net/packet: check length in getsockopt() called with PACKET_HDRLEN
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
29 * 6 minutes
30 * http://www.connectathon.org/talks96/nfstcp.pdf
31 */
32 static int svc_conn_age_period = 6*60;
33
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37
38 /* SMP locking strategy:
39 *
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
46 *
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
51 *
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
54 *
55 * XPT_CONN, XPT_DATA:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
61 * XPT_CLOSE:
62 * - Can set at any time. It is never cleared.
63 * XPT_DEAD:
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
67 */
68
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
73
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
82 }
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99
100 /*
101 * Format the transport list for printing
102 */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 struct svc_xprt_class *xcl;
106 char tmpstr[80];
107 int len = 0;
108 buf[0] = '\0';
109
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 int slen;
113
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
120 }
121 spin_unlock(&svc_xprt_class_lock);
122
123 return len;
124 }
125
126 static void svc_xprt_free(struct kref *kref)
127 {
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
138 module_put(owner);
139 }
140
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146
147 /*
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
150 */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
173 struct net *net,
174 const int family,
175 const unsigned short port,
176 int flags)
177 {
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
182 };
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
188 };
189 #endif
190 struct sockaddr *sap;
191 size_t len;
192
193 switch (family) {
194 case PF_INET:
195 sap = (struct sockaddr *)&sin;
196 len = sizeof(sin);
197 break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 case PF_INET6:
200 sap = (struct sockaddr *)&sin6;
201 len = sizeof(sin6);
202 break;
203 #endif
204 default:
205 return ERR_PTR(-EAFNOSUPPORT);
206 }
207
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210
211 /*
212 * svc_xprt_received conditionally queues the transport for processing
213 * by another thread. The caller must hold the XPT_BUSY bit and must
214 * not thereafter touch transport data.
215 *
216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
217 * insufficient) data.
218 */
219 static void svc_xprt_received(struct svc_xprt *xprt)
220 {
221 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
222 if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
223 return;
224 /* As soon as we clear busy, the xprt could be closed and
225 * 'put', so we need a reference to call svc_xprt_enqueue with:
226 */
227 svc_xprt_get(xprt);
228 clear_bit(XPT_BUSY, &xprt->xpt_flags);
229 svc_xprt_enqueue(xprt);
230 svc_xprt_put(xprt);
231 }
232
233 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
234 {
235 clear_bit(XPT_TEMP, &new->xpt_flags);
236 spin_lock_bh(&serv->sv_lock);
237 list_add(&new->xpt_list, &serv->sv_permsocks);
238 spin_unlock_bh(&serv->sv_lock);
239 svc_xprt_received(new);
240 }
241
242 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
243 struct net *net, const int family,
244 const unsigned short port, int flags)
245 {
246 struct svc_xprt_class *xcl;
247
248 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
249 spin_lock(&svc_xprt_class_lock);
250 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
251 struct svc_xprt *newxprt;
252 unsigned short newport;
253
254 if (strcmp(xprt_name, xcl->xcl_name))
255 continue;
256
257 if (!try_module_get(xcl->xcl_owner))
258 goto err;
259
260 spin_unlock(&svc_xprt_class_lock);
261 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
262 if (IS_ERR(newxprt)) {
263 module_put(xcl->xcl_owner);
264 return PTR_ERR(newxprt);
265 }
266 svc_add_new_perm_xprt(serv, newxprt);
267 newport = svc_xprt_local_port(newxprt);
268 return newport;
269 }
270 err:
271 spin_unlock(&svc_xprt_class_lock);
272 dprintk("svc: transport %s not found\n", xprt_name);
273
274 /* This errno is exposed to user space. Provide a reasonable
275 * perror msg for a bad transport. */
276 return -EPROTONOSUPPORT;
277 }
278 EXPORT_SYMBOL_GPL(svc_create_xprt);
279
280 /*
281 * Copy the local and remote xprt addresses to the rqstp structure
282 */
283 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
284 {
285 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
286 rqstp->rq_addrlen = xprt->xpt_remotelen;
287
288 /*
289 * Destination address in request is needed for binding the
290 * source address in RPC replies/callbacks later.
291 */
292 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
293 rqstp->rq_daddrlen = xprt->xpt_locallen;
294 }
295 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
296
297 /**
298 * svc_print_addr - Format rq_addr field for printing
299 * @rqstp: svc_rqst struct containing address to print
300 * @buf: target buffer for formatted address
301 * @len: length of target buffer
302 *
303 */
304 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
305 {
306 return __svc_print_addr(svc_addr(rqstp), buf, len);
307 }
308 EXPORT_SYMBOL_GPL(svc_print_addr);
309
310 /*
311 * Queue up an idle server thread. Must have pool->sp_lock held.
