Merge tag 'for-linus-3.4-20120513' of git://git.infradead.org/linux-mtd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387 }
388
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408 }
409
410 /**
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
414 *
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
419 *
420 * On a success the socket object pointer is returned.
421 */
422
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 struct file *file;
426 struct socket *sock;
427
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
432 }
433
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
453 }
454 return NULL;
455 }
456
457 /**
458 * sock_alloc - allocate a socket
459 *
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
463 */
464
465 static struct socket *sock_alloc(void)
466 {
467 struct inode *inode;
468 struct socket *sock;
469
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
473
474 sock = SOCKET_I(inode);
475
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
481
482 percpu_add(sockets_in_use, 1);
483 return sock;
484 }
485
486 /*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 return -ENXIO;
495 }
496
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
501 };
502
503 /**
504 * sock_release - close a socket
505 * @sock: socket to close
506 *
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
510 */
511
512 void sock_release(struct socket *sock)
513 {
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
516
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
520 }
521
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
524
525 percpu_sub(sockets_in_use, 1);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
529 }
530 sock->file = NULL;
531 }
532 EXPORT_SYMBOL(sock_release);
533
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
535 {
536 *tx_flags = 0;
537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 *tx_flags |= SKBTX_HW_TSTAMP;
539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 *tx_flags |= SKBTX_SW_TSTAMP;
541 if (sock_flag(sk, SOCK_WIFI_STATUS))
542 *tx_flags |= SKBTX_WIFI_STATUS;
543 return 0;
544 }
545 EXPORT_SYMBOL(sock_tx_timestamp);
546
547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
549 {
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
551
552 sock_update_classid(sock->sk);
553
554 sock_update_netprioidx(sock->sk);
555
556 si->sock = sock;
557 si->scm = NULL;
558 si->msg = msg;
559 si->size = size;
560
561 return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
566 {
567 int err = security_socket_sendmsg(sock, msg, size);
568
569 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
570 }
571
572 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
573 {
574 struct kiocb iocb;
575 struct sock_iocb siocb;
576 int ret;
577
578 init_sync_kiocb(&iocb, NULL);
579 iocb.private = &siocb;
580 ret = __sock_sendmsg(&iocb, sock, msg, size);
581 if (-EIOCBQUEUED == ret)
582 ret = wait_on_sync_kiocb(&iocb);
583 return ret;
584 }
585 EXPORT_SYMBOL(sock_sendmsg);
586
587 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
588 {
589 struct kiocb iocb;
590 struct sock_iocb siocb;
591 int ret;
592
593 init_sync_kiocb(&iocb, NULL);
594 iocb.private = &siocb;
595 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
596 if (-EIOCBQUEUED == ret)
597 ret = wait_on_sync_kiocb(&iocb);
598 return ret;
599 }
600
601 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
602 struct kvec *vec, size_t num, size_t size)
603 {
604 mm_segment_t oldfs = get_fs();
605 int result;
606
607 set_fs(KERNEL_DS);
608 /*
609 * the following is safe, since for compiler definitions of kvec and
610 * iovec are identical, yielding the same in-core layout and alignment
611 */
612 msg->msg_iov = (struct iovec *)vec;
613 msg->msg_iovlen = num;
614 result = sock_sendmsg(sock, msg, size);
615 set_fs(oldfs);
616 return result;
617 }
618 EXPORT_SYMBOL(kernel_sendmsg);
619
620 static int ktime2ts(ktime_t kt, struct timespec *ts)
621 {
622 if (kt.tv64) {
623 *ts = ktime_to_timespec(kt);
624 return 1;
625 } else {
626 return 0;
627 }
628 }
629
630 /*
631 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
632 */
633 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
634 struct sk_buff *skb)
635 {
636 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
637 struct timespec ts[3];
638 int empty = 1;
639 struct skb_shared_hwtstamps *shhwtstamps =
640 skb_hwtstamps(skb);
641
642 /* Race occurred between timestamp enabling and packet
643 receiving. Fill in the current time for now. */
644 if (need_software_tstamp && skb->tstamp.tv64 == 0)
645 __net_timestamp(skb);
646
647 if (need_software_tstamp) {
648 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
649 struct timeval tv;
650 skb_get_timestamp(skb, &tv);
651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
652 sizeof(tv), &tv);
653 } else {
654 skb_get_timestampns(skb, &ts[0]);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
656 sizeof(ts[0]), &ts[0]);
657 }
658 }
659
660
661 memset(ts, 0, sizeof(ts));
662 if (skb->tstamp.tv64 &&
663 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
664 skb_get_timestampns(skb, ts + 0);
665 empty = 0;
666 }
667 if (shhwtstamps) {
668 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
669 ktime2ts(shhwtstamps->syststamp, ts + 1))
670 empty = 0;
671 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
672 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
673 empty = 0;
674 }
675 if (!empty)
676 put_cmsg(msg, SOL_SOCKET,
677 SCM_TIMESTAMPING, sizeof(ts), &ts);
678 }
679 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
680
681 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
682 struct sk_buff *skb)
683 {
684 int ack;
685
686 if (!sock_flag(sk, SOCK_WIFI_STATUS))
687 return;
688 if (!skb->wifi_acked_valid)
689 return;
690
691 ack = skb->wifi_acked;
692
693 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
694 }
695 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
696
697 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
698 struct sk_buff *skb)
699 {
700 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
