Merge branch 'fixes-davem' of master.kernel.org:/pub/scm/linux/kernel/git/linville...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90
91 #include <net/compat.h>
92
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
114
115 /*
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
118 */
119
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
136 };
137
138 /*
139 * The protocol list. Each protocol is registered in here.
140 */
141
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144
145 /*
146 * Statistics counters of the socket lists
147 */
148
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150
151 /*
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
155 */
156
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
164 */
165
166 /**
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
171 *
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
175 */
176
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
186 }
187
188 /**
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
194 *
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
203 */
204
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
207 {
208 int err;
209 int len;
210
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
223 }
224 /*
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
227 */
228 return __put_user(klen, ulen);
229 }
230
231 #define SOCKFS_MAGIC 0x534F434B
232
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
243
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
250
251 return &ei->vfs_inode;
252 }
253
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
258 }
259
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
263
264 inode_init_once(&ei->vfs_inode);
265 }
266
267 static int init_inodecache(void)
268 {
269 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
270 sizeof(struct socket_alloc),
271 0,
272 (SLAB_HWCACHE_ALIGN |
273 SLAB_RECLAIM_ACCOUNT |
274 SLAB_MEM_SPREAD),
275 init_once);
276 if (sock_inode_cachep == NULL)
277 return -ENOMEM;
278 return 0;
279 }
280
281 static struct super_operations sockfs_ops = {
282 .alloc_inode = sock_alloc_inode,
283 .destroy_inode =sock_destroy_inode,
284 .statfs = simple_statfs,
285 };
286
287 static int sockfs_get_sb(struct file_system_type *fs_type,
288 int flags, const char *dev_name, void *data,
289 struct vfsmount *mnt)
290 {
291 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
292 mnt);
293 }
294
295 static struct vfsmount *sock_mnt __read_mostly;
296
297 static struct file_system_type sock_fs_type = {
298 .name = "sockfs",
299 .get_sb = sockfs_get_sb,
300 .kill_sb = kill_anon_super,
301 };
302
303 static int sockfs_delete_dentry(struct dentry *dentry)
304 {
305 /*
306 * At creation time, we pretended this dentry was hashed
307 * (by clearing DCACHE_UNHASHED bit in d_flags)
308 * At delete time, we restore the truth : not hashed.
309 * (so that dput() can proceed correctly)
310 */
311 dentry->d_flags |= DCACHE_UNHASHED;
312 return 0;
313 }
314
315 /*
316 * sockfs_dname() is called from d_path().
317 */
318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
319 {
320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
321 dentry->d_inode->i_ino);
322 }
323
324 static struct dentry_operations sockfs_dentry_operations = {
325 .d_delete = sockfs_delete_dentry,
326 .d_dname = sockfs_dname,
327 };
328
329 /*
330 * Obtains the first available file descriptor and sets it up for use.
331 *
332 * These functions create file structures and maps them to fd space
333 * of the current process. On success it returns file descriptor
334 * and file struct implicitly stored in sock->file.
335 * Note that another thread may close file descriptor before we return
336 * from this function. We use the fact that now we do not refer
337 * to socket after mapping. If one day we will need it, this
338 * function will increment ref. count on file by 1.
339 *
340 * In any case returned fd MAY BE not valid!
341 * This race condition is unavoidable
342 * with shared fd spaces, we cannot solve it inside kernel,
343 * but we take care of internal coherence yet.
344 */
345
346 static int sock_alloc_fd(struct file **filep)
347 {
348 int fd;
349
350 fd = get_unused_fd();
351 if (likely(fd >= 0)) {
352 struct file *file = get_empty_filp();
353
354 *filep = file;
355 if (unlikely(!file)) {
356 put_unused_fd(fd);
357 return -ENFILE;
358 }
359 } else
360 *filep = NULL;
361 return fd;
362 }
363
364 static int sock_attach_fd(struct socket *sock, struct file *file)
365 {
366 struct qstr name = { .name = "" };
367
368 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
369 if (unlikely(!file->f_path.dentry))
370 return -ENOMEM;
371
372 file->f_path.dentry->d_op = &sockfs_dentry_operations;
373 /*
374 * We dont want to push this dentry into global dentry hash table.
375 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
376 * This permits a working /proc/$pid/fd/XXX on sockets
377 */
378 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
379 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
380 file->f_path.mnt = mntget(sock_mnt);
381 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
382
383 sock->file = file;
384 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
385 file->f_mode = FMODE_READ | FMODE_WRITE;
386 file->f_flags = O_RDWR;
387 file->f_pos = 0;
388 file->private_data = sock;
389
390 return 0;
391 }
392
393 int sock_map_fd(struct socket *sock)
394 {
395 struct file *newfile;
396 int fd = sock_alloc_fd(&newfile);
397
398 if (likely(fd >= 0)) {
399 int err = sock_attach_fd(sock, newfile);
400
401 if (unlikely(err < 0)) {
402 put_filp(newfile);
403 put_unused_fd(fd);
404 return err;
405 }
406 fd_install(fd, newfile);
407 }
408 return fd;
409 }
410
411 static struct socket *sock_from_file(struct file *file, int *err)
412 {
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
415
416 *err = -ENOTSOCK;
417 return NULL;
418 }
419
420 /**
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
424 *
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
429 *
430 * On a success the socket object pointer is returned.
431 */
432
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 struct file *file;
436 struct socket *sock;
437
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
442 }
443
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
448 }
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct file *file;
453 struct socket *sock;
454
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
462 }
463 return NULL;
464 }
465
466 /**
467 * sock_alloc - allocate a socket
468 *
469 * Allocate a new inode and socket object. The two are bound together
470 * and initialised. The socket is then returned. If we are out of inodes
471 * NULL is returned.
472 */
473
474 static struct socket *sock_alloc(void)
475 {
476 struct inode *inode;
477 struct socket *sock;
478
479 inode = new_inode(sock_mnt->mnt_sb);
480 if (!inode)
481 return NULL;
482
483 sock = SOCKET_I(inode);
484
485 inode->i_mode = S_IFSOCK | S_IRWXUGO;
486 inode->i_uid = current->fsuid;
487 inode->i_gid = current->fsgid;
488
489 get_cpu_var(sockets_in_use)++;
490 put_cpu_var(sockets_in_use);
491 return sock;
492 }
493
494 /*
495 * In theory you can't get an open on this inode, but /proc provides
496 * a back door. Remember to keep it shut otherwise you'll let the
497 * creepy crawlies in.
498 */
499
500 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
501 {
502 return -ENXIO;
503 }
504
505 const struct file_operations bad_sock_fops = {
506 .owner = THIS_MODULE,
507 .open = sock_no_open,
508 };
509
510 /**
511 * sock_release - close a socket
512 * @sock: socket to close
513 *
514 * The socket is released from the protocol stack if it has a release
515 * callback, and the inode is then released if the socket is bound to
516 * an inode not a file.