312 * Note: this is really a stack rather than a queue, so that we only
313 * use as many different threads as we need, and the rest don't pollute
314 * the cache.
315 */
316 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
317 {
318 list_add(&rqstp->rq_list, &pool->sp_threads);
319 }
320
321 /*
322 * Dequeue an nfsd thread. Must have pool->sp_lock held.
323 */
324 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
325 {
326 list_del(&rqstp->rq_list);
327 }
328
329 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
330 {
331 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
332 return true;
333 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
334 return xprt->xpt_ops->xpo_has_wspace(xprt);
335 return false;
336 }
337
338 /*
339 * Queue up a transport with data pending. If there are idle nfsd
340 * processes, wake 'em up.
341 *
342 */
343 void svc_xprt_enqueue(struct svc_xprt *xprt)
344 {
345 struct svc_pool *pool;
346 struct svc_rqst *rqstp;
347 int cpu;
348
349 if (!svc_xprt_has_something_to_do(xprt))
350 return;
351
352 cpu = get_cpu();
353 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
354 put_cpu();
355
356 spin_lock_bh(&pool->sp_lock);
357
358 if (!list_empty(&pool->sp_threads) &&
359 !list_empty(&pool->sp_sockets))
360 printk(KERN_ERR
361 "svc_xprt_enqueue: "
362 "threads and transports both waiting??\n");
363
364 pool->sp_stats.packets++;
365
366 /* Mark transport as busy. It will remain in this state until
367 * the provider calls svc_xprt_received. We update XPT_BUSY
368 * atomically because it also guards against trying to enqueue
369 * the transport twice.
370 */
371 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
372 /* Don't enqueue transport while already enqueued */
373 dprintk("svc: transport %p busy, not enqueued\n", xprt);
374 goto out_unlock;
375 }
376
377 if (!list_empty(&pool->sp_threads)) {
378 rqstp = list_entry(pool->sp_threads.next,
379 struct svc_rqst,
380 rq_list);
381 dprintk("svc: transport %p served by daemon %p\n",
382 xprt, rqstp);
383 svc_thread_dequeue(pool, rqstp);
384 if (rqstp->rq_xprt)
385 printk(KERN_ERR
386 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
387 rqstp, rqstp->rq_xprt);
388 rqstp->rq_xprt = xprt;
389 svc_xprt_get(xprt);
390 pool->sp_stats.threads_woken++;
391 wake_up(&rqstp->rq_wait);
392 } else {
393 dprintk("svc: transport %p put into queue\n", xprt);
394 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
395 pool->sp_stats.sockets_queued++;
396 }
397
398 out_unlock:
399 spin_unlock_bh(&pool->sp_lock);
400 }
401 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
402
403 /*
404 * Dequeue the first transport. Must be called with the pool->sp_lock held.
405 */
406 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
407 {
408 struct svc_xprt *xprt;
409
410 if (list_empty(&pool->sp_sockets))
411 return NULL;
412
413 xprt = list_entry(pool->sp_sockets.next,
414 struct svc_xprt, xpt_ready);
415 list_del_init(&xprt->xpt_ready);
416
417 dprintk("svc: transport %p dequeued, inuse=%d\n",
418 xprt, atomic_read(&xprt->xpt_ref.refcount));
419
420 return xprt;
421 }
422
423 /**
424 * svc_reserve - change the space reserved for the reply to a request.
425 * @rqstp: The request in question
426 * @space: new max space to reserve
427 *
428 * Each request reserves some space on the output queue of the transport
429 * to make sure the reply fits. This function reduces that reserved
430 * space to be the amount of space used already, plus @space.
431 *
432 */
433 void svc_reserve(struct svc_rqst *rqstp, int space)
434 {
435 space += rqstp->rq_res.head[0].iov_len;
436
437 if (space < rqstp->rq_reserved) {
438 struct svc_xprt *xprt = rqstp->rq_xprt;
439 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
440 rqstp->rq_reserved = space;
441
442 svc_xprt_enqueue(xprt);
443 }
444 }
445 EXPORT_SYMBOL_GPL(svc_reserve);
446
447 static void svc_xprt_release(struct svc_rqst *rqstp)
448 {
449 struct svc_xprt *xprt = rqstp->rq_xprt;
450
451 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
452
453 kfree(rqstp->rq_deferred);
454 rqstp->rq_deferred = NULL;
455
456 svc_free_res_pages(rqstp);
457 rqstp->rq_res.page_len = 0;
458 rqstp->rq_res.page_base = 0;
459
460 /* Reset response buffer and release
461 * the reservation.
