Merge tag 'v3.10.61' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / vmw_vsock / vmci_transport.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37
38 #include "af_vsock.h"
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_attach_cb(u32 sub_id,
44 const struct vmci_event_data *ed,
45 void *client_data);
46 static void vmci_transport_peer_detach_cb(u32 sub_id,
47 const struct vmci_event_data *ed,
48 void *client_data);
49 static void vmci_transport_recv_pkt_work(struct work_struct *work);
50 static int vmci_transport_recv_listen(struct sock *sk,
51 struct vmci_transport_packet *pkt);
52 static int vmci_transport_recv_connecting_server(
53 struct sock *sk,
54 struct sock *pending,
55 struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client(
57 struct sock *sk,
58 struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_negotiate(
60 struct sock *sk,
61 struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connecting_client_invalid(
63 struct sock *sk,
64 struct vmci_transport_packet *pkt);
65 static int vmci_transport_recv_connected(struct sock *sk,
66 struct vmci_transport_packet *pkt);
67 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
68 static u16 vmci_transport_new_proto_supported_versions(void);
69 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
70 bool old_pkt_proto);
71
72 struct vmci_transport_recv_pkt_info {
73 struct work_struct work;
74 struct sock *sk;
75 struct vmci_transport_packet pkt;
76 };
77
78 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
79 VMCI_INVALID_ID };
80 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
81
82 static int PROTOCOL_OVERRIDE = -1;
83
84 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
87
88 /* The default peer timeout indicates how long we will wait for a peer response
89 * to a control message.
90 */
91 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
92
93 #define SS_LISTEN 255
94
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 int err;
100
101 switch (vmci_error) {
102 case VMCI_ERROR_NO_MEM:
103 err = ENOMEM;
104 break;
105 case VMCI_ERROR_DUPLICATE_ENTRY:
106 case VMCI_ERROR_ALREADY_EXISTS:
107 err = EADDRINUSE;
108 break;
109 case VMCI_ERROR_NO_ACCESS:
110 err = EPERM;
111 break;
112 case VMCI_ERROR_NO_RESOURCES:
113 err = ENOBUFS;
114 break;
115 case VMCI_ERROR_INVALID_RESOURCE:
116 err = EHOSTUNREACH;
117 break;
118 case VMCI_ERROR_INVALID_ARGS:
119 default:
120 err = EINVAL;
121 }
122
123 return err > 0 ? -err : err;
124 }
125
126 static u32 vmci_transport_peer_rid(u32 peer_cid)
127 {
128 if (VMADDR_CID_HYPERVISOR == peer_cid)
129 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130
131 return VMCI_TRANSPORT_PACKET_RID;
132 }
133
134 static inline void
135 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136 struct sockaddr_vm *src,
137 struct sockaddr_vm *dst,
138 u8 type,
139 u64 size,
140 u64 mode,
141 struct vmci_transport_waiting_info *wait,
142 u16 proto,
143 struct vmci_handle handle)
144 {
145 /* We register the stream control handler as an any cid handle so we
146 * must always send from a source address of VMADDR_CID_ANY
147 */
148 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149 VMCI_TRANSPORT_PACKET_RID);
150 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151 vmci_transport_peer_rid(dst->svm_cid));
152 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154 pkt->type = type;
155 pkt->src_port = src->svm_port;
156 pkt->dst_port = dst->svm_port;
157 memset(&pkt->proto, 0, sizeof(pkt->proto));
158 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159
160 switch (pkt->type) {
161 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162 pkt->u.size = 0;
163 break;
164
165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167 pkt->u.size = size;
168 break;
169
170 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172 pkt->u.handle = handle;
173 break;
174
175 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176 case VMCI_TRANSPORT_PACKET_TYPE_READ:
177 case VMCI_TRANSPORT_PACKET_TYPE_RST:
178 pkt->u.size = 0;
179 break;
180
181 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182 pkt->u.mode = mode;
183 break;
184
185 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188 break;
189
190 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192 pkt->u.size = size;
193 pkt->proto = proto;
194 break;
195 }
196 }
197
198 static inline void
199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200 struct sockaddr_vm *local,
201 struct sockaddr_vm *remote)
202 {
203 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205 }
206
207 static int
208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209 struct sockaddr_vm *src,
210 struct sockaddr_vm *dst,
211 enum vmci_transport_packet_type type,
212 u64 size,
213 u64 mode,
214 struct vmci_transport_waiting_info *wait,
215 u16 proto,
216 struct vmci_handle handle,
217 bool convert_error)
218 {
219 int err;
220
221 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222 proto, handle);
223 err = vmci_datagram_send(&pkt->dg);
224 if (convert_error && (err < 0))
225 return vmci_transport_error_to_vsock_error(err);
226
227 return err;
228 }
229
230 static int
231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232 enum vmci_transport_packet_type type,
233 u64 size,
234 u64 mode,
235 struct vmci_transport_waiting_info *wait,
236 struct vmci_handle handle)
237 {
238 struct vmci_transport_packet reply;
239 struct sockaddr_vm src, dst;
240
241 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242 return 0;
243 } else {
244 vmci_transport_packet_get_addresses(pkt, &src, &dst);
245 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246 type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID,
249 handle, true);
250 }
251 }
252
253 static int
254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst,
256 enum vmci_transport_packet_type type,
257 u64 size,
258 u64 mode,
259 struct vmci_transport_waiting_info *wait,
260 struct vmci_handle handle)
261 {
262 /* Note that it is safe to use a single packet across all CPUs since
263 * two tasklets of the same type are guaranteed to not ever run
264 * simultaneously. If that ever changes, or VMCI stops using tasklets,
265 * we can use per-cpu packets.
