ARM: 7463/1: topology: Update cpu_power according to DT information
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 */
101 static DEFINE_MUTEX(reg_mutex);
102
103 static inline void assert_reg_lock(void)
104 {
105 lockdep_assert_held(&reg_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120 struct list_head list;
121 struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 .n_reg_rules = 5,
133 .alpha2 = "00",
134 .reg_rules = {
135 /* IEEE 802.11b/g, channels 1..11 */
136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 /* IEEE 802.11b/g, channels 12..13. No HT40
138 * channel fits here. */
139 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 NL80211_RRF_PASSIVE_SCAN |
141 NL80211_RRF_NO_IBSS),
142 /* IEEE 802.11 channel 14 - Only JP enables
143 * this and for 802.11b only */
144 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 NL80211_RRF_PASSIVE_SCAN |
146 NL80211_RRF_NO_IBSS |
147 NL80211_RRF_NO_OFDM),
148 /* IEEE 802.11a, channel 36..48 */
149 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 NL80211_RRF_PASSIVE_SCAN |
151 NL80211_RRF_NO_IBSS),
152
153 /* NB: 5260 MHz - 5700 MHz requies DFS */
154
155 /* IEEE 802.11a, channel 149..165 */
156 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159 }
160 };
161
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 &world_regdom;
164
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170
171 static void reset_regdomains(bool full_reset)
172 {
173 /* avoid freeing static information or freeing something twice */
174 if (cfg80211_regdomain == cfg80211_world_regdom)
175 cfg80211_regdomain = NULL;
176 if (cfg80211_world_regdom == &world_regdom)
177 cfg80211_world_regdom = NULL;
178 if (cfg80211_regdomain == &world_regdom)
179 cfg80211_regdomain = NULL;
180
181 kfree(cfg80211_regdomain);
182 kfree(cfg80211_world_regdom);
183
184 cfg80211_world_regdom = &world_regdom;
185 cfg80211_regdomain = NULL;
186
187 if (!full_reset)
188 return;
189
190 if (last_request != &core_request_world)
191 kfree(last_request);
192 last_request = &core_request_world;
193 }
194
195 /*
196 * Dynamic world regulatory domain requested by the wireless
197 * core upon initialization
198 */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 BUG_ON(!last_request);
202
203 reset_regdomains(false);
204
205 cfg80211_world_regdom = rd;
206 cfg80211_regdomain = rd;
207 }
208
209 bool is_world_regdom(const char *alpha2)
210 {
211 if (!alpha2)
212 return false;
213 if (alpha2[0] == '0' && alpha2[1] == '0')
214 return true;
215 return false;
216 }
217
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 if (!alpha2)
221 return false;
222 if (alpha2[0] != 0 && alpha2[1] != 0)
223 return true;
224 return false;
225 }
226
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 if (!alpha2)
230 return false;
231 /*
232 * Special case where regulatory domain was built by driver
233 * but a specific alpha2 cannot be determined
234 */
235 if (alpha2[0] == '9' && alpha2[1] == '9')
236 return true;
237 return false;
238 }
239
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 if (!alpha2)
243 return false;
244 /*
245 * Special case where regulatory domain is the
246 * result of an intersection between two regulatory domain
247 * structures
248 */
249 if (alpha2[0] == '9' && alpha2[1] == '8')
250 return true;
251 return false;
252 }
253
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 if (!alpha2)
257 return false;
258 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 return true;
260 return false;
261 }
262
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 if (!alpha2_x || !alpha2_y)
266 return false;
267 if (alpha2_x[0] == alpha2_y[0] &&
268 alpha2_x[1] == alpha2_y[1])
269 return true;
270 return false;
271 }
272
273 static bool regdom_changes(const char *alpha2)
274 {
275 assert_cfg80211_lock();
276
277 if (!cfg80211_regdomain)
278 return true;
279 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 return false;
281 return true;
282 }
283
284 /*
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
288 */
289 static bool is_user_regdom_saved(void)
290 {
291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 return false;
293
294 /* This would indicate a mistake on the design */
295 if (WARN((!is_world_regdom(user_alpha2) &&
296 !is_an_alpha2(user_alpha2)),
297 "Unexpected user alpha2: %c%c\n",
298 user_alpha2[0],
299 user_alpha2[1]))
300 return false;
301
302 return true;
303 }
304
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 const struct ieee80211_regdomain *src_regd)
307 {
308 struct ieee80211_regdomain *regd;
309 int size_of_regd = 0;
310 unsigned int i;
311
312 size_of_regd = sizeof(struct ieee80211_regdomain) +
313 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314
315 regd = kzalloc(size_of_regd, GFP_KERNEL);
316 if (!regd)
317 return -ENOMEM;
318
319 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320
321 for (i = 0; i < src_regd->n_reg_rules; i++)
322 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 sizeof(struct ieee80211_reg_rule));
324
325 *dst_regd = regd;
326 return 0;
327 }
328
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 char alpha2[2];
332 struct list_head list;
333 };
334
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 struct reg_regdb_search_request *request;
341 const struct ieee80211_regdomain *curdom, *regdom;
342 int i, r;
343
344 mutex_lock(&reg_regdb_search_mutex);
345 while (!list_empty(&reg_regdb_search_list)) {
346 request = list_first_entry(&reg_regdb_search_list,
347 struct reg_regdb_search_request,
348 list);
349 list_del(&request->list);
350
351 for (i=0; i<reg_regdb_size; i++) {
352 curdom = reg_regdb[i];
353
354 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 r = reg_copy_regd(&regdom, curdom);
356 if (r)
357 break;
358 mutex_lock(&cfg80211_mutex);
359 set_regdom(regdom);
360 mutex_unlock(&cfg80211_mutex);
361 break;
362 }
363 }
364
365 kfree(request);
366 }
367 mutex_unlock(&reg_regdb_search_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374 struct reg_regdb_search_request *request;
375
376 if (!alpha2)
377 return;
378
379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 if (!request)
381 return;
382
383 memcpy(request->alpha2, alpha2, 2);
384
385 mutex_lock(&reg_regdb_search_mutex);
386 list_add_tail(&request->list, &reg_regdb_search_list);
387 mutex_unlock(&reg_regdb_search_mutex);
388
389 schedule_work(&reg_regdb_work);
390 }
391
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
396 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402
403 /*
404 * This lets us keep regulatory code which is updated on a regulatory
405 * basis in userspace. Country information is filled in by
406 * reg_device_uevent
407 */
408 static int call_crda(const char *alpha2)
409 {
410 if (!is_world_regdom((char *) alpha2))
411 pr_info("Calling CRDA for country: %c%c\n",
412 alpha2[0], alpha2[1]);
413 else
414 pr_info("Calling CRDA to update world regulatory domain\n");
415
416 /* query internal regulatory database (if it exists) */
417 reg_regdb_query(alpha2);
418
419 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425 assert_cfg80211_lock();
426
427 if (!last_request)
428 return false;
429
430 return alpha2_equal(last_request->alpha2, alpha2);
431 }
432
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 u32 freq_diff;
438
439 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 return false;
441
442 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443 return false;
444
445 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446
447 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448 freq_range->max_bandwidth_khz > freq_diff)
449 return false;
450
451 return true;
452 }
453
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456 const struct ieee80211_reg_rule *reg_rule = NULL;
457 unsigned int i;
458
459 if (!rd->n_reg_rules)
460 return false;
461
462 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463 return false;
464
465 for (i = 0; i < rd->n_reg_rules; i++) {
466 reg_rule = &rd->reg_rules[i];
467 if (!is_valid_reg_rule(reg_rule))
468 return false;
469 }
470
471 return true;
472 }
473
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475 u32 center_freq_khz,
476 u32 bw_khz)
477 {
478 u32 start_freq_khz, end_freq_khz;
479
480 start_freq_khz = center_freq_khz - (bw_khz/2);
481 end_freq_khz = center_freq_khz + (bw_khz/2);
482
483 if (start_freq_khz >= freq_range->start_freq_khz &&
484 end_freq_khz <= freq_range->end_freq_khz)
485 return true;
486
487 return false;
488 }
489
490 /**
491 * freq_in_rule_band - tells us if a frequency is in a frequency band
492 * @freq_range: frequency rule we want to query
493 * @freq_khz: frequency we are inquiring about
494 *
495 * This lets us know if a specific frequency rule is or is not relevant to
496 * a specific frequency's band. Bands are device specific and artificial
497 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
498 * safe for now to assume that a frequency rule should not be part of a
499 * frequency's band if the start freq or end freq are off by more than 2 GHz.
