = 384,
253 .sadb_alg_maxbits = 384
254 }
255 },
256 {
257 .name = "hmac(sha512)",
258
259 .uinfo = {
260 .auth = {
261 .icv_truncbits = 256,
262 .icv_fullbits = 512,
263 }
264 },
265
266 .pfkey_supported = 1,
267
268 .desc = {
269 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
270 .sadb_alg_ivlen = 0,
271 .sadb_alg_minbits = 512,
272 .sadb_alg_maxbits = 512
273 }
274 },
275 {
276 .name = "hmac(rmd160)",
277 .compat = "rmd160",
278
279 .uinfo = {
280 .auth = {
281 .icv_truncbits = 96,
282 .icv_fullbits = 160,
283 }
284 },
285
286 .pfkey_supported = 1,
287
288 .desc = {
289 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
290 .sadb_alg_ivlen = 0,
291 .sadb_alg_minbits = 160,
292 .sadb_alg_maxbits = 160
293 }
294 },
295 {
296 .name = "xcbc(aes)",
297
298 .uinfo = {
299 .auth = {
300 .icv_truncbits = 96,
301 .icv_fullbits = 128,
302 }
303 },
304
305 .pfkey_supported = 1,
306
307 .desc = {
308 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
309 .sadb_alg_ivlen = 0,
310 .sadb_alg_minbits = 128,
311 .sadb_alg_maxbits = 128
312 }
313 },
314 {
315 /* rfc4494 */
316 .name = "cmac(aes)",
317
318 .uinfo = {
319 .auth = {
320 .icv_truncbits = 96,
321 .icv_fullbits = 128,
322 }
323 },
324
325 .pfkey_supported = 0,
326 },
327 };
328
329 static struct xfrm_algo_desc ealg_list[] = {
330 {
331 .name = "ecb(cipher_null)",
332 .compat = "cipher_null",
333
334 .uinfo = {
335 .encr = {
336 .blockbits = 8,
337 .defkeybits = 0,
338 }
339 },
340
341 .pfkey_supported = 1,
342
343 .desc = {
344 .sadb_alg_id = SADB_EALG_NULL,
345 .sadb_alg_ivlen = 0,
346 .sadb_alg_minbits = 0,
347 .sadb_alg_maxbits = 0
348 }
349 },
350 {
351 .name = "cbc(des)",
352 .compat = "des",
353
354 .uinfo = {
355 .encr = {
356 .blockbits = 64,
357 .defkeybits = 64,
358 }
359 },
360
361 .pfkey_supported = 1,
362
363 .desc = {
364 .sadb_alg_id = SADB_EALG_DESCBC,
365 .sadb_alg_ivlen = 8,
366 .sadb_alg_minbits = 64,
367 .sadb_alg_maxbits = 64
368 }
369 },
370 {
371 .name = "cbc(des3_ede)",
372 .compat = "des3_ede",
373
374 .uinfo = {
375 .encr = {
376 .blockbits = 64,
377 .defkeybits = 192,
378 }
379 },
380
381 .pfkey_supported = 1,
382
383 .desc = {
384 .sadb_alg_id = SADB_EALG_3DESCBC,
385 .sadb_alg_ivlen = 8,
386 .sadb_alg_minbits = 192,
387 .sadb_alg_maxbits = 192
388 }
389 },
390 {
391 .name = "cbc(cast5)",
392 .compat = "cast5",
393
394 .uinfo = {
395 .encr = {
396 .blockbits = 64,
397 .defkeybits = 128,
398 }
399 },
400
401 .pfkey_supported = 1,
402
403 .desc = {
404 .sadb_alg_id = SADB_X_EALG_CASTCBC,
405 .sadb_alg_ivlen = 8,
406 .sadb_alg_minbits = 40,
407 .sadb_alg_maxbits = 128
408 }
409 },
410 {
411 .name = "cbc(blowfish)",
412 .compat = "blowfish",
413
414 .uinfo = {
415 .encr = {
416 .blockbits = 64,
417 .defkeybits = 128,
418 }
419 },
420
421 .pfkey_supported = 1,
422
423 .desc = {
424 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
425 .sadb_alg_ivlen = 8,
426 .sadb_alg_minbits = 40,
427 .sadb_alg_maxbits = 448
428 }
429 },
430 {
431 .name = "cbc(aes)",
432 .compat = "aes",
433
434 .uinfo = {
435 .encr = {
436 .blockbits = 128,
437 .defkeybits = 128,
438 }
439 },
440
441 .pfkey_supported = 1,
442
443 .desc = {
444 .sadb_alg_id = SADB_X_EALG_AESCBC,
445 .sadb_alg_ivlen = 8,
446 .sadb_alg_minbits = 128,
447 .sadb_alg_maxbits = 256
448 }
449 },
450 {
451 .name = "cbc(serpent)",
452 .compat = "serpent",
453
454 .uinfo = {
455 .encr = {
456 .blockbits = 128,
457 .defkeybits = 128,
458 }
459 },
460
461 .pfkey_supported = 1,
462
463 .desc = {
464 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
465 .sadb_alg_ivlen = 8,
466 .sadb_alg_minbits = 128,
467 .sadb_alg_maxbits = 256,
468 }
469 },
470 {
471 .name = "cbc(camellia)",
472 .compat = "camellia",
473
474 .uinfo = {
475 .encr = {
476 .blockbits = 128,
477 .defkeybits = 128,
478 }
479 },
480
481 .pfkey_supported = 1,
482
483 .desc = {
484 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
485 .sadb_alg_ivlen = 8,
486 .sadb_alg_minbits = 128,
487 .sadb_alg_maxbits = 256