266 */
267 static struct vmci_transport_packet pkt;
268
269 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270 size, mode, wait,
271 VSOCK_PROTO_INVALID, handle,
272 false);
273 }
274
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 enum vmci_transport_packet_type type,
278 u64 size,
279 u64 mode,
280 struct vmci_transport_waiting_info *wait,
281 u16 proto,
282 struct vmci_handle handle)
283 {
284 struct vmci_transport_packet *pkt;
285 struct vsock_sock *vsk;
286 int err;
287
288 vsk = vsock_sk(sk);
289
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
292
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
295
296 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
297 if (!pkt)
298 return -ENOMEM;
299
300 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
301 &vsk->remote_addr, type, size,
302 mode, wait, proto, handle,
303 true);
304 kfree(pkt);
305
306 return err;
307 }
308
309 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
310 struct sockaddr_vm *src,
311 struct vmci_transport_packet *pkt)
312 {
313 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
314 return 0;
315 return vmci_transport_send_control_pkt_bh(
316 dst, src,
317 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
318 0, NULL, VMCI_INVALID_HANDLE);
319 }
320
321 static int vmci_transport_send_reset(struct sock *sk,
322 struct vmci_transport_packet *pkt)
323 {
324 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
325 return 0;
326 return vmci_transport_send_control_pkt(sk,
327 VMCI_TRANSPORT_PACKET_TYPE_RST,
328 0, 0, NULL, VSOCK_PROTO_INVALID,
329 VMCI_INVALID_HANDLE);
330 }
331
332 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
333 {
334 return vmci_transport_send_control_pkt(
335 sk,
336 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
337 size, 0, NULL,
338 VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
340 }
341
342 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
343 u16 version)
344 {
345 return vmci_transport_send_control_pkt(
346 sk,
347 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
348 size, 0, NULL, version,
349 VMCI_INVALID_HANDLE);
350 }
351
352 static int vmci_transport_send_qp_offer(struct sock *sk,
353 struct vmci_handle handle)
354 {
355 return vmci_transport_send_control_pkt(
356 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
357 0, NULL,
358 VSOCK_PROTO_INVALID, handle);
359 }
360
361 static int vmci_transport_send_attach(struct sock *sk,
362 struct vmci_handle handle)
363 {
364 return vmci_transport_send_control_pkt(
365 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
366 0, 0, NULL, VSOCK_PROTO_INVALID,
367 handle);
368 }
369
370 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
371 {
372 return vmci_transport_reply_control_pkt_fast(
373 pkt,
374 VMCI_TRANSPORT_PACKET_TYPE_RST,
375 0, 0, NULL,
376 VMCI_INVALID_HANDLE);
377 }
378
379 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
380 struct sockaddr_vm *src)
381 {
382 return vmci_transport_send_control_pkt_bh(
383 dst, src,
384 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
385 0, 0, NULL, VMCI_INVALID_HANDLE);
386 }
387
388 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
389 struct sockaddr_vm *src)
390 {
391 return vmci_transport_send_control_pkt_bh(
392 dst, src,
393 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
394 0, NULL, VMCI_INVALID_HANDLE);
395 }
396
397 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
398 struct sockaddr_vm *src)
399 {
400 return vmci_transport_send_control_pkt_bh(
401 dst, src,
402 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
403 0, NULL, VMCI_INVALID_HANDLE);
404 }
405
406 int vmci_transport_send_wrote(struct sock *sk)
407 {
408 return vmci_transport_send_control_pkt(
409 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 0, NULL, VSOCK_PROTO_INVALID,
411 VMCI_INVALID_HANDLE);
412 }
413
414 int vmci_transport_send_read(struct sock *sk)
415 {
416 return vmci_transport_send_control_pkt(
417 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
418 0, NULL, VSOCK_PROTO_INVALID,
419 VMCI_INVALID_HANDLE);
420 }
421
422 int vmci_transport_send_waiting_write(struct sock *sk,
423 struct vmci_transport_waiting_info *wait)
424 {
425 return vmci_transport_send_control_pkt(
426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
427 0, 0, wait, VSOCK_PROTO_INVALID,
428 VMCI_INVALID_HANDLE);
429 }
430
431 int vmci_transport_send_waiting_read(struct sock *sk,
432 struct vmci_transport_waiting_info *wait)
433 {
434 return vmci_transport_send_control_pkt(
435 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
436 0, 0, wait, VSOCK_PROTO_INVALID,
437 VMCI_INVALID_HANDLE);
438 }
439
440 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
441 {
442 return vmci_transport_send_control_pkt(
443 &vsk->sk,
444 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
445 0, mode, NULL,
446 VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
448 }
449
450 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
451 {
452 return vmci_transport_send_control_pkt(sk,
453 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
454 size, 0, NULL,
455 VSOCK_PROTO_INVALID,
456 VMCI_INVALID_HANDLE);
457 }
458
459 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
460 u16 version)
461 {
462 return vmci_transport_send_control_pkt(
463 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
464 size, 0, NULL, version,
465 VMCI_INVALID_HANDLE);
466 }
467
468 static struct sock *vmci_transport_get_pending(
469 struct sock *listener,
470 struct vmci_transport_packet *pkt)
471 {
472 struct vsock_sock *vlistener;
473 struct vsock_sock *vpending;
474 struct sock *pending;
475 struct sockaddr_vm src;
476
477 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
478
479 vlistener = vsock_sk(listener);
480
481 list_for_each_entry(vpending, &vlistener->pending_links,
482 pending_links) {
483 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
484 pkt->dst_port == vpending->local_addr.svm_port) {
485 pending = sk_vsock(vpending);
486 sock_hold(pending);
487 goto found;
488 }
489 }
490
491 pending = NULL;
492 found:
493 return pending;
494
495 }
496
497 static void vmci_transport_release_pending(struct sock *pending)
498 {
499 sock_put(pending);
500 }
501
502 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
503 * trusted sockets 2) sockets from applications running as the same user as the
504 * VM (this is only true for the host side and only when using hosted products)
505 */
506
507 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
508 {
509 return vsock->trusted ||
510 vmci_is_context_owner(peer_cid, vsock->owner->uid);
511 }
512
513 /* We allow sending datagrams to and receiving datagrams from a restricted VM
514 * only if it is trusted as described in vmci_transport_is_trusted.
515 */
516
517 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
518 {
519 if (VMADDR_CID_HYPERVISOR == peer_cid)
520 return true;
521
522 if (vsock->cached_peer != peer_cid) {
523 vsock->cached_peer = peer_cid;
524 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
525 (vmci_context_get_priv_flags(peer_cid) &
526 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
527 vsock->cached_peer_allow_dgram = false;
528 } else {
529 vsock->cached_peer_allow_dgram = true;
530 }
531 }
532
533 return vsock->cached_peer_allow_dgram;
534 }
535
536 static int
537 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
538 struct vmci_handle *handle,
539 u64 produce_size,
540 u64 consume_size,
541 u32 peer, u32 flags, bool trusted)
542 {
543 int err = 0;
544
545 if (trusted) {
546 /* Try to allocate our queue pair as trusted. This will only
547 * work if vsock is running in the host.
548 */
549
550 err = vmci_qpair_alloc(qpair, handle, produce_size,
551 consume_size,
552 peer, flags,
553 VMCI_PRIVILEGE_FLAG_TRUSTED);
554 if (err != VMCI_ERROR_NO_ACCESS)
555 goto out;
556
557 }
558
559 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
560 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
561 out:
562 if (err < 0) {
563 pr_err("Could not attach to queue pair with %d\n",
564 err);
565 err = vmci_transport_error_to_vsock_error(err);
566 }
567
568 return err;
569 }
570
571 static int
572 vmci_transport_datagram_create_hnd(u32 resource_id,
573 u32 flags,
574 vmci_datagram_recv_cb recv_cb,
575 void *client_data,
576 struct vmci_handle *out_handle)
577 {
578 int err = 0;
579
580 /* Try to allocate our datagram handler as trusted. This will only work
581 * if vsock is running in the host.
582 */
583
584 err = vmci_datagram_create_handle_priv(resource_id, flags,
585 VMCI_PRIVILEGE_FLAG_TRUSTED,
586 recv_cb,
587 client_data, out_handle);
588
589 if (err == VMCI_ERROR_NO_ACCESS)
590 err = vmci_datagram_create_handle(resource_id, flags,
591 recv_cb, client_data,
592 out_handle);
593
594 return err;
595 }
596
597 /* This is invoked as part of a tasklet that's scheduled when the VMCI
598 * interrupt fires. This is run in bottom-half context and if it ever needs to
599 * sleep it should defer that work to a work queue.
600 */
601
602 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
603 {
604 struct sock *sk;
605 size_t size;
606 struct sk_buff *skb;
607 struct vsock_sock *vsk;
608
609 sk = (struct sock *)data;
610
611 /* This handler is privileged when this module is running on the host.
612 * We will get datagrams from all endpoints (even VMs that are in a
613 * restricted context). If we get one from a restricted context then
614 * the destination socket must be trusted.
615 *
616 * NOTE: We access the socket struct without holding the lock here.
617 * This is ok because the field we are interested is never modified
618 * outside of the create and destruct socket functions.
619 */
620 vsk = vsock_sk(sk);
621 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
622 return VMCI_ERROR_NO_ACCESS;
623
624 size = VMCI_DG_SIZE(dg);
625
626 /* Attach the packet to the socket's receive queue as an sk_buff. */
627 skb = alloc_skb(size, GFP_ATOMIC);
628 if (skb) {
629 /* sk_receive_skb() will do a sock_put(), so hold here. */
630 sock_hold(sk);
631 skb_put(skb, size);
632 memcpy(skb->data, dg, size);
633 sk_receive_skb(sk, skb, 0);
634 }
635
636 return VMCI_SUCCESS;
637 }
638
639 static bool vmci_transport_stream_allow(u32 cid, u32 port)
640 {
641 static const u32 non_socket_contexts[] = {
642 VMADDR_CID_RESERVED,
643 };
644 int i;
645
646 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
647
648 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
649 if (cid == non_socket_contexts[i])
650 return false;
651 }
652
653 return true;
654 }
655
656 /* This is invoked as part of a tasklet that's scheduled when the VMCI
657 * interrupt fires. This is run in bottom-half context but it defers most of
658 * its work to the packet handling work queue.