500 * This resolution can be lowered and should be considered as we add
501 * regulatory rule support for other "bands".
502 **/
503 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
504 u32 freq_khz)
505 {
506 #define ONE_GHZ_IN_KHZ 1000000
507 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
508 return true;
509 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
510 return true;
511 return false;
512 #undef ONE_GHZ_IN_KHZ
513 }
514
515 /*
516 * Helper for regdom_intersect(), this does the real
517 * mathematical intersection fun
518 */
519 static int reg_rules_intersect(
520 const struct ieee80211_reg_rule *rule1,
521 const struct ieee80211_reg_rule *rule2,
522 struct ieee80211_reg_rule *intersected_rule)
523 {
524 const struct ieee80211_freq_range *freq_range1, *freq_range2;
525 struct ieee80211_freq_range *freq_range;
526 const struct ieee80211_power_rule *power_rule1, *power_rule2;
527 struct ieee80211_power_rule *power_rule;
528 u32 freq_diff;
529
530 freq_range1 = &rule1->freq_range;
531 freq_range2 = &rule2->freq_range;
532 freq_range = &intersected_rule->freq_range;
533
534 power_rule1 = &rule1->power_rule;
535 power_rule2 = &rule2->power_rule;
536 power_rule = &intersected_rule->power_rule;
537
538 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
539 freq_range2->start_freq_khz);
540 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
541 freq_range2->end_freq_khz);
542 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
543 freq_range2->max_bandwidth_khz);
544
545 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
546 if (freq_range->max_bandwidth_khz > freq_diff)
547 freq_range->max_bandwidth_khz = freq_diff;
548
549 power_rule->max_eirp = min(power_rule1->max_eirp,
550 power_rule2->max_eirp);
551 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
552 power_rule2->max_antenna_gain);
553
554 intersected_rule->flags = (rule1->flags | rule2->flags);
555
556 if (!is_valid_reg_rule(intersected_rule))
557 return -EINVAL;
558
559 return 0;
560 }
561
562 /**
563 * regdom_intersect - do the intersection between two regulatory domains
564 * @rd1: first regulatory domain
565 * @rd2: second regulatory domain
566 *
567 * Use this function to get the intersection between two regulatory domains.
568 * Once completed we will mark the alpha2 for the rd as intersected, "98",
569 * as no one single alpha2 can represent this regulatory domain.
570 *
571 * Returns a pointer to the regulatory domain structure which will hold the
572 * resulting intersection of rules between rd1 and rd2. We will
573 * kzalloc() this structure for you.
574 */
575 static struct ieee80211_regdomain *regdom_intersect(
576 const struct ieee80211_regdomain *rd1,
577 const struct ieee80211_regdomain *rd2)
578 {
579 int r, size_of_regd;
580 unsigned int x, y;
581 unsigned int num_rules = 0, rule_idx = 0;
582 const struct ieee80211_reg_rule *rule1, *rule2;
583 struct ieee80211_reg_rule *intersected_rule;
584 struct ieee80211_regdomain *rd;
585 /* This is just a dummy holder to help us count */
586 struct ieee80211_reg_rule irule;
587
588 /* Uses the stack temporarily for counter arithmetic */
589 intersected_rule = &irule;
590
591 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
592
593 if (!rd1 || !rd2)
594 return NULL;
595
596 /*
597 * First we get a count of the rules we'll need, then we actually
598 * build them. This is to so we can malloc() and free() a
599 * regdomain once. The reason we use reg_rules_intersect() here
600 * is it will return -EINVAL if the rule computed makes no sense.
601 * All rules that do check out OK are valid.
602 */
603
604 for (x = 0; x < rd1->n_reg_rules; x++) {
605 rule1 = &rd1->reg_rules[x];
606 for (y = 0; y < rd2->n_reg_rules; y++) {
607 rule2 = &rd2->reg_rules[y];
608 if (!reg_rules_intersect(rule1, rule2,
609 intersected_rule))
610 num_rules++;
611 memset(intersected_rule, 0,
612 sizeof(struct ieee80211_reg_rule));
613 }
614 }
615
616 if (!num_rules)
617 return NULL;
618
619 size_of_regd = sizeof(struct ieee80211_regdomain) +
620 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
621
622 rd = kzalloc(size_of_regd, GFP_KERNEL);
623 if (!rd)
624 return NULL;
625
626 for (x = 0; x < rd1->n_reg_rules; x++) {
627 rule1 = &rd1->reg_rules[x];
628 for (y = 0; y < rd2->n_reg_rules; y++) {
629 rule2 = &rd2->reg_rules[y];
630 /*
631 * This time around instead of using the stack lets
632 * write to the target rule directly saving ourselves
633 * a memcpy()
634 */
635 intersected_rule = &rd->reg_rules[rule_idx];
636 r = reg_rules_intersect(rule1, rule2,
637 intersected_rule);
638 /*
639 * No need to memset here the intersected rule here as
640 * we're not using the stack anymore
641 */
642 if (r)
643 continue;
644 rule_idx++;
645 }
646 }
647
648 if (rule_idx != num_rules) {
649 kfree(rd);
650 return NULL;
651 }
652
653 rd->n_reg_rules = num_rules;
654 rd->alpha2[0] = '9';
655 rd->alpha2[1] = '8';
656
657 return rd;
658 }
659
660 /*
661 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
662 * want to just have the channel structure use these
663 */
664 static u32 map_regdom_flags(u32 rd_flags)
665 {
666 u32 channel_flags = 0;
667 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
668 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
669 if (rd_flags & NL80211_RRF_NO_IBSS)
670 channel_flags |= IEEE80211_CHAN_NO_IBSS;
671 if (rd_flags & NL80211_RRF_DFS)
672 channel_flags |= IEEE80211_CHAN_RADAR;
673 return channel_flags;
674 }
675
676 static int freq_reg_info_regd(struct wiphy *wiphy,
677 u32 center_freq,
678 u32 desired_bw_khz,
679 const struct ieee80211_reg_rule **reg_rule,
680 const struct ieee80211_regdomain *custom_regd)
681 {
682 int i;
683 bool band_rule_found = false;
684 const struct ieee80211_regdomain *regd;
685 bool bw_fits = false;
686
687 if (!desired_bw_khz)
688 desired_bw_khz = MHZ_TO_KHZ(20);
689
690 regd = custom_regd ? custom_regd : cfg80211_regdomain;
691
692 /*
693 * Follow the driver's regulatory domain, if present, unless a country
694 * IE has been processed or a user wants to help complaince further
695 */
696 if (!custom_regd &&
697 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
698 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
699 wiphy->regd)
700 regd = wiphy->regd;
701
702 if (!regd)
703 return -EINVAL;
704
705 for (i = 0; i < regd->n_reg_rules; i++) {
706 const struct ieee80211_reg_rule *rr;
707 const struct ieee80211_freq_range *fr = NULL;
708
709 rr = &regd->reg_rules[i];
710 fr = &rr->freq_range;
711
712 /*
713 * We only need to know if one frequency rule was
714 * was in center_freq's band, that's enough, so lets
715 * not overwrite it once found
716 */
717 if (!band_rule_found)
718 band_rule_found = freq_in_rule_band(fr, center_freq);
719
720 bw_fits = reg_does_bw_fit(fr,
721 center_freq,
722 desired_bw_khz);
723
724 if (band_rule_found && bw_fits) {
725 *reg_rule = rr;
726 return 0;
727 }
728 }
729
730 if (!band_rule_found)
731 return -ERANGE;
732
733 return -EINVAL;
734 }
735
736 int freq_reg_info(struct wiphy *wiphy,
737 u32 center_freq,
738 u32 desired_bw_khz,
739 const struct ieee80211_reg_rule **reg_rule)
740 {
741 assert_cfg80211_lock();
742 return freq_reg_info_regd(wiphy,
743 center_freq,
744 desired_bw_khz,
745 reg_rule,
746 NULL);
747 }
748 EXPORT_SYMBOL(freq_reg_info);
749
750 #ifdef CONFIG_CFG80211_REG_DEBUG
751 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
752 {
753 switch (initiator) {
754 case NL80211_REGDOM_SET_BY_CORE:
755 return "Set by core";
756 case NL80211_REGDOM_SET_BY_USER:
757 return "Set by user";
758 case NL80211_REGDOM_SET_BY_DRIVER:
759 return "Set by driver";
760 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
761 return "Set by country IE";
762 default:
763 WARN_ON(1);
764 return "Set by bug";
765 }
766 }
767
768 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
769 u32 desired_bw_khz,
770 const struct ieee80211_reg_rule *reg_rule)
771 {
772 const struct ieee80211_power_rule *power_rule;
773 const struct ieee80211_freq_range *freq_range;
774 char max_antenna_gain[32];
775
776 power_rule = &reg_rule->power_rule;
777 freq_range = &reg_rule->freq_range;
778
779 if (!power_rule->max_antenna_gain)
780 snprintf(max_antenna_gain, 32, "N/A");
781 else
782 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
783
784 REG_DBG_PRINT("Updating information on frequency %d MHz "
785 "for a %d MHz width channel with regulatory rule:\n",
786 chan->center_freq,
787 KHZ_TO_MHZ(desired_bw_khz));
788
789 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
790 freq_range->start_freq_khz,
791 freq_range->end_freq_khz,
792 freq_range->max_bandwidth_khz,
793 max_antenna_gain,
794 power_rule->max_eirp);
795 }
796 #else
797 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
798 u32 desired_bw_khz,
799 const struct ieee80211_reg_rule *reg_rule)
800 {
801 return;
802 }
803 #endif
804
805 /*
806 * Note that right now we assume the desired channel bandwidth
807 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
808 * per channel, the primary and the extension channel). To support
809 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
810 * new ieee80211_channel.target_bw and re run the regulatory check
811 * on the wiphy with the target_bw specified. Then we can simply use
812 * that below for the desired_bw_khz below.
