Merge tag 'v3.10.72' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / cache.c
1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45 time_t now = seconds_since_boot();
46 h->next = NULL;
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 return (h->expiry_time < seconds_since_boot()) ||
56 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 struct cache_head *key, int hash)
61 {
62 struct cache_head **head, **hp;
63 struct cache_head *new = NULL, *freeme = NULL;
64
65 head = &detail->hash_table[hash];
66
67 read_lock(&detail->hash_lock);
68
69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 struct cache_head *tmp = *hp;
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 /* This entry is expired, we will discard it. */
74 break;
75 cache_get(tmp);
76 read_unlock(&detail->hash_lock);
77 return tmp;
78 }
79 }
80 read_unlock(&detail->hash_lock);
81 /* Didn't find anything, insert an empty entry */
82
83 new = detail->alloc();
84 if (!new)
85 return NULL;
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
88 * cache_put it soon.
89 */
90 cache_init(new);
91 detail->init(new, key);
92
93 write_lock(&detail->hash_lock);
94
95 /* check if entry appeared while we slept */
96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 struct cache_head *tmp = *hp;
98 if (detail->match(tmp, key)) {
99 if (cache_is_expired(detail, tmp)) {
100 *hp = tmp->next;
101 tmp->next = NULL;
102 detail->entries --;
103 freeme = tmp;
104 break;
105 }
106 cache_get(tmp);
107 write_unlock(&detail->hash_lock);
108 cache_put(new, detail);
109 return tmp;
110 }
111 }
112 new->next = *head;
113 *head = new;
114 detail->entries++;
115 cache_get(new);
116 write_unlock(&detail->hash_lock);
117
118 if (freeme)
119 cache_put(freeme, detail);
120 return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 head->expiry_time = expiry;
130 head->last_refresh = seconds_since_boot();
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136 struct cache_detail *detail)
137 {
138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 cache_revisit_request(head);
140 cache_dequeue(detail, head);
141 }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 struct cache_head *new, struct cache_head *old, int hash)
146 {
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
150 */
151 struct cache_head **head;
152 struct cache_head *tmp;
153
154 if (!test_bit(CACHE_VALID, &old->flags)) {
155 write_lock(&detail->hash_lock);
156 if (!test_bit(CACHE_VALID, &old->flags)) {
157 if (test_bit(CACHE_NEGATIVE, &new->flags))
158 set_bit(CACHE_NEGATIVE, &old->flags);
159 else
160 detail->update(old, new);
161 cache_fresh_locked(old, new->expiry_time);
162 write_unlock(&detail->hash_lock);
163 cache_fresh_unlocked(old, detail);
164 return old;
165 }
166 write_unlock(&detail->hash_lock);
167 }
168 /* We need to insert a new entry */
169 tmp = detail->alloc();
170 if (!tmp) {
171 cache_put(old, detail);
172 return NULL;
173 }
174 cache_init(tmp);
175 detail->init(tmp, old);
176 head = &detail->hash_table[hash];
177
178 write_lock(&detail->hash_lock);
179 if (test_bit(CACHE_NEGATIVE, &new->flags))
180 set_bit(CACHE_NEGATIVE, &tmp->flags);
181 else
182 detail->update(tmp, new);
183 tmp->next = *head;
184 *head = tmp;
185 detail->entries++;
186 cache_get(tmp);
187 cache_fresh_locked(tmp, new->expiry_time);
188 cache_fresh_locked(old, 0);
189 write_unlock(&detail->hash_lock);
190 cache_fresh_unlocked(tmp, detail);
191 cache_fresh_unlocked(old, detail);
192 cache_put(old, detail);
193 return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 if (cd->cache_upcall)
200 return cd->cache_upcall(cd, h);
201 return sunrpc_cache_pipe_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206 if (!test_bit(CACHE_VALID, &h->flags))
207 return -EAGAIN;
208 else {
209 /* entry is valid */
210 if (test_bit(CACHE_NEGATIVE, &h->flags))
211 return -ENOENT;
212 else {
213 /*
214 * In combination with write barrier in
215 * sunrpc_cache_update, ensures that anyone
216 * using the cache entry after this sees the
217 * updated contents:
218 */
219 smp_rmb();
220 return 0;
221 }
222 }
223 }
224
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227 int rv;
228
229 write_lock(&detail->hash_lock);
230 rv = cache_is_valid(detail, h);
231 if (rv != -EAGAIN) {
232 write_unlock(&detail->hash_lock);
233 return rv;
234 }
235 set_bit(CACHE_NEGATIVE, &h->flags);
236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237 write_unlock(&detail->hash_lock);
238 cache_fresh_unlocked(h, detail);
239 return -ENOENT;
240 }
241
242 /*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 * upcall completed but item is still invalid (implying that
253 * the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256 int cache_check(struct cache_detail *detail,
257 struct cache_head *h, struct cache_req *rqstp)
258 {
259 int rv;
260 long refresh_age, age;
261
262 /* First decide return status as best we can */
263 rv = cache_is_valid(detail, h);
264
265 /* now see if we want to start an upcall */
266 refresh_age = (h->expiry_time - h->last_refresh);
267 age = seconds_since_boot() - h->last_refresh;
268
269 if (rqstp == NULL) {
270 if (rv == -EAGAIN)
271 rv = -ENOENT;
272 } else if (rv == -EAGAIN || age > refresh_age/2) {
273 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274 refresh_age, age);
275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276 switch (cache_make_upcall(detail, h)) {
277 case -EINVAL:
278 clear_bit(CACHE_PENDING, &h->flags);
279 cache_revisit_request(h);
280 rv = try_to_negate_entry(detail, h);
281 break;
282 case -EAGAIN:
283 clear_bit(CACHE_PENDING, &h->flags);
284 cache_revisit_request(h);
285 break;
286 }
287 }
288 }
289
290 if (rv == -EAGAIN) {
291 if (!cache_defer_req(rqstp, h)) {
292 /*
293 * Request was not deferred; handle it as best
294 * we can ourselves:
295 */
296 rv = cache_is_valid(detail, h);
297 if (rv == -EAGAIN)
298 rv = -ETIMEDOUT;
299 }
300 }
301 if (rv)
302 cache_put(h, detail);
303 return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306
307 /*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346
347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 rwlock_init(&cd->hash_lock);
350 INIT_LIST_HEAD(&cd->queue);
351 spin_lock(&cache_list_lock);
352 cd->nextcheck = 0;
353 cd->entries = 0;
354 atomic_set(&cd->readers, 0);
355 cd->last_close = 0;
356 cd->last_warn = -1;
357 list_add(&cd->others, &cache_list);
358 spin_unlock(&cache_list_lock);
359
360 /* start the cleaning process */
361 schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367 cache_purge(cd);
368 spin_lock(&cache_list_lock);
369 write_lock(&cd->hash_lock);
370 if (cd->entries || atomic_read(&cd->inuse)) {
371 write_unlock(&cd->hash_lock);
372 spin_unlock(&cache_list_lock);
373 goto out;
374 }
375 if (current_detail == cd)
376 current_detail = NULL;
377 list_del_init(&cd->others);
378 write_unlock(&cd->hash_lock);
379 spin_unlock(&cache_list_lock);
380 if (list_empty(&cache_list)) {
381 /* module must be being unloaded so its safe to kill the worker */
382 cancel_delayed_work_sync(&cache_cleaner);
383 }
384 return;
385 out:
386 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390 /* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 * 0 if it didn't find anything this time
394 * -1 if it fell off the end of the list.