659 */
660
661 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
662 {
663 struct sock *sk;
664 struct sockaddr_vm dst;
665 struct sockaddr_vm src;
666 struct vmci_transport_packet *pkt;
667 struct vsock_sock *vsk;
668 bool bh_process_pkt;
669 int err;
670
671 sk = NULL;
672 err = VMCI_SUCCESS;
673 bh_process_pkt = false;
674
675 /* Ignore incoming packets from contexts without sockets, or resources
676 * that aren't vsock implementations.
677 */
678
679 if (!vmci_transport_stream_allow(dg->src.context, -1)
680 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
681 return VMCI_ERROR_NO_ACCESS;
682
683 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
684 /* Drop datagrams that do not contain full VSock packets. */
685 return VMCI_ERROR_INVALID_ARGS;
686
687 pkt = (struct vmci_transport_packet *)dg;
688
689 /* Find the socket that should handle this packet. First we look for a
690 * connected socket and if there is none we look for a socket bound to
691 * the destintation address.
692 */
693 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
694 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
695
696 sk = vsock_find_connected_socket(&src, &dst);
697 if (!sk) {
698 sk = vsock_find_bound_socket(&dst);
699 if (!sk) {
700 /* We could not find a socket for this specified
701 * address. If this packet is a RST, we just drop it.
702 * If it is another packet, we send a RST. Note that
703 * we do not send a RST reply to RSTs so that we do not
704 * continually send RSTs between two endpoints.
705 *
706 * Note that since this is a reply, dst is src and src
707 * is dst.
708 */
709 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
710 pr_err("unable to send reset\n");
711
712 err = VMCI_ERROR_NOT_FOUND;
713 goto out;
714 }
715 }
716
717 /* If the received packet type is beyond all types known to this
718 * implementation, reply with an invalid message. Hopefully this will
719 * help when implementing backwards compatibility in the future.
720 */
721 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
722 vmci_transport_send_invalid_bh(&dst, &src);
723 err = VMCI_ERROR_INVALID_ARGS;
724 goto out;
725 }
726
727 /* This handler is privileged when this module is running on the host.
728 * We will get datagram connect requests from all endpoints (even VMs
729 * that are in a restricted context). If we get one from a restricted
730 * context then the destination socket must be trusted.
731 *
732 * NOTE: We access the socket struct without holding the lock here.
733 * This is ok because the field we are interested is never modified
734 * outside of the create and destruct socket functions.
735 */
736 vsk = vsock_sk(sk);
737 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
738 err = VMCI_ERROR_NO_ACCESS;
739 goto out;
740 }
741
742 /* We do most everything in a work queue, but let's fast path the
743 * notification of reads and writes to help data transfer performance.
744 * We can only do this if there is no process context code executing
745 * for this socket since that may change the state.
746 */
747 bh_lock_sock(sk);
748
749 if (!sock_owned_by_user(sk)) {
750 /* The local context ID may be out of date, update it. */
751 vsk->local_addr.svm_cid = dst.svm_cid;
752
753 if (sk->sk_state == SS_CONNECTED)
754 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
755 sk, pkt, true, &dst, &src,
756 &bh_process_pkt);
757 }
758
759 bh_unlock_sock(sk);
760
761 if (!bh_process_pkt) {
762 struct vmci_transport_recv_pkt_info *recv_pkt_info;
763
764 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
765 if (!recv_pkt_info) {
766 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
767 pr_err("unable to send reset\n");
768
769 err = VMCI_ERROR_NO_MEM;
770 goto out;
771 }
772
773 recv_pkt_info->sk = sk;
774 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
775 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
776
777 schedule_work(&recv_pkt_info->work);
778 /* Clear sk so that the reference count incremented by one of
779 * the Find functions above is not decremented below. We need
780 * that reference count for the packet handler we've scheduled
781 * to run.
782 */
783 sk = NULL;
784 }
785
786 out:
787 if (sk)
788 sock_put(sk);
789
790 return err;
791 }
792
793 static void vmci_transport_peer_attach_cb(u32 sub_id,
794 const struct vmci_event_data *e_data,
795 void *client_data)
796 {
797 struct sock *sk = client_data;
798 const struct vmci_event_payload_qp *e_payload;
799 struct vsock_sock *vsk;
800
801 e_payload = vmci_event_data_const_payload(e_data);
802
803 vsk = vsock_sk(sk);
804
805 /* We don't ask for delayed CBs when we subscribe to this event (we
806 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
807 * guarantees in that case about what context we might be running in,
808 * so it could be BH or process, blockable or non-blockable. So we
809 * need to account for all possible contexts here.
810 */
811 local_bh_disable();
812 bh_lock_sock(sk);
813
814 /* XXX This is lame, we should provide a way to lookup sockets by
815 * qp_handle.
816 */
817 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
818 e_payload->handle)) {
819 /* XXX This doesn't do anything, but in the future we may want
820 * to set a flag here to verify the attach really did occur and
821 * we weren't just sent a datagram claiming it was.
822 */
823 goto out;
824 }
825
826 out:
827 bh_unlock_sock(sk);
828 local_bh_enable();
829 }
830
831 static void vmci_transport_handle_detach(struct sock *sk)
832 {
833 struct vsock_sock *vsk;
834
835 vsk = vsock_sk(sk);
836 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
837 sock_set_flag(sk, SOCK_DONE);
838
839 /* On a detach the peer will not be sending or receiving
840 * anymore.
841 */
842 vsk->peer_shutdown = SHUTDOWN_MASK;
843
844 /* We should not be sending anymore since the peer won't be
845 * there to receive, but we can still receive if there is data
846 * left in our consume queue.
847 */
848 if (vsock_stream_has_data(vsk) <= 0) {
849 if (sk->sk_state == SS_CONNECTING) {
850 /* The peer may detach from a queue pair while
851 * we are still in the connecting state, i.e.,
852 * if the peer VM is killed after attaching to
853 * a queue pair, but before we complete the
854 * handshake. In that case, we treat the detach
855 * event like a reset.
856 */
857
858 sk->sk_state = SS_UNCONNECTED;
859 sk->sk_err = ECONNRESET;
860 sk->sk_error_report(sk);
861 return;
862 }
863 sk->sk_state = SS_UNCONNECTED;
864 }
865 sk->sk_state_change(sk);
866 }
867 }
868
869 static void vmci_transport_peer_detach_cb(u32 sub_id,
870 const struct vmci_event_data *e_data,
871 void *client_data)
872 {
873 struct sock *sk = client_data;
874 const struct vmci_event_payload_qp *e_payload;
875 struct vsock_sock *vsk;
876
877 e_payload = vmci_event_data_const_payload(e_data);
878 vsk = vsock_sk(sk);
879 if (vmci_handle_is_invalid(e_payload->handle))
880 return;
881
882 /* Same rules for locking as for peer_attach_cb(). */
883 local_bh_disable();
884 bh_lock_sock(sk);
885
886 /* XXX This is lame, we should provide a way to lookup sockets by
887 * qp_handle.