517 */
518
519 void sock_release(struct socket *sock)
520 {
521 if (sock->ops) {
522 struct module *owner = sock->ops->owner;
523
524 sock->ops->release(sock);
525 sock->ops = NULL;
526 module_put(owner);
527 }
528
529 if (sock->fasync_list)
530 printk(KERN_ERR "sock_release: fasync list not empty!\n");
531
532 get_cpu_var(sockets_in_use)--;
533 put_cpu_var(sockets_in_use);
534 if (!sock->file) {
535 iput(SOCK_INODE(sock));
536 return;
537 }
538 sock->file = NULL;
539 }
540
541 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
542 struct msghdr *msg, size_t size)
543 {
544 struct sock_iocb *si = kiocb_to_siocb(iocb);
545 int err;
546
547 si->sock = sock;
548 si->scm = NULL;
549 si->msg = msg;
550 si->size = size;
551
552 err = security_socket_sendmsg(sock, msg, size);
553 if (err)
554 return err;
555
556 return sock->ops->sendmsg(iocb, sock, msg, size);
557 }
558
559 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
560 {
561 struct kiocb iocb;
562 struct sock_iocb siocb;
563 int ret;
564
565 init_sync_kiocb(&iocb, NULL);
566 iocb.private = &siocb;
567 ret = __sock_sendmsg(&iocb, sock, msg, size);
568 if (-EIOCBQUEUED == ret)
569 ret = wait_on_sync_kiocb(&iocb);
570 return ret;
571 }
572
573 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
574 struct kvec *vec, size_t num, size_t size)
575 {
576 mm_segment_t oldfs = get_fs();
577 int result;
578
579 set_fs(KERNEL_DS);
580 /*
581 * the following is safe, since for compiler definitions of kvec and
582 * iovec are identical, yielding the same in-core layout and alignment
583 */
584 msg->msg_iov = (struct iovec *)vec;
585 msg->msg_iovlen = num;
586 result = sock_sendmsg(sock, msg, size);
587 set_fs(oldfs);
588 return result;
589 }
590
591 /*
592 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
593 */
594 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
595 struct sk_buff *skb)
596 {
597 ktime_t kt = skb->tstamp;
598
599 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
600 struct timeval tv;
601 /* Race occurred between timestamp enabling and packet
602 receiving. Fill in the current time for now. */
603 if (kt.tv64 == 0)
604 kt = ktime_get_real();
605 skb->tstamp = kt;
606 tv = ktime_to_timeval(kt);
607 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
608 } else {
609 struct timespec ts;
610 /* Race occurred between timestamp enabling and packet
611 receiving. Fill in the current time for now. */
612 if (kt.tv64 == 0)
613 kt = ktime_get_real();
614 skb->tstamp = kt;
615 ts = ktime_to_timespec(kt);
616 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
617 }
618 }
619
620 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
621
622 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
623 struct msghdr *msg, size_t size, int flags)
624 {
625 int err;
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
627
628 si->sock = sock;
629 si->scm = NULL;
630 si->msg = msg;
631 si->size = size;
632 si->flags = flags;
633
634 err = security_socket_recvmsg(sock, msg, size, flags);
635 if (err)
636 return err;
637
638 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
639 }
640
641 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
642 size_t size, int flags)
643 {
644 struct kiocb iocb;
645 struct sock_iocb siocb;
646 int ret;
647
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
653 return ret;
654 }
655
656 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
657 struct kvec *vec, size_t num, size_t size, int flags)
658 {
659 mm_segment_t oldfs = get_fs();
660 int result;
661
662 set_fs(KERNEL_DS);
663 /*
664 * the following is safe, since for compiler definitions of kvec and
665 * iovec are identical, yielding the same in-core layout and alignment
666 */
667 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
668 result = sock_recvmsg(sock, msg, size, flags);
669 set_fs(oldfs);
670 return result;
671 }
672
673 static void sock_aio_dtor(struct kiocb *iocb)
674 {
675 kfree(iocb->private);
676 }
677
678 static ssize_t sock_sendpage(struct file *file, struct page *page,
679 int offset, size_t size, loff_t *ppos, int more)
680 {
681 struct socket *sock;
682 int flags;
683
684 sock = file->private_data;
685
686 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
687 if (more)
688 flags |= MSG_MORE;
689
690 return sock->ops->sendpage(sock, page, offset, size, flags);
691 }
692
693 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
694 struct sock_iocb *siocb)
695 {
696 if (!is_sync_kiocb(iocb)) {
697 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
698 if (!siocb)
699 return NULL;
700 iocb->ki_dtor = sock_aio_dtor;
701 }
702
703 siocb->kiocb = iocb;
704 iocb->private = siocb;
705 return siocb;
706 }
707
708 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
709 struct file *file, const struct iovec *iov,
710 unsigned long nr_segs)
711 {
712 struct socket *sock = file->private_data;
713 size_t size = 0;
714 int i;
715
716 for (i = 0; i < nr_segs; i++)
717 size += iov[i].iov_len;
718
719 msg->msg_name = NULL;
720 msg->msg_namelen = 0;
721 msg->msg_control = NULL;
722 msg->msg_controllen = 0;
723 msg->msg_iov = (struct iovec *)iov;
724 msg->msg_iovlen = nr_segs;
725 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
726
727 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
728 }
729
730 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
731 unsigned long nr_segs, loff_t pos)
732 {
733 struct sock_iocb siocb, *x;
734
735 if (pos != 0)
736 return -ESPIPE;
737
738 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
739 return 0;
740
741
742 x = alloc_sock_iocb(iocb, &siocb);
743 if (!x)
744 return -ENOMEM;
745 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
746 }
747
748 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
749 struct file *file, const struct iovec *iov,
750 unsigned long nr_segs)
751 {
752 struct socket *sock = file->private_data;
753 size_t size = 0;
754 int i;
755
756 for (i = 0; i < nr_segs; i++)
757 size += iov[i].iov_len;
758
759 msg->msg_name = NULL;
760 msg->msg_namelen = 0;
761 msg->msg_control = NULL;
762 msg->msg_controllen = 0;
763 msg->msg_iov = (struct iovec *)iov;
764 msg->msg_iovlen = nr_segs;
765 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
766 if (sock->type == SOCK_SEQPACKET)
767 msg->msg_flags |= MSG_EOR;
768
769 return __sock_sendmsg(iocb, sock, msg, size);
770 }
771
772 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
773 unsigned long nr_segs, loff_t pos)
774 {
775 struct sock_iocb siocb, *x;
776
777 if (pos != 0)
778 return -ESPIPE;
779
780 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
781 return 0;
782
783 x = alloc_sock_iocb(iocb, &siocb);
784 if (!x)
785 return -ENOMEM;
786
787 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
788 }
789
790 /*
791 * Atomic setting of ioctl hooks to avoid race
792 * with module unload.
793 */
794
795 static DEFINE_MUTEX(br_ioctl_mutex);
796 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
797
798 void brioctl_set(int (*hook) (unsigned int, void __user *))
799 {
800 mutex_lock(&br_ioctl_mutex);
801 br_ioctl_hook = hook;
802 mutex_unlock(&br_ioctl_mutex);
803 }
804
805 EXPORT_SYMBOL(brioctl_set);
806
807 static DEFINE_MUTEX(vlan_ioctl_mutex);
808 static int (*vlan_ioctl_hook) (void __user *arg);
809
810 void vlan_ioctl_set(int (*hook) (void __user *))
811 {
812 mutex_lock(&vlan_ioctl_mutex);
813 vlan_ioctl_hook = hook;
814 mutex_unlock(&vlan_ioctl_mutex);
815 }
816
817 EXPORT_SYMBOL(vlan_ioctl_set);
818
819 static DEFINE_MUTEX(dlci_ioctl_mutex);
820 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
821
822 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
823 {
824 mutex_lock(&dlci_ioctl_mutex);
825 dlci_ioctl_hook = hook;
826 mutex_unlock(&dlci_ioctl_mutex);
827 }
828
829 EXPORT_SYMBOL(dlci_ioctl_set);
830
831 /*
832 * With an ioctl, arg may well be a user mode pointer, but we don't know
833 * what to do with it - that's up to the protocol still.