395 */
396 static int cache_clean(void)
397 {
398 int rv = 0;
399 struct list_head *next;
400
401 spin_lock(&cache_list_lock);
402
403 /* find a suitable table if we don't already have one */
404 while (current_detail == NULL ||
405 current_index >= current_detail->hash_size) {
406 if (current_detail)
407 next = current_detail->others.next;
408 else
409 next = cache_list.next;
410 if (next == &cache_list) {
411 current_detail = NULL;
412 spin_unlock(&cache_list_lock);
413 return -1;
414 }
415 current_detail = list_entry(next, struct cache_detail, others);
416 if (current_detail->nextcheck > seconds_since_boot())
417 current_index = current_detail->hash_size;
418 else {
419 current_index = 0;
420 current_detail->nextcheck = seconds_since_boot()+30*60;
421 }
422 }
423
424 /* find a non-empty bucket in the table */
425 while (current_detail &&
426 current_index < current_detail->hash_size &&
427 current_detail->hash_table[current_index] == NULL)
428 current_index++;
429
430 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432 if (current_detail && current_index < current_detail->hash_size) {
433 struct cache_head *ch, **cp;
434 struct cache_detail *d;
435
436 write_lock(&current_detail->hash_lock);
437
438 /* Ok, now to clean this strand */
439
440 cp = & current_detail->hash_table[current_index];
441 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442 if (current_detail->nextcheck > ch->expiry_time)
443 current_detail->nextcheck = ch->expiry_time+1;
444 if (!cache_is_expired(current_detail, ch))
445 continue;
446
447 *cp = ch->next;
448 ch->next = NULL;
449 current_detail->entries--;
450 rv = 1;
451 break;
452 }
453
454 write_unlock(&current_detail->hash_lock);
455 d = current_detail;
456 if (!ch)
457 current_index ++;
458 spin_unlock(&cache_list_lock);
459 if (ch) {
460 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461 cache_dequeue(current_detail, ch);
462 cache_revisit_request(ch);
463 cache_put(ch, d);
464 }
465 } else
466 spin_unlock(&cache_list_lock);
467
468 return rv;
469 }
470
471 /*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474 static void do_cache_clean(struct work_struct *work)
475 {
476 int delay = 5;
477 if (cache_clean() == -1)
478 delay = round_jiffies_relative(30*HZ);
479
480 if (list_empty(&cache_list))
481 delay = 0;
482
483 if (delay)
484 schedule_delayed_work(&cache_cleaner, delay);
485 }
486
487
488 /*
489 * Clean all caches promptly. This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493 void cache_flush(void)
494 {
495 while (cache_clean() != -1)
496 cond_resched();
497 while (cache_clean() != -1)
498 cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501
502 void cache_purge(struct cache_detail *detail)
503 {
504 detail->flush_time = LONG_MAX;
505 detail->nextcheck = seconds_since_boot();
506 cache_flush();
507 detail->flush_time = 1;
508 }
509 EXPORT_SYMBOL_GPL(cache_purge);
510
511
512 /*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530 #define DFR_MAX 300 /* ??? */
531
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539 hlist_del_init(&dreq->hash);
540 if (!list_empty(&dreq->recent)) {
541 list_del_init(&dreq->recent);
542 cache_defer_cnt--;
543 }
544 }
545
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548 int hash = DFR_HASH(item);
549
550 INIT_LIST_HEAD(&dreq->recent);
551 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553
554 static void setup_deferral(struct cache_deferred_req *dreq,
555 struct cache_head *item,
556 int count_me)
557 {
558
559 dreq->item = item;
560
561 spin_lock(&cache_defer_lock);
562
563 __hash_deferred_req(dreq, item);
564
565 if (count_me) {
566 cache_defer_cnt++;
567 list_add(&dreq->recent, &cache_defer_list);
568 }
569
570 spin_unlock(&cache_defer_lock);
571
572 }
573
574 struct thread_deferred_req {
575 struct cache_deferred_req handle;
576 struct completion completion;
577 };
578
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581 struct thread_deferred_req *dr =
582 container_of(dreq, struct thread_deferred_req, handle);
583 complete(&dr->completion);
584 }
585
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
588 struct thread_deferred_req sleeper;
589 struct cache_deferred_req *dreq = &sleeper.handle;
590
591 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592 dreq->revisit = cache_restart_thread;
593
594 setup_deferral(dreq, item, 0);
595
596 if (!test_bit(CACHE_PENDING, &item->flags) ||
597 wait_for_completion_interruptible_timeout(
598 &sleeper.completion, req->thread_wait) <= 0) {
599 /* The completion wasn't completed, so we need
600 * to clean up
601 */
602 spin_lock(&cache_defer_lock);
603 if (!hlist_unhashed(&sleeper.handle.hash)) {
604 __unhash_deferred_req(&sleeper.handle);
605 spin_unlock(&cache_defer_lock);
606 } else {
607 /* cache_revisit_request already removed
608 * this from the hash table, but hasn't
609 * called ->revisit yet. It will very soon
610 * and we need to wait for it.