888 */
889 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
890 e_payload->handle))
891 vmci_transport_handle_detach(sk);
892
893 bh_unlock_sock(sk);
894 local_bh_enable();
895 }
896
897 static void vmci_transport_qp_resumed_cb(u32 sub_id,
898 const struct vmci_event_data *e_data,
899 void *client_data)
900 {
901 vsock_for_each_connected_socket(vmci_transport_handle_detach);
902 }
903
904 static void vmci_transport_recv_pkt_work(struct work_struct *work)
905 {
906 struct vmci_transport_recv_pkt_info *recv_pkt_info;
907 struct vmci_transport_packet *pkt;
908 struct sock *sk;
909
910 recv_pkt_info =
911 container_of(work, struct vmci_transport_recv_pkt_info, work);
912 sk = recv_pkt_info->sk;
913 pkt = &recv_pkt_info->pkt;
914
915 lock_sock(sk);
916
917 /* The local context ID may be out of date. */
918 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
919
920 switch (sk->sk_state) {
921 case SS_LISTEN:
922 vmci_transport_recv_listen(sk, pkt);
923 break;
924 case SS_CONNECTING:
925 /* Processing of pending connections for servers goes through
926 * the listening socket, so see vmci_transport_recv_listen()
927 * for that path.
928 */
929 vmci_transport_recv_connecting_client(sk, pkt);
930 break;
931 case SS_CONNECTED:
932 vmci_transport_recv_connected(sk, pkt);
933 break;
934 default:
935 /* Because this function does not run in the same context as
936 * vmci_transport_recv_stream_cb it is possible that the
937 * socket has closed. We need to let the other side know or it
938 * could be sitting in a connect and hang forever. Send a
939 * reset to prevent that.
940 */
941 vmci_transport_send_reset(sk, pkt);
942 goto out;
943 }
944
945 out:
946 release_sock(sk);
947 kfree(recv_pkt_info);
948 /* Release reference obtained in the stream callback when we fetched
949 * this socket out of the bound or connected list.
950 */
951 sock_put(sk);
952 }
953
954 static int vmci_transport_recv_listen(struct sock *sk,
955 struct vmci_transport_packet *pkt)
956 {
957 struct sock *pending;
958 struct vsock_sock *vpending;
959 int err;
960 u64 qp_size;
961 bool old_request = false;
962 bool old_pkt_proto = false;
963
964 err = 0;
965
966 /* Because we are in the listen state, we could be receiving a packet
967 * for ourself or any previous connection requests that we received.
968 * If it's the latter, we try to find a socket in our list of pending
969 * connections and, if we do, call the appropriate handler for the
970 * state that that socket is in. Otherwise we try to service the
971 * connection request.
972 */
973 pending = vmci_transport_get_pending(sk, pkt);
974 if (pending) {
975 lock_sock(pending);
976
977 /* The local context ID may be out of date. */
978 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
979
980 switch (pending->sk_state) {
981 case SS_CONNECTING:
982 err = vmci_transport_recv_connecting_server(sk,
983 pending,
984 pkt);
985 break;
986 default:
987 vmci_transport_send_reset(pending, pkt);
988 err = -EINVAL;
989 }
990
991 if (err < 0)
992 vsock_remove_pending(sk, pending);
993
994 release_sock(pending);
995 vmci_transport_release_pending(pending);
996
997 return err;
998 }
999
1000 /* The listen state only accepts connection requests. Reply with a
1001 * reset unless we received a reset.
1002 */
1003
1004 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006 vmci_transport_reply_reset(pkt);
1007 return -EINVAL;
1008 }
1009
1010 if (pkt->u.size == 0) {
1011 vmci_transport_reply_reset(pkt);
1012 return -EINVAL;
1013 }
1014
1015 /* If this socket can't accommodate this connection request, we send a
1016 * reset. Otherwise we create and initialize a child socket and reply
1017 * with a connection negotiation.
1018 */
1019 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020 vmci_transport_reply_reset(pkt);
1021 return -ECONNREFUSED;
1022 }
1023
1024 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025 sk->sk_type);
1026 if (!pending) {
1027 vmci_transport_send_reset(sk, pkt);
1028 return -ENOMEM;
1029 }
1030
1031 vpending = vsock_sk(pending);
1032
1033 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034 pkt->dst_port);
1035 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036 pkt->src_port);
1037
1038 /* If the proposed size fits within our min/max, accept it. Otherwise
1039 * propose our own size.
1040 */
1041 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043 qp_size = pkt->u.size;
1044 } else {
1045 qp_size = vmci_trans(vpending)->queue_pair_size;
1046 }
1047
1048 /* Figure out if we are using old or new requests based on the
1049 * overrides pkt types sent by our peer.
1050 */
1051 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052 old_request = old_pkt_proto;
1053 } else {
1054 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055 old_request = true;
1056 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057 old_request = false;
1058
1059 }
1060
1061 if (old_request) {
1062 /* Handle a REQUEST (or override) */
1063 u16 version = VSOCK_PROTO_INVALID;
1064 if (vmci_transport_proto_to_notify_struct(
1065 pending, &version, true))
1066 err = vmci_transport_send_negotiate(pending, qp_size);
1067 else
1068 err = -EINVAL;
1069
1070 } else {
1071 /* Handle a REQUEST2 (or override) */
1072 int proto_int = pkt->proto;
1073 int pos;
1074 u16 active_proto_version = 0;
1075
1076 /* The list of possible protocols is the intersection of all
1077 * protocols the client supports ... plus all the protocols we
1078 * support.
1079 */
1080 proto_int &= vmci_transport_new_proto_supported_versions();
1081
1082 /* We choose the highest possible protocol version and use that
1083 * one.
1084 */
1085 pos = fls(proto_int);
1086 if (pos) {
1087 active_proto_version = (1 << (pos - 1));
1088 if (vmci_transport_proto_to_notify_struct(
1089 pending, &active_proto_version, false))
1090 err = vmci_transport_send_negotiate2(pending,
1091 qp_size,
1092 active_proto_version);
1093 else
1094 err = -EINVAL;
1095
1096 } else {
1097 err = -EINVAL;
1098 }
1099 }
1100
1101 if (err < 0) {
1102 vmci_transport_send_reset(sk, pkt);
1103 sock_put(pending);
1104 err = vmci_transport_error_to_vsock_error(err);
1105 goto out;
1106 }
1107
1108 vsock_add_pending(sk, pending);
1109 sk->sk_ack_backlog++;
1110
1111 pending->sk_state = SS_CONNECTING;
1112 vmci_trans(vpending)->produce_size =
1113 vmci_trans(vpending)->consume_size = qp_size;
1114 vmci_trans(vpending)->queue_pair_size = qp_size;
1115
1116 vmci_trans(vpending)->notify_ops->process_request(pending);
1117
1118 /* We might never receive another message for this socket and it's not
1119 * connected to any process, so we have to ensure it gets cleaned up
1120 * ourself. Our delayed work function will take care of that. Note
1121 * that we do not ever cancel this function since we have few
1122 * guarantees about its state when calling cancel_delayed_work().
1123 * Instead we hold a reference on the socket for that function and make
1124 * it capable of handling cases where it needs to do nothing but
1125 * release that reference.
1126 */
1127 vpending->listener = sk;
1128 sock_hold(sk);
1129 sock_hold(pending);
1130 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1131 schedule_delayed_work(&vpending->dwork, HZ);
1132
1133 out:
1134 return err;
1135 }
1136
1137 static int
1138 vmci_transport_recv_connecting_server(struct sock *listener,
1139 struct sock *pending,
1140 struct vmci_transport_packet *pkt)
1141 {
1142 struct vsock_sock *vpending;
1143 struct vmci_handle handle;
1144 struct vmci_qp *qpair;
1145 bool is_local;
1146 u32 flags;
1147 u32 detach_sub_id;
1148 int err;
1149 int skerr;
1150
1151 vpending = vsock_sk(pending);
1152 detach_sub_id = VMCI_INVALID_ID;
1153
1154 switch (pkt->type) {
1155 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1156 if (vmci_handle_is_invalid(pkt->u.handle)) {
1157 vmci_transport_send_reset(pending, pkt);
1158 skerr = EPROTO;
1159 err = -EINVAL;
1160 goto destroy;
1161 }
1162 break;
1163 default:
1164 /* Close and cleanup the connection. */
1165 vmci_transport_send_reset(pending, pkt);
1166 skerr = EPROTO;
1167 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1168 goto destroy;
1169 }
1170
1171 /* In order to complete the connection we need to attach to the offered
1172 * queue pair and send an attach notification. We also subscribe to the
1173 * detach event so we know when our peer goes away, and we do that
1174 * before attaching so we don't miss an event. If all this succeeds,
1175 * we update our state and wakeup anything waiting in accept() for a
1176 * connection.