462 * But first, check that enough space was reserved
463 * for the reply, otherwise we have a bug!
464 */
465 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
466 printk(KERN_ERR "RPC request reserved %d but used %d\n",
467 rqstp->rq_reserved,
468 rqstp->rq_res.len);
469
470 rqstp->rq_res.head[0].iov_len = 0;
471 svc_reserve(rqstp, 0);
472 rqstp->rq_xprt = NULL;
473
474 svc_xprt_put(xprt);
475 }
476
477 /*
478 * External function to wake up a server waiting for data
479 * This really only makes sense for services like lockd
480 * which have exactly one thread anyway.
481 */
482 void svc_wake_up(struct svc_serv *serv)
483 {
484 struct svc_rqst *rqstp;
485 unsigned int i;
486 struct svc_pool *pool;
487
488 for (i = 0; i < serv->sv_nrpools; i++) {
489 pool = &serv->sv_pools[i];
490
491 spin_lock_bh(&pool->sp_lock);
492 if (!list_empty(&pool->sp_threads)) {
493 rqstp = list_entry(pool->sp_threads.next,
494 struct svc_rqst,
495 rq_list);
496 dprintk("svc: daemon %p woken up.\n", rqstp);
497 /*
498 svc_thread_dequeue(pool, rqstp);
499 rqstp->rq_xprt = NULL;
500 */
501 wake_up(&rqstp->rq_wait);
502 } else
503 pool->sp_task_pending = 1;
504 spin_unlock_bh(&pool->sp_lock);
505 }
506 }
507 EXPORT_SYMBOL_GPL(svc_wake_up);
508
509 int svc_port_is_privileged(struct sockaddr *sin)
510 {
511 switch (sin->sa_family) {
512 case AF_INET:
513 return ntohs(((struct sockaddr_in *)sin)->sin_port)
514 < PROT_SOCK;
515 case AF_INET6:
516 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
517 < PROT_SOCK;
518 default:
519 return 0;
520 }
521 }
522
523 /*
524 * Make sure that we don't have too many active connections. If we have,
525 * something must be dropped. It's not clear what will happen if we allow
526 * "too many" connections, but when dealing with network-facing software,
527 * we have to code defensively. Here we do that by imposing hard limits.
528 *
529 * There's no point in trying to do random drop here for DoS
530 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
531 * attacker can easily beat that.
532 *
533 * The only somewhat efficient mechanism would be if drop old
534 * connections from the same IP first. But right now we don't even
535 * record the client IP in svc_sock.
536 *
537 * single-threaded services that expect a lot of clients will probably
538 * need to set sv_maxconn to override the default value which is based
539 * on the number of threads
540 */
541 static void svc_check_conn_limits(struct svc_serv *serv)
542 {
543 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
544 (serv->sv_nrthreads+3) * 20;
545
546 if (serv->sv_tmpcnt > limit) {
547 struct svc_xprt *xprt = NULL;
548 spin_lock_bh(&serv->sv_lock);
549 if (!list_empty(&serv->sv_tempsocks)) {
550 /* Try to help the admin */
551 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
552 serv->sv_name, serv->sv_maxconn ?
553 "max number of connections" :
554 "number of threads");
555 /*
556 * Always select the oldest connection. It's not fair,
557 * but so is life
558 */
559 xprt = list_entry(serv->sv_tempsocks.prev,
560 struct svc_xprt,
561 xpt_list);
562 set_bit(XPT_CLOSE, &xprt->xpt_flags);
563 svc_xprt_get(xprt);
564 }
565 spin_unlock_bh(&serv->sv_lock);
566
567 if (xprt) {
568 svc_xprt_enqueue(xprt);
569 svc_xprt_put(xprt);
570 }
571 }
572 }
573
574 int svc_alloc_arg(struct svc_rqst *rqstp)
575 {
576 struct svc_serv *serv = rqstp->rq_server;
577 struct xdr_buf *arg;
578 int pages;
579 int i;
580
581 /* now allocate needed pages. If we get a failure, sleep briefly */
582 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
583 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
584 if (pages >= RPCSVC_MAXPAGES)
585 /* use as many pages as possible */
586 pages = RPCSVC_MAXPAGES - 1;
587 for (i = 0; i < pages ; i++)
588 while (rqstp->rq_pages[i] == NULL) {
589 struct page *p = alloc_page(GFP_KERNEL);
590 if (!p) {
591 set_current_state(TASK_INTERRUPTIBLE);
592 if (signalled() || kthread_should_stop()) {
593 set_current_state(TASK_RUNNING);
594 return -EINTR;
595 }
596 schedule_timeout(msecs_to_jiffies(500));
597 }
598 rqstp->rq_pages[i] = p;
599 }
600 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
601
602 /* Make arg->head point to first page and arg->pages point to rest */
603 arg = &rqstp->rq_arg;
604 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
605 arg->head[0].iov_len = PAGE_SIZE;
606 arg->pages = rqstp->rq_pages + 1;
607 arg->page_base = 0;
608 /* save at least one page for response */
609 arg->page_len = (pages-2)*PAGE_SIZE;
610 arg->len = (pages-1)*PAGE_SIZE;
611 arg->tail[0].iov_len = 0;
612 return 0;
613 }
614
615 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
616 {
617 struct svc_xprt *xprt;
618 struct svc_pool *pool = rqstp->rq_pool;
619 DECLARE_WAITQUEUE(wait, current);
620 long time_left;
621
622 /* Normally we will wait up to 5 seconds for any required
623 * cache information to be provided.