611 */
612 spin_unlock(&cache_defer_lock);
613 wait_for_completion(&sleeper.completion);
614 }
615 }
616 }
617
618 static void cache_limit_defers(void)
619 {
620 /* Make sure we haven't exceed the limit of allowed deferred
621 * requests.
622 */
623 struct cache_deferred_req *discard = NULL;
624
625 if (cache_defer_cnt <= DFR_MAX)
626 return;
627
628 spin_lock(&cache_defer_lock);
629
630 /* Consider removing either the first or the last */
631 if (cache_defer_cnt > DFR_MAX) {
632 if (net_random() & 1)
633 discard = list_entry(cache_defer_list.next,
634 struct cache_deferred_req, recent);
635 else
636 discard = list_entry(cache_defer_list.prev,
637 struct cache_deferred_req, recent);
638 __unhash_deferred_req(discard);
639 }
640 spin_unlock(&cache_defer_lock);
641 if (discard)
642 discard->revisit(discard, 1);
643 }
644
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648 struct cache_deferred_req *dreq;
649
650 if (req->thread_wait) {
651 cache_wait_req(req, item);
652 if (!test_bit(CACHE_PENDING, &item->flags))
653 return false;
654 }
655 dreq = req->defer(req);
656 if (dreq == NULL)
657 return false;
658 setup_deferral(dreq, item, 1);
659 if (!test_bit(CACHE_PENDING, &item->flags))
660 /* Bit could have been cleared before we managed to
661 * set up the deferral, so need to revisit just in case
662 */
663 cache_revisit_request(item);
664
665 cache_limit_defers();
666 return true;
667 }
668
669 static void cache_revisit_request(struct cache_head *item)
670 {
671 struct cache_deferred_req *dreq;
672 struct list_head pending;
673 struct hlist_node *tmp;
674 int hash = DFR_HASH(item);
675
676 INIT_LIST_HEAD(&pending);
677 spin_lock(&cache_defer_lock);
678
679 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
680 if (dreq->item == item) {
681 __unhash_deferred_req(dreq);
682 list_add(&dreq->recent, &pending);
683 }
684
685 spin_unlock(&cache_defer_lock);
686
687 while (!list_empty(&pending)) {
688 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689 list_del_init(&dreq->recent);
690 dreq->revisit(dreq, 0);
691 }
692 }
693
694 void cache_clean_deferred(void *owner)
695 {
696 struct cache_deferred_req *dreq, *tmp;
697 struct list_head pending;
698
699
700 INIT_LIST_HEAD(&pending);
701 spin_lock(&cache_defer_lock);
702
703 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704 if (dreq->owner == owner) {
705 __unhash_deferred_req(dreq);
706 list_add(&dreq->recent, &pending);
707 }
708 }
709 spin_unlock(&cache_defer_lock);
710
711 while (!list_empty(&pending)) {
712 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713 list_del_init(&dreq->recent);
714 dreq->revisit(dreq, 1);
715 }
716 }
717
718 /*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests. Each open file has
727 * a ->private that also exists in this list. New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head. If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736
737 struct cache_queue {
738 struct list_head list;
739 int reader; /* if 0, then request */
740 };
741 struct cache_request {
742 struct cache_queue q;
743 struct cache_head *item;
744 char * buf;
745 int len;
746 int readers;
747 };
748 struct cache_reader {
749 struct cache_queue q;
750 int offset; /* if non-0, we have a refcnt on next request */
751 };
752
753 static int cache_request(struct cache_detail *detail,
754 struct cache_request *crq)
755 {
756 char *bp = crq->buf;
757 int len = PAGE_SIZE;
758
759 detail->cache_request(detail, crq->item, &bp, &len);
760 if (len < 0)
761 return -EAGAIN;
762 return PAGE_SIZE - len;
763 }
764
765 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
766 loff_t *ppos, struct cache_detail *cd)
767 {
768 struct cache_reader *rp = filp->private_data;
769 struct cache_request *rq;
770 struct inode *inode = file_inode(filp);
771 int err;
772
773 if (count == 0)
774 return 0;
775
776 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
777 * readers on this file */
778 again:
779 spin_lock(&queue_lock);
780 /* need to find next request */
781 while (rp->q.list.next != &cd->queue &&
782 list_entry(rp->q.list.next, struct cache_queue, list)
783 ->reader) {
784 struct list_head *next = rp->q.list.next;
785 list_move(&rp->q.list, next);
786 }
787 if (rp->q.list.next == &cd->queue) {
788 spin_unlock(&queue_lock);
789 mutex_unlock(&inode->i_mutex);
790 WARN_ON_ONCE(rp->offset);
791 return 0;
792 }
793 rq = container_of(rp->q.list.next, struct cache_request, q.list);
794 WARN_ON_ONCE(rq->q.reader);
795 if (rp->offset == 0)
796 rq->readers++;
797 spin_unlock(&queue_lock);
798
799 if (rq->len == 0) {
800 err = cache_request(cd, rq);
801 if (err < 0)
802 goto out;
803 rq->len = err;
804 }
805
806 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
807 err = -EAGAIN;
808 spin_lock(&queue_lock);
809 list_move(&rp->q.list, &rq->q.list);
810 spin_unlock(&queue_lock);
811 } else {
812 if (rp->offset + count > rq->len)
813 count = rq->len - rp->offset;
814 err = -EFAULT;
815 if (copy_to_user(buf, rq->buf + rp->offset, count))
816 goto out;
817 rp->offset += count;
818 if (rp->offset >= rq->len) {
819 rp->offset = 0;
820 spin_lock(&queue_lock);
821 list_move(&rp->q.list, &rq->q.list);
822 spin_unlock(&queue_lock);
823 }
824 err = 0;
825 }
826 out:
827 if (rp->offset == 0) {
828 /* need to release rq */
829 spin_lock(&queue_lock);
830 rq->readers--;
831 if (rq->readers == 0 &&
832 !test_bit(CACHE_PENDING, &rq->item->flags)) {
833 list_del(&rq->q.list);
834 spin_unlock(&queue_lock);
835 cache_put(rq->item, cd);
836 kfree(rq->buf);