1177 */
1178
1179 /* We don't care about attach since we ensure the other side has
1180 * attached by specifying the ATTACH_ONLY flag below.
1181 */
1182 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1183 vmci_transport_peer_detach_cb,
1184 pending, &detach_sub_id);
1185 if (err < VMCI_SUCCESS) {
1186 vmci_transport_send_reset(pending, pkt);
1187 err = vmci_transport_error_to_vsock_error(err);
1188 skerr = -err;
1189 goto destroy;
1190 }
1191
1192 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1193
1194 /* Now attach to the queue pair the client created. */
1195 handle = pkt->u.handle;
1196
1197 /* vpending->local_addr always has a context id so we do not need to
1198 * worry about VMADDR_CID_ANY in this case.
1199 */
1200 is_local =
1201 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1202 flags = VMCI_QPFLAG_ATTACH_ONLY;
1203 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1204
1205 err = vmci_transport_queue_pair_alloc(
1206 &qpair,
1207 &handle,
1208 vmci_trans(vpending)->produce_size,
1209 vmci_trans(vpending)->consume_size,
1210 pkt->dg.src.context,
1211 flags,
1212 vmci_transport_is_trusted(
1213 vpending,
1214 vpending->remote_addr.svm_cid));
1215 if (err < 0) {
1216 vmci_transport_send_reset(pending, pkt);
1217 skerr = -err;
1218 goto destroy;
1219 }
1220
1221 vmci_trans(vpending)->qp_handle = handle;
1222 vmci_trans(vpending)->qpair = qpair;
1223
1224 /* When we send the attach message, we must be ready to handle incoming
1225 * control messages on the newly connected socket. So we move the
1226 * pending socket to the connected state before sending the attach
1227 * message. Otherwise, an incoming packet triggered by the attach being
1228 * received by the peer may be processed concurrently with what happens
1229 * below after sending the attach message, and that incoming packet
1230 * will find the listening socket instead of the (currently) pending
1231 * socket. Note that enqueueing the socket increments the reference
1232 * count, so even if a reset comes before the connection is accepted,
1233 * the socket will be valid until it is removed from the queue.
1234 *
1235 * If we fail sending the attach below, we remove the socket from the
1236 * connected list and move the socket to SS_UNCONNECTED before
1237 * releasing the lock, so a pending slow path processing of an incoming
1238 * packet will not see the socket in the connected state in that case.
1239 */
1240 pending->sk_state = SS_CONNECTED;
1241
1242 vsock_insert_connected(vpending);
1243
1244 /* Notify our peer of our attach. */
1245 err = vmci_transport_send_attach(pending, handle);
1246 if (err < 0) {
1247 vsock_remove_connected(vpending);
1248 pr_err("Could not send attach\n");
1249 vmci_transport_send_reset(pending, pkt);
1250 err = vmci_transport_error_to_vsock_error(err);
1251 skerr = -err;
1252 goto destroy;
1253 }
1254
1255 /* We have a connection. Move the now connected socket from the
1256 * listener's pending list to the accept queue so callers of accept()
1257 * can find it.
1258 */
1259 vsock_remove_pending(listener, pending);
1260 vsock_enqueue_accept(listener, pending);
1261
1262 /* Callers of accept() will be be waiting on the listening socket, not
1263 * the pending socket.
1264 */
1265 listener->sk_state_change(listener);
1266
1267 return 0;
1268
1269 destroy:
1270 pending->sk_err = skerr;
1271 pending->sk_state = SS_UNCONNECTED;
1272 /* As long as we drop our reference, all necessary cleanup will handle
1273 * when the cleanup function drops its reference and our destruct
1274 * implementation is called. Note that since the listen handler will
1275 * remove pending from the pending list upon our failure, the cleanup
1276 * function won't drop the additional reference, which is why we do it
1277 * here.
1278 */
1279 sock_put(pending);
1280
1281 return err;
1282 }
1283
1284 static int
1285 vmci_transport_recv_connecting_client(struct sock *sk,
1286 struct vmci_transport_packet *pkt)
1287 {
1288 struct vsock_sock *vsk;
1289 int err;
1290 int skerr;
1291
1292 vsk = vsock_sk(sk);
1293
1294 switch (pkt->type) {
1295 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1296 if (vmci_handle_is_invalid(pkt->u.handle) ||
1297 !vmci_handle_is_equal(pkt->u.handle,
1298 vmci_trans(vsk)->qp_handle)) {
1299 skerr = EPROTO;
1300 err = -EINVAL;
1301 goto destroy;
1302 }
1303
1304 /* Signify the socket is connected and wakeup the waiter in
1305 * connect(). Also place the socket in the connected table for
1306 * accounting (it can already be found since it's in the bound
1307 * table).
1308 */
1309 sk->sk_state = SS_CONNECTED;
1310 sk->sk_socket->state = SS_CONNECTED;
1311 vsock_insert_connected(vsk);
1312 sk->sk_state_change(sk);
1313
1314 break;
1315 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1316 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1317 if (pkt->u.size == 0
1318 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1319 || pkt->src_port != vsk->remote_addr.svm_port
1320 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1321 || vmci_trans(vsk)->qpair
1322 || vmci_trans(vsk)->produce_size != 0
1323 || vmci_trans(vsk)->consume_size != 0
1324 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1325 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1326 skerr = EPROTO;
1327 err = -EINVAL;
1328
1329 goto destroy;
1330 }
1331
1332 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1333 if (err) {
1334 skerr = -err;
1335 goto destroy;
1336 }
1337
1338 break;
1339 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1340 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1341 if (err) {
1342 skerr = -err;
1343 goto destroy;
1344 }
1345
1346 break;
1347 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1348 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1349 * continue processing here after they sent an INVALID packet.
1350 * This meant that we got a RST after the INVALID. We ignore a
1351 * RST after an INVALID. The common code doesn't send the RST
1352 * ... so we can hang if an old version of the common code
1353 * fails between getting a REQUEST and sending an OFFER back.
1354 * Not much we can do about it... except hope that it doesn't
1355 * happen.
1356 */
1357 if (vsk->ignore_connecting_rst) {
1358 vsk->ignore_connecting_rst = false;
1359 } else {
1360 skerr = ECONNRESET;
1361 err = 0;
1362 goto destroy;
1363 }
1364
1365 break;
1366 default:
1367 /* Close and cleanup the connection. */
1368 skerr = EPROTO;
1369 err = -EINVAL;
1370 goto destroy;
1371 }
1372
1373 return 0;
1374
1375 destroy:
1376 vmci_transport_send_reset(sk, pkt);
1377
1378 sk->sk_state = SS_UNCONNECTED;
1379 sk->sk_err = skerr;
1380 sk->sk_error_report(sk);
1381 return err;
1382 }
1383
1384 static int vmci_transport_recv_connecting_client_negotiate(
1385 struct sock *sk,
1386 struct vmci_transport_packet *pkt)
1387 {
1388 int err;
1389 struct vsock_sock *vsk;
1390 struct vmci_handle handle;
1391 struct vmci_qp *qpair;
1392 u32 attach_sub_id;
1393 u32 detach_sub_id;
1394 bool is_local;
1395 u32 flags;
1396 bool old_proto = true;
1397 bool old_pkt_proto;
1398 u16 version;
1399
1400 vsk = vsock_sk(sk);
1401 handle = VMCI_INVALID_HANDLE;
1402 attach_sub_id = VMCI_INVALID_ID;
1403 detach_sub_id = VMCI_INVALID_ID;
1404
1405 /* If we have gotten here then we should be past the point where old
1406 * linux vsock could have sent the bogus rst.