813 */
814 static void handle_channel(struct wiphy *wiphy,
815 enum nl80211_reg_initiator initiator,
816 enum ieee80211_band band,
817 unsigned int chan_idx)
818 {
819 int r;
820 u32 flags, bw_flags = 0;
821 u32 desired_bw_khz = MHZ_TO_KHZ(20);
822 const struct ieee80211_reg_rule *reg_rule = NULL;
823 const struct ieee80211_power_rule *power_rule = NULL;
824 const struct ieee80211_freq_range *freq_range = NULL;
825 struct ieee80211_supported_band *sband;
826 struct ieee80211_channel *chan;
827 struct wiphy *request_wiphy = NULL;
828
829 assert_cfg80211_lock();
830
831 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
832
833 sband = wiphy->bands[band];
834 BUG_ON(chan_idx >= sband->n_channels);
835 chan = &sband->channels[chan_idx];
836
837 flags = chan->orig_flags;
838
839 r = freq_reg_info(wiphy,
840 MHZ_TO_KHZ(chan->center_freq),
841 desired_bw_khz,
842 &reg_rule);
843
844 if (r) {
845 /*
846 * We will disable all channels that do not match our
847 * received regulatory rule unless the hint is coming
848 * from a Country IE and the Country IE had no information
849 * about a band. The IEEE 802.11 spec allows for an AP
850 * to send only a subset of the regulatory rules allowed,
851 * so an AP in the US that only supports 2.4 GHz may only send
852 * a country IE with information for the 2.4 GHz band
853 * while 5 GHz is still supported.
854 */
855 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
856 r == -ERANGE)
857 return;
858
859 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
860 chan->flags = IEEE80211_CHAN_DISABLED;
861 return;
862 }
863
864 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
865
866 power_rule = &reg_rule->power_rule;
867 freq_range = &reg_rule->freq_range;
868
869 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
870 bw_flags = IEEE80211_CHAN_NO_HT40;
871
872 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
873 request_wiphy && request_wiphy == wiphy &&
874 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
875 /*
876 * This guarantees the driver's requested regulatory domain
877 * will always be used as a base for further regulatory
878 * settings
879 */
880 chan->flags = chan->orig_flags =
881 map_regdom_flags(reg_rule->flags) | bw_flags;
882 chan->max_antenna_gain = chan->orig_mag =
883 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
884 chan->max_power = chan->orig_mpwr =
885 (int) MBM_TO_DBM(power_rule->max_eirp);
886 return;
887 }
888
889 chan->beacon_found = false;
890 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
891 chan->max_antenna_gain = min(chan->orig_mag,
892 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
893 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
894 chan->max_power = min(chan->max_power, chan->max_reg_power);
895 }
896
897 static void handle_band(struct wiphy *wiphy,
898 enum ieee80211_band band,
899 enum nl80211_reg_initiator initiator)
900 {
901 unsigned int i;
902 struct ieee80211_supported_band *sband;
903
904 BUG_ON(!wiphy->bands[band]);
905 sband = wiphy->bands[band];
906
907 for (i = 0; i < sband->n_channels; i++)
908 handle_channel(wiphy, initiator, band, i);
909 }
910
911 static bool ignore_reg_update(struct wiphy *wiphy,
912 enum nl80211_reg_initiator initiator)
913 {
914 if (!last_request) {
915 REG_DBG_PRINT("Ignoring regulatory request %s since "
916 "last_request is not set\n",
917 reg_initiator_name(initiator));
918 return true;
919 }
920
921 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
922 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
923 REG_DBG_PRINT("Ignoring regulatory request %s "
924 "since the driver uses its own custom "
925 "regulatory domain\n",
926 reg_initiator_name(initiator));
927 return true;
928 }
929
930 /*
931 * wiphy->regd will be set once the device has its own
932 * desired regulatory domain set
933 */
934 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
935 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
936 !is_world_regdom(last_request->alpha2)) {
937 REG_DBG_PRINT("Ignoring regulatory request %s "
938 "since the driver requires its own regulatory "
939 "domain to be set first\n",
940 reg_initiator_name(initiator));
941 return true;
942 }
943
944 return false;
945 }
946
947 static void handle_reg_beacon(struct wiphy *wiphy,
948 unsigned int chan_idx,
949 struct reg_beacon *reg_beacon)
950 {
951 struct ieee80211_supported_band *sband;
952 struct ieee80211_channel *chan;
953 bool channel_changed = false;
954 struct ieee80211_channel chan_before;
955
956 assert_cfg80211_lock();
957
958 sband = wiphy->bands[reg_beacon->chan.band];
959 chan = &sband->channels[chan_idx];
960
961 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
962 return;
963
964 if (chan->beacon_found)
965 return;
966
967 chan->beacon_found = true;
968
969 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
970 return;
971
972 chan_before.center_freq = chan->center_freq;
973 chan_before.flags = chan->flags;
974
975 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
976 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
977 channel_changed = true;
978 }
979
980 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
981 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
982 channel_changed = true;
983 }
984
985 if (channel_changed)
986 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
987 }
988
989 /*
990 * Called when a scan on a wiphy finds a beacon on
991 * new channel
992 */
993 static void wiphy_update_new_beacon(struct wiphy *wiphy,
994 struct reg_beacon *reg_beacon)
995 {
996 unsigned int i;
997 struct ieee80211_supported_band *sband;
998
999 assert_cfg80211_lock();
1000
1001 if (!wiphy->bands[reg_beacon->chan.band])
1002 return;
1003
1004 sband = wiphy->bands[reg_beacon->chan.band];
1005
1006 for (i = 0; i < sband->n_channels; i++)
1007 handle_reg_beacon(wiphy, i, reg_beacon);
1008 }
1009
1010 /*
1011 * Called upon reg changes or a new wiphy is added
1012 */
1013 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1014 {
1015 unsigned int i;
1016 struct ieee80211_supported_band *sband;
1017 struct reg_beacon *reg_beacon;
1018
1019 assert_cfg80211_lock();
1020
1021 if (list_empty(&reg_beacon_list))
1022 return;
1023
1024 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1025 if (!wiphy->bands[reg_beacon->chan.band])
1026 continue;
1027 sband = wiphy->bands[reg_beacon->chan.band];
1028 for (i = 0; i < sband->n_channels; i++)
1029 handle_reg_beacon(wiphy, i, reg_beacon);
1030 }
1031 }
1032
1033 static bool reg_is_world_roaming(struct wiphy *wiphy)
1034 {
1035 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1036 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1037 return true;
1038 if (last_request &&
1039 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1040 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1041 return true;
1042 return false;
1043 }
1044
1045 /* Reap the advantages of previously found beacons */
1046 static void reg_process_beacons(struct wiphy *wiphy)
1047 {
1048 /*
1049 * Means we are just firing up cfg80211, so no beacons would
1050 * have been processed yet.