701 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
702 sizeof(__u32), &skb->dropcount);
703 }
704
705 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
707 {
708 sock_recv_timestamp(msg, sk, skb);
709 sock_recv_drops(msg, sk, skb);
710 }
711 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
712
713 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
714 struct msghdr *msg, size_t size, int flags)
715 {
716 struct sock_iocb *si = kiocb_to_siocb(iocb);
717
718 sock_update_classid(sock->sk);
719
720 si->sock = sock;
721 si->scm = NULL;
722 si->msg = msg;
723 si->size = size;
724 si->flags = flags;
725
726 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
727 }
728
729 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
730 struct msghdr *msg, size_t size, int flags)
731 {
732 int err = security_socket_recvmsg(sock, msg, size, flags);
733
734 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
735 }
736
737 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
738 size_t size, int flags)
739 {
740 struct kiocb iocb;
741 struct sock_iocb siocb;
742 int ret;
743
744 init_sync_kiocb(&iocb, NULL);
745 iocb.private = &siocb;
746 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
747 if (-EIOCBQUEUED == ret)
748 ret = wait_on_sync_kiocb(&iocb);
749 return ret;
750 }
751 EXPORT_SYMBOL(sock_recvmsg);
752
753 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
754 size_t size, int flags)
755 {
756 struct kiocb iocb;
757 struct sock_iocb siocb;
758 int ret;
759
760 init_sync_kiocb(&iocb, NULL);
761 iocb.private = &siocb;
762 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
763 if (-EIOCBQUEUED == ret)
764 ret = wait_on_sync_kiocb(&iocb);
765 return ret;
766 }
767
768 /**
769 * kernel_recvmsg - Receive a message from a socket (kernel space)
770 * @sock: The socket to receive the message from
771 * @msg: Received message
772 * @vec: Input s/g array for message data
773 * @num: Size of input s/g array
774 * @size: Number of bytes to read
775 * @flags: Message flags (MSG_DONTWAIT, etc...)
776 *
777 * On return the msg structure contains the scatter/gather array passed in the
778 * vec argument. The array is modified so that it consists of the unfilled
779 * portion of the original array.
780 *
781 * The returned value is the total number of bytes received, or an error.
782 */
783 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
784 struct kvec *vec, size_t num, size_t size, int flags)
785 {
786 mm_segment_t oldfs = get_fs();
787 int result;
788
789 set_fs(KERNEL_DS);
790 /*
791 * the following is safe, since for compiler definitions of kvec and
792 * iovec are identical, yielding the same in-core layout and alignment
793 */
794 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
795 result = sock_recvmsg(sock, msg, size, flags);
796 set_fs(oldfs);
797 return result;
798 }
799 EXPORT_SYMBOL(kernel_recvmsg);
800
801 static void sock_aio_dtor(struct kiocb *iocb)
802 {
803 kfree(iocb->private);
804 }
805
806 static ssize_t sock_sendpage(struct file *file, struct page *page,
807 int offset, size_t size, loff_t *ppos, int more)
808 {
809 struct socket *sock;
810 int flags;
811
812 sock = file->private_data;
813
814 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
815 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
816 flags |= more;
817
818 return kernel_sendpage(sock, page, offset, size, flags);
819 }
820
821 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
822 struct pipe_inode_info *pipe, size_t len,
823 unsigned int flags)
824 {
825 struct socket *sock = file->private_data;
826
827 if (unlikely(!sock->ops->splice_read))
828 return -EINVAL;
829
830 sock_update_classid(sock->sk);
831
832 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
833 }
834
835 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
836 struct sock_iocb *siocb)
837 {
838 if (!is_sync_kiocb(iocb)) {
839 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
840 if (!siocb)
841 return NULL;
842 iocb->ki_dtor = sock_aio_dtor;
843 }
844
845 siocb->kiocb = iocb;
846 iocb->private = siocb;
847 return siocb;
848 }
849
850 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
851 struct file *file, const struct iovec *iov,
852 unsigned long nr_segs)
853 {
854 struct socket *sock = file->private_data;
855 size_t size = 0;
856 int i;
857
858 for (i = 0; i < nr_segs; i++)
859 size += iov[i].iov_len;
860
861 msg->msg_name = NULL;
862 msg->msg_namelen = 0;
863 msg->msg_control = NULL;
864 msg->msg_controllen = 0;
865 msg->msg_iov = (struct iovec *)iov;
866 msg->msg_iovlen = nr_segs;
867 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868
869 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
870 }
871
872 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
874 {
875 struct sock_iocb siocb, *x;
876
877 if (pos != 0)
878 return -ESPIPE;
879
880 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
881 return 0;
882
883
884 x = alloc_sock_iocb(iocb, &siocb);
885 if (!x)
886 return -ENOMEM;
887 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
888 }
889
890 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
891 struct file *file, const struct iovec *iov,
892 unsigned long nr_segs)
893 {
894 struct socket *sock = file->private_data;
895 size_t size = 0;
896 int i;
897
898 for (i = 0; i < nr_segs; i++)
899 size += iov[i].iov_len;
900
901 msg->msg_name = NULL;
902 msg->msg_namelen = 0;
903 msg->msg_control = NULL;
904 msg->msg_controllen = 0;
905 msg->msg_iov = (struct iovec *)iov;
906 msg->msg_iovlen = nr_segs;
907 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
908 if (sock->type == SOCK_SEQPACKET)
909 msg->msg_flags |= MSG_EOR;
910
911 return __sock_sendmsg(iocb, sock, msg, size);
912 }
913
914 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
915 unsigned long nr_segs, loff_t pos)
916 {
917 struct sock_iocb siocb, *x;
918
919 if (pos != 0)
920 return -ESPIPE;
921
922 x = alloc_sock_iocb(iocb, &siocb);
923 if (!x)
924 return -ENOMEM;
925
926 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
927 }
928
929 /*
930 * Atomic setting of ioctl hooks to avoid race
931 * with module unload.