488 }
489 },
490 {
491 .name = "cbc(twofish)",
492 .compat = "twofish",
493
494 .uinfo = {
495 .encr = {
496 .blockbits = 128,
497 .defkeybits = 128,
498 }
499 },
500
501 .pfkey_supported = 1,
502
503 .desc = {
504 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
505 .sadb_alg_ivlen = 8,
506 .sadb_alg_minbits = 128,
507 .sadb_alg_maxbits = 256
508 }
509 },
510 {
511 .name = "rfc3686(ctr(aes))",
512
513 .uinfo = {
514 .encr = {
515 .blockbits = 128,
516 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
517 }
518 },
519
520 .pfkey_supported = 1,
521
522 .desc = {
523 .sadb_alg_id = SADB_X_EALG_AESCTR,
524 .sadb_alg_ivlen = 8,
525 .sadb_alg_minbits = 160,
526 .sadb_alg_maxbits = 288
527 }
528 },
529 };
530
531 static struct xfrm_algo_desc calg_list[] = {
532 {
533 .name = "deflate",
534 .uinfo = {
535 .comp = {
536 .threshold = 90,
537 }
538 },
539 .pfkey_supported = 1,
540 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
541 },
542 {
543 .name = "lzs",
544 .uinfo = {
545 .comp = {
546 .threshold = 90,
547 }
548 },
549 .pfkey_supported = 1,
550 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
551 },
552 {
553 .name = "lzjh",
554 .uinfo = {
555 .comp = {
556 .threshold = 50,
557 }
558 },
559 .pfkey_supported = 1,
560 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
561 },
562 };
563
564 static inline int aead_entries(void)
565 {
566 return ARRAY_SIZE(aead_list);
567 }
568
569 static inline int aalg_entries(void)
570 {
571 return ARRAY_SIZE(aalg_list);
572 }
573
574 static inline int ealg_entries(void)
575 {
576 return ARRAY_SIZE(ealg_list);
577 }
578
579 static inline int calg_entries(void)
580 {
581 return ARRAY_SIZE(calg_list);
582 }
583
584 struct xfrm_algo_list {
585 struct xfrm_algo_desc *algs;
586 int entries;
587 u32 type;
588 u32 mask;
589 };
590
591 static const struct xfrm_algo_list xfrm_aead_list = {
592 .algs = aead_list,
593 .entries = ARRAY_SIZE(aead_list),
594 .type = CRYPTO_ALG_TYPE_AEAD,
595 .mask = CRYPTO_ALG_TYPE_MASK,
596 };
597
598 static const struct xfrm_algo_list xfrm_aalg_list = {
599 .algs = aalg_list,
600 .entries = ARRAY_SIZE(aalg_list),
601 .type = CRYPTO_ALG_TYPE_HASH,
602 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
603 };
604
605 static const struct xfrm_algo_list xfrm_ealg_list = {
606 .algs = ealg_list,
607 .entries = ARRAY_SIZE(ealg_list),
608 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
609 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
610 };
611
612 static const struct xfrm_algo_list xfrm_calg_list = {
613 .algs = calg_list,
614 .entries = ARRAY_SIZE(calg_list),
615 .type = CRYPTO_ALG_TYPE_COMPRESS,
616 .mask = CRYPTO_ALG_TYPE_MASK,
617 };
618
619 static struct xfrm_algo_desc *xfrm_find_algo(
620 const struct xfrm_algo_list *algo_list,
621 int match(const struct xfrm_algo_desc *entry, const void *data),
622 const void *data, int probe)
623 {
624 struct xfrm_algo_desc *list = algo_list->algs;
625 int i, status;
626
627 for (i = 0; i < algo_list->entries; i++) {
628 if (!match(list + i, data))
629 continue;
630
631 if (list[i].available)
632 return &list[i];
633
634 if (!probe)
635 break;
636
637 status = crypto_has_alg(list[i].name, algo_list->type,
638 algo_list->mask);
639 if (!status)
640 break;
641
642 list[i].available = status;
643 return &list[i];
644 }
645 return NULL;
646 }
647
648 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
649 const void *data)
650 {
651 return entry->desc.sadb_alg_id == (unsigned long)data;
652 }
653
654 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
655 {
656 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
657 (void *)(unsigned long)alg_id, 1);
658 }
659 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
660
661 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
662 {
663 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
664 (void *)(unsigned long)alg_id, 1);
665 }
666 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
667