834 */
835
836 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
837 {
838 struct socket *sock;
839 void __user *argp = (void __user *)arg;
840 int pid, err;
841
842 sock = file->private_data;
843 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
844 err = dev_ioctl(cmd, argp);
845 } else
846 #ifdef CONFIG_WIRELESS_EXT
847 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
848 err = dev_ioctl(cmd, argp);
849 } else
850 #endif /* CONFIG_WIRELESS_EXT */
851 switch (cmd) {
852 case FIOSETOWN:
853 case SIOCSPGRP:
854 err = -EFAULT;
855 if (get_user(pid, (int __user *)argp))
856 break;
857 err = f_setown(sock->file, pid, 1);
858 break;
859 case FIOGETOWN:
860 case SIOCGPGRP:
861 err = put_user(f_getown(sock->file),
862 (int __user *)argp);
863 break;
864 case SIOCGIFBR:
865 case SIOCSIFBR:
866 case SIOCBRADDBR:
867 case SIOCBRDELBR:
868 err = -ENOPKG;
869 if (!br_ioctl_hook)
870 request_module("bridge");
871
872 mutex_lock(&br_ioctl_mutex);
873 if (br_ioctl_hook)
874 err = br_ioctl_hook(cmd, argp);
875 mutex_unlock(&br_ioctl_mutex);
876 break;
877 case SIOCGIFVLAN:
878 case SIOCSIFVLAN:
879 err = -ENOPKG;
880 if (!vlan_ioctl_hook)
881 request_module("8021q");
882
883 mutex_lock(&vlan_ioctl_mutex);
884 if (vlan_ioctl_hook)
885 err = vlan_ioctl_hook(argp);
886 mutex_unlock(&vlan_ioctl_mutex);
887 break;
888 case SIOCADDDLCI:
889 case SIOCDELDLCI:
890 err = -ENOPKG;
891 if (!dlci_ioctl_hook)
892 request_module("dlci");
893
894 if (dlci_ioctl_hook) {
895 mutex_lock(&dlci_ioctl_mutex);
896 err = dlci_ioctl_hook(cmd, argp);
897 mutex_unlock(&dlci_ioctl_mutex);
898 }
899 break;
900 default:
901 err = sock->ops->ioctl(sock, cmd, arg);
902
903 /*
904 * If this ioctl is unknown try to hand it down
905 * to the NIC driver.
906 */
907 if (err == -ENOIOCTLCMD)
908 err = dev_ioctl(cmd, argp);
909 break;
910 }
911 return err;
912 }
913
914 int sock_create_lite(int family, int type, int protocol, struct socket **res)
915 {
916 int err;
917 struct socket *sock = NULL;
918
919 err = security_socket_create(family, type, protocol, 1);
920 if (err)
921 goto out;
922
923 sock = sock_alloc();
924 if (!sock) {
925 err = -ENOMEM;
926 goto out;
927 }
928
929 sock->type = type;
930 err = security_socket_post_create(sock, family, type, protocol, 1);
931 if (err)
932 goto out_release;
933
934 out:
935 *res = sock;
936 return err;
937 out_release:
938 sock_release(sock);
939 sock = NULL;
940 goto out;
941 }
942
943 /* No kernel lock held - perfect */
944 static unsigned int sock_poll(struct file *file, poll_table *wait)
945 {
946 struct socket *sock;
947
948 /*
949 * We can't return errors to poll, so it's either yes or no.
950 */
951 sock = file->private_data;
952 return sock->ops->poll(file, sock, wait);
953 }
954
955 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
956 {
957 struct socket *sock = file->private_data;
958
959 return sock->ops->mmap(file, sock, vma);
960 }
961
962 static int sock_close(struct inode *inode, struct file *filp)
963 {
964 /*
965 * It was possible the inode is NULL we were
966 * closing an unfinished socket.
967 */
968
969 if (!inode) {
970 printk(KERN_DEBUG "sock_close: NULL inode\n");
971 return 0;
972 }
973 sock_fasync(-1, filp, 0);
974 sock_release(SOCKET_I(inode));
975 return 0;
976 }
977
978 /*
979 * Update the socket async list
980 *
981 * Fasync_list locking strategy.
982 *
983 * 1. fasync_list is modified only under process context socket lock
984 * i.e. under semaphore.
985 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
986 * or under socket lock.
987 * 3. fasync_list can be used from softirq context, so that
988 * modification under socket lock have to be enhanced with
989 * write_lock_bh(&sk->sk_callback_lock).
990 * --ANK (990710)
991 */
992
993 static int sock_fasync(int fd, struct file *filp, int on)
994 {
995 struct fasync_struct *fa, *fna = NULL, **prev;
996 struct socket *sock;
997 struct sock *sk;
998
999 if (on) {
1000 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1001 if (fna == NULL)
1002 return -ENOMEM;
1003 }
1004
1005 sock = filp->private_data;
1006
1007 sk = sock->sk;
1008 if (sk == NULL) {
1009 kfree(fna);
1010 return -EINVAL;
1011 }
1012
1013 lock_sock(sk);
1014
1015 prev = &(sock->fasync_list);
1016
1017 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1018 if (fa->fa_file == filp)
1019 break;
1020
1021 if (on) {
1022 if (fa != NULL) {
1023 write_lock_bh(&sk->sk_callback_lock);
1024 fa->fa_fd = fd;
1025 write_unlock_bh(&sk->sk_callback_lock);
1026
1027 kfree(fna);
1028 goto out;
1029 }
1030 fna->fa_file = filp;
1031 fna->fa_fd = fd;
1032 fna->magic = FASYNC_MAGIC;
1033 fna->fa_next = sock->fasync_list;
1034 write_lock_bh(&sk->sk_callback_lock);
1035 sock->fasync_list = fna;
1036 write_unlock_bh(&sk->sk_callback_lock);
1037 } else {
1038 if (fa != NULL) {
1039 write_lock_bh(&sk->sk_callback_lock);
1040 *prev = fa->fa_next;
1041 write_unlock_bh(&sk->sk_callback_lock);
1042 kfree(fa);
1043 }
1044 }
1045
1046 out:
1047 release_sock(sock->sk);
1048 return 0;
1049 }
1050
1051 /* This function may be called only under socket lock or callback_lock */
1052
1053 int sock_wake_async(struct socket *sock, int how, int band)
1054 {
1055 if (!sock || !sock->fasync_list)
1056 return -1;
1057 switch (how) {
1058 case 1:
1059
1060 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1061 break;
1062 goto call_kill;
1063 case 2:
1064 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1065 break;
1066 /* fall through */
1067 case 0:
1068 call_kill:
1069 __kill_fasync(sock->fasync_list, SIGIO, band);
1070 break;
1071 case 3:
1072 __kill_fasync(sock->fasync_list, SIGURG, band);
1073 }
1074 return 0;
1075 }
1076
1077 static int __sock_create(int family, int type, int protocol,
1078 struct socket **res, int kern)
1079 {
1080 int err;
1081 struct socket *sock;
1082 const struct net_proto_family *pf;
1083
1084 /*
1085 * Check protocol is in range
1086 */
1087 if (family < 0 || family >= NPROTO)
1088 return -EAFNOSUPPORT;
1089 if (type < 0 || type >= SOCK_MAX)
1090 return -EINVAL;
1091
1092 /* Compatibility.