932 */
933
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 {
939 mutex_lock(&br_ioctl_mutex);
940 br_ioctl_hook = hook;
941 mutex_unlock(&br_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(brioctl_set);
944
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 {
950 mutex_lock(&vlan_ioctl_mutex);
951 vlan_ioctl_hook = hook;
952 mutex_unlock(&vlan_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(vlan_ioctl_set);
955
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 {
961 mutex_lock(&dlci_ioctl_mutex);
962 dlci_ioctl_hook = hook;
963 mutex_unlock(&dlci_ioctl_mutex);
964 }
965 EXPORT_SYMBOL(dlci_ioctl_set);
966
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 unsigned int cmd, unsigned long arg)
969 {
970 int err;
971 void __user *argp = (void __user *)arg;
972
973 err = sock->ops->ioctl(sock, cmd, arg);
974
975 /*
976 * If this ioctl is unknown try to hand it down
977 * to the NIC driver.
978 */
979 if (err == -ENOIOCTLCMD)
980 err = dev_ioctl(net, cmd, argp);
981
982 return err;
983 }
984
985 /*
986 * With an ioctl, arg may well be a user mode pointer, but we don't know
987 * what to do with it - that's up to the protocol still.
988 */
989
990 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
991 {
992 struct socket *sock;
993 struct sock *sk;
994 void __user *argp = (void __user *)arg;
995 int pid, err;
996 struct net *net;
997
998 sock = file->private_data;
999 sk = sock->sk;
1000 net = sock_net(sk);
1001 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1002 err = dev_ioctl(net, cmd, argp);
1003 } else
1004 #ifdef CONFIG_WEXT_CORE
1005 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1006 err = dev_ioctl(net, cmd, argp);
1007 } else
1008 #endif
1009 switch (cmd) {
1010 case FIOSETOWN:
1011 case SIOCSPGRP:
1012 err = -EFAULT;
1013 if (get_user(pid, (int __user *)argp))
1014 break;
1015 err = f_setown(sock->file, pid, 1);
1016 break;
1017 case FIOGETOWN:
1018 case SIOCGPGRP:
1019 err = put_user(f_getown(sock->file),
1020 (int __user *)argp);
1021 break;
1022 case SIOCGIFBR:
1023 case SIOCSIFBR:
1024 case SIOCBRADDBR:
1025 case SIOCBRDELBR:
1026 err = -ENOPKG;
1027 if (!br_ioctl_hook)
1028 request_module("bridge");
1029
1030 mutex_lock(&br_ioctl_mutex);
1031 if (br_ioctl_hook)
1032 err = br_ioctl_hook(net, cmd, argp);
1033 mutex_unlock(&br_ioctl_mutex);
1034 break;
1035 case SIOCGIFVLAN:
1036 case SIOCSIFVLAN:
1037 err = -ENOPKG;
1038 if (!vlan_ioctl_hook)
1039 request_module("8021q");
1040
1041 mutex_lock(&vlan_ioctl_mutex);
1042 if (vlan_ioctl_hook)
1043 err = vlan_ioctl_hook(net, argp);
1044 mutex_unlock(&vlan_ioctl_mutex);
1045 break;
1046 case SIOCADDDLCI:
1047 case SIOCDELDLCI:
1048 err = -ENOPKG;
1049 if (!dlci_ioctl_hook)
1050 request_module("dlci");
1051
1052 mutex_lock(&dlci_ioctl_mutex);
1053 if (dlci_ioctl_hook)
1054 err = dlci_ioctl_hook(cmd, argp);
1055 mutex_unlock(&dlci_ioctl_mutex);
1056 break;
1057 default:
1058 err = sock_do_ioctl(net, sock, cmd, arg);
1059 break;
1060 }
1061 return err;
1062 }
1063
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1065 {
1066 int err;
1067 struct socket *sock = NULL;
1068
1069 err = security_socket_create(family, type, protocol, 1);
1070 if (err)
1071 goto out;
1072
1073 sock = sock_alloc();
1074 if (!sock) {
1075 err = -ENOMEM;
1076 goto out;
1077 }
1078
1079 sock->type = type;
1080 err = security_socket_post_create(sock, family, type, protocol, 1);
1081 if (err)
1082 goto out_release;
1083
1084 out:
1085 *res = sock;
1086 return err;
1087 out_release:
1088 sock_release(sock);
1089 sock = NULL;
1090 goto out;
1091 }
1092 EXPORT_SYMBOL(sock_create_lite);
1093
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1096 {
1097 struct socket *sock;
1098
1099 /*
1100 * We can't return errors to poll, so it's either yes or no.