837 kfree(rq);
838 } else
839 spin_unlock(&queue_lock);
840 }
841 if (err == -EAGAIN)
842 goto again;
843 mutex_unlock(&inode->i_mutex);
844 return err ? err : count;
845 }
846
847 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
848 size_t count, struct cache_detail *cd)
849 {
850 ssize_t ret;
851
852 if (count == 0)
853 return -EINVAL;
854 if (copy_from_user(kaddr, buf, count))
855 return -EFAULT;
856 kaddr[count] = '\0';
857 ret = cd->cache_parse(cd, kaddr, count);
858 if (!ret)
859 ret = count;
860 return ret;
861 }
862
863 static ssize_t cache_slow_downcall(const char __user *buf,
864 size_t count, struct cache_detail *cd)
865 {
866 static char write_buf[8192]; /* protected by queue_io_mutex */
867 ssize_t ret = -EINVAL;
868
869 if (count >= sizeof(write_buf))
870 goto out;
871 mutex_lock(&queue_io_mutex);
872 ret = cache_do_downcall(write_buf, buf, count, cd);
873 mutex_unlock(&queue_io_mutex);
874 out:
875 return ret;
876 }
877
878 static ssize_t cache_downcall(struct address_space *mapping,
879 const char __user *buf,
880 size_t count, struct cache_detail *cd)
881 {
882 struct page *page;
883 char *kaddr;
884 ssize_t ret = -ENOMEM;
885
886 if (count >= PAGE_CACHE_SIZE)
887 goto out_slow;
888
889 page = find_or_create_page(mapping, 0, GFP_KERNEL);
890 if (!page)
891 goto out_slow;
892
893 kaddr = kmap(page);
894 ret = cache_do_downcall(kaddr, buf, count, cd);
895 kunmap(page);
896 unlock_page(page);
897 page_cache_release(page);
898 return ret;
899 out_slow:
900 return cache_slow_downcall(buf, count, cd);
901 }
902
903 static ssize_t cache_write(struct file *filp, const char __user *buf,
904 size_t count, loff_t *ppos,
905 struct cache_detail *cd)
906 {
907 struct address_space *mapping = filp->f_mapping;
908 struct inode *inode = file_inode(filp);
909 ssize_t ret = -EINVAL;
910
911 if (!cd->cache_parse)
912 goto out;
913
914 mutex_lock(&inode->i_mutex);
915 ret = cache_downcall(mapping, buf, count, cd);
916 mutex_unlock(&inode->i_mutex);
917 out:
918 return ret;
919 }
920
921 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
922
923 static unsigned int cache_poll(struct file *filp, poll_table *wait,
924 struct cache_detail *cd)
925 {
926 unsigned int mask;
927 struct cache_reader *rp = filp->private_data;
928 struct cache_queue *cq;
929
930 poll_wait(filp, &queue_wait, wait);
931
932 /* alway allow write */
933 mask = POLLOUT | POLLWRNORM;
934
935 if (!rp)
936 return mask;
937
938 spin_lock(&queue_lock);
939
940 for (cq= &rp->q; &cq->list != &cd->queue;
941 cq = list_entry(cq->list.next, struct cache_queue, list))
942 if (!cq->reader) {
943 mask |= POLLIN | POLLRDNORM;
944 break;
945 }
946 spin_unlock(&queue_lock);
947 return mask;
948 }
949
950 static int cache_ioctl(struct inode *ino, struct file *filp,
951 unsigned int cmd, unsigned long arg,
952 struct cache_detail *cd)
953 {
954 int len = 0;
955 struct cache_reader *rp = filp->private_data;
956 struct cache_queue *cq;
957
958 if (cmd != FIONREAD || !rp)
959 return -EINVAL;
960
961 spin_lock(&queue_lock);
962
963 /* only find the length remaining in current request,
964 * or the length of the next request
965 */
966 for (cq= &rp->q; &cq->list != &cd->queue;
967 cq = list_entry(cq->list.next, struct cache_queue, list))
968 if (!cq->reader) {
969 struct cache_request *cr =
970 container_of(cq, struct cache_request, q);
971 len = cr->len - rp->offset;
972 break;
973 }
974 spin_unlock(&queue_lock);
975
976 return put_user(len, (int __user *)arg);
977 }
978
979 static int cache_open(struct inode *inode, struct file *filp,
980 struct cache_detail *cd)
981 {
982 struct cache_reader *rp = NULL;
983
984 if (!cd || !try_module_get(cd->owner))
985 return -EACCES;
986 nonseekable_open(inode, filp);
987 if (filp->f_mode & FMODE_READ) {
988 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
989 if (!rp) {
990 module_put(cd->owner);
991 return -ENOMEM;
992 }
993 rp->offset = 0;
994 rp->q.reader = 1;
995 atomic_inc(&cd->readers);
996 spin_lock(&queue_lock);
997 list_add(&rp->q.list, &cd->queue);
998 spin_unlock(&queue_lock);
999 }
1000 filp->private_data = rp;
1001 return 0;
1002 }
1003
1004 static int cache_release(struct inode *inode, struct file *filp,
1005 struct cache_detail *cd)
1006 {
1007 struct cache_reader *rp = filp->private_data;
1008
1009 if (rp) {
1010 spin_lock(&queue_lock);
1011 if (rp->offset) {
1012 struct cache_queue *cq;
1013 for (cq= &rp->q; &cq->list != &cd->queue;
1014 cq = list_entry(cq->list.next, struct cache_queue, list))
1015 if (!cq->reader) {
1016 container_of(cq, struct cache_request, q)
1017 ->readers--;
1018 break;
1019 }
1020 rp->offset = 0;
1021 }
1022 list_del(&rp->q.list);
1023 spin_unlock(&queue_lock);
1024
1025 filp->private_data = NULL;
1026 kfree(rp);
1027
1028 cd->last_close = seconds_since_boot();
1029 atomic_dec(&cd->readers);
1030 }
1031 module_put(cd->owner);
1032 return 0;
1033 }
1034
1035
1036
1037 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1038 {
1039 struct cache_queue *cq;
1040 spin_lock(&queue_lock);
1041 list_for_each_entry(cq, &detail->queue, list)
1042 if (!cq->reader) {
1043 struct cache_request *cr = container_of(cq, struct cache_request, q);
1044 if (cr->item != ch)
1045 continue;
1046 if (cr->readers != 0)
1047 continue;
1048 list_del(&cr->q.list);
1049 spin_unlock(&queue_lock);
1050 cache_put(cr->item, detail);
1051 kfree(cr->buf);
1052 kfree(cr);
1053 return;
1054 }
1055 spin_unlock(&queue_lock);
1056 }
1057
1058 /*
1059 * Support routines for text-based upcalls.