1093
1094 This uglymoron is moved from INET layer to here to avoid
1095 deadlock in module load.
1096 */
1097 if (family == PF_INET && type == SOCK_PACKET) {
1098 static int warned;
1099 if (!warned) {
1100 warned = 1;
1101 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1102 current->comm);
1103 }
1104 family = PF_PACKET;
1105 }
1106
1107 err = security_socket_create(family, type, protocol, kern);
1108 if (err)
1109 return err;
1110
1111 /*
1112 * Allocate the socket and allow the family to set things up. if
1113 * the protocol is 0, the family is instructed to select an appropriate
1114 * default.
1115 */
1116 sock = sock_alloc();
1117 if (!sock) {
1118 if (net_ratelimit())
1119 printk(KERN_WARNING "socket: no more sockets\n");
1120 return -ENFILE; /* Not exactly a match, but its the
1121 closest posix thing */
1122 }
1123
1124 sock->type = type;
1125
1126 #if defined(CONFIG_KMOD)
1127 /* Attempt to load a protocol module if the find failed.
1128 *
1129 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1130 * requested real, full-featured networking support upon configuration.
1131 * Otherwise module support will break!
1132 */
1133 if (net_families[family] == NULL)
1134 request_module("net-pf-%d", family);
1135 #endif
1136
1137 rcu_read_lock();
1138 pf = rcu_dereference(net_families[family]);
1139 err = -EAFNOSUPPORT;
1140 if (!pf)
1141 goto out_release;
1142
1143 /*
1144 * We will call the ->create function, that possibly is in a loadable
1145 * module, so we have to bump that loadable module refcnt first.
1146 */
1147 if (!try_module_get(pf->owner))
1148 goto out_release;
1149
1150 /* Now protected by module ref count */
1151 rcu_read_unlock();
1152
1153 err = pf->create(sock, protocol);
1154 if (err < 0)
1155 goto out_module_put;
1156
1157 /*
1158 * Now to bump the refcnt of the [loadable] module that owns this
1159 * socket at sock_release time we decrement its refcnt.
1160 */
1161 if (!try_module_get(sock->ops->owner))
1162 goto out_module_busy;
1163
1164 /*
1165 * Now that we're done with the ->create function, the [loadable]
1166 * module can have its refcnt decremented
1167 */
1168 module_put(pf->owner);
1169 err = security_socket_post_create(sock, family, type, protocol, kern);
1170 if (err)
1171 goto out_release;
1172 *res = sock;
1173
1174 return 0;
1175
1176 out_module_busy:
1177 err = -EAFNOSUPPORT;
1178 out_module_put:
1179 sock->ops = NULL;
1180 module_put(pf->owner);
1181 out_sock_release:
1182 sock_release(sock);
1183 return err;
1184
1185 out_release:
1186 rcu_read_unlock();
1187 goto out_sock_release;
1188 }
1189
1190 int sock_create(int family, int type, int protocol, struct socket **res)
1191 {
1192 return __sock_create(family, type, protocol, res, 0);
1193 }
1194
1195 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1196 {
1197 return __sock_create(family, type, protocol, res, 1);
1198 }
1199
1200 asmlinkage long sys_socket(int family, int type, int protocol)
1201 {
1202 int retval;
1203 struct socket *sock;
1204
1205 retval = sock_create(family, type, protocol, &sock);
1206 if (retval < 0)
1207 goto out;
1208
1209 retval = sock_map_fd(sock);
1210 if (retval < 0)
1211 goto out_release;
1212
1213 out:
1214 /* It may be already another descriptor 8) Not kernel problem. */
1215 return retval;
1216
1217 out_release:
1218 sock_release(sock);
1219 return retval;
1220 }
1221
1222 /*
1223 * Create a pair of connected sockets.
1224 */
1225
1226 asmlinkage long sys_socketpair(int family, int type, int protocol,
1227 int __user *usockvec)
1228 {
1229 struct socket *sock1, *sock2;
1230 int fd1, fd2, err;
1231 struct file *newfile1, *newfile2;
1232
1233 /*
1234 * Obtain the first socket and check if the underlying protocol
1235 * supports the socketpair call.
1236 */
1237
1238 err = sock_create(family, type, protocol, &sock1);
1239 if (err < 0)
1240 goto out;
1241
1242 err = sock_create(family, type, protocol, &sock2);
1243 if (err < 0)
1244 goto out_release_1;
1245
1246 err = sock1->ops->socketpair(sock1, sock2);
1247 if (err < 0)
1248 goto out_release_both;
1249
1250 fd1 = sock_alloc_fd(&newfile1);
1251 if (unlikely(fd1 < 0))
1252 goto out_release_both;
1253
1254 fd2 = sock_alloc_fd(&newfile2);
1255 if (unlikely(fd2 < 0)) {
1256 put_filp(newfile1);
1257 put_unused_fd(fd1);
1258 goto out_release_both;
1259 }
1260
1261 err = sock_attach_fd(sock1, newfile1);
1262 if (unlikely(err < 0)) {
1263 goto out_fd2;
1264 }
1265
1266 err = sock_attach_fd(sock2, newfile2);
1267 if (unlikely(err < 0)) {
1268 fput(newfile1);
1269 goto out_fd1;
1270 }
1271
1272 err = audit_fd_pair(fd1, fd2);
1273 if (err < 0) {
1274 fput(newfile1);
1275 fput(newfile2);
1276 goto out_fd;
1277 }
1278
1279 fd_install(fd1, newfile1);
1280 fd_install(fd2, newfile2);
1281 /* fd1 and fd2 may be already another descriptors.
1282 * Not kernel problem.
1283 */
1284
1285 err = put_user(fd1, &usockvec[0]);
1286 if (!err)
1287 err = put_user(fd2, &usockvec[1]);
1288 if (!err)
1289 return 0;
1290
1291 sys_close(fd2);
1292 sys_close(fd1);
1293 return err;
1294
1295 out_release_both:
1296 sock_release(sock2);
1297 out_release_1:
1298 sock_release(sock1);
1299 out:
1300 return err;
1301
1302 out_fd2:
1303 put_filp(newfile1);
1304 sock_release(sock1);
1305 out_fd1:
1306 put_filp(newfile2);
1307 sock_release(sock2);
1308 out_fd:
1309 put_unused_fd(fd1);
1310 put_unused_fd(fd2);
1311 goto out;
1312 }
1313
1314 /*
1315 * Bind a name to a socket. Nothing much to do here since it's
1316 * the protocol's responsibility to handle the local address.