1101 */
1102 sock = file->private_data;
1103 return sock->ops->poll(file, sock, wait);
1104 }
1105
1106 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1107 {
1108 struct socket *sock = file->private_data;
1109
1110 return sock->ops->mmap(file, sock, vma);
1111 }
1112
1113 static int sock_close(struct inode *inode, struct file *filp)
1114 {
1115 /*
1116 * It was possible the inode is NULL we were
1117 * closing an unfinished socket.
1118 */
1119
1120 if (!inode) {
1121 printk(KERN_DEBUG "sock_close: NULL inode\n");
1122 return 0;
1123 }
1124 sock_release(SOCKET_I(inode));
1125 return 0;
1126 }
1127
1128 /*
1129 * Update the socket async list
1130 *
1131 * Fasync_list locking strategy.
1132 *
1133 * 1. fasync_list is modified only under process context socket lock
1134 * i.e. under semaphore.
1135 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1136 * or under socket lock
1137 */
1138
1139 static int sock_fasync(int fd, struct file *filp, int on)
1140 {
1141 struct socket *sock = filp->private_data;
1142 struct sock *sk = sock->sk;
1143 struct socket_wq *wq;
1144
1145 if (sk == NULL)
1146 return -EINVAL;
1147
1148 lock_sock(sk);
1149 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1150 fasync_helper(fd, filp, on, &wq->fasync_list);
1151
1152 if (!wq->fasync_list)
1153 sock_reset_flag(sk, SOCK_FASYNC);
1154 else
1155 sock_set_flag(sk, SOCK_FASYNC);
1156
1157 release_sock(sk);
1158 return 0;
1159 }
1160
1161 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1162
1163 int sock_wake_async(struct socket *sock, int how, int band)
1164 {
1165 struct socket_wq *wq;
1166
1167 if (!sock)
1168 return -1;
1169 rcu_read_lock();
1170 wq = rcu_dereference(sock->wq);
1171 if (!wq || !wq->fasync_list) {
1172 rcu_read_unlock();
1173 return -1;
1174 }
1175 switch (how) {
1176 case SOCK_WAKE_WAITD:
1177 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1178 break;
1179 goto call_kill;
1180 case SOCK_WAKE_SPACE:
1181 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1182 break;
1183 /* fall through */
1184 case SOCK_WAKE_IO:
1185 call_kill:
1186 kill_fasync(&wq->fasync_list, SIGIO, band);
1187 break;
1188 case SOCK_WAKE_URG:
1189 kill_fasync(&wq->fasync_list, SIGURG, band);
1190 }
1191 rcu_read_unlock();
1192 return 0;
1193 }
1194 EXPORT_SYMBOL(sock_wake_async);
1195
1196 int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1198 {
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1202
1203 /*
1204 * Check protocol is in range
1205 */
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1210
1211 /* Compatibility.
1212
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1215 */
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1222 }
1223 family = PF_PACKET;
1224 }
1225
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1229
1230 /*
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1234 */
1235 sock = sock_alloc();
1236 if (!sock) {
1237 if (net_ratelimit())
1238 printk(KERN_WARNING "socket: no more sockets\n");
1239 return -ENFILE; /* Not exactly a match, but its the
1240 closest posix thing */
1241 }
1242
1243 sock->type = type;
1244
1245 #ifdef CONFIG_MODULES
1246 /* Attempt to load a protocol module if the find failed.
1247 *
1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 * requested real, full-featured networking support upon configuration.
1250 * Otherwise module support will break!
1251 */
1252 if (rcu_access_pointer(net_families[family]) == NULL)
1253 request_module("net-pf-%d", family);
1254 #endif
1255
1256 rcu_read_lock();
1257 pf = rcu_dereference(net_families[family]);
1258 err = -EAFNOSUPPORT;
1259 if (!pf)
1260 goto out_release;
1261
1262 /*
1263 * We will call the ->create function, that possibly is in a loadable
1264 * module, so we have to bump that loadable module refcnt first.
1265 */
1266 if (!try_module_get(pf->owner))
1267 goto out_release;
1268
1269 /* Now protected by module ref count */
1270 rcu_read_unlock();
1271
1272 err = pf->create(net, sock, protocol, kern);
1273 if (err < 0)
1274 goto out_module_put;
1275
1276 /*
1277 * Now to bump the refcnt of the [loadable] module that owns this
1278 * socket at sock_release time we decrement its refcnt.