1051 */
1052 if (!last_request)
1053 return;
1054 if (!reg_is_world_roaming(wiphy))
1055 return;
1056 wiphy_update_beacon_reg(wiphy);
1057 }
1058
1059 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1060 {
1061 if (!chan)
1062 return true;
1063 if (chan->flags & IEEE80211_CHAN_DISABLED)
1064 return true;
1065 /* This would happen when regulatory rules disallow HT40 completely */
1066 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1067 return true;
1068 return false;
1069 }
1070
1071 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1072 enum ieee80211_band band,
1073 unsigned int chan_idx)
1074 {
1075 struct ieee80211_supported_band *sband;
1076 struct ieee80211_channel *channel;
1077 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1078 unsigned int i;
1079
1080 assert_cfg80211_lock();
1081
1082 sband = wiphy->bands[band];
1083 BUG_ON(chan_idx >= sband->n_channels);
1084 channel = &sband->channels[chan_idx];
1085
1086 if (is_ht40_not_allowed(channel)) {
1087 channel->flags |= IEEE80211_CHAN_NO_HT40;
1088 return;
1089 }
1090
1091 /*
1092 * We need to ensure the extension channels exist to
1093 * be able to use HT40- or HT40+, this finds them (or not)
1094 */
1095 for (i = 0; i < sband->n_channels; i++) {
1096 struct ieee80211_channel *c = &sband->channels[i];
1097 if (c->center_freq == (channel->center_freq - 20))
1098 channel_before = c;
1099 if (c->center_freq == (channel->center_freq + 20))
1100 channel_after = c;
1101 }
1102
1103 /*
1104 * Please note that this assumes target bandwidth is 20 MHz,
1105 * if that ever changes we also need to change the below logic
1106 * to include that as well.
1107 */
1108 if (is_ht40_not_allowed(channel_before))
1109 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1110 else
1111 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1112
1113 if (is_ht40_not_allowed(channel_after))
1114 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1115 else
1116 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1117 }
1118
1119 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1120 enum ieee80211_band band)
1121 {
1122 unsigned int i;
1123 struct ieee80211_supported_band *sband;
1124
1125 BUG_ON(!wiphy->bands[band]);
1126 sband = wiphy->bands[band];
1127
1128 for (i = 0; i < sband->n_channels; i++)
1129 reg_process_ht_flags_channel(wiphy, band, i);
1130 }
1131
1132 static void reg_process_ht_flags(struct wiphy *wiphy)
1133 {
1134 enum ieee80211_band band;
1135
1136 if (!wiphy)
1137 return;
1138
1139 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1140 if (wiphy->bands[band])
1141 reg_process_ht_flags_band(wiphy, band);
1142 }
1143
1144 }
1145
1146 static void wiphy_update_regulatory(struct wiphy *wiphy,
1147 enum nl80211_reg_initiator initiator)
1148 {
1149 enum ieee80211_band band;
1150
1151 assert_reg_lock();
1152
1153 if (ignore_reg_update(wiphy, initiator))
1154 return;
1155
1156 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1157
1158 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159 if (wiphy->bands[band])
1160 handle_band(wiphy, band, initiator);
1161 }
1162
1163 reg_process_beacons(wiphy);
1164 reg_process_ht_flags(wiphy);
1165 if (wiphy->reg_notifier)
1166 wiphy->reg_notifier(wiphy, last_request);
1167 }
1168
1169 void regulatory_update(struct wiphy *wiphy,
1170 enum nl80211_reg_initiator setby)
1171 {
1172 mutex_lock(&reg_mutex);
1173 wiphy_update_regulatory(wiphy, setby);
1174 mutex_unlock(&reg_mutex);
1175 }
1176
1177 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1178 {
1179 struct cfg80211_registered_device *rdev;
1180 struct wiphy *wiphy;
1181
1182 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1183 wiphy = &rdev->wiphy;
1184 wiphy_update_regulatory(wiphy, initiator);
1185 /*
1186 * Regulatory updates set by CORE are ignored for custom
1187 * regulatory cards. Let us notify the changes to the driver,
1188 * as some drivers used this to restore its orig_* reg domain.
1189 */
1190 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1191 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1192 wiphy->reg_notifier)
1193 wiphy->reg_notifier(wiphy, last_request);
1194 }
1195 }
1196
1197 static void handle_channel_custom(struct wiphy *wiphy,
1198 enum ieee80211_band band,
1199 unsigned int chan_idx,
1200 const struct ieee80211_regdomain *regd)
1201 {
1202 int r;
1203 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1204 u32 bw_flags = 0;
1205 const struct ieee80211_reg_rule *reg_rule = NULL;
1206 const struct ieee80211_power_rule *power_rule = NULL;
1207 const struct ieee80211_freq_range *freq_range = NULL;
1208 struct ieee80211_supported_band *sband;
1209 struct ieee80211_channel *chan;
1210
1211 assert_reg_lock();
1212
1213 sband = wiphy->bands[band];
1214 BUG_ON(chan_idx >= sband->n_channels);
1215 chan = &sband->channels[chan_idx];
1216
1217 r = freq_reg_info_regd(wiphy,
1218 MHZ_TO_KHZ(chan->center_freq),
1219 desired_bw_khz,
1220 &reg_rule,
1221 regd);
1222
1223 if (r) {
1224 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1225 "regd has no rule that fits a %d MHz "
1226 "wide channel\n",
1227 chan->center_freq,
1228 KHZ_TO_MHZ(desired_bw_khz));
1229 chan->flags = IEEE80211_CHAN_DISABLED;
1230 return;
1231 }
1232
1233 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1234
1235 power_rule = &reg_rule->power_rule;
1236 freq_range = &reg_rule->freq_range;
1237
1238 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1239 bw_flags = IEEE80211_CHAN_NO_HT40;
1240
1241 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1242 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1243 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1244 }
1245
1246 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1247 const struct ieee80211_regdomain *regd)
1248 {
1249 unsigned int i;
1250 struct ieee80211_supported_band *sband;
1251
1252 BUG_ON(!wiphy->bands[band]);
1253 sband = wiphy->bands[band];
1254
1255 for (i = 0; i < sband->n_channels; i++)
1256 handle_channel_custom(wiphy, band, i, regd);
1257 }
1258
1259 /* Used by drivers prior to wiphy registration */
1260 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1261 const struct ieee80211_regdomain *regd)
1262 {
1263 enum ieee80211_band band;
1264 unsigned int bands_set = 0;
1265
1266 mutex_lock(&reg_mutex);
1267 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268 if (!wiphy->bands[band])
1269 continue;
1270 handle_band_custom(wiphy, band, regd);
1271 bands_set++;
1272 }
1273 mutex_unlock(&reg_mutex);
1274
1275 /*
1276 * no point in calling this if it won't have any effect
1277 * on your device's supportd bands.
1278 */
1279 WARN_ON(!bands_set);
1280 }
1281 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1282
1283 /*
1284 * Return value which can be used by ignore_request() to indicate
1285 * it has been determined we should intersect two regulatory domains
1286 */
1287 #define REG_INTERSECT 1
1288
1289 /* This has the logic which determines when a new request
1290 * should be ignored. */
1291 static int ignore_request(struct wiphy *wiphy,
1292 struct regulatory_request *pending_request)
1293 {
1294 struct wiphy *last_wiphy = NULL;
1295
1296 assert_cfg80211_lock();
1297
1298 /* All initial requests are respected */
1299 if (!last_request)
1300 return 0;
1301
1302 switch (pending_request->initiator) {
1303 case NL80211_REGDOM_SET_BY_CORE:
1304 return 0;
1305 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1306
1307 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1308
1309 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1310 return -EINVAL;
1311 if (last_request->initiator ==
1312 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1313 if (last_wiphy != wiphy) {
1314 /*
1315 * Two cards with two APs claiming different
1316 * Country IE alpha2s. We could
1317 * intersect them, but that seems unlikely
1318 * to be correct. Reject second one for now.
1319 */
1320 if (regdom_changes(pending_request->alpha2))
1321 return -EOPNOTSUPP;
1322 return -EALREADY;
1323 }
1324 /*
1325 * Two consecutive Country IE hints on the same wiphy.