1317 *
1318 * We move the socket address to kernel space before we call
1319 * the protocol layer (having also checked the address is ok).
1320 */
1321
1322 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1323 {
1324 struct socket *sock;
1325 char address[MAX_SOCK_ADDR];
1326 int err, fput_needed;
1327
1328 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1329 if (sock) {
1330 err = move_addr_to_kernel(umyaddr, addrlen, address);
1331 if (err >= 0) {
1332 err = security_socket_bind(sock,
1333 (struct sockaddr *)address,
1334 addrlen);
1335 if (!err)
1336 err = sock->ops->bind(sock,
1337 (struct sockaddr *)
1338 address, addrlen);
1339 }
1340 fput_light(sock->file, fput_needed);
1341 }
1342 return err;
1343 }
1344
1345 /*
1346 * Perform a listen. Basically, we allow the protocol to do anything
1347 * necessary for a listen, and if that works, we mark the socket as
1348 * ready for listening.
1349 */
1350
1351 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1352
1353 asmlinkage long sys_listen(int fd, int backlog)
1354 {
1355 struct socket *sock;
1356 int err, fput_needed;
1357
1358 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1359 if (sock) {
1360 if ((unsigned)backlog > sysctl_somaxconn)
1361 backlog = sysctl_somaxconn;
1362
1363 err = security_socket_listen(sock, backlog);
1364 if (!err)
1365 err = sock->ops->listen(sock, backlog);
1366
1367 fput_light(sock->file, fput_needed);
1368 }
1369 return err;
1370 }
1371
1372 /*
1373 * For accept, we attempt to create a new socket, set up the link
1374 * with the client, wake up the client, then return the new
1375 * connected fd. We collect the address of the connector in kernel
1376 * space and move it to user at the very end. This is unclean because
1377 * we open the socket then return an error.
1378 *
1379 * 1003.1g adds the ability to recvmsg() to query connection pending
1380 * status to recvmsg. We need to add that support in a way thats
1381 * clean when we restucture accept also.
1382 */
1383
1384 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1385 int __user *upeer_addrlen)
1386 {
1387 struct socket *sock, *newsock;
1388 struct file *newfile;
1389 int err, len, newfd, fput_needed;
1390 char address[MAX_SOCK_ADDR];
1391
1392 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1393 if (!sock)
1394 goto out;
1395
1396 err = -ENFILE;
1397 if (!(newsock = sock_alloc()))
1398 goto out_put;
1399
1400 newsock->type = sock->type;
1401 newsock->ops = sock->ops;
1402
1403 /*
1404 * We don't need try_module_get here, as the listening socket (sock)
1405 * has the protocol module (sock->ops->owner) held.
1406 */
1407 __module_get(newsock->ops->owner);
1408
1409 newfd = sock_alloc_fd(&newfile);
1410 if (unlikely(newfd < 0)) {
1411 err = newfd;
1412 sock_release(newsock);
1413 goto out_put;
1414 }
1415
1416 err = sock_attach_fd(newsock, newfile);
1417 if (err < 0)
1418 goto out_fd_simple;
1419
1420 err = security_socket_accept(sock, newsock);
1421 if (err)
1422 goto out_fd;
1423
1424 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1425 if (err < 0)
1426 goto out_fd;
1427
1428 if (upeer_sockaddr) {
1429 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1430 &len, 2) < 0) {
1431 err = -ECONNABORTED;
1432 goto out_fd;
1433 }
1434 err = move_addr_to_user(address, len, upeer_sockaddr,
1435 upeer_addrlen);
1436 if (err < 0)
1437 goto out_fd;
1438 }
1439
1440 /* File flags are not inherited via accept() unlike another OSes. */
1441
1442 fd_install(newfd, newfile);
1443 err = newfd;
1444
1445 security_socket_post_accept(sock, newsock);
1446
1447 out_put:
1448 fput_light(sock->file, fput_needed);
1449 out:
1450 return err;
1451 out_fd_simple:
1452 sock_release(newsock);
1453 put_filp(newfile);
1454 put_unused_fd(newfd);
1455 goto out_put;
1456 out_fd:
1457 fput(newfile);
1458 put_unused_fd(newfd);
1459 goto out_put;
1460 }
1461
1462 /*
1463 * Attempt to connect to a socket with the server address. The address
1464 * is in user space so we verify it is OK and move it to kernel space.
1465 *
1466 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1467 * break bindings
1468 *
1469 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1470 * other SEQPACKET protocols that take time to connect() as it doesn't
1471 * include the -EINPROGRESS status for such sockets.
1472 */
1473
1474 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1475 int addrlen)
1476 {
1477 struct socket *sock;
1478 char address[MAX_SOCK_ADDR];
1479 int err, fput_needed;
1480
1481 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482 if (!sock)
1483 goto out;
1484 err = move_addr_to_kernel(uservaddr, addrlen, address);
1485 if (err < 0)
1486 goto out_put;
1487
1488 err =
1489 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1490 if (err)
1491 goto out_put;
1492
1493 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1494 sock->file->f_flags);
1495 out_put:
1496 fput_light(sock->file, fput_needed);
1497 out:
1498 return err;
1499 }
1500
1501 /*
1502 * Get the local address ('name') of a socket object. Move the obtained
1503 * name to user space.
1504 */
1505
1506 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1507 int __user *usockaddr_len)
1508 {
1509 struct socket *sock;
1510 char address[MAX_SOCK_ADDR];
1511 int len, err, fput_needed;
1512
1513 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1514 if (!sock)
1515 goto out;
1516
1517 err = security_socket_getsockname(sock);
1518 if (err)
1519 goto out_put;
1520
1521 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1522 if (err)
1523 goto out_put;
1524 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1525
1526 out_put:
1527 fput_light(sock->file, fput_needed);
1528 out:
1529 return err;
1530 }
1531
1532 /*
1533 * Get the remote address ('name') of a socket object. Move the obtained
1534 * name to user space.
1535 */
1536
1537 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1538 int __user *usockaddr_len)
1539 {
1540 struct socket *sock;
1541 char address[MAX_SOCK_ADDR];
1542 int len, err, fput_needed;
1543
1544 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1545 if (sock != NULL) {
1546 err = security_socket_getpeername(sock);
1547 if (err) {
1548 fput_light(sock->file, fput_needed);
1549 return err;
1550 }
1551
1552 err =
1553 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1554 1);
1555 if (!err)
1556 err = move_addr_to_user(address, len, usockaddr,
1557 usockaddr_len);
1558 fput_light(sock->file, fput_needed);
1559 }
1560 return err;
1561 }
1562
1563 /*
1564 * Send a datagram to a given address. We move the address into kernel
1565 * space and check the user space data area is readable before invoking
1566 * the protocol.