1279 */
1280 if (!try_module_get(sock->ops->owner))
1281 goto out_module_busy;
1282
1283 /*
1284 * Now that we're done with the ->create function, the [loadable]
1285 * module can have its refcnt decremented
1286 */
1287 module_put(pf->owner);
1288 err = security_socket_post_create(sock, family, type, protocol, kern);
1289 if (err)
1290 goto out_sock_release;
1291 *res = sock;
1292
1293 return 0;
1294
1295 out_module_busy:
1296 err = -EAFNOSUPPORT;
1297 out_module_put:
1298 sock->ops = NULL;
1299 module_put(pf->owner);
1300 out_sock_release:
1301 sock_release(sock);
1302 return err;
1303
1304 out_release:
1305 rcu_read_unlock();
1306 goto out_sock_release;
1307 }
1308 EXPORT_SYMBOL(__sock_create);
1309
1310 int sock_create(int family, int type, int protocol, struct socket **res)
1311 {
1312 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1313 }
1314 EXPORT_SYMBOL(sock_create);
1315
1316 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1317 {
1318 return __sock_create(&init_net, family, type, protocol, res, 1);
1319 }
1320 EXPORT_SYMBOL(sock_create_kern);
1321
1322 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1323 {
1324 int retval;
1325 struct socket *sock;
1326 int flags;
1327
1328 /* Check the SOCK_* constants for consistency. */
1329 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1330 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1331 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1332 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1333
1334 flags = type & ~SOCK_TYPE_MASK;
1335 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1336 return -EINVAL;
1337 type &= SOCK_TYPE_MASK;
1338
1339 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1340 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1341
1342 retval = sock_create(family, type, protocol, &sock);
1343 if (retval < 0)
1344 goto out;
1345
1346 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1347 if (retval < 0)
1348 goto out_release;
1349
1350 out:
1351 /* It may be already another descriptor 8) Not kernel problem. */
1352 return retval;
1353
1354 out_release:
1355 sock_release(sock);
1356 return retval;
1357 }
1358
1359 /*
1360 * Create a pair of connected sockets.
1361 */
1362
1363 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1364 int __user *, usockvec)
1365 {
1366 struct socket *sock1, *sock2;
1367 int fd1, fd2, err;
1368 struct file *newfile1, *newfile2;
1369 int flags;
1370
1371 flags = type & ~SOCK_TYPE_MASK;
1372 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1373 return -EINVAL;
1374 type &= SOCK_TYPE_MASK;
1375
1376 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1377 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1378
1379 /*
1380 * Obtain the first socket and check if the underlying protocol
1381 * supports the socketpair call.
1382 */
1383
1384 err = sock_create(family, type, protocol, &sock1);
1385 if (err < 0)
1386 goto out;
1387
1388 err = sock_create(family, type, protocol, &sock2);
1389 if (err < 0)
1390 goto out_release_1;
1391
1392 err = sock1->ops->socketpair(sock1, sock2);
1393 if (err < 0)
1394 goto out_release_both;
1395
1396 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1397 if (unlikely(fd1 < 0)) {
1398 err = fd1;
1399 goto out_release_both;
1400 }
1401
1402 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1403 if (unlikely(fd2 < 0)) {
1404 err = fd2;
1405 fput(newfile1);
1406 put_unused_fd(fd1);
1407 sock_release(sock2);
1408 goto out;
1409 }
1410
1411 audit_fd_pair(fd1, fd2);
1412 fd_install(fd1, newfile1);
1413 fd_install(fd2, newfile2);
1414 /* fd1 and fd2 may be already another descriptors.
1415 * Not kernel problem.
1416 */
1417
1418 err = put_user(fd1, &usockvec[0]);
1419 if (!err)
1420 err = put_user(fd2, &usockvec[1]);
1421 if (!err)
1422 return 0;
1423
1424 sys_close(fd2);
1425 sys_close(fd1);
1426 return err;
1427
1428 out_release_both:
1429 sock_release(sock2);
1430 out_release_1:
1431 sock_release(sock1);
1432 out:
1433 return err;
1434 }
1435
1436 /*
1437 * Bind a name to a socket. Nothing much to do here since it's
1438 * the protocol's responsibility to handle the local address.
1439 *
1440 * We move the socket address to kernel space before we call
1441 * the protocol layer (having also checked the address is ok).
1442 */
1443
1444 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1445 {
1446 struct socket *sock;
1447 struct sockaddr_storage address;
1448 int err, fput_needed;
1449
1450 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 if (sock) {
1452 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1453 if (err >= 0) {
1454 err = security_socket_bind(sock,
1455 (struct sockaddr *)&address,
1456 addrlen);
1457 if (!err)
1458 err = sock->ops->bind(sock,
1459 (struct sockaddr *)
1460 &address, addrlen);
1461 }
1462 fput_light(sock->file, fput_needed);
1463 }
1464 return err;
1465 }
1466
1467 /*
1468 * Perform a listen. Basically, we allow the protocol to do anything
1469 * necessary for a listen, and if that works, we mark the socket as
1470 * ready for listening.
1471 */
1472
1473 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1474 {
1475 struct socket *sock;
1476 int err, fput_needed;
1477 int somaxconn;
1478
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (sock) {
1481 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1482 if ((unsigned)backlog > somaxconn)
1483 backlog = somaxconn;
1484
1485 err = security_socket_listen(sock, backlog);
1486 if (!err)
1487 err = sock->ops->listen(sock, backlog);
1488
1489 fput_light(sock->file, fput_needed);
1490 }
1491 return err;
1492 }
1493
1494 /*
1495 * For accept, we attempt to create a new socket, set up the link
1496 * with the client, wake up the client, then return the new
1497 * connected fd. We collect the address of the connector in kernel
1498 * space and move it to user at the very end. This is unclean because
1499 * we open the socket then return an error.