624 */
625 rqstp->rq_chandle.thread_wait = 5*HZ;
626
627 spin_lock_bh(&pool->sp_lock);
628 xprt = svc_xprt_dequeue(pool);
629 if (xprt) {
630 rqstp->rq_xprt = xprt;
631 svc_xprt_get(xprt);
632
633 /* As there is a shortage of threads and this request
634 * had to be queued, don't allow the thread to wait so
635 * long for cache updates.
636 */
637 rqstp->rq_chandle.thread_wait = 1*HZ;
638 pool->sp_task_pending = 0;
639 } else {
640 if (pool->sp_task_pending) {
641 pool->sp_task_pending = 0;
642 spin_unlock_bh(&pool->sp_lock);
643 return ERR_PTR(-EAGAIN);
644 }
645 /* No data pending. Go to sleep */
646 svc_thread_enqueue(pool, rqstp);
647
648 /*
649 * We have to be able to interrupt this wait
650 * to bring down the daemons ...
651 */
652 set_current_state(TASK_INTERRUPTIBLE);
653
654 /*
655 * checking kthread_should_stop() here allows us to avoid
656 * locking and signalling when stopping kthreads that call
657 * svc_recv. If the thread has already been woken up, then
658 * we can exit here without sleeping. If not, then it
659 * it'll be woken up quickly during the schedule_timeout
660 */
661 if (kthread_should_stop()) {
662 set_current_state(TASK_RUNNING);
663 spin_unlock_bh(&pool->sp_lock);
664 return ERR_PTR(-EINTR);
665 }
666
667 add_wait_queue(&rqstp->rq_wait, &wait);
668 spin_unlock_bh(&pool->sp_lock);
669
670 time_left = schedule_timeout(timeout);
671
672 try_to_freeze();
673
674 spin_lock_bh(&pool->sp_lock);
675 remove_wait_queue(&rqstp->rq_wait, &wait);
676 if (!time_left)
677 pool->sp_stats.threads_timedout++;
678
679 xprt = rqstp->rq_xprt;
680 if (!xprt) {
681 svc_thread_dequeue(pool, rqstp);
682 spin_unlock_bh(&pool->sp_lock);
683 dprintk("svc: server %p, no data yet\n", rqstp);
684 if (signalled() || kthread_should_stop())
685 return ERR_PTR(-EINTR);
686 else
687 return ERR_PTR(-EAGAIN);
688 }
689 }
690 spin_unlock_bh(&pool->sp_lock);
691 return xprt;
692 }
693
694 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
695 {
696 spin_lock_bh(&serv->sv_lock);
697 set_bit(XPT_TEMP, &newxpt->xpt_flags);
698 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
699 serv->sv_tmpcnt++;
700 if (serv->sv_temptimer.function == NULL) {
701 /* setup timer to age temp transports */
702 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
703 (unsigned long)serv);
704 mod_timer(&serv->sv_temptimer,
705 jiffies + svc_conn_age_period * HZ);
706 }
707 spin_unlock_bh(&serv->sv_lock);
708 svc_xprt_received(newxpt);
709 }
710
711 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
712 {
713 struct svc_serv *serv = rqstp->rq_server;
714 int len = 0;
715
716 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
717 dprintk("svc_recv: found XPT_CLOSE\n");
718 svc_delete_xprt(xprt);
719 /* Leave XPT_BUSY set on the dead xprt: */
720 return 0;
721 }
722 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
723 struct svc_xprt *newxpt;
724 /*
725 * We know this module_get will succeed because the
726 * listener holds a reference too
727 */
728 __module_get(xprt->xpt_class->xcl_owner);
729 svc_check_conn_limits(xprt->xpt_server);
730 newxpt = xprt->xpt_ops->xpo_accept(xprt);
731 if (newxpt)
732 svc_add_new_temp_xprt(serv, newxpt);
733 else
734 module_put(xprt->xpt_class->xcl_owner);
735 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
736 /* XPT_DATA|XPT_DEFERRED case: */
737 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
738 rqstp, rqstp->rq_pool->sp_id, xprt,
739 atomic_read(&xprt->xpt_ref.refcount));
740 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
741 if (rqstp->rq_deferred)
742 len = svc_deferred_recv(rqstp);
743 else
744 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
745 dprintk("svc: got len=%d\n", len);
746 rqstp->rq_reserved = serv->sv_max_mesg;
747 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
748 }
749 /* clear XPT_BUSY: */
750 svc_xprt_received(xprt);
751 return len;
752 }
753
754 /*
755 * Receive the next request on any transport. This code is carefully
756 * organised not to touch any cachelines in the shared svc_serv
757 * structure, only cachelines in the local svc_pool.