1567 */
1568
1569 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1570 unsigned flags, struct sockaddr __user *addr,
1571 int addr_len)
1572 {
1573 struct socket *sock;
1574 char address[MAX_SOCK_ADDR];
1575 int err;
1576 struct msghdr msg;
1577 struct iovec iov;
1578 int fput_needed;
1579 struct file *sock_file;
1580
1581 sock_file = fget_light(fd, &fput_needed);
1582 err = -EBADF;
1583 if (!sock_file)
1584 goto out;
1585
1586 sock = sock_from_file(sock_file, &err);
1587 if (!sock)
1588 goto out_put;
1589 iov.iov_base = buff;
1590 iov.iov_len = len;
1591 msg.msg_name = NULL;
1592 msg.msg_iov = &iov;
1593 msg.msg_iovlen = 1;
1594 msg.msg_control = NULL;
1595 msg.msg_controllen = 0;
1596 msg.msg_namelen = 0;
1597 if (addr) {
1598 err = move_addr_to_kernel(addr, addr_len, address);
1599 if (err < 0)
1600 goto out_put;
1601 msg.msg_name = address;
1602 msg.msg_namelen = addr_len;
1603 }
1604 if (sock->file->f_flags & O_NONBLOCK)
1605 flags |= MSG_DONTWAIT;
1606 msg.msg_flags = flags;
1607 err = sock_sendmsg(sock, &msg, len);
1608
1609 out_put:
1610 fput_light(sock_file, fput_needed);
1611 out:
1612 return err;
1613 }
1614
1615 /*
1616 * Send a datagram down a socket.
1617 */
1618
1619 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1620 {
1621 return sys_sendto(fd, buff, len, flags, NULL, 0);
1622 }
1623
1624 /*
1625 * Receive a frame from the socket and optionally record the address of the
1626 * sender. We verify the buffers are writable and if needed move the
1627 * sender address from kernel to user space.
1628 */
1629
1630 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1631 unsigned flags, struct sockaddr __user *addr,
1632 int __user *addr_len)
1633 {
1634 struct socket *sock;
1635 struct iovec iov;
1636 struct msghdr msg;
1637 char address[MAX_SOCK_ADDR];
1638 int err, err2;
1639 struct file *sock_file;
1640 int fput_needed;
1641
1642 sock_file = fget_light(fd, &fput_needed);
1643 err = -EBADF;
1644 if (!sock_file)
1645 goto out;
1646
1647 sock = sock_from_file(sock_file, &err);
1648 if (!sock)
1649 goto out_put;
1650
1651 msg.msg_control = NULL;
1652 msg.msg_controllen = 0;
1653 msg.msg_iovlen = 1;
1654 msg.msg_iov = &iov;
1655 iov.iov_len = size;
1656 iov.iov_base = ubuf;
1657 msg.msg_name = address;
1658 msg.msg_namelen = MAX_SOCK_ADDR;
1659 if (sock->file->f_flags & O_NONBLOCK)
1660 flags |= MSG_DONTWAIT;
1661 err = sock_recvmsg(sock, &msg, size, flags);
1662
1663 if (err >= 0 && addr != NULL) {
1664 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1665 if (err2 < 0)
1666 err = err2;
1667 }
1668 out_put:
1669 fput_light(sock_file, fput_needed);
1670 out:
1671 return err;
1672 }
1673
1674 /*
1675 * Receive a datagram from a socket.
1676 */
1677
1678 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1679 unsigned flags)
1680 {
1681 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1682 }
1683
1684 /*
1685 * Set a socket option. Because we don't know the option lengths we have
1686 * to pass the user mode parameter for the protocols to sort out.
1687 */
1688
1689 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1690 char __user *optval, int optlen)
1691 {
1692 int err, fput_needed;
1693 struct socket *sock;
1694
1695 if (optlen < 0)
1696 return -EINVAL;
1697
1698 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 if (sock != NULL) {
1700 err = security_socket_setsockopt(sock, level, optname);
1701 if (err)
1702 goto out_put;
1703
1704 if (level == SOL_SOCKET)
1705 err =
1706 sock_setsockopt(sock, level, optname, optval,
1707 optlen);
1708 else
1709 err =
1710 sock->ops->setsockopt(sock, level, optname, optval,
1711 optlen);
1712 out_put:
1713 fput_light(sock->file, fput_needed);
1714 }
1715 return err;
1716 }
1717
1718 /*
1719 * Get a socket option. Because we don't know the option lengths we have
1720 * to pass a user mode parameter for the protocols to sort out.
1721 */
1722
1723 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1724 char __user *optval, int __user *optlen)
1725 {
1726 int err, fput_needed;
1727 struct socket *sock;
1728
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 if (sock != NULL) {
1731 err = security_socket_getsockopt(sock, level, optname);
1732 if (err)
1733 goto out_put;
1734
1735 if (level == SOL_SOCKET)
1736 err =
1737 sock_getsockopt(sock, level, optname, optval,
1738 optlen);
1739 else
1740 err =
1741 sock->ops->getsockopt(sock, level, optname, optval,
1742 optlen);
1743 out_put:
1744 fput_light(sock->file, fput_needed);
1745 }
1746 return err;
1747 }
1748
1749 /*
1750 * Shutdown a socket.
1751 */
1752
1753 asmlinkage long sys_shutdown(int fd, int how)
1754 {
1755 int err, fput_needed;
1756 struct socket *sock;
1757
1758 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759 if (sock != NULL) {
1760 err = security_socket_shutdown(sock, how);
1761 if (!err)
1762 err = sock->ops->shutdown(sock, how);
1763 fput_light(sock->file, fput_needed);
1764 }
1765 return err;
1766 }
1767
1768 /* A couple of helpful macros for getting the address of the 32/64 bit
1769 * fields which are the same type (int / unsigned) on our platforms.
1770 */
1771 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1772 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1773 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1774
1775 /*
1776 * BSD sendmsg interface
1777 */
1778
1779 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1780 {
1781 struct compat_msghdr __user *msg_compat =
1782 (struct compat_msghdr __user *)msg;
1783 struct socket *sock;
1784 char address[MAX_SOCK_ADDR];
1785 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1786 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1787 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1788 /* 20 is size of ipv6_pktinfo */
1789 unsigned char *ctl_buf = ctl;
1790 struct msghdr msg_sys;
1791 int err, ctl_len, iov_size, total_len;
1792 int fput_needed;
1793
1794 err = -EFAULT;
1795 if (MSG_CMSG_COMPAT & flags) {
1796 if (get_compat_msghdr(&msg_sys, msg_compat))
1797 return -EFAULT;
1798 }
1799 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1800 return -EFAULT;
1801
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (!sock)
1804 goto out;
1805
1806 /* do not move before msg_sys is valid */
1807 err = -EMSGSIZE;
1808 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1809 goto out_put;
1810
1811 /* Check whether to allocate the iovec area */
1812 err = -ENOMEM;
1813 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1814 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1815 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1816 if (!iov)
1817 goto out_put;
1818 }
1819
1820 /* This will also move the address data into kernel space */
1821 if (MSG_CMSG_COMPAT & flags) {
1822 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1823 } else
1824 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1825 if (err < 0)
1826 goto out_freeiov;
1827 total_len = err;
1828
1829 err = -ENOBUFS;
1830
1831 if (msg_sys.msg_controllen > INT_MAX)
1832 goto out_freeiov;
1833 ctl_len = msg_sys.msg_controllen;
1834 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1835 err =
1836 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1837 sizeof(ctl));
1838 if (err)
1839 goto out_freeiov;
1840 ctl_buf = msg_sys.msg_control;
1841 ctl_len = msg_sys.msg_controllen;
1842 } else if (ctl_len) {
1843 if (ctl_len > sizeof(ctl)) {
1844 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1845 if (ctl_buf == NULL)
1846 goto out_freeiov;
1847 }
1848 err = -EFAULT;
1849 /*
1850 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1851 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1852 * checking falls down on this.