668 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
669 {
670 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
671 (void *)(unsigned long)alg_id, 1);
672 }
673 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
674
675 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
676 const void *data)
677 {
678 const char *name = data;
679
680 return name && (!strcmp(name, entry->name) ||
681 (entry->compat && !strcmp(name, entry->compat)));
682 }
683
684 struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
685 {
686 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
687 probe);
688 }
689 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
690
691 struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
692 {
693 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
694 probe);
695 }
696 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
697
698 struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
699 {
700 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
701 probe);
702 }
703 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
704
705 struct xfrm_aead_name {
706 const char *name;
707 int icvbits;
708 };
709
710 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
711 const void *data)
712 {
713 const struct xfrm_aead_name *aead = data;
714 const char *name = aead->name;
715
716 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
717 !strcmp(name, entry->name);
718 }
719
720 struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
721 {
722 struct xfrm_aead_name data = {
723 .name = name,
724 .icvbits = icv_len,
725 };
726
727 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
728 probe);
729 }
730 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
731
732 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
733 {
734 if (idx >= aalg_entries())
735 return NULL;
736
737 return &aalg_list[idx];
738 }
739 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
740
741 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
742 {
743 if (idx >= ealg_entries())
744 return NULL;
745
746 return &ealg_list[idx];
747 }
748 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
749
750 /*
751 * Probe for the availability of crypto algorithms, and set the available
752 * flag for any algorithms found on the system. This is typically called by
753 * pfkey during userspace SA add, update or register.
754 */
755 void xfrm_probe_algs(void)
756 {
757 int i, status;
758
759 BUG_ON(in_softirq());
760
761 for (i = 0; i < aalg_entries(); i++) {
762 status = crypto_has_hash(aalg_list[i].name, 0,
763 CRYPTO_ALG_ASYNC);
764 if (aalg_list[i].available != status)
765 aalg_list[i].available = status;
766 }
767
768 for (i = 0; i < ealg_entries(); i++) {
769 status = crypto_has_ablkcipher(ealg_list[i].name, 0, 0);
770 if (ealg_list[i].available != status)
771 ealg_list[i].available = status;
772 }
773
774 for (i = 0; i < calg_entries(); i++) {
775 status = crypto_has_comp(calg_list[i].name, 0,
776 CRYPTO_ALG_ASYNC);
777 if (calg_list[i].available != status)
778 calg_list[i].available = status;
779 }
780 }
781 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
782
783 int xfrm_count_pfkey_auth_supported(void)
784 {
785 int i, n;
786
787 for (i = 0, n = 0; i < aalg_entries(); i++)
788 if (aalg_list[i].available && aalg_list[i].pfkey_supported)
789 n++;
790 return n;
791 }
792 EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
793
794 int xfrm_count_pfkey_enc_supported(void)
795 {
796 int i, n;
797
798 for (i = 0, n = 0; i < ealg_entries(); i++)
799 if (ealg_list[i].available && ealg_list[i].pfkey_supported)
800 n++;
801 return n;
802 }
803 EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
804
805 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
806
807 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
808 {
809 if (tail != skb) {
810 skb->data_len += len;
811 skb->len += len;
812 }
813 return skb_put(tail, len);
814 }
815 EXPORT_SYMBOL_GPL(pskb_put);
816 #endif
817
818 MODULE_LICENSE("GPL");