758 */
759 int svc_recv(struct svc_rqst *rqstp, long timeout)
760 {
761 struct svc_xprt *xprt = NULL;
762 struct svc_serv *serv = rqstp->rq_server;
763 int len, err;
764
765 dprintk("svc: server %p waiting for data (to = %ld)\n",
766 rqstp, timeout);
767
768 if (rqstp->rq_xprt)
769 printk(KERN_ERR
770 "svc_recv: service %p, transport not NULL!\n",
771 rqstp);
772 if (waitqueue_active(&rqstp->rq_wait))
773 printk(KERN_ERR
774 "svc_recv: service %p, wait queue active!\n",
775 rqstp);
776
777 err = svc_alloc_arg(rqstp);
778 if (err)
779 return err;
780
781 try_to_freeze();
782 cond_resched();
783 if (signalled() || kthread_should_stop())
784 return -EINTR;
785
786 xprt = svc_get_next_xprt(rqstp, timeout);
787 if (IS_ERR(xprt))
788 return PTR_ERR(xprt);
789
790 len = svc_handle_xprt(rqstp, xprt);
791
792 /* No data, incomplete (TCP) read, or accept() */
793 if (len <= 0)
794 goto out;
795
796 clear_bit(XPT_OLD, &xprt->xpt_flags);
797
798 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
799 rqstp->rq_chandle.defer = svc_defer;
800
801 if (serv->sv_stats)
802 serv->sv_stats->netcnt++;
803 return len;
804 out:
805 rqstp->rq_res.len = 0;
806 svc_xprt_release(rqstp);
807 return -EAGAIN;
808 }
809 EXPORT_SYMBOL_GPL(svc_recv);
810
811 /*
812 * Drop request
813 */
814 void svc_drop(struct svc_rqst *rqstp)
815 {
816 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
817 svc_xprt_release(rqstp);
818 }
819 EXPORT_SYMBOL_GPL(svc_drop);
820
821 /*
822 * Return reply to client.
823 */
824 int svc_send(struct svc_rqst *rqstp)
825 {
826 struct svc_xprt *xprt;
827 int len;
828 struct xdr_buf *xb;
829
830 xprt = rqstp->rq_xprt;
831 if (!xprt)
832 return -EFAULT;
833
834 /* release the receive skb before sending the reply */
835 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
836
837 /* calculate over-all length */
838 xb = &rqstp->rq_res;
839 xb->len = xb->head[0].iov_len +
840 xb->page_len +
841 xb->tail[0].iov_len;
842
843 /* Grab mutex to serialize outgoing data. */
844 mutex_lock(&xprt->xpt_mutex);
845 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
846 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
847 len = -ENOTCONN;
848 else
849 len = xprt->xpt_ops->xpo_sendto(rqstp);
850 mutex_unlock(&xprt->xpt_mutex);
851 rpc_wake_up(&xprt->xpt_bc_pending);
852 svc_xprt_release(rqstp);
853
854 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
855 return 0;
856 return len;
857 }
858
859 /*
860 * Timer function to close old temporary transports, using
861 * a mark-and-sweep algorithm.