1060 * Fields are separated by spaces.
1061 * Fields are either mangled to quote space tab newline slosh with slosh
1062 * or a hexified with a leading \x
1063 * Record is terminated with newline.
1064 *
1065 */
1066
1067 void qword_add(char **bpp, int *lp, char *str)
1068 {
1069 char *bp = *bpp;
1070 int len = *lp;
1071 char c;
1072
1073 if (len < 0) return;
1074
1075 while ((c=*str++) && len)
1076 switch(c) {
1077 case ' ':
1078 case '\t':
1079 case '\n':
1080 case '\\':
1081 if (len >= 4) {
1082 *bp++ = '\\';
1083 *bp++ = '0' + ((c & 0300)>>6);
1084 *bp++ = '0' + ((c & 0070)>>3);
1085 *bp++ = '0' + ((c & 0007)>>0);
1086 }
1087 len -= 4;
1088 break;
1089 default:
1090 *bp++ = c;
1091 len--;
1092 }
1093 if (c || len <1) len = -1;
1094 else {
1095 *bp++ = ' ';
1096 len--;
1097 }
1098 *bpp = bp;
1099 *lp = len;
1100 }
1101 EXPORT_SYMBOL_GPL(qword_add);
1102
1103 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1104 {
1105 char *bp = *bpp;
1106 int len = *lp;
1107
1108 if (len < 0) return;
1109
1110 if (len > 2) {
1111 *bp++ = '\\';
1112 *bp++ = 'x';
1113 len -= 2;
1114 while (blen && len >= 2) {
1115 unsigned char c = *buf++;
1116 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1117 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1118 len -= 2;
1119 blen--;
1120 }
1121 }
1122 if (blen || len<1) len = -1;
1123 else {
1124 *bp++ = ' ';
1125 len--;
1126 }
1127 *bpp = bp;
1128 *lp = len;
1129 }
1130 EXPORT_SYMBOL_GPL(qword_addhex);
1131
1132 static void warn_no_listener(struct cache_detail *detail)
1133 {
1134 if (detail->last_warn != detail->last_close) {
1135 detail->last_warn = detail->last_close;
1136 if (detail->warn_no_listener)
1137 detail->warn_no_listener(detail, detail->last_close != 0);
1138 }
1139 }
1140
1141 static bool cache_listeners_exist(struct cache_detail *detail)
1142 {
1143 if (atomic_read(&detail->readers))
1144 return true;
1145 if (detail->last_close == 0)
1146 /* This cache was never opened */
1147 return false;
1148 if (detail->last_close < seconds_since_boot() - 30)
1149 /*
1150 * We allow for the possibility that someone might
1151 * restart a userspace daemon without restarting the
1152 * server; but after 30 seconds, we give up.
1153 */
1154 return false;
1155 return true;
1156 }
1157
1158 /*
1159 * register an upcall request to user-space and queue it up for read() by the
1160 * upcall daemon.
1161 *
1162 * Each request is at most one page long.
1163 */
1164 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1165 {
1166
1167 char *buf;
1168 struct cache_request *crq;
1169
1170 if (!detail->cache_request)
1171 return -EINVAL;
1172
1173 if (!cache_listeners_exist(detail)) {
1174 warn_no_listener(detail);
1175 return -EINVAL;
1176 }
1177
1178 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1179 if (!buf)
1180 return -EAGAIN;
1181
1182 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1183 if (!crq) {
1184 kfree(buf);
1185 return -EAGAIN;
1186 }
1187
1188 crq->q.reader = 0;
1189 crq->item = cache_get(h);
1190 crq->buf = buf;
1191 crq->len = 0;
1192 crq->readers = 0;
1193 spin_lock(&queue_lock);
1194 list_add_tail(&crq->q.list, &detail->queue);
1195 spin_unlock(&queue_lock);
1196 wake_up(&queue_wait);
1197 return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1200
1201 /*
1202 * parse a message from user-space and pass it
1203 * to an appropriate cache
1204 * Messages are, like requests, separated into fields by
1205 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1206 *
1207 * Message is
1208 * reply cachename expiry key ... content....