1500 *
1501 * 1003.1g adds the ability to recvmsg() to query connection pending
1502 * status to recvmsg. We need to add that support in a way thats
1503 * clean when we restucture accept also.
1504 */
1505
1506 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 int __user *, upeer_addrlen, int, flags)
1508 {
1509 struct socket *sock, *newsock;
1510 struct file *newfile;
1511 int err, len, newfd, fput_needed;
1512 struct sockaddr_storage address;
1513
1514 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1515 return -EINVAL;
1516
1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 if (!sock)
1522 goto out;
1523
1524 err = -ENFILE;
1525 newsock = sock_alloc();
1526 if (!newsock)
1527 goto out_put;
1528
1529 newsock->type = sock->type;
1530 newsock->ops = sock->ops;
1531
1532 /*
1533 * We don't need try_module_get here, as the listening socket (sock)
1534 * has the protocol module (sock->ops->owner) held.
1535 */
1536 __module_get(newsock->ops->owner);
1537
1538 newfd = sock_alloc_file(newsock, &newfile, flags);
1539 if (unlikely(newfd < 0)) {
1540 err = newfd;
1541 sock_release(newsock);
1542 goto out_put;
1543 }
1544
1545 err = security_socket_accept(sock, newsock);
1546 if (err)
1547 goto out_fd;
1548
1549 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1550 if (err < 0)
1551 goto out_fd;
1552
1553 if (upeer_sockaddr) {
1554 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1555 &len, 2) < 0) {
1556 err = -ECONNABORTED;
1557 goto out_fd;
1558 }
1559 err = move_addr_to_user(&address,
1560 len, upeer_sockaddr, upeer_addrlen);
1561 if (err < 0)
1562 goto out_fd;
1563 }
1564
1565 /* File flags are not inherited via accept() unlike another OSes. */
1566
1567 fd_install(newfd, newfile);
1568 err = newfd;
1569
1570 out_put:
1571 fput_light(sock->file, fput_needed);
1572 out:
1573 return err;
1574 out_fd:
1575 fput(newfile);
1576 put_unused_fd(newfd);
1577 goto out_put;
1578 }
1579
1580 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1581 int __user *, upeer_addrlen)
1582 {
1583 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1584 }
1585
1586 /*
1587 * Attempt to connect to a socket with the server address. The address
1588 * is in user space so we verify it is OK and move it to kernel space.
1589 *
1590 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1591 * break bindings
1592 *
1593 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1594 * other SEQPACKET protocols that take time to connect() as it doesn't
1595 * include the -EINPROGRESS status for such sockets.
1596 */
1597
1598 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1599 int, addrlen)
1600 {
1601 struct socket *sock;
1602 struct sockaddr_storage address;
1603 int err, fput_needed;
1604
1605 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 if (!sock)
1607 goto out;
1608 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1609 if (err < 0)
1610 goto out_put;
1611
1612 err =
1613 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1614 if (err)
1615 goto out_put;
1616
1617 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1618 sock->file->f_flags);
1619 out_put:
1620 fput_light(sock->file, fput_needed);
1621 out:
1622 return err;
1623 }
1624
1625 /*
1626 * Get the local address ('name') of a socket object. Move the obtained
1627 * name to user space.
1628 */
1629
1630 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1631 int __user *, usockaddr_len)
1632 {
1633 struct socket *sock;
1634 struct sockaddr_storage address;
1635 int len, err, fput_needed;
1636
1637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 if (!sock)
1639 goto out;
1640
1641 err = security_socket_getsockname(sock);
1642 if (err)
1643 goto out_put;
1644
1645 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1646 if (err)
1647 goto out_put;
1648 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1649
1650 out_put:
1651 fput_light(sock->file, fput_needed);
1652 out:
1653 return err;
1654 }
1655
1656 /*
1657 * Get the remote address ('name') of a socket object. Move the obtained
1658 * name to user space.
1659 */
1660
1661 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1662 int __user *, usockaddr_len)
1663 {
1664 struct socket *sock;
1665 struct sockaddr_storage address;
1666 int len, err, fput_needed;
1667
1668 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1669 if (sock != NULL) {
1670 err = security_socket_getpeername(sock);
1671 if (err) {
1672 fput_light(sock->file, fput_needed);
1673 return err;
1674 }
1675
1676 err =
1677 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1678 1);
1679 if (!err)
1680 err = move_addr_to_user(&address, len, usockaddr,
1681 usockaddr_len);
1682 fput_light(sock->file, fput_needed);
1683 }
1684 return err;
1685 }
1686
1687 /*
1688 * Send a datagram to a given address. We move the address into kernel
1689 * space and check the user space data area is readable before invoking
1690 * the protocol.