1326 * This should be picked up early by the driver/stack
1327 */
1328 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1329 return 0;
1330 return -EALREADY;
1331 }
1332 return 0;
1333 case NL80211_REGDOM_SET_BY_DRIVER:
1334 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1335 if (regdom_changes(pending_request->alpha2))
1336 return 0;
1337 return -EALREADY;
1338 }
1339
1340 /*
1341 * This would happen if you unplug and plug your card
1342 * back in or if you add a new device for which the previously
1343 * loaded card also agrees on the regulatory domain.
1344 */
1345 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1346 !regdom_changes(pending_request->alpha2))
1347 return -EALREADY;
1348
1349 return REG_INTERSECT;
1350 case NL80211_REGDOM_SET_BY_USER:
1351 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1352 return REG_INTERSECT;
1353 /*
1354 * If the user knows better the user should set the regdom
1355 * to their country before the IE is picked up
1356 */
1357 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1358 last_request->intersect)
1359 return -EOPNOTSUPP;
1360 /*
1361 * Process user requests only after previous user/driver/core
1362 * requests have been processed
1363 */
1364 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1365 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1366 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1367 if (regdom_changes(last_request->alpha2))
1368 return -EAGAIN;
1369 }
1370
1371 if (!regdom_changes(pending_request->alpha2))
1372 return -EALREADY;
1373
1374 return 0;
1375 }
1376
1377 return -EINVAL;
1378 }
1379
1380 static void reg_set_request_processed(void)
1381 {
1382 bool need_more_processing = false;
1383
1384 last_request->processed = true;
1385
1386 spin_lock(&reg_requests_lock);
1387 if (!list_empty(&reg_requests_list))
1388 need_more_processing = true;
1389 spin_unlock(&reg_requests_lock);
1390
1391 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1392 cancel_delayed_work_sync(&reg_timeout);
1393
1394 if (need_more_processing)
1395 schedule_work(&reg_work);
1396 }
1397
1398 /**
1399 * __regulatory_hint - hint to the wireless core a regulatory domain
1400 * @wiphy: if the hint comes from country information from an AP, this
1401 * is required to be set to the wiphy that received the information
1402 * @pending_request: the regulatory request currently being processed
1403 *
1404 * The Wireless subsystem can use this function to hint to the wireless core
1405 * what it believes should be the current regulatory domain.
1406 *
1407 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1408 * already been set or other standard error codes.
1409 *
1410 * Caller must hold &cfg80211_mutex and &reg_mutex
1411 */
1412 static int __regulatory_hint(struct wiphy *wiphy,
1413 struct regulatory_request *pending_request)
1414 {
1415 bool intersect = false;
1416 int r = 0;
1417
1418 assert_cfg80211_lock();
1419
1420 r = ignore_request(wiphy, pending_request);
1421
1422 if (r == REG_INTERSECT) {
1423 if (pending_request->initiator ==
1424 NL80211_REGDOM_SET_BY_DRIVER) {
1425 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1426 if (r) {
1427 kfree(pending_request);
1428 return r;
1429 }
1430 }
1431 intersect = true;
1432 } else if (r) {
1433 /*
1434 * If the regulatory domain being requested by the
1435 * driver has already been set just copy it to the
1436 * wiphy
1437 */
1438 if (r == -EALREADY &&
1439 pending_request->initiator ==
1440 NL80211_REGDOM_SET_BY_DRIVER) {
1441 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1442 if (r) {
1443 kfree(pending_request);
1444 return r;
1445 }
1446 r = -EALREADY;
1447 goto new_request;
1448 }
1449 kfree(pending_request);
1450 return r;
1451 }
1452
1453 new_request:
1454 if (last_request != &core_request_world)
1455 kfree(last_request);
1456
1457 last_request = pending_request;
1458 last_request->intersect = intersect;
1459
1460 pending_request = NULL;
1461
1462 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1463 user_alpha2[0] = last_request->alpha2[0];
1464 user_alpha2[1] = last_request->alpha2[1];
1465 }
1466
1467 /* When r == REG_INTERSECT we do need to call CRDA */
1468 if (r < 0) {
1469 /*
1470 * Since CRDA will not be called in this case as we already
1471 * have applied the requested regulatory domain before we just
1472 * inform userspace we have processed the request
1473 */
1474 if (r == -EALREADY) {
1475 nl80211_send_reg_change_event(last_request);
1476 reg_set_request_processed();
1477 }
1478 return r;
1479 }
1480
1481 return call_crda(last_request->alpha2);
1482 }
1483
1484 /* This processes *all* regulatory hints */
1485 static void reg_process_hint(struct regulatory_request *reg_request,
1486 enum nl80211_reg_initiator reg_initiator)
1487 {
1488 int r = 0;
1489 struct wiphy *wiphy = NULL;
1490
1491 BUG_ON(!reg_request->alpha2);
1492
1493 if (wiphy_idx_valid(reg_request->wiphy_idx))
1494 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1495
1496 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1497 !wiphy) {
1498 kfree(reg_request);
1499 return;
1500 }
1501
1502 r = __regulatory_hint(wiphy, reg_request);
1503 /* This is required so that the orig_* parameters are saved */
1504 if (r == -EALREADY && wiphy &&
1505 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1506 wiphy_update_regulatory(wiphy, reg_initiator);
1507 return;
1508 }
1509
1510 /*
1511 * We only time out user hints, given that they should be the only
1512 * source of bogus requests.
1513 */
1514 if (r != -EALREADY &&
1515 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1516 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1517 }
1518
1519 /*
1520 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1521 * Regulatory hints come on a first come first serve basis and we
1522 * must process each one atomically.
1523 */
1524 static void reg_process_pending_hints(void)
1525 {
1526 struct regulatory_request *reg_request;
1527
1528 mutex_lock(&cfg80211_mutex);
1529 mutex_lock(&reg_mutex);
1530
1531 /* When last_request->processed becomes true this will be rescheduled */
1532 if (last_request && !last_request->processed) {
1533 REG_DBG_PRINT("Pending regulatory request, waiting "
1534 "for it to be processed...\n");
1535 goto out;
1536 }
1537
1538 spin_lock(&reg_requests_lock);
1539
1540 if (list_empty(&reg_requests_list)) {
1541 spin_unlock(&reg_requests_lock);
1542 goto out;
1543 }
1544
1545 reg_request = list_first_entry(&reg_requests_list,
1546 struct regulatory_request,
1547 list);
1548 list_del_init(&reg_request->list);
1549
1550 spin_unlock(&reg_requests_lock);
1551
1552 reg_process_hint(reg_request, reg_request->initiator);
1553
1554 out:
1555 mutex_unlock(&reg_mutex);
1556 mutex_unlock(&cfg80211_mutex);
1557 }
1558
1559 /* Processes beacon hints -- this has nothing to do with country IEs */
1560 static void reg_process_pending_beacon_hints(void)
1561 {
1562 struct cfg80211_registered_device *rdev;
1563 struct reg_beacon *pending_beacon, *tmp;
1564
1565 /*
1566 * No need to hold the reg_mutex here as we just touch wiphys
1567 * and do not read or access regulatory variables.
1568 */
1569 mutex_lock(&cfg80211_mutex);
1570
1571 /* This goes through the _pending_ beacon list */
1572 spin_lock_bh(&reg_pending_beacons_lock);
1573
1574 if (list_empty(&reg_pending_beacons)) {
1575 spin_unlock_bh(&reg_pending_beacons_lock);
1576 goto out;
1577 }
1578
1579 list_for_each_entry_safe(pending_beacon, tmp,
1580 &reg_pending_beacons, list) {
1581
1582 list_del_init(&pending_beacon->list);
1583
1584 /* Applies the beacon hint to current wiphys */
1585 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1586 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1587
1588 /* Remembers the beacon hint for new wiphys or reg changes */
1589 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1590 }
1591
1592 spin_unlock_bh(&reg_pending_beacons_lock);
1593 out:
1594 mutex_unlock(&cfg80211_mutex);
1595 }
1596
1597 static void reg_todo(struct work_struct *work)
1598 {
1599 reg_process_pending_hints();
1600 reg_process_pending_beacon_hints();
1601 }
1602
1603 static void queue_regulatory_request(struct regulatory_request *request)
1604 {
1605 if (isalpha(request->alpha2[0]))
1606 request->alpha2[0] = toupper(request->alpha2[0]);
1607 if (isalpha(request->alpha2[1]))
1608 request->alpha2[1] = toupper(request->alpha2[1]);
1609
1610 spin_lock(&reg_requests_lock);
1611 list_add_tail(&request->list, &reg_requests_list);
1612 spin_unlock(&reg_requests_lock);
1613
1614 schedule_work(&reg_work);
1615 }
1616
1617 /*
1618 * Core regulatory hint -- happens during cfg80211_init()
1619 * and when we restore regulatory settings.