862 */
863 static void svc_age_temp_xprts(unsigned long closure)
864 {
865 struct svc_serv *serv = (struct svc_serv *)closure;
866 struct svc_xprt *xprt;
867 struct list_head *le, *next;
868
869 dprintk("svc_age_temp_xprts\n");
870
871 if (!spin_trylock_bh(&serv->sv_lock)) {
872 /* busy, try again 1 sec later */
873 dprintk("svc_age_temp_xprts: busy\n");
874 mod_timer(&serv->sv_temptimer, jiffies + HZ);
875 return;
876 }
877
878 list_for_each_safe(le, next, &serv->sv_tempsocks) {
879 xprt = list_entry(le, struct svc_xprt, xpt_list);
880
881 /* First time through, just mark it OLD. Second time
882 * through, close it. */
883 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
884 continue;
885 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
886 test_bit(XPT_BUSY, &xprt->xpt_flags))
887 continue;
888 list_del_init(le);
889 set_bit(XPT_CLOSE, &xprt->xpt_flags);
890 set_bit(XPT_DETACHED, &xprt->xpt_flags);
891 dprintk("queuing xprt %p for closing\n", xprt);
892
893 /* a thread will dequeue and close it soon */
894 svc_xprt_enqueue(xprt);
895 }
896 spin_unlock_bh(&serv->sv_lock);
897
898 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
899 }
900
901 static void call_xpt_users(struct svc_xprt *xprt)
902 {
903 struct svc_xpt_user *u;
904
905 spin_lock(&xprt->xpt_lock);
906 while (!list_empty(&xprt->xpt_users)) {
907 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
908 list_del(&u->list);
909 u->callback(u);
910 }
911 spin_unlock(&xprt->xpt_lock);
912 }
913
914 /*
915 * Remove a dead transport
916 */
917 static void svc_delete_xprt(struct svc_xprt *xprt)
918 {
919 struct svc_serv *serv = xprt->xpt_server;
920 struct svc_deferred_req *dr;
921
922 /* Only do this once */
923 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
924 BUG();
925
926 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
927 xprt->xpt_ops->xpo_detach(xprt);
928
929 spin_lock_bh(&serv->sv_lock);
930 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
931 list_del_init(&xprt->xpt_list);
932 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
933 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
934 serv->sv_tmpcnt--;
935 spin_unlock_bh(&serv->sv_lock);
936
937 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
938 kfree(dr);
939
940 call_xpt_users(xprt);
941 svc_xprt_put(xprt);
942 }
943
944 void svc_close_xprt(struct svc_xprt *xprt)
945 {
946 set_bit(XPT_CLOSE, &xprt->xpt_flags);
947 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
948 /* someone else will have to effect the close */
949 return;
950 /*
951 * We expect svc_close_xprt() to work even when no threads are
952 * running (e.g., while configuring the server before starting
953 * any threads), so if the transport isn't busy, we delete
954 * it ourself:
955 */
956 svc_delete_xprt(xprt);
957 }
958 EXPORT_SYMBOL_GPL(svc_close_xprt);
959
960 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
961 {
962 struct svc_xprt *xprt;
963 int ret = 0;
964
965 spin_lock(&serv->sv_lock);
966 list_for_each_entry(xprt, xprt_list, xpt_list) {
967 if (xprt->xpt_net != net)
968 continue;
969 ret++;
970 set_bit(XPT_CLOSE, &xprt->xpt_flags);
971 svc_xprt_enqueue(xprt);
972 }
973 spin_unlock(&serv->sv_lock);
974 return ret;
975 }
976
977 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
978 {
979 struct svc_pool *pool;
980 struct svc_xprt *xprt;
981 struct svc_xprt *tmp;
982 int i;
983
984 for (i = 0; i < serv->sv_nrpools; i++) {
985 pool = &serv->sv_pools[i];
986
987 spin_lock_bh(&pool->sp_lock);
988 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
989 if (xprt->xpt_net != net)
990 continue;
991 list_del_init(&xprt->xpt_ready);
992 spin_unlock_bh(&pool->sp_lock);
993 return xprt;
994 }
995 spin_unlock_bh(&pool->sp_lock);
996 }
997 return NULL;
998 }
999
1000 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1001 {
1002 struct svc_xprt *xprt;
1003
1004 while ((xprt = svc_dequeue_net(serv, net))) {
1005 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1006 svc_delete_xprt(xprt);
1007 }
1008 }
1009
1010 /*
1011 * Server threads may still be running (especially in the case where the
1012 * service is still running in other network namespaces).
1013 *
1014 * So we shut down sockets the same way we would on a running server, by
1015 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1016 * the close. In the case there are no such other threads,
1017 * threads running, svc_clean_up_xprts() does a simple version of a
1018 * server's main event loop, and in the case where there are other
1019 * threads, we may need to wait a little while and then check again to
1020 * see if they're done.