1853 */
1854 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1855 ctl_len))
1856 goto out_freectl;
1857 msg_sys.msg_control = ctl_buf;
1858 }
1859 msg_sys.msg_flags = flags;
1860
1861 if (sock->file->f_flags & O_NONBLOCK)
1862 msg_sys.msg_flags |= MSG_DONTWAIT;
1863 err = sock_sendmsg(sock, &msg_sys, total_len);
1864
1865 out_freectl:
1866 if (ctl_buf != ctl)
1867 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1868 out_freeiov:
1869 if (iov != iovstack)
1870 sock_kfree_s(sock->sk, iov, iov_size);
1871 out_put:
1872 fput_light(sock->file, fput_needed);
1873 out:
1874 return err;
1875 }
1876
1877 /*
1878 * BSD recvmsg interface
1879 */
1880
1881 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1882 unsigned int flags)
1883 {
1884 struct compat_msghdr __user *msg_compat =
1885 (struct compat_msghdr __user *)msg;
1886 struct socket *sock;
1887 struct iovec iovstack[UIO_FASTIOV];
1888 struct iovec *iov = iovstack;
1889 struct msghdr msg_sys;
1890 unsigned long cmsg_ptr;
1891 int err, iov_size, total_len, len;
1892 int fput_needed;
1893
1894 /* kernel mode address */
1895 char addr[MAX_SOCK_ADDR];
1896
1897 /* user mode address pointers */
1898 struct sockaddr __user *uaddr;
1899 int __user *uaddr_len;
1900
1901 if (MSG_CMSG_COMPAT & flags) {
1902 if (get_compat_msghdr(&msg_sys, msg_compat))
1903 return -EFAULT;
1904 }
1905 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1906 return -EFAULT;
1907
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 if (!sock)
1910 goto out;
1911
1912 err = -EMSGSIZE;
1913 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1914 goto out_put;
1915
1916 /* Check whether to allocate the iovec area */
1917 err = -ENOMEM;
1918 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1919 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1920 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1921 if (!iov)
1922 goto out_put;
1923 }
1924
1925 /*
1926 * Save the user-mode address (verify_iovec will change the
1927 * kernel msghdr to use the kernel address space)
1928 */
1929
1930 uaddr = (void __user *)msg_sys.msg_name;
1931 uaddr_len = COMPAT_NAMELEN(msg);
1932 if (MSG_CMSG_COMPAT & flags) {
1933 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1934 } else
1935 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1936 if (err < 0)
1937 goto out_freeiov;
1938 total_len = err;
1939
1940 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1941 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1942
1943 if (sock->file->f_flags & O_NONBLOCK)
1944 flags |= MSG_DONTWAIT;
1945 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1946 if (err < 0)
1947 goto out_freeiov;
1948 len = err;
1949
1950 if (uaddr != NULL) {
1951 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1952 uaddr_len);
1953 if (err < 0)
1954 goto out_freeiov;
1955 }
1956 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1957 COMPAT_FLAGS(msg));
1958 if (err)
1959 goto out_freeiov;
1960 if (MSG_CMSG_COMPAT & flags)
1961 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1962 &msg_compat->msg_controllen);
1963 else
1964 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1965 &msg->msg_controllen);
1966 if (err)
1967 goto out_freeiov;
1968 err = len;
1969
1970 out_freeiov:
1971 if (iov != iovstack)
1972 sock_kfree_s(sock->sk, iov, iov_size);
1973 out_put:
1974 fput_light(sock->file, fput_needed);
1975 out:
1976 return err;
1977 }
1978
1979 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1980
1981 /* Argument list sizes for sys_socketcall */
1982 #define AL(x) ((x) * sizeof(unsigned long))
1983 static const unsigned char nargs[18]={
1984 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1985 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1986 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1987 };
1988
1989 #undef AL
1990
1991 /*
1992 * System call vectors.
1993 *
1994 * Argument checking cleaned up. Saved 20% in size.
1995 * This function doesn't need to set the kernel lock because
1996 * it is set by the callees.
1997 */
1998
1999 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2000 {
2001 unsigned long a[6];
2002 unsigned long a0, a1;
2003 int err;
2004
2005 if (call < 1 || call > SYS_RECVMSG)
2006 return -EINVAL;
2007
2008 /* copy_from_user should be SMP safe. */
2009 if (copy_from_user(a, args, nargs[call]))
2010 return -EFAULT;
2011
2012 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2013 if (err)
2014 return err;
2015
2016 a0 = a[0];
2017 a1 = a[1];
2018
2019 switch (call) {
2020 case SYS_SOCKET:
2021 err = sys_socket(a0, a1, a[2]);
2022 break;
2023 case SYS_BIND:
2024 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2025 break;
2026 case SYS_CONNECT:
2027 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2028 break;
2029 case SYS_LISTEN:
2030 err = sys_listen(a0, a1);
2031 break;
2032 case SYS_ACCEPT:
2033 err =
2034 sys_accept(a0, (struct sockaddr __user *)a1,
2035 (int __user *)a[2]);
2036 break;
2037 case SYS_GETSOCKNAME:
2038 err =
2039 sys_getsockname(a0, (struct sockaddr __user *)a1,
2040 (int __user *)a[2]);
2041 break;
2042 case SYS_GETPEERNAME:
2043 err =
2044 sys_getpeername(a0, (struct sockaddr __user *)a1,
2045 (int __user *)a[2]);
2046 break;
2047 case SYS_SOCKETPAIR:
2048 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2049 break;
2050 case SYS_SEND:
2051 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2052 break;
2053 case SYS_SENDTO:
2054 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2055 (struct sockaddr __user *)a[4], a[5]);
2056 break;
2057 case SYS_RECV:
2058 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2059 break;
2060 case SYS_RECVFROM:
2061 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2062 (struct sockaddr __user *)a[4],
2063 (int __user *)a[5]);
2064 break;
2065 case SYS_SHUTDOWN:
2066 err = sys_shutdown(a0, a1);
2067 break;
2068 case SYS_SETSOCKOPT:
2069 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2070 break;
2071 case SYS_GETSOCKOPT:
2072 err =
2073 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2074 (int __user *)a[4]);
2075 break;
2076 case SYS_SENDMSG:
2077 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2078 break;
2079 case SYS_RECVMSG:
2080 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2081 break;
2082 default:
2083 err = -EINVAL;
2084 break;
2085 }
2086 return err;
2087 }
2088
2089 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2090
2091 /**
2092 * sock_register - add a socket protocol handler
2093 * @ops: description of protocol
2094 *
2095 * This function is called by a protocol handler that wants to
2096 * advertise its address family, and have it linked into the
2097 * socket interface. The value ops->family coresponds to the
2098 * socket system call protocol family.