1691 */
1692
1693 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1694 unsigned, flags, struct sockaddr __user *, addr,
1695 int, addr_len)
1696 {
1697 struct socket *sock;
1698 struct sockaddr_storage address;
1699 int err;
1700 struct msghdr msg;
1701 struct iovec iov;
1702 int fput_needed;
1703
1704 if (len > INT_MAX)
1705 len = INT_MAX;
1706 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 if (!sock)
1708 goto out;
1709
1710 iov.iov_base = buff;
1711 iov.iov_len = len;
1712 msg.msg_name = NULL;
1713 msg.msg_iov = &iov;
1714 msg.msg_iovlen = 1;
1715 msg.msg_control = NULL;
1716 msg.msg_controllen = 0;
1717 msg.msg_namelen = 0;
1718 if (addr) {
1719 err = move_addr_to_kernel(addr, addr_len, &address);
1720 if (err < 0)
1721 goto out_put;
1722 msg.msg_name = (struct sockaddr *)&address;
1723 msg.msg_namelen = addr_len;
1724 }
1725 if (sock->file->f_flags & O_NONBLOCK)
1726 flags |= MSG_DONTWAIT;
1727 msg.msg_flags = flags;
1728 err = sock_sendmsg(sock, &msg, len);
1729
1730 out_put:
1731 fput_light(sock->file, fput_needed);
1732 out:
1733 return err;
1734 }
1735
1736 /*
1737 * Send a datagram down a socket.
1738 */
1739
1740 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1741 unsigned, flags)
1742 {
1743 return sys_sendto(fd, buff, len, flags, NULL, 0);
1744 }
1745
1746 /*
1747 * Receive a frame from the socket and optionally record the address of the
1748 * sender. We verify the buffers are writable and if needed move the
1749 * sender address from kernel to user space.
1750 */
1751
1752 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1753 unsigned, flags, struct sockaddr __user *, addr,
1754 int __user *, addr_len)
1755 {
1756 struct socket *sock;
1757 struct iovec iov;
1758 struct msghdr msg;
1759 struct sockaddr_storage address;
1760 int err, err2;
1761 int fput_needed;
1762
1763 if (size > INT_MAX)
1764 size = INT_MAX;
1765 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1766 if (!sock)
1767 goto out;
1768
1769 msg.msg_control = NULL;
1770 msg.msg_controllen = 0;
1771 msg.msg_iovlen = 1;
1772 msg.msg_iov = &iov;
1773 iov.iov_len = size;
1774 iov.iov_base = ubuf;
1775 msg.msg_name = (struct sockaddr *)&address;
1776 msg.msg_namelen = sizeof(address);
1777 if (sock->file->f_flags & O_NONBLOCK)
1778 flags |= MSG_DONTWAIT;
1779 err = sock_recvmsg(sock, &msg, size, flags);
1780
1781 if (err >= 0 && addr != NULL) {
1782 err2 = move_addr_to_user(&address,
1783 msg.msg_namelen, addr, addr_len);
1784 if (err2 < 0)
1785 err = err2;
1786 }
1787
1788 fput_light(sock->file, fput_needed);
1789 out:
1790 return err;
1791 }
1792
1793 /*
1794 * Receive a datagram from a socket.
1795 */
1796
1797 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1798 unsigned flags)
1799 {
1800 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1801 }
1802
1803 /*
1804 * Set a socket option. Because we don't know the option lengths we have
1805 * to pass the user mode parameter for the protocols to sort out.
1806 */
1807
1808 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1809 char __user *, optval, int, optlen)
1810 {
1811 int err, fput_needed;
1812 struct socket *sock;
1813
1814 if (optlen < 0)
1815 return -EINVAL;
1816
1817 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 if (sock != NULL) {
1819 err = security_socket_setsockopt(sock, level, optname);
1820 if (err)
1821 goto out_put;
1822
1823 if (level == SOL_SOCKET)
1824 err =
1825 sock_setsockopt(sock, level, optname, optval,
1826 optlen);
1827 else
1828 err =
1829 sock->ops->setsockopt(sock, level, optname, optval,
1830 optlen);
1831 out_put:
1832 fput_light(sock->file, fput_needed);
1833 }
1834 return err;
1835 }
1836
1837 /*
1838 * Get a socket option. Because we don't know the option lengths we have
1839 * to pass a user mode parameter for the protocols to sort out.
1840 */
1841
1842 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1843 char __user *, optval, int __user *, optlen)
1844 {
1845 int err, fput_needed;
1846 struct socket *sock;
1847
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (sock != NULL) {
1850 err = security_socket_getsockopt(sock, level, optname);
1851 if (err)
1852 goto out_put;
1853
1854 if (level == SOL_SOCKET)
1855 err =
1856 sock_getsockopt(sock, level, optname, optval,
1857 optlen);
1858 else
1859 err =
1860 sock->ops->getsockopt(sock, level, optname, optval,
1861 optlen);
1862 out_put:
1863 fput_light(sock->file, fput_needed);
1864 }
1865 return err;
1866 }
1867
1868 /*
1869 * Shutdown a socket.
1870 */
1871
1872 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1873 {
1874 int err, fput_needed;
1875 struct socket *sock;
1876
1877 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 if (sock != NULL) {
1879 err = security_socket_shutdown(sock, how);
1880 if (!err)
1881 err = sock->ops->shutdown(sock, how);
1882 fput_light(sock->file, fput_needed);
1883 }
1884 return err;
1885 }
1886
1887 /* A couple of helpful macros for getting the address of the 32/64 bit
1888 * fields which are the same type (int / unsigned) on our platforms.