1021 */
1022 void svc_close_net(struct svc_serv *serv, struct net *net)
1023 {
1024 int delay = 0;
1025
1026 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1027 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1028
1029 svc_clean_up_xprts(serv, net);
1030 msleep(delay++);
1031 }
1032 }
1033
1034 /*
1035 * Handle defer and revisit of requests
1036 */
1037
1038 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1039 {
1040 struct svc_deferred_req *dr =
1041 container_of(dreq, struct svc_deferred_req, handle);
1042 struct svc_xprt *xprt = dr->xprt;
1043
1044 spin_lock(&xprt->xpt_lock);
1045 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1046 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1047 spin_unlock(&xprt->xpt_lock);
1048 dprintk("revisit canceled\n");
1049 svc_xprt_put(xprt);
1050 kfree(dr);
1051 return;
1052 }
1053 dprintk("revisit queued\n");
1054 dr->xprt = NULL;
1055 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1056 spin_unlock(&xprt->xpt_lock);
1057 svc_xprt_enqueue(xprt);
1058 svc_xprt_put(xprt);
1059 }
1060
1061 /*
1062 * Save the request off for later processing. The request buffer looks
1063 * like this:
1064 *
1065 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1066 *
1067 * This code can only handle requests that consist of an xprt-header
1068 * and rpc-header.
1069 */
1070 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1071 {
1072 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1073 struct svc_deferred_req *dr;
1074
1075 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1076 return NULL; /* if more than a page, give up FIXME */
1077 if (rqstp->rq_deferred) {
1078 dr = rqstp->rq_deferred;
1079 rqstp->rq_deferred = NULL;
1080 } else {
1081 size_t skip;
1082 size_t size;
1083 /* FIXME maybe discard if size too large */
1084 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1085 dr = kmalloc(size, GFP_KERNEL);
1086 if (dr == NULL)
1087 return NULL;
1088
1089 dr->handle.owner = rqstp->rq_server;
1090 dr->prot = rqstp->rq_prot;
1091 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1092 dr->addrlen = rqstp->rq_addrlen;
1093 dr->daddr = rqstp->rq_daddr;
1094 dr->argslen = rqstp->rq_arg.len >> 2;
1095 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1096
1097 /* back up head to the start of the buffer and copy */
1098 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1099 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1100 dr->argslen << 2);
1101 }
1102 svc_xprt_get(rqstp->rq_xprt);
1103 dr->xprt = rqstp->rq_xprt;
1104 rqstp->rq_dropme = true;
1105
1106 dr->handle.revisit = svc_revisit;
1107 return &dr->handle;
1108 }
1109
1110 /*
1111 * recv data from a deferred request into an active one
1112 */
1113 static int svc_deferred_recv(struct svc_rqst *rqstp)
1114 {
1115 struct svc_deferred_req *dr = rqstp->rq_deferred;
1116
1117 /* setup iov_base past transport header */
1118 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1119 /* The iov_len does not include the transport header bytes */
1120 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1121 rqstp->rq_arg.page_len = 0;
1122 /* The rq_arg.len includes the transport header bytes */
1123 rqstp->rq_arg.len = dr->argslen<<2;
1124 rqstp->rq_prot = dr->prot;
1125 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1126 rqstp->rq_addrlen = dr->addrlen;
1127 /* Save off transport header len in case we get deferred again */
1128 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1129 rqstp->rq_daddr = dr->daddr;
1130 rqstp->rq_respages = rqstp->rq_pages;
1131 return (dr->argslen<<2) - dr->xprt_hlen;
1132 }
1133
1134
1135 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1136 {
1137 struct svc_deferred_req *dr = NULL;
1138
1139 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1140 return NULL;
1141 spin_lock(&xprt->xpt_lock);
1142 if (!list_empty(&xprt->xpt_deferred)) {
1143 dr = list_entry(xprt->xpt_deferred.next,
1144 struct svc_deferred_req,
1145 handle.recent);
1146 list_del_init(&dr->handle.recent);
1147 } else
1148 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1149 spin_unlock(&xprt->xpt_lock);
1150 return dr;
1151 }
1152
1153 /**
1154 * svc_find_xprt - find an RPC transport instance
1155 * @serv: pointer to svc_serv to search
1156 * @xcl_name: C string containing transport's class name
1157 * @net: owner net pointer
1158 * @af: Address family of transport's local address
1159 * @port: transport's IP port number
1160 *
1161 * Return the transport instance pointer for the endpoint accepting
1162 * connections/peer traffic from the specified transport class,
1163 * address family and port.
1164 *
1165 * Specifying 0 for the address family or port is effectively a
1166 * wild-card, and will result in matching the first transport in the
1167 * service's list that has a matching class name.