1407 */
1408 vsk->sent_request = false;
1409 vsk->ignore_connecting_rst = false;
1410
1411 /* Verify that we're OK with the proposed queue pair size */
1412 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1413 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1414 err = -EINVAL;
1415 goto destroy;
1416 }
1417
1418 /* At this point we know the CID the peer is using to talk to us. */
1419
1420 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1421 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1422
1423 /* Setup the notify ops to be the highest supported version that both
1424 * the server and the client support.
1425 */
1426
1427 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1428 old_proto = old_pkt_proto;
1429 } else {
1430 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1431 old_proto = true;
1432 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1433 old_proto = false;
1434
1435 }
1436
1437 if (old_proto)
1438 version = VSOCK_PROTO_INVALID;
1439 else
1440 version = pkt->proto;
1441
1442 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1443 err = -EINVAL;
1444 goto destroy;
1445 }
1446
1447 /* Subscribe to attach and detach events first.
1448 *
1449 * XXX We attach once for each queue pair created for now so it is easy
1450 * to find the socket (it's provided), but later we should only
1451 * subscribe once and add a way to lookup sockets by queue pair handle.
1452 */
1453 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1454 vmci_transport_peer_attach_cb,
1455 sk, &attach_sub_id);
1456 if (err < VMCI_SUCCESS) {
1457 err = vmci_transport_error_to_vsock_error(err);
1458 goto destroy;
1459 }
1460
1461 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1462 vmci_transport_peer_detach_cb,
1463 sk, &detach_sub_id);
1464 if (err < VMCI_SUCCESS) {
1465 err = vmci_transport_error_to_vsock_error(err);
1466 goto destroy;
1467 }
1468
1469 /* Make VMCI select the handle for us. */
1470 handle = VMCI_INVALID_HANDLE;
1471 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1472 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1473
1474 err = vmci_transport_queue_pair_alloc(&qpair,
1475 &handle,
1476 pkt->u.size,
1477 pkt->u.size,
1478 vsk->remote_addr.svm_cid,
1479 flags,
1480 vmci_transport_is_trusted(
1481 vsk,
1482 vsk->
1483 remote_addr.svm_cid));
1484 if (err < 0)
1485 goto destroy;
1486
1487 err = vmci_transport_send_qp_offer(sk, handle);
1488 if (err < 0) {
1489 err = vmci_transport_error_to_vsock_error(err);
1490 goto destroy;
1491 }
1492
1493 vmci_trans(vsk)->qp_handle = handle;
1494 vmci_trans(vsk)->qpair = qpair;
1495
1496 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1497 pkt->u.size;
1498
1499 vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1500 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1501
1502 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1503
1504 return 0;
1505
1506 destroy:
1507 if (attach_sub_id != VMCI_INVALID_ID)
1508 vmci_event_unsubscribe(attach_sub_id);
1509
1510 if (detach_sub_id != VMCI_INVALID_ID)
1511 vmci_event_unsubscribe(detach_sub_id);
1512
1513 if (!vmci_handle_is_invalid(handle))
1514 vmci_qpair_detach(&qpair);
1515
1516 return err;
1517 }
1518
1519 static int
1520 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1521 struct vmci_transport_packet *pkt)
1522 {
1523 int err = 0;
1524 struct vsock_sock *vsk = vsock_sk(sk);
1525
1526 if (vsk->sent_request) {
1527 vsk->sent_request = false;
1528 vsk->ignore_connecting_rst = true;
1529
1530 err = vmci_transport_send_conn_request(
1531 sk, vmci_trans(vsk)->queue_pair_size);
1532 if (err < 0)
1533 err = vmci_transport_error_to_vsock_error(err);
1534 else
1535 err = 0;
1536
1537 }
1538
1539 return err;
1540 }
1541
1542 static int vmci_transport_recv_connected(struct sock *sk,
1543 struct vmci_transport_packet *pkt)
1544 {
1545 struct vsock_sock *vsk;
1546 bool pkt_processed = false;
1547
1548 /* In cases where we are closing the connection, it's sufficient to
1549 * mark the state change (and maybe error) and wake up any waiting
1550 * threads. Since this is a connected socket, it's owned by a user
1551 * process and will be cleaned up when the failure is passed back on
1552 * the current or next system call. Our system call implementations
1553 * must therefore check for error and state changes on entry and when
1554 * being awoken.
1555 */
1556 switch (pkt->type) {
1557 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1558 if (pkt->u.mode) {
1559 vsk = vsock_sk(sk);
1560
1561 vsk->peer_shutdown |= pkt->u.mode;
1562 sk->sk_state_change(sk);
1563 }
1564 break;
1565
1566 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1567 vsk = vsock_sk(sk);
1568 /* It is possible that we sent our peer a message (e.g a
1569 * WAITING_READ) right before we got notified that the peer had
1570 * detached. If that happens then we can get a RST pkt back
1571 * from our peer even though there is data available for us to
1572 * read. In that case, don't shutdown the socket completely but
1573 * instead allow the local client to finish reading data off
1574 * the queuepair. Always treat a RST pkt in connected mode like
1575 * a clean shutdown.
1576 */
1577 sock_set_flag(sk, SOCK_DONE);
1578 vsk->peer_shutdown = SHUTDOWN_MASK;
1579 if (vsock_stream_has_data(vsk) <= 0)
1580 sk->sk_state = SS_DISCONNECTING;
1581
1582 sk->sk_state_change(sk);
1583 break;
1584
1585 default:
1586 vsk = vsock_sk(sk);
1587 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1588 sk, pkt, false, NULL, NULL,
1589 &pkt_processed);
1590 if (!pkt_processed)
1591 return -EINVAL;
1592
1593 break;
1594 }
1595
1596 return 0;
1597 }
1598
1599 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1600 struct vsock_sock *psk)
1601 {
1602 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1603 if (!vsk->trans)
1604 return -ENOMEM;
1605
1606 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1607 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1608 vmci_trans(vsk)->qpair = NULL;
1609 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1610 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1611 VMCI_INVALID_ID;
1612 vmci_trans(vsk)->notify_ops = NULL;
1613 if (psk) {
1614 vmci_trans(vsk)->queue_pair_size =
1615 vmci_trans(psk)->queue_pair_size;
1616 vmci_trans(vsk)->queue_pair_min_size =
1617 vmci_trans(psk)->queue_pair_min_size;
1618 vmci_trans(vsk)->queue_pair_max_size =
1619 vmci_trans(psk)->queue_pair_max_size;
1620 } else {
1621 vmci_trans(vsk)->queue_pair_size =
1622 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1623 vmci_trans(vsk)->queue_pair_min_size =
1624 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1625 vmci_trans(vsk)->queue_pair_max_size =
1626 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1627 }
1628
1629 return 0;
1630 }
1631
1632 static void vmci_transport_destruct(struct vsock_sock *vsk)
1633 {
1634 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1635 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1636 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1637 }
1638
1639 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1640 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1641 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1642 }
1643
1644 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1645 vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1646 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1647 vmci_trans(vsk)->produce_size = 0;
1648 vmci_trans(vsk)->consume_size = 0;
1649 }
1650
1651 if (vmci_trans(vsk)->notify_ops)
1652 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1653
1654 kfree(vsk->trans);
1655 vsk->trans = NULL;
1656 }
1657
1658 static void vmci_transport_release(struct vsock_sock *vsk)
1659 {
1660 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1661 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1662 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1663 }
1664 }
1665
1666 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1667 struct sockaddr_vm *addr)
1668 {
1669 u32 port;
1670 u32 flags;
1671 int err;
1672
1673 /* VMCI will select a resource ID for us if we provide
1674 * VMCI_INVALID_ID.