2099 */
2100 int sock_register(const struct net_proto_family *ops)
2101 {
2102 int err;
2103
2104 if (ops->family >= NPROTO) {
2105 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2106 NPROTO);
2107 return -ENOBUFS;
2108 }
2109
2110 spin_lock(&net_family_lock);
2111 if (net_families[ops->family])
2112 err = -EEXIST;
2113 else {
2114 net_families[ops->family] = ops;
2115 err = 0;
2116 }
2117 spin_unlock(&net_family_lock);
2118
2119 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2120 return err;
2121 }
2122
2123 /**
2124 * sock_unregister - remove a protocol handler
2125 * @family: protocol family to remove
2126 *
2127 * This function is called by a protocol handler that wants to
2128 * remove its address family, and have it unlinked from the
2129 * new socket creation.
2130 *
2131 * If protocol handler is a module, then it can use module reference
2132 * counts to protect against new references. If protocol handler is not
2133 * a module then it needs to provide its own protection in
2134 * the ops->create routine.
2135 */
2136 void sock_unregister(int family)
2137 {
2138 BUG_ON(family < 0 || family >= NPROTO);
2139
2140 spin_lock(&net_family_lock);
2141 net_families[family] = NULL;
2142 spin_unlock(&net_family_lock);
2143
2144 synchronize_rcu();
2145
2146 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2147 }
2148
2149 static int __init sock_init(void)
2150 {
2151 /*
2152 * Initialize sock SLAB cache.
2153 */
2154
2155 sk_init();
2156
2157 /*
2158 * Initialize skbuff SLAB cache
2159 */
2160 skb_init();
2161
2162 /*
2163 * Initialize the protocols module.
2164 */
2165
2166 init_inodecache();
2167 register_filesystem(&sock_fs_type);
2168 sock_mnt = kern_mount(&sock_fs_type);
2169
2170 /* The real protocol initialization is performed in later initcalls.
2171 */
2172
2173 #ifdef CONFIG_NETFILTER
2174 netfilter_init();
2175 #endif
2176
2177 return 0;
2178 }
2179
2180 core_initcall(sock_init); /* early initcall */
2181
2182 #ifdef CONFIG_PROC_FS
2183 void socket_seq_show(struct seq_file *seq)
2184 {
2185 int cpu;
2186 int counter = 0;
2187
2188 for_each_possible_cpu(cpu)
2189 counter += per_cpu(sockets_in_use, cpu);
2190
2191 /* It can be negative, by the way. 8) */
2192 if (counter < 0)
2193 counter = 0;
2194
2195 seq_printf(seq, "sockets: used %d\n", counter);
2196 }
2197 #endif /* CONFIG_PROC_FS */
2198
2199 #ifdef CONFIG_COMPAT
2200 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2201 unsigned long arg)
2202 {
2203 struct socket *sock = file->private_data;
2204 int ret = -ENOIOCTLCMD;
2205
2206 if (sock->ops->compat_ioctl)
2207 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2208
2209 return ret;
2210 }
2211 #endif
2212
2213 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2214 {
2215 return sock->ops->bind(sock, addr, addrlen);
2216 }
2217
2218 int kernel_listen(struct socket *sock, int backlog)
2219 {
2220 return sock->ops->listen(sock, backlog);
2221 }
2222
2223 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2224 {
2225 struct sock *sk = sock->sk;
2226 int err;
2227
2228 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2229 newsock);
2230 if (err < 0)
2231 goto done;
2232
2233 err = sock->ops->accept(sock, *newsock, flags);
2234 if (err < 0) {
2235 sock_release(*newsock);
2236 goto done;
2237 }
2238
2239 (*newsock)->ops = sock->ops;
2240
2241 done:
2242 return err;
2243 }
2244
2245 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2246 int flags)
2247 {
2248 return sock->ops->connect(sock, addr, addrlen, flags);
2249 }
2250
2251 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2252 int *addrlen)
2253 {
2254 return sock->ops->getname(sock, addr, addrlen, 0);
2255 }
2256
2257 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2258 int *addrlen)
2259 {
2260 return sock->ops->getname(sock, addr, addrlen, 1);
2261 }
2262
2263 int kernel_getsockopt(struct socket *sock, int level, int optname,
2264 char *optval, int *optlen)
2265 {
2266 mm_segment_t oldfs = get_fs();
2267 int err;
2268
2269 set_fs(KERNEL_DS);
2270 if (level == SOL_SOCKET)
2271 err = sock_getsockopt(sock, level, optname, optval, optlen);
2272 else
2273 err = sock->ops->getsockopt(sock, level, optname, optval,
2274 optlen);
2275 set_fs(oldfs);
2276 return err;
2277 }
2278
2279 int kernel_setsockopt(struct socket *sock, int level, int optname,
2280 char *optval, int optlen)
2281 {
2282 mm_segment_t oldfs = get_fs();
2283 int err;
2284
2285 set_fs(KERNEL_DS);
2286 if (level == SOL_SOCKET)
2287 err = sock_setsockopt(sock, level, optname, optval, optlen);
2288 else
2289 err = sock->ops->setsockopt(sock, level, optname, optval,
2290 optlen);
2291 set_fs(oldfs);
2292 return err;
2293 }
2294
2295 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2296 size_t size, int flags)
2297 {
2298 if (sock->ops->sendpage)
2299 return sock->ops->sendpage(sock, page, offset, size, flags);
2300
2301 return sock_no_sendpage(sock, page, offset, size, flags);
2302 }
2303
2304 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2305 {
2306 mm_segment_t oldfs = get_fs();
2307 int err;
2308
2309 set_fs(KERNEL_DS);
2310 err = sock->ops->ioctl(sock, cmd, arg);
2311 set_fs(oldfs);
2312
2313 return err;
2314 }
2315
2316 /* ABI emulation layers need these two */
2317 EXPORT_SYMBOL(move_addr_to_kernel);
2318 EXPORT_SYMBOL(move_addr_to_user);
2319 EXPORT_SYMBOL(sock_create);
2320 EXPORT_SYMBOL(sock_create_kern);
2321 EXPORT_SYMBOL(sock_create_lite);
2322 EXPORT_SYMBOL(sock_map_fd);
2323 EXPORT_SYMBOL(sock_recvmsg);
2324 EXPORT_SYMBOL(sock_register);
2325 EXPORT_SYMBOL(sock_release);
2326 EXPORT_SYMBOL(sock_sendmsg);
2327 EXPORT_SYMBOL(sock_unregister);
2328 EXPORT_SYMBOL(sock_wake_async);
2329 EXPORT_SYMBOL(sockfd_lookup);
2330 EXPORT_SYMBOL(kernel_sendmsg);
2331 EXPORT_SYMBOL(kernel_recvmsg);
2332 EXPORT_SYMBOL(kernel_bind);
2333 EXPORT_SYMBOL(kernel_listen);
2334 EXPORT_SYMBOL(kernel_accept);
2335 EXPORT_SYMBOL(kernel_connect);
2336 EXPORT_SYMBOL(kernel_getsockname);
2337 EXPORT_SYMBOL(kernel_getpeername);
2338 EXPORT_SYMBOL(kernel_getsockopt);
2339 EXPORT_SYMBOL(kernel_setsockopt);
2340 EXPORT_SYMBOL(kernel_sendpage);
2341 EXPORT_SYMBOL(kernel_sock_ioctl);