1620 */
1621 static int regulatory_hint_core(const char *alpha2)
1622 {
1623 struct regulatory_request *request;
1624
1625 request = kzalloc(sizeof(struct regulatory_request),
1626 GFP_KERNEL);
1627 if (!request)
1628 return -ENOMEM;
1629
1630 request->alpha2[0] = alpha2[0];
1631 request->alpha2[1] = alpha2[1];
1632 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1633
1634 queue_regulatory_request(request);
1635
1636 return 0;
1637 }
1638
1639 /* User hints */
1640 int regulatory_hint_user(const char *alpha2)
1641 {
1642 struct regulatory_request *request;
1643
1644 BUG_ON(!alpha2);
1645
1646 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1647 if (!request)
1648 return -ENOMEM;
1649
1650 request->wiphy_idx = WIPHY_IDX_STALE;
1651 request->alpha2[0] = alpha2[0];
1652 request->alpha2[1] = alpha2[1];
1653 request->initiator = NL80211_REGDOM_SET_BY_USER;
1654
1655 queue_regulatory_request(request);
1656
1657 return 0;
1658 }
1659
1660 /* Driver hints */
1661 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1662 {
1663 struct regulatory_request *request;
1664
1665 BUG_ON(!alpha2);
1666 BUG_ON(!wiphy);
1667
1668 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1669 if (!request)
1670 return -ENOMEM;
1671
1672 request->wiphy_idx = get_wiphy_idx(wiphy);
1673
1674 /* Must have registered wiphy first */
1675 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1676
1677 request->alpha2[0] = alpha2[0];
1678 request->alpha2[1] = alpha2[1];
1679 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1680
1681 queue_regulatory_request(request);
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL(regulatory_hint);
1686
1687 /*
1688 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1689 * therefore cannot iterate over the rdev list here.
1690 */
1691 void regulatory_hint_11d(struct wiphy *wiphy,
1692 enum ieee80211_band band,
1693 u8 *country_ie,
1694 u8 country_ie_len)
1695 {
1696 char alpha2[2];
1697 enum environment_cap env = ENVIRON_ANY;
1698 struct regulatory_request *request;
1699
1700 mutex_lock(&reg_mutex);
1701
1702 if (unlikely(!last_request))
1703 goto out;
1704
1705 /* IE len must be evenly divisible by 2 */
1706 if (country_ie_len & 0x01)
1707 goto out;
1708
1709 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1710 goto out;
1711
1712 alpha2[0] = country_ie[0];
1713 alpha2[1] = country_ie[1];
1714
1715 if (country_ie[2] == 'I')
1716 env = ENVIRON_INDOOR;
1717 else if (country_ie[2] == 'O')
1718 env = ENVIRON_OUTDOOR;
1719
1720 /*
1721 * We will run this only upon a successful connection on cfg80211.
1722 * We leave conflict resolution to the workqueue, where can hold
1723 * cfg80211_mutex.
1724 */
1725 if (likely(last_request->initiator ==
1726 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727 wiphy_idx_valid(last_request->wiphy_idx)))
1728 goto out;
1729
1730 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1731 if (!request)
1732 goto out;
1733
1734 request->wiphy_idx = get_wiphy_idx(wiphy);
1735 request->alpha2[0] = alpha2[0];
1736 request->alpha2[1] = alpha2[1];
1737 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1738 request->country_ie_env = env;
1739
1740 mutex_unlock(&reg_mutex);
1741
1742 queue_regulatory_request(request);
1743
1744 return;
1745
1746 out:
1747 mutex_unlock(&reg_mutex);
1748 }
1749
1750 static void restore_alpha2(char *alpha2, bool reset_user)
1751 {
1752 /* indicates there is no alpha2 to consider for restoration */
1753 alpha2[0] = '9';
1754 alpha2[1] = '7';
1755
1756 /* The user setting has precedence over the module parameter */
1757 if (is_user_regdom_saved()) {
1758 /* Unless we're asked to ignore it and reset it */
1759 if (reset_user) {
1760 REG_DBG_PRINT("Restoring regulatory settings "
1761 "including user preference\n");
1762 user_alpha2[0] = '9';
1763 user_alpha2[1] = '7';
1764
1765 /*
1766 * If we're ignoring user settings, we still need to
1767 * check the module parameter to ensure we put things
1768 * back as they were for a full restore.
1769 */
1770 if (!is_world_regdom(ieee80211_regdom)) {
1771 REG_DBG_PRINT("Keeping preference on "
1772 "module parameter ieee80211_regdom: %c%c\n",
1773 ieee80211_regdom[0],
1774 ieee80211_regdom[1]);
1775 alpha2[0] = ieee80211_regdom[0];
1776 alpha2[1] = ieee80211_regdom[1];
1777 }
1778 } else {
1779 REG_DBG_PRINT("Restoring regulatory settings "
1780 "while preserving user preference for: %c%c\n",
1781 user_alpha2[0],
1782 user_alpha2[1]);
1783 alpha2[0] = user_alpha2[0];
1784 alpha2[1] = user_alpha2[1];
1785 }
1786 } else if (!is_world_regdom(ieee80211_regdom)) {
1787 REG_DBG_PRINT("Keeping preference on "
1788 "module parameter ieee80211_regdom: %c%c\n",
1789 ieee80211_regdom[0],
1790 ieee80211_regdom[1]);
1791 alpha2[0] = ieee80211_regdom[0];
1792 alpha2[1] = ieee80211_regdom[1];
1793 } else
1794 REG_DBG_PRINT("Restoring regulatory settings\n");
1795 }
1796
1797 static void restore_custom_reg_settings(struct wiphy *wiphy)
1798 {
1799 struct ieee80211_supported_band *sband;
1800 enum ieee80211_band band;
1801 struct ieee80211_channel *chan;
1802 int i;
1803
1804 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1805 sband = wiphy->bands[band];
1806 if (!sband)
1807 continue;
1808 for (i = 0; i < sband->n_channels; i++) {
1809 chan = &sband->channels[i];
1810 chan->flags = chan->orig_flags;
1811 chan->max_antenna_gain = chan->orig_mag;
1812 chan->max_power = chan->orig_mpwr;
1813 }
1814 }
1815 }
1816
1817 /*
1818 * Restoring regulatory settings involves ingoring any
1819 * possibly stale country IE information and user regulatory
1820 * settings if so desired, this includes any beacon hints
1821 * learned as we could have traveled outside to another country
1822 * after disconnection. To restore regulatory settings we do
1823 * exactly what we did at bootup:
1824 *
1825 * - send a core regulatory hint
1826 * - send a user regulatory hint if applicable
1827 *
1828 * Device drivers that send a regulatory hint for a specific country
1829 * keep their own regulatory domain on wiphy->regd so that does does
1830 * not need to be remembered.
1831 */
1832 static void restore_regulatory_settings(bool reset_user)
1833 {
1834 char alpha2[2];
1835 char world_alpha2[2];
1836 struct reg_beacon *reg_beacon, *btmp;
1837 struct regulatory_request *reg_request, *tmp;
1838 LIST_HEAD(tmp_reg_req_list);
1839 struct cfg80211_registered_device *rdev;
1840
1841 mutex_lock(&cfg80211_mutex);
1842 mutex_lock(&reg_mutex);
1843
1844 reset_regdomains(true);
1845 restore_alpha2(alpha2, reset_user);
1846
1847 /*
1848 * If there's any pending requests we simply
1849 * stash them to a temporary pending queue and
1850 * add then after we've restored regulatory
1851 * settings.