1675 */
1676 port = addr->svm_port == VMADDR_PORT_ANY ?
1677 VMCI_INVALID_ID : addr->svm_port;
1678
1679 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1680 return -EACCES;
1681
1682 flags = addr->svm_cid == VMADDR_CID_ANY ?
1683 VMCI_FLAG_ANYCID_DG_HND : 0;
1684
1685 err = vmci_transport_datagram_create_hnd(port, flags,
1686 vmci_transport_recv_dgram_cb,
1687 &vsk->sk,
1688 &vmci_trans(vsk)->dg_handle);
1689 if (err < VMCI_SUCCESS)
1690 return vmci_transport_error_to_vsock_error(err);
1691 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1692 vmci_trans(vsk)->dg_handle.resource);
1693
1694 return 0;
1695 }
1696
1697 static int vmci_transport_dgram_enqueue(
1698 struct vsock_sock *vsk,
1699 struct sockaddr_vm *remote_addr,
1700 struct iovec *iov,
1701 size_t len)
1702 {
1703 int err;
1704 struct vmci_datagram *dg;
1705
1706 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1707 return -EMSGSIZE;
1708
1709 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1710 return -EPERM;
1711
1712 /* Allocate a buffer for the user's message and our packet header. */
1713 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1714 if (!dg)
1715 return -ENOMEM;
1716
1717 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len);
1718
1719 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1720 remote_addr->svm_port);
1721 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1722 vsk->local_addr.svm_port);
1723 dg->payload_size = len;
1724
1725 err = vmci_datagram_send(dg);
1726 kfree(dg);
1727 if (err < 0)
1728 return vmci_transport_error_to_vsock_error(err);
1729
1730 return err - sizeof(*dg);
1731 }
1732
1733 static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,
1734 struct vsock_sock *vsk,
1735 struct msghdr *msg, size_t len,
1736 int flags)
1737 {
1738 int err;
1739 int noblock;
1740 struct vmci_datagram *dg;
1741 size_t payload_len;
1742 struct sk_buff *skb;
1743
1744 noblock = flags & MSG_DONTWAIT;
1745
1746 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1747 return -EOPNOTSUPP;
1748
1749 /* Retrieve the head sk_buff from the socket's receive queue. */
1750 err = 0;
1751 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1752 if (err)
1753 return err;
1754
1755 if (!skb)
1756 return -EAGAIN;
1757
1758 dg = (struct vmci_datagram *)skb->data;
1759 if (!dg)
1760 /* err is 0, meaning we read zero bytes. */
1761 goto out;
1762
1763 payload_len = dg->payload_size;
1764 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1765 if (payload_len != skb->len - sizeof(*dg)) {
1766 err = -EINVAL;
1767 goto out;
1768 }
1769
1770 if (payload_len > len) {
1771 payload_len = len;
1772 msg->msg_flags |= MSG_TRUNC;
1773 }
1774
1775 /* Place the datagram payload in the user's iovec. */
1776 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,
1777 payload_len);
1778 if (err)
1779 goto out;
1780
1781 if (msg->msg_name) {
1782 struct sockaddr_vm *vm_addr;
1783
1784 /* Provide the address of the sender. */
1785 vm_addr = (struct sockaddr_vm *)msg->msg_name;
1786 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1787 msg->msg_namelen = sizeof(*vm_addr);
1788 }
1789 err = payload_len;
1790
1791 out:
1792 skb_free_datagram(&vsk->sk, skb);
1793 return err;
1794 }
1795
1796 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1797 {
1798 if (cid == VMADDR_CID_HYPERVISOR) {
1799 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1800 * state and are allowed.
1801 */
1802 return port == VMCI_UNITY_PBRPC_REGISTER;
1803 }
1804
1805 return true;
1806 }
1807
1808 static int vmci_transport_connect(struct vsock_sock *vsk)
1809 {
1810 int err;
1811 bool old_pkt_proto = false;
1812 struct sock *sk = &vsk->sk;
1813
1814 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1815 old_pkt_proto) {
1816 err = vmci_transport_send_conn_request(
1817 sk, vmci_trans(vsk)->queue_pair_size);
1818 if (err < 0) {
1819 sk->sk_state = SS_UNCONNECTED;
1820 return err;
1821 }
1822 } else {
1823 int supported_proto_versions =
1824 vmci_transport_new_proto_supported_versions();
1825 err = vmci_transport_send_conn_request2(
1826 sk, vmci_trans(vsk)->queue_pair_size,
1827 supported_proto_versions);
1828 if (err < 0) {
1829 sk->sk_state = SS_UNCONNECTED;
1830 return err;
1831 }
1832
1833 vsk->sent_request = true;
1834 }
1835
1836 return err;
1837 }
1838
1839 static ssize_t vmci_transport_stream_dequeue(
1840 struct vsock_sock *vsk,
1841 struct iovec *iov,
1842 size_t len,
1843 int flags)
1844 {
1845 if (flags & MSG_PEEK)
1846 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0);
1847 else
1848 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0);
1849 }
1850
1851 static ssize_t vmci_transport_stream_enqueue(
1852 struct vsock_sock *vsk,
1853 struct iovec *iov,
1854 size_t len)
1855 {
1856 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0);
1857 }
1858
1859 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1860 {
1861 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1862 }
1863
1864 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1865 {
1866 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1867 }
1868
1869 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1870 {
1871 return vmci_trans(vsk)->consume_size;
1872 }
1873
1874 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1875 {
1876 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1877 }
1878
1879 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1880 {
1881 return vmci_trans(vsk)->queue_pair_size;
1882 }
1883
1884 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1885 {
1886 return vmci_trans(vsk)->queue_pair_min_size;
1887 }
1888
1889 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1890 {
1891 return vmci_trans(vsk)->queue_pair_max_size;
1892 }
1893
1894 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1895 {
1896 if (val < vmci_trans(vsk)->queue_pair_min_size)
1897 vmci_trans(vsk)->queue_pair_min_size = val;
1898 if (val > vmci_trans(vsk)->queue_pair_max_size)
1899 vmci_trans(vsk)->queue_pair_max_size = val;
1900 vmci_trans(vsk)->queue_pair_size = val;
1901 }
1902
1903 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1904 u64 val)
1905 {
1906 if (val > vmci_trans(vsk)->queue_pair_size)
1907 vmci_trans(vsk)->queue_pair_size = val;
1908 vmci_trans(vsk)->queue_pair_min_size = val;
1909 }
1910
1911 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1912 u64 val)
1913 {
1914 if (val < vmci_trans(vsk)->queue_pair_size)
1915 vmci_trans(vsk)->queue_pair_size = val;
1916 vmci_trans(vsk)->queue_pair_max_size = val;
1917 }
1918
1919 static int vmci_transport_notify_poll_in(
1920 struct vsock_sock *vsk,
1921 size_t target,
1922 bool *data_ready_now)
1923 {
1924 return vmci_trans(vsk)->notify_ops->poll_in(
1925 &vsk->sk, target, data_ready_now);
1926 }
1927
1928 static int vmci_transport_notify_poll_out(
1929 struct vsock_sock *vsk,
1930 size_t target,
1931 bool *space_available_now)
1932 {
1933 return vmci_trans(vsk)->notify_ops->poll_out(
1934 &vsk->sk, target, space_available_now);
1935 }
1936
1937 static int vmci_transport_notify_recv_init(
1938 struct vsock_sock *vsk,
1939 size_t target,
1940 struct vsock_transport_recv_notify_data *data)
1941 {
1942 return vmci_trans(vsk)->notify_ops->recv_init(
1943 &vsk->sk, target,
1944 (struct vmci_transport_recv_notify_data *)data);
1945 }
1946
1947 static int vmci_transport_notify_recv_pre_block(