1209 *
1210 * key and content are both parsed by cache
1211 */
1212
1213 int qword_get(char **bpp, char *dest, int bufsize)
1214 {
1215 /* return bytes copied, or -1 on error */
1216 char *bp = *bpp;
1217 int len = 0;
1218
1219 while (*bp == ' ') bp++;
1220
1221 if (bp[0] == '\\' && bp[1] == 'x') {
1222 /* HEX STRING */
1223 bp += 2;
1224 while (len < bufsize) {
1225 int h, l;
1226
1227 h = hex_to_bin(bp[0]);
1228 if (h < 0)
1229 break;
1230
1231 l = hex_to_bin(bp[1]);
1232 if (l < 0)
1233 break;
1234
1235 *dest++ = (h << 4) | l;
1236 bp += 2;
1237 len++;
1238 }
1239 } else {
1240 /* text with \nnn octal quoting */
1241 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1242 if (*bp == '\\' &&
1243 isodigit(bp[1]) && (bp[1] <= '3') &&
1244 isodigit(bp[2]) &&
1245 isodigit(bp[3])) {
1246 int byte = (*++bp -'0');
1247 bp++;
1248 byte = (byte << 3) | (*bp++ - '0');
1249 byte = (byte << 3) | (*bp++ - '0');
1250 *dest++ = byte;
1251 len++;
1252 } else {
1253 *dest++ = *bp++;
1254 len++;
1255 }
1256 }
1257 }
1258
1259 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1260 return -1;
1261 while (*bp == ' ') bp++;
1262 *bpp = bp;
1263 *dest = '\0';
1264 return len;
1265 }
1266 EXPORT_SYMBOL_GPL(qword_get);
1267
1268
1269 /*
1270 * support /proc/sunrpc/cache/$CACHENAME/content
1271 * as a seqfile.
1272 * We call ->cache_show passing NULL for the item to
1273 * get a header, then pass each real item in the cache
1274 */
1275
1276 struct handle {
1277 struct cache_detail *cd;
1278 };
1279
1280 static void *c_start(struct seq_file *m, loff_t *pos)
1281 __acquires(cd->hash_lock)
1282 {
1283 loff_t n = *pos;
1284 unsigned int hash, entry;
1285 struct cache_head *ch;
1286 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1287
1288
1289 read_lock(&cd->hash_lock);
1290 if (!n--)
1291 return SEQ_START_TOKEN;
1292 hash = n >> 32;
1293 entry = n & ((1LL<<32) - 1);
1294
1295 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1296 if (!entry--)
1297 return ch;
1298 n &= ~((1LL<<32) - 1);
1299 do {
1300 hash++;
1301 n += 1LL<<32;
1302 } while(hash < cd->hash_size &&
1303 cd->hash_table[hash]==NULL);
1304 if (hash >= cd->hash_size)
1305 return NULL;
1306 *pos = n+1;
1307 return cd->hash_table[hash];
1308 }
1309
1310 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1311 {
1312 struct cache_head *ch = p;
1313 int hash = (*pos >> 32);
1314 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1315
1316 if (p == SEQ_START_TOKEN)
1317 hash = 0;
1318 else if (ch->next == NULL) {
1319 hash++;
1320 *pos += 1LL<<32;
1321 } else {
1322 ++*pos;
1323 return ch->next;
1324 }
1325 *pos &= ~((1LL<<32) - 1);
1326 while (hash < cd->hash_size &&
1327 cd->hash_table[hash] == NULL) {
1328 hash++;
1329 *pos += 1LL<<32;
1330 }
1331 if (hash >= cd->hash_size)
1332 return NULL;
1333 ++*pos;
1334 return cd->hash_table[hash];
1335 }
1336
1337 static void c_stop(struct seq_file *m, void *p)
1338 __releases(cd->hash_lock)
1339 {
1340 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1341 read_unlock(&cd->hash_lock);
1342 }
1343
1344 static int c_show(struct seq_file *m, void *p)
1345 {
1346 struct cache_head *cp = p;
1347 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1348
1349 if (p == SEQ_START_TOKEN)
1350 return cd->cache_show(m, cd, NULL);
1351
1352 ifdebug(CACHE)
1353 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1354 convert_to_wallclock(cp->expiry_time),
1355 atomic_read(&cp->ref.refcount), cp->flags);
1356 cache_get(cp);
1357 if (cache_check(cd, cp, NULL))
1358 /* cache_check does a cache_put on failure */
1359 seq_printf(m, "# ");
1360 else {
1361 if (cache_is_expired(cd, cp))
1362 seq_printf(m, "# ");
1363 cache_put(cp, cd);
1364 }
1365
1366 return cd->cache_show(m, cd, cp);
1367 }
1368
1369 static const struct seq_operations cache_content_op = {
1370 .start = c_start,
1371 .next = c_next,
1372 .stop = c_stop,
1373 .show = c_show,
1374 };
1375
1376 static int content_open(struct inode *inode, struct file *file,
1377 struct cache_detail *cd)
1378 {
1379 struct handle *han;
1380
1381 if (!cd || !try_module_get(cd->owner))
1382 return -EACCES;
1383 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1384 if (han == NULL) {
1385 module_put(cd->owner);
1386 return -ENOMEM;
1387 }
1388
1389 han->cd = cd;
1390 return 0;
1391 }
1392
1393 static int content_release(struct inode *inode, struct file *file,
1394 struct cache_detail *cd)
1395 {
1396 int ret = seq_release_private(inode, file);
1397 module_put(cd->owner);
1398 return ret;
1399 }
1400
1401 static int open_flush(struct inode *inode, struct file *file,
1402 struct cache_detail *cd)
1403 {
1404 if (!cd || !try_module_get(cd->owner))
1405 return -EACCES;
1406 return nonseekable_open(inode, file);
1407 }
1408
1409 static int release_flush(struct inode *inode, struct file *file,
1410 struct cache_detail *cd)
1411 {
1412 module_put(cd->owner);
1413 return 0;
1414 }
1415
1416 static ssize_t read_flush(struct file *file, char __user *buf,
1417 size_t count, loff_t *ppos,
1418 struct cache_detail *cd)
1419 {
1420 char tbuf[22];
1421 unsigned long p = *ppos;
1422 size_t len;
1423
1424 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1425 len = strlen(tbuf);
1426 if (p >= len)
1427 return 0;
1428 len -= p;
1429 if (len > count)
1430 len = count;
1431 if (copy_to_user(buf, (void*)(tbuf+p), len))
1432 return -EFAULT;
1433 *ppos += len;
1434 return len;
1435 }
1436
1437 static ssize_t write_flush(struct file *file, const char __user *buf,
1438 size_t count, loff_t *ppos,