1852 */
1853 spin_lock(&reg_requests_lock);
1854 if (!list_empty(&reg_requests_list)) {
1855 list_for_each_entry_safe(reg_request, tmp,
1856 &reg_requests_list, list) {
1857 if (reg_request->initiator !=
1858 NL80211_REGDOM_SET_BY_USER)
1859 continue;
1860 list_del(&reg_request->list);
1861 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1862 }
1863 }
1864 spin_unlock(&reg_requests_lock);
1865
1866 /* Clear beacon hints */
1867 spin_lock_bh(&reg_pending_beacons_lock);
1868 if (!list_empty(&reg_pending_beacons)) {
1869 list_for_each_entry_safe(reg_beacon, btmp,
1870 &reg_pending_beacons, list) {
1871 list_del(&reg_beacon->list);
1872 kfree(reg_beacon);
1873 }
1874 }
1875 spin_unlock_bh(&reg_pending_beacons_lock);
1876
1877 if (!list_empty(&reg_beacon_list)) {
1878 list_for_each_entry_safe(reg_beacon, btmp,
1879 &reg_beacon_list, list) {
1880 list_del(&reg_beacon->list);
1881 kfree(reg_beacon);
1882 }
1883 }
1884
1885 /* First restore to the basic regulatory settings */
1886 cfg80211_regdomain = cfg80211_world_regdom;
1887 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1888 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1889
1890 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892 restore_custom_reg_settings(&rdev->wiphy);
1893 }
1894
1895 mutex_unlock(&reg_mutex);
1896 mutex_unlock(&cfg80211_mutex);
1897
1898 regulatory_hint_core(world_alpha2);
1899
1900 /*
1901 * This restores the ieee80211_regdom module parameter
1902 * preference or the last user requested regulatory
1903 * settings, user regulatory settings takes precedence.
1904 */
1905 if (is_an_alpha2(alpha2))
1906 regulatory_hint_user(user_alpha2);
1907
1908 if (list_empty(&tmp_reg_req_list))
1909 return;
1910
1911 mutex_lock(&cfg80211_mutex);
1912 mutex_lock(&reg_mutex);
1913
1914 spin_lock(&reg_requests_lock);
1915 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1916 REG_DBG_PRINT("Adding request for country %c%c back "
1917 "into the queue\n",
1918 reg_request->alpha2[0],
1919 reg_request->alpha2[1]);
1920 list_del(&reg_request->list);
1921 list_add_tail(&reg_request->list, &reg_requests_list);
1922 }
1923 spin_unlock(&reg_requests_lock);
1924
1925 mutex_unlock(&reg_mutex);
1926 mutex_unlock(&cfg80211_mutex);
1927
1928 REG_DBG_PRINT("Kicking the queue\n");
1929
1930 schedule_work(&reg_work);
1931 }
1932
1933 void regulatory_hint_disconnect(void)
1934 {
1935 REG_DBG_PRINT("All devices are disconnected, going to "
1936 "restore regulatory settings\n");
1937 restore_regulatory_settings(false);
1938 }
1939
1940 static bool freq_is_chan_12_13_14(u16 freq)
1941 {
1942 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1943 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1944 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1945 return true;
1946 return false;
1947 }
1948
1949 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1950 struct ieee80211_channel *beacon_chan,
1951 gfp_t gfp)
1952 {
1953 struct reg_beacon *reg_beacon;
1954
1955 if (likely((beacon_chan->beacon_found ||
1956 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1957 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1958 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1959 return 0;
1960
1961 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1962 if (!reg_beacon)
1963 return -ENOMEM;
1964
1965 REG_DBG_PRINT("Found new beacon on "
1966 "frequency: %d MHz (Ch %d) on %s\n",
1967 beacon_chan->center_freq,
1968 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1969 wiphy_name(wiphy));
1970
1971 memcpy(&reg_beacon->chan, beacon_chan,
1972 sizeof(struct ieee80211_channel));
1973
1974
1975 /*
1976 * Since we can be called from BH or and non-BH context
1977 * we must use spin_lock_bh()
1978 */
1979 spin_lock_bh(&reg_pending_beacons_lock);
1980 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1981 spin_unlock_bh(&reg_pending_beacons_lock);
1982
1983 schedule_work(&reg_work);
1984
1985 return 0;
1986 }
1987
1988 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1989 {
1990 unsigned int i;
1991 const struct ieee80211_reg_rule *reg_rule = NULL;
1992 const struct ieee80211_freq_range *freq_range = NULL;
1993 const struct ieee80211_power_rule *power_rule = NULL;
1994
1995 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1996
1997 for (i = 0; i < rd->n_reg_rules; i++) {
1998 reg_rule = &rd->reg_rules[i];
1999 freq_range = &reg_rule->freq_range;
2000 power_rule = &reg_rule->power_rule;
2001
2002 /*
2003 * There may not be documentation for max antenna gain
2004 * in certain regions
2005 */
2006 if (power_rule->max_antenna_gain)
2007 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2008 freq_range->start_freq_khz,
2009 freq_range->end_freq_khz,
2010 freq_range->max_bandwidth_khz,
2011 power_rule->max_antenna_gain,
2012 power_rule->max_eirp);
2013 else
2014 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2015 freq_range->start_freq_khz,
2016 freq_range->end_freq_khz,
2017 freq_range->max_bandwidth_khz,
2018 power_rule->max_eirp);
2019 }
2020 }
2021
2022 bool reg_supported_dfs_region(u8 dfs_region)
2023 {
2024 switch (dfs_region) {
2025 case NL80211_DFS_UNSET:
2026 case NL80211_DFS_FCC:
2027 case NL80211_DFS_ETSI:
2028 case NL80211_DFS_JP:
2029 return true;
2030 default:
2031 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2032 dfs_region);
2033 return false;
2034 }
2035 }
2036
2037 static void print_dfs_region(u8 dfs_region)
2038 {
2039 if (!dfs_region)
2040 return;
2041
2042 switch (dfs_region) {
2043 case NL80211_DFS_FCC:
2044 pr_info(" DFS Master region FCC");
2045 break;
2046 case NL80211_DFS_ETSI:
2047 pr_info(" DFS Master region ETSI");
2048 break;
2049 case NL80211_DFS_JP:
2050 pr_info(" DFS Master region JP");
2051 break;
2052 default:
2053 pr_info(" DFS Master region Uknown");
2054 break;
2055 }
2056 }
2057
2058 static void print_regdomain(const struct ieee80211_regdomain *rd)
2059 {
2060
2061 if (is_intersected_alpha2(rd->alpha2)) {
2062
2063 if (last_request->initiator ==
2064 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2065 struct cfg80211_registered_device *rdev;
2066 rdev = cfg80211_rdev_by_wiphy_idx(
2067 last_request->wiphy_idx);
2068 if (rdev) {
2069 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2070 rdev->country_ie_alpha2[0],
2071 rdev->country_ie_alpha2[1]);
2072 } else
2073 pr_info("Current regulatory domain intersected:\n");
2074 } else
2075 pr_info("Current regulatory domain intersected:\n");
2076 } else if (is_world_regdom(rd->alpha2))
2077 pr_info("World regulatory domain updated:\n");
2078 else {
2079 if (is_unknown_alpha2(rd->alpha2))
2080 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2081 else
2082 pr_info("Regulatory domain changed to country: %c%c\n",
2083 rd->alpha2[0], rd->alpha2[1]);
2084 }
2085 print_dfs_region(rd->dfs_region);
2086 print_rd_rules(rd);
2087 }
2088
2089 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2090 {
2091 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2092 print_rd_rules(rd);
2093 }
2094
2095 /* Takes ownership of rd only if it doesn't fail */
2096 static int __set_regdom(const struct ieee80211_regdomain *rd)
2097 {
2098 const struct ieee80211_regdomain *intersected_rd = NULL;
2099 struct cfg80211_registered_device *rdev = NULL;
2100 struct wiphy *request_wiphy;
2101 /* Some basic sanity checks first */
2102
2103 if (is_world_regdom(rd->alpha2)) {
2104 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2105 return -EINVAL;
2106 update_world_regdomain(rd);
2107 return 0;
2108 }
2109
2110 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2111 !is_unknown_alpha2(rd->alpha2))
2112 return -EINVAL;
2113
2114 if (!last_request)
2115 return -EINVAL;
2116
2117 /*
2118 * Lets only bother proceeding on the same alpha2 if the current
2119 * rd is non static (it means CRDA was present and was used last)
2120 * and the pending request came in from a country IE
2121 */
2122 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123 /*
2124 * If someone else asked us to change the rd lets only bother
2125 * checking if the alpha2 changes if CRDA was already called
2126 */
2127 if (!regdom_changes(rd->alpha2))
2128 return -EINVAL;
2129 }
2130
2131 /*
2132 * Now lets set the regulatory domain, update all driver channels
2133 * and finally inform them of what we have done, in case they want
2134 * to review or adjust their own settings based on their own
2135 * internal EEPROM data
2136 */
2137
2138 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2139 return -EINVAL;
2140
2141 if (!is_valid_rd(rd)) {
2142 pr_err("Invalid regulatory domain detected:\n");
2143 print_regdomain_info(rd);
2144 return -EINVAL;
2145 }
2146
2147 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2148 if (!request_wiphy &&
2149 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2150 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2151 schedule_delayed_work(&reg_timeout, 0);
2152 return -ENODEV;
2153 }
2154
2155 if (!last_request->intersect) {
2156 int r;
2157
2158 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2159 reset_regdomains(false);
2160 cfg80211_regdomain = rd;
2161 return 0;
2162 }
2163
2164 /*
2165 * For a driver hint, lets copy the regulatory domain the
2166 * driver wanted to the wiphy to deal with conflicts
2167 */
2168
2169 /*
2170 * Userspace could have sent two replies with only
2171 * one kernel request.