1948 struct vsock_sock *vsk,
1949 size_t target,
1950 struct vsock_transport_recv_notify_data *data)
1951 {
1952 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1953 &vsk->sk, target,
1954 (struct vmci_transport_recv_notify_data *)data);
1955 }
1956
1957 static int vmci_transport_notify_recv_pre_dequeue(
1958 struct vsock_sock *vsk,
1959 size_t target,
1960 struct vsock_transport_recv_notify_data *data)
1961 {
1962 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1963 &vsk->sk, target,
1964 (struct vmci_transport_recv_notify_data *)data);
1965 }
1966
1967 static int vmci_transport_notify_recv_post_dequeue(
1968 struct vsock_sock *vsk,
1969 size_t target,
1970 ssize_t copied,
1971 bool data_read,
1972 struct vsock_transport_recv_notify_data *data)
1973 {
1974 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1975 &vsk->sk, target, copied, data_read,
1976 (struct vmci_transport_recv_notify_data *)data);
1977 }
1978
1979 static int vmci_transport_notify_send_init(
1980 struct vsock_sock *vsk,
1981 struct vsock_transport_send_notify_data *data)
1982 {
1983 return vmci_trans(vsk)->notify_ops->send_init(
1984 &vsk->sk,
1985 (struct vmci_transport_send_notify_data *)data);
1986 }
1987
1988 static int vmci_transport_notify_send_pre_block(
1989 struct vsock_sock *vsk,
1990 struct vsock_transport_send_notify_data *data)
1991 {
1992 return vmci_trans(vsk)->notify_ops->send_pre_block(
1993 &vsk->sk,
1994 (struct vmci_transport_send_notify_data *)data);
1995 }
1996
1997 static int vmci_transport_notify_send_pre_enqueue(
1998 struct vsock_sock *vsk,
1999 struct vsock_transport_send_notify_data *data)
2000 {
2001 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2002 &vsk->sk,
2003 (struct vmci_transport_send_notify_data *)data);
2004 }
2005
2006 static int vmci_transport_notify_send_post_enqueue(
2007 struct vsock_sock *vsk,
2008 ssize_t written,
2009 struct vsock_transport_send_notify_data *data)
2010 {
2011 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2012 &vsk->sk, written,
2013 (struct vmci_transport_send_notify_data *)data);
2014 }
2015
2016 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2017 {
2018 if (PROTOCOL_OVERRIDE != -1) {
2019 if (PROTOCOL_OVERRIDE == 0)
2020 *old_pkt_proto = true;
2021 else
2022 *old_pkt_proto = false;
2023
2024 pr_info("Proto override in use\n");
2025 return true;
2026 }
2027
2028 return false;
2029 }
2030
2031 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2032 u16 *proto,
2033 bool old_pkt_proto)
2034 {
2035 struct vsock_sock *vsk = vsock_sk(sk);
2036
2037 if (old_pkt_proto) {
2038 if (*proto != VSOCK_PROTO_INVALID) {
2039 pr_err("Can't set both an old and new protocol\n");
2040 return false;
2041 }
2042 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2043 goto exit;
2044 }
2045
2046 switch (*proto) {
2047 case VSOCK_PROTO_PKT_ON_NOTIFY:
2048 vmci_trans(vsk)->notify_ops =
2049 &vmci_transport_notify_pkt_q_state_ops;
2050 break;
2051 default:
2052 pr_err("Unknown notify protocol version\n");
2053 return false;
2054 }
2055
2056 exit:
2057 vmci_trans(vsk)->notify_ops->socket_init(sk);
2058 return true;
2059 }
2060
2061 static u16 vmci_transport_new_proto_supported_versions(void)
2062 {
2063 if (PROTOCOL_OVERRIDE != -1)
2064 return PROTOCOL_OVERRIDE;
2065
2066 return VSOCK_PROTO_ALL_SUPPORTED;
2067 }
2068
2069 static u32 vmci_transport_get_local_cid(void)
2070 {
2071 return vmci_get_context_id();
2072 }
2073
2074 static struct vsock_transport vmci_transport = {
2075 .init = vmci_transport_socket_init,
2076 .destruct = vmci_transport_destruct,
2077 .release = vmci_transport_release,
2078 .connect = vmci_transport_connect,
2079 .dgram_bind = vmci_transport_dgram_bind,
2080 .dgram_dequeue = vmci_transport_dgram_dequeue,
2081 .dgram_enqueue = vmci_transport_dgram_enqueue,
2082 .dgram_allow = vmci_transport_dgram_allow,
2083 .stream_dequeue = vmci_transport_stream_dequeue,
2084 .stream_enqueue = vmci_transport_stream_enqueue,
2085 .stream_has_data = vmci_transport_stream_has_data,
2086 .stream_has_space = vmci_transport_stream_has_space,
2087 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2088 .stream_is_active = vmci_transport_stream_is_active,
2089 .stream_allow = vmci_transport_stream_allow,
2090 .notify_poll_in = vmci_transport_notify_poll_in,
2091 .notify_poll_out = vmci_transport_notify_poll_out,
2092 .notify_recv_init = vmci_transport_notify_recv_init,
2093 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2094 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2095 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2096 .notify_send_init = vmci_transport_notify_send_init,
2097 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2098 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2099 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2100 .shutdown = vmci_transport_shutdown,
2101 .set_buffer_size = vmci_transport_set_buffer_size,
2102 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2103 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2104 .get_buffer_size = vmci_transport_get_buffer_size,
2105 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2106 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2107 .get_local_cid = vmci_transport_get_local_cid,
2108 };
2109
2110 static int __init vmci_transport_init(void)
2111 {
2112 int err;
2113
2114 /* Create the datagram handle that we will use to send and receive all
2115 * VSocket control messages for this context.
2116 */
2117 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2118 VMCI_FLAG_ANYCID_DG_HND,
2119 vmci_transport_recv_stream_cb,
2120 NULL,
2121 &vmci_transport_stream_handle);
2122 if (err < VMCI_SUCCESS) {
2123 pr_err("Unable to create datagram handle. (%d)\n", err);
2124 return vmci_transport_error_to_vsock_error(err);
2125 }
2126
2127 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2128 vmci_transport_qp_resumed_cb,
2129 NULL, &vmci_transport_qp_resumed_sub_id);
2130 if (err < VMCI_SUCCESS) {
2131 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2132 err = vmci_transport_error_to_vsock_error(err);
2133 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2134 goto err_destroy_stream_handle;
2135 }
2136
2137 err = vsock_core_init(&vmci_transport);
2138 if (err < 0)
2139 goto err_unsubscribe;
2140
2141 return 0;
2142
2143 err_unsubscribe:
2144 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2145 err_destroy_stream_handle:
2146 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2147 return err;
2148 }
2149 module_init(vmci_transport_init);
2150
2151 static void __exit vmci_transport_exit(void)
2152 {
2153 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2154 if (vmci_datagram_destroy_handle(
2155 vmci_transport_stream_handle) != VMCI_SUCCESS)
2156 pr_err("Couldn't destroy datagram handle\n");
2157 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2158 }
2159
2160 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2161 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2162 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2163 }
2164
2165 vsock_core_exit();
2166 }
2167 module_exit(vmci_transport_exit);
2168
2169 MODULE_AUTHOR("VMware, Inc.");
2170 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2171 MODULE_LICENSE("GPL v2");
2172 MODULE_ALIAS("vmware_vsock");
2173 MODULE_ALIAS_NETPROTO(PF_VSOCK);