1439 struct cache_detail *cd)
1440 {
1441 char tbuf[20];
1442 char *bp, *ep;
1443
1444 if (*ppos || count > sizeof(tbuf)-1)
1445 return -EINVAL;
1446 if (copy_from_user(tbuf, buf, count))
1447 return -EFAULT;
1448 tbuf[count] = 0;
1449 simple_strtoul(tbuf, &ep, 0);
1450 if (*ep && *ep != '\n')
1451 return -EINVAL;
1452
1453 bp = tbuf;
1454 cd->flush_time = get_expiry(&bp);
1455 cd->nextcheck = seconds_since_boot();
1456 cache_flush();
1457
1458 *ppos += count;
1459 return count;
1460 }
1461
1462 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1463 size_t count, loff_t *ppos)
1464 {
1465 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1466
1467 return cache_read(filp, buf, count, ppos, cd);
1468 }
1469
1470 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1471 size_t count, loff_t *ppos)
1472 {
1473 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1474
1475 return cache_write(filp, buf, count, ppos, cd);
1476 }
1477
1478 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1479 {
1480 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1481
1482 return cache_poll(filp, wait, cd);
1483 }
1484
1485 static long cache_ioctl_procfs(struct file *filp,
1486 unsigned int cmd, unsigned long arg)
1487 {
1488 struct inode *inode = file_inode(filp);
1489 struct cache_detail *cd = PDE_DATA(inode);
1490
1491 return cache_ioctl(inode, filp, cmd, arg, cd);
1492 }
1493
1494 static int cache_open_procfs(struct inode *inode, struct file *filp)
1495 {
1496 struct cache_detail *cd = PDE_DATA(inode);
1497
1498 return cache_open(inode, filp, cd);
1499 }
1500
1501 static int cache_release_procfs(struct inode *inode, struct file *filp)
1502 {
1503 struct cache_detail *cd = PDE_DATA(inode);
1504
1505 return cache_release(inode, filp, cd);
1506 }
1507
1508 static const struct file_operations cache_file_operations_procfs = {
1509 .owner = THIS_MODULE,
1510 .llseek = no_llseek,
1511 .read = cache_read_procfs,
1512 .write = cache_write_procfs,
1513 .poll = cache_poll_procfs,
1514 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1515 .open = cache_open_procfs,
1516 .release = cache_release_procfs,
1517 };
1518
1519 static int content_open_procfs(struct inode *inode, struct file *filp)
1520 {
1521 struct cache_detail *cd = PDE_DATA(inode);
1522
1523 return content_open(inode, filp, cd);
1524 }
1525
1526 static int content_release_procfs(struct inode *inode, struct file *filp)
1527 {
1528 struct cache_detail *cd = PDE_DATA(inode);
1529
1530 return content_release(inode, filp, cd);
1531 }
1532
1533 static const struct file_operations content_file_operations_procfs = {
1534 .open = content_open_procfs,
1535 .read = seq_read,
1536 .llseek = seq_lseek,
1537 .release = content_release_procfs,
1538 };
1539
1540 static int open_flush_procfs(struct inode *inode, struct file *filp)
1541 {
1542 struct cache_detail *cd = PDE_DATA(inode);
1543
1544 return open_flush(inode, filp, cd);
1545 }
1546
1547 static int release_flush_procfs(struct inode *inode, struct file *filp)
1548 {
1549 struct cache_detail *cd = PDE_DATA(inode);
1550
1551 return release_flush(inode, filp, cd);
1552 }
1553
1554 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1555 size_t count, loff_t *ppos)
1556 {
1557 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1558
1559 return read_flush(filp, buf, count, ppos, cd);
1560 }
1561
1562 static ssize_t write_flush_procfs(struct file *filp,
1563 const char __user *buf,
1564 size_t count, loff_t *ppos)
1565 {
1566 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568 return write_flush(filp, buf, count, ppos, cd);
1569 }
1570
1571 static const struct file_operations cache_flush_operations_procfs = {
1572 .open = open_flush_procfs,
1573 .read = read_flush_procfs,
1574 .write = write_flush_procfs,
1575 .release = release_flush_procfs,
1576 .llseek = no_llseek,
1577 };
1578
1579 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1580 {
1581 struct sunrpc_net *sn;
1582
1583 if (cd->u.procfs.proc_ent == NULL)
1584 return;
1585 if (cd->u.procfs.flush_ent)
1586 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1587 if (cd->u.procfs.channel_ent)
1588 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1589 if (cd->u.procfs.content_ent)
1590 remove_proc_entry("content", cd->u.procfs.proc_ent);
1591 cd->u.procfs.proc_ent = NULL;
1592 sn = net_generic(net, sunrpc_net_id);
1593 remove_proc_entry(cd->name, sn->proc_net_rpc);
1594 }
1595
1596 #ifdef CONFIG_PROC_FS
1597 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1598 {
1599 struct proc_dir_entry *p;
1600 struct sunrpc_net *sn;
1601
1602 sn = net_generic(net, sunrpc_net_id);
1603 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1604 if (cd->u.procfs.proc_ent == NULL)
1605 goto out_nomem;
1606 cd->u.procfs.channel_ent = NULL;
1607 cd->u.procfs.content_ent = NULL;
1608
1609 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1610 cd->u.procfs.proc_ent,
1611 &cache_flush_operations_procfs, cd);
1612 cd->u.procfs.flush_ent = p;
1613 if (p == NULL)
1614 goto out_nomem;
1615
1616 if (cd->cache_request || cd->cache_parse) {
1617 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1618 cd->u.procfs.proc_ent,
1619 &cache_file_operations_procfs, cd);
1620 cd->u.procfs.channel_ent = p;
1621 if (p == NULL)
1622 goto out_nomem;
1623 }
1624 if (cd->cache_show) {
1625 p = proc_create_data("content", S_IFREG|S_IRUSR,
1626 cd->u.procfs.proc_ent,
1627 &content_file_operations_procfs, cd);
1628 cd->u.procfs.content_ent = p;
1629 if (p == NULL)
1630 goto out_nomem;
1631 }