2172 */
2173 if (request_wiphy->regd)
2174 return -EALREADY;
2175
2176 r = reg_copy_regd(&request_wiphy->regd, rd);
2177 if (r)
2178 return r;
2179
2180 reset_regdomains(false);
2181 cfg80211_regdomain = rd;
2182 return 0;
2183 }
2184
2185 /* Intersection requires a bit more work */
2186
2187 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2188
2189 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2190 if (!intersected_rd)
2191 return -EINVAL;
2192
2193 /*
2194 * We can trash what CRDA provided now.
2195 * However if a driver requested this specific regulatory
2196 * domain we keep it for its private use
2197 */
2198 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2199 request_wiphy->regd = rd;
2200 else
2201 kfree(rd);
2202
2203 rd = NULL;
2204
2205 reset_regdomains(false);
2206 cfg80211_regdomain = intersected_rd;
2207
2208 return 0;
2209 }
2210
2211 if (!intersected_rd)
2212 return -EINVAL;
2213
2214 rdev = wiphy_to_dev(request_wiphy);
2215
2216 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2217 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2218 rdev->env = last_request->country_ie_env;
2219
2220 BUG_ON(intersected_rd == rd);
2221
2222 kfree(rd);
2223 rd = NULL;
2224
2225 reset_regdomains(false);
2226 cfg80211_regdomain = intersected_rd;
2227
2228 return 0;
2229 }
2230
2231
2232 /*
2233 * Use this call to set the current regulatory domain. Conflicts with
2234 * multiple drivers can be ironed out later. Caller must've already
2235 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2236 */
2237 int set_regdom(const struct ieee80211_regdomain *rd)
2238 {
2239 int r;
2240
2241 assert_cfg80211_lock();
2242
2243 mutex_lock(&reg_mutex);
2244
2245 /* Note that this doesn't update the wiphys, this is done below */
2246 r = __set_regdom(rd);
2247 if (r) {
2248 kfree(rd);
2249 mutex_unlock(&reg_mutex);
2250 return r;
2251 }
2252
2253 /* This would make this whole thing pointless */
2254 if (!last_request->intersect)
2255 BUG_ON(rd != cfg80211_regdomain);
2256
2257 /* update all wiphys now with the new established regulatory domain */
2258 update_all_wiphy_regulatory(last_request->initiator);
2259
2260 print_regdomain(cfg80211_regdomain);
2261
2262 nl80211_send_reg_change_event(last_request);
2263
2264 reg_set_request_processed();
2265
2266 mutex_unlock(&reg_mutex);
2267
2268 return r;
2269 }
2270
2271 #ifdef CONFIG_HOTPLUG
2272 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2273 {
2274 if (last_request && !last_request->processed) {
2275 if (add_uevent_var(env, "COUNTRY=%c%c",
2276 last_request->alpha2[0],
2277 last_request->alpha2[1]))
2278 return -ENOMEM;
2279 }
2280
2281 return 0;
2282 }
2283 #else
2284 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2285 {
2286 return -ENODEV;
2287 }
2288 #endif /* CONFIG_HOTPLUG */
2289
2290 /* Caller must hold cfg80211_mutex */
2291 void reg_device_remove(struct wiphy *wiphy)
2292 {
2293 struct wiphy *request_wiphy = NULL;
2294
2295 assert_cfg80211_lock();
2296
2297 mutex_lock(&reg_mutex);
2298
2299 kfree(wiphy->regd);
2300
2301 if (last_request)
2302 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2303
2304 if (!request_wiphy || request_wiphy != wiphy)
2305 goto out;
2306
2307 last_request->wiphy_idx = WIPHY_IDX_STALE;
2308 last_request->country_ie_env = ENVIRON_ANY;
2309 out:
2310 mutex_unlock(&reg_mutex);
2311 }
2312
2313 static void reg_timeout_work(struct work_struct *work)
2314 {
2315 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2316 "restoring regulatory settings\n");
2317 restore_regulatory_settings(true);
2318 }
2319
2320 int __init regulatory_init(void)
2321 {
2322 int err = 0;
2323
2324 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2325 if (IS_ERR(reg_pdev))
2326 return PTR_ERR(reg_pdev);
2327
2328 reg_pdev->dev.type = &reg_device_type;
2329
2330 spin_lock_init(&reg_requests_lock);
2331 spin_lock_init(&reg_pending_beacons_lock);
2332
2333 reg_regdb_size_check();
2334
2335 cfg80211_regdomain = cfg80211_world_regdom;
2336
2337 user_alpha2[0] = '9';
2338 user_alpha2[1] = '7';
2339
2340 /* We always try to get an update for the static regdomain */
2341 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2342 if (err) {
2343 if (err == -ENOMEM)
2344 return err;
2345 /*
2346 * N.B. kobject_uevent_env() can fail mainly for when we're out
2347 * memory which is handled and propagated appropriately above
2348 * but it can also fail during a netlink_broadcast() or during
2349 * early boot for call_usermodehelper(). For now treat these
2350 * errors as non-fatal.
2351 */
2352 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2353 #ifdef CONFIG_CFG80211_REG_DEBUG
2354 /* We want to find out exactly why when debugging */
2355 WARN_ON(err);
2356 #endif
2357 }
2358
2359 /*
2360 * Finally, if the user set the module parameter treat it
2361 * as a user hint.
2362 */
2363 if (!is_world_regdom(ieee80211_regdom))
2364 regulatory_hint_user(ieee80211_regdom);
2365
2366 return 0;
2367 }
2368
2369 void /* __init_or_exit */ regulatory_exit(void)
2370 {
2371 struct regulatory_request *reg_request, *tmp;
2372 struct reg_beacon *reg_beacon, *btmp;
2373
2374 cancel_work_sync(&reg_work);
2375 cancel_delayed_work_sync(&reg_timeout);
2376
2377 mutex_lock(&cfg80211_mutex);
2378 mutex_lock(&reg_mutex);
2379
2380 reset_regdomains(true);
2381
2382 dev_set_uevent_suppress(&reg_pdev->dev, true);
2383
2384 platform_device_unregister(reg_pdev);
2385
2386 spin_lock_bh(&reg_pending_beacons_lock);
2387 if (!list_empty(&reg_pending_beacons)) {
2388 list_for_each_entry_safe(reg_beacon, btmp,
2389 &reg_pending_beacons, list) {
2390 list_del(&reg_beacon->list);
2391 kfree(reg_beacon);
2392 }
2393 }
2394 spin_unlock_bh(&reg_pending_beacons_lock);
2395
2396 if (!list_empty(&reg_beacon_list)) {
2397 list_for_each_entry_safe(reg_beacon, btmp,
2398 &reg_beacon_list, list) {
2399 list_del(&reg_beacon->list);
2400 kfree(reg_beacon);
2401 }
2402 }
2403
2404 spin_lock(&reg_requests_lock);
2405 if (!list_empty(&reg_requests_list)) {
2406 list_for_each_entry_safe(reg_request, tmp,
2407 &reg_requests_list, list) {
2408 list_del(&reg_request->list);
2409 kfree(reg_request);
2410 }
2411 }
2412 spin_unlock(&reg_requests_lock);
2413
2414 mutex_unlock(&reg_mutex);
2415 mutex_unlock(&cfg80211_mutex);
2416 }