1168 */
1169 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1170 struct net *net, const sa_family_t af,
1171 const unsigned short port)
1172 {
1173 struct svc_xprt *xprt;
1174 struct svc_xprt *found = NULL;
1175
1176 /* Sanity check the args */
1177 if (serv == NULL || xcl_name == NULL)
1178 return found;
1179
1180 spin_lock_bh(&serv->sv_lock);
1181 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1182 if (xprt->xpt_net != net)
1183 continue;
1184 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1185 continue;
1186 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1187 continue;
1188 if (port != 0 && port != svc_xprt_local_port(xprt))
1189 continue;
1190 found = xprt;
1191 svc_xprt_get(xprt);
1192 break;
1193 }
1194 spin_unlock_bh(&serv->sv_lock);
1195 return found;
1196 }
1197 EXPORT_SYMBOL_GPL(svc_find_xprt);
1198
1199 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1200 char *pos, int remaining)
1201 {
1202 int len;
1203
1204 len = snprintf(pos, remaining, "%s %u\n",
1205 xprt->xpt_class->xcl_name,
1206 svc_xprt_local_port(xprt));
1207 if (len >= remaining)
1208 return -ENAMETOOLONG;
1209 return len;
1210 }
1211
1212 /**
1213 * svc_xprt_names - format a buffer with a list of transport names
1214 * @serv: pointer to an RPC service
1215 * @buf: pointer to a buffer to be filled in
1216 * @buflen: length of buffer to be filled in
1217 *
1218 * Fills in @buf with a string containing a list of transport names,
1219 * each name terminated with '\n'.
1220 *
1221 * Returns positive length of the filled-in string on success; otherwise
1222 * a negative errno value is returned if an error occurs.
1223 */
1224 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1225 {
1226 struct svc_xprt *xprt;
1227 int len, totlen;
1228 char *pos;
1229
1230 /* Sanity check args */
1231 if (!serv)
1232 return 0;
1233
1234 spin_lock_bh(&serv->sv_lock);
1235
1236 pos = buf;
1237 totlen = 0;
1238 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1239 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1240 if (len < 0) {
1241 *buf = '\0';
1242 totlen = len;
1243 }
1244 if (len <= 0)
1245 break;
1246
1247 pos += len;
1248 totlen += len;
1249 }
1250
1251 spin_unlock_bh(&serv->sv_lock);
1252 return totlen;
1253 }
1254 EXPORT_SYMBOL_GPL(svc_xprt_names);
1255
1256
1257 /*----------------------------------------------------------------------------*/
1258
1259 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1260 {
1261 unsigned int pidx = (unsigned int)*pos;
1262 struct svc_serv *serv = m->private;
1263
1264 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1265
1266 if (!pidx)
1267 return SEQ_START_TOKEN;
1268 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1269 }
1270
1271 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1272 {
1273 struct svc_pool *pool = p;
1274 struct svc_serv *serv = m->private;
1275
1276 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1277
1278 if (p == SEQ_START_TOKEN) {
1279 pool = &serv->sv_pools[0];
1280 } else {
1281 unsigned int pidx = (pool - &serv->sv_pools[0]);
1282 if (pidx < serv->sv_nrpools-1)
1283 pool = &serv->sv_pools[pidx+1];
1284 else
1285 pool = NULL;
1286 }
1287 ++*pos;
1288 return pool;
1289 }
1290
1291 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1292 {
1293 }
1294
1295 static int svc_pool_stats_show(struct seq_file *m, void *p)
1296 {
1297 struct svc_pool *pool = p;
1298
1299 if (p == SEQ_START_TOKEN) {
1300 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1301 return 0;
1302 }
1303
1304 seq_printf(m, "%u %lu %lu %lu %lu\n",
1305 pool->sp_id,
1306 pool->sp_stats.packets,
1307 pool->sp_stats.sockets_queued,
1308 pool->sp_stats.threads_woken,
1309 pool->sp_stats.threads_timedout);
1310
1311 return 0;
1312 }
1313
1314 static const struct seq_operations svc_pool_stats_seq_ops = {
1315 .start = svc_pool_stats_start,
1316 .next = svc_pool_stats_next,
1317 .stop = svc_pool_stats_stop,
1318 .show = svc_pool_stats_show,
1319 };
1320
1321 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1322 {
1323 int err;
1324
1325 err = seq_open(file, &svc_pool_stats_seq_ops);
1326 if (!err)
1327 ((struct seq_file *) file->private_data)->private = serv;
1328 return err;
1329 }
1330 EXPORT_SYMBOL(svc_pool_stats_open);
1331
1332 /*----------------------------------------------------------------------------*/