1632 return 0;
1633 out_nomem:
1634 remove_cache_proc_entries(cd, net);
1635 return -ENOMEM;
1636 }
1637 #else /* CONFIG_PROC_FS */
1638 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1639 {
1640 return 0;
1641 }
1642 #endif
1643
1644 void __init cache_initialize(void)
1645 {
1646 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1647 }
1648
1649 int cache_register_net(struct cache_detail *cd, struct net *net)
1650 {
1651 int ret;
1652
1653 sunrpc_init_cache_detail(cd);
1654 ret = create_cache_proc_entries(cd, net);
1655 if (ret)
1656 sunrpc_destroy_cache_detail(cd);
1657 return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(cache_register_net);
1660
1661 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1662 {
1663 remove_cache_proc_entries(cd, net);
1664 sunrpc_destroy_cache_detail(cd);
1665 }
1666 EXPORT_SYMBOL_GPL(cache_unregister_net);
1667
1668 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1669 {
1670 struct cache_detail *cd;
1671
1672 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1673 if (cd == NULL)
1674 return ERR_PTR(-ENOMEM);
1675
1676 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1677 GFP_KERNEL);
1678 if (cd->hash_table == NULL) {
1679 kfree(cd);
1680 return ERR_PTR(-ENOMEM);
1681 }
1682 cd->net = net;
1683 return cd;
1684 }
1685 EXPORT_SYMBOL_GPL(cache_create_net);
1686
1687 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1688 {
1689 kfree(cd->hash_table);
1690 kfree(cd);
1691 }
1692 EXPORT_SYMBOL_GPL(cache_destroy_net);
1693
1694 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1695 size_t count, loff_t *ppos)
1696 {
1697 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1698
1699 return cache_read(filp, buf, count, ppos, cd);
1700 }
1701
1702 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1703 size_t count, loff_t *ppos)
1704 {
1705 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1706
1707 return cache_write(filp, buf, count, ppos, cd);
1708 }
1709
1710 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1711 {
1712 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1713
1714 return cache_poll(filp, wait, cd);
1715 }
1716
1717 static long cache_ioctl_pipefs(struct file *filp,
1718 unsigned int cmd, unsigned long arg)
1719 {
1720 struct inode *inode = file_inode(filp);
1721 struct cache_detail *cd = RPC_I(inode)->private;
1722
1723 return cache_ioctl(inode, filp, cmd, arg, cd);
1724 }
1725
1726 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1727 {
1728 struct cache_detail *cd = RPC_I(inode)->private;
1729
1730 return cache_open(inode, filp, cd);
1731 }
1732
1733 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1734 {
1735 struct cache_detail *cd = RPC_I(inode)->private;
1736
1737 return cache_release(inode, filp, cd);
1738 }
1739
1740 const struct file_operations cache_file_operations_pipefs = {
1741 .owner = THIS_MODULE,
1742 .llseek = no_llseek,
1743 .read = cache_read_pipefs,
1744 .write = cache_write_pipefs,
1745 .poll = cache_poll_pipefs,
1746 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1747 .open = cache_open_pipefs,
1748 .release = cache_release_pipefs,
1749 };
1750
1751 static int content_open_pipefs(struct inode *inode, struct file *filp)
1752 {
1753 struct cache_detail *cd = RPC_I(inode)->private;
1754
1755 return content_open(inode, filp, cd);
1756 }
1757
1758 static int content_release_pipefs(struct inode *inode, struct file *filp)
1759 {
1760 struct cache_detail *cd = RPC_I(inode)->private;
1761
1762 return content_release(inode, filp, cd);
1763 }
1764
1765 const struct file_operations content_file_operations_pipefs = {
1766 .open = content_open_pipefs,
1767 .read = seq_read,
1768 .llseek = seq_lseek,
1769 .release = content_release_pipefs,
1770 };
1771
1772 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1773 {
1774 struct cache_detail *cd = RPC_I(inode)->private;
1775
1776 return open_flush(inode, filp, cd);
1777 }
1778
1779 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1780 {
1781 struct cache_detail *cd = RPC_I(inode)->private;
1782
1783 return release_flush(inode, filp, cd);
1784 }
1785
1786 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1787 size_t count, loff_t *ppos)
1788 {
1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1790
1791 return read_flush(filp, buf, count, ppos, cd);
1792 }
1793
1794 static ssize_t write_flush_pipefs(struct file *filp,
1795 const char __user *buf,
1796 size_t count, loff_t *ppos)
1797 {
1798 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800 return write_flush(filp, buf, count, ppos, cd);
1801 }
1802
1803 const struct file_operations cache_flush_operations_pipefs = {
1804 .open = open_flush_pipefs,
1805 .read = read_flush_pipefs,
1806 .write = write_flush_pipefs,
1807 .release = release_flush_pipefs,
1808 .llseek = no_llseek,
1809 };
1810
1811 int sunrpc_cache_register_pipefs(struct dentry *parent,
1812 const char *name, umode_t umode,
1813 struct cache_detail *cd)
1814 {
1815 struct qstr q;
1816 struct dentry *dir;
1817 int ret = 0;
1818
1819 q.name = name;
1820 q.len = strlen(name);
1821 q.hash = full_name_hash(q.name, q.len);
1822 dir = rpc_create_cache_dir(parent, &q, umode, cd);
1823 if (!IS_ERR(dir))
1824 cd->u.pipefs.dir = dir;
1825 else
1826 ret = PTR_ERR(dir);
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1830
1831 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1832 {
1833 rpc_remove_cache_dir(cd->u.pipefs.dir);
1834 cd->u.pipefs.dir = NULL;
1835 }
1836 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1837