1889 */
1890 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1891 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1892 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1893
1894 struct used_address {
1895 struct sockaddr_storage name;
1896 unsigned int name_len;
1897 };
1898
1899 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1900 struct msghdr *msg_sys, unsigned flags,
1901 struct used_address *used_address)
1902 {
1903 struct compat_msghdr __user *msg_compat =
1904 (struct compat_msghdr __user *)msg;
1905 struct sockaddr_storage address;
1906 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1907 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1908 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1909 /* 20 is size of ipv6_pktinfo */
1910 unsigned char *ctl_buf = ctl;
1911 int err, ctl_len, iov_size, total_len;
1912
1913 err = -EFAULT;
1914 if (MSG_CMSG_COMPAT & flags) {
1915 if (get_compat_msghdr(msg_sys, msg_compat))
1916 return -EFAULT;
1917 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1918 return -EFAULT;
1919
1920 /* do not move before msg_sys is valid */
1921 err = -EMSGSIZE;
1922 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1923 goto out;
1924
1925 /* Check whether to allocate the iovec area */
1926 err = -ENOMEM;
1927 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1928 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1929 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 if (!iov)
1931 goto out;
1932 }
1933
1934 /* This will also move the address data into kernel space */
1935 if (MSG_CMSG_COMPAT & flags) {
1936 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1937 } else
1938 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1939 if (err < 0)
1940 goto out_freeiov;
1941 total_len = err;
1942
1943 err = -ENOBUFS;
1944
1945 if (msg_sys->msg_controllen > INT_MAX)
1946 goto out_freeiov;
1947 ctl_len = msg_sys->msg_controllen;
1948 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1949 err =
1950 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1951 sizeof(ctl));
1952 if (err)
1953 goto out_freeiov;
1954 ctl_buf = msg_sys->msg_control;
1955 ctl_len = msg_sys->msg_controllen;
1956 } else if (ctl_len) {
1957 if (ctl_len > sizeof(ctl)) {
1958 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1959 if (ctl_buf == NULL)
1960 goto out_freeiov;
1961 }
1962 err = -EFAULT;
1963 /*
1964 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1965 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1966 * checking falls down on this.
1967 */
1968 if (copy_from_user(ctl_buf,
1969 (void __user __force *)msg_sys->msg_control,
1970 ctl_len))
1971 goto out_freectl;
1972 msg_sys->msg_control = ctl_buf;
1973 }
1974 msg_sys->msg_flags = flags;
1975
1976 if (sock->file->f_flags & O_NONBLOCK)
1977 msg_sys->msg_flags |= MSG_DONTWAIT;
1978 /*
1979 * If this is sendmmsg() and current destination address is same as
1980 * previously succeeded address, omit asking LSM's decision.
1981 * used_address->name_len is initialized to UINT_MAX so that the first
1982 * destination address never matches.
1983 */
1984 if (used_address && msg_sys->msg_name &&
1985 used_address->name_len == msg_sys->msg_namelen &&
1986 !memcmp(&used_address->name, msg_sys->msg_name,
1987 used_address->name_len)) {
1988 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1989 goto out_freectl;
1990 }
1991 err = sock_sendmsg(sock, msg_sys, total_len);
1992 /*
1993 * If this is sendmmsg() and sending to current destination address was
1994 * successful, remember it.
1995 */
1996 if (used_address && err >= 0) {
1997 used_address->name_len = msg_sys->msg_namelen;
1998 if (msg_sys->msg_name)
1999 memcpy(&used_address->name, msg_sys->msg_name,
2000 used_address->name_len);
2001 }
2002
2003 out_freectl:
2004 if (ctl_buf != ctl)
2005 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2006 out_freeiov:
2007 if (iov != iovstack)
2008 sock_kfree_s(sock->sk, iov, iov_size);
2009 out:
2010 return err;
2011 }
2012
2013 /*
2014 * BSD sendmsg interface
2015 */
2016
2017 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2018 {
2019 int fput_needed, err;
2020 struct msghdr msg_sys;
2021 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022
2023 if (!sock)
2024 goto out;
2025
2026 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2027
2028 fput_light(sock->file, fput_needed);
2029 out:
2030 return err;
2031 }
2032
2033 /*
2034 * Linux sendmmsg interface
2035 */
2036
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 unsigned int flags)
2039 {
2040 int fput_needed, err, datagrams;
2041 struct socket *sock;
2042 struct mmsghdr __user *entry;
2043 struct compat_mmsghdr __user *compat_entry;
2044 struct msghdr msg_sys;
2045 struct used_address used_address;
2046
2047 if (vlen > UIO_MAXIOV)
2048 vlen = UIO_MAXIOV;
2049
2050 datagrams = 0;
2051
2052 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 if (!sock)
2054 return err;
2055
2056 used_address.name_len = UINT_MAX;
2057 entry = mmsg;
2058 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2059 err = 0;
2060
2061 while (datagrams < vlen) {
2062 if (MSG_CMSG_COMPAT & flags) {
2063 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2064 &msg_sys, flags, &used_address);
2065 if (err < 0)
2066 break;
2067 err = __put_user(err, &compat_entry->msg_len);
2068 ++compat_entry;
2069 } else {
2070 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2071 &msg_sys, flags, &used_address);
2072 if (err < 0)
2073 break;
2074 err = put_user(err, &entry->msg_len);
2075 ++entry;
2076 }
2077
2078 if (err)
2079 break;
2080 ++datagrams;
2081 }
2082
2083 fput_light(sock->file, fput_needed);
2084
2085 /* We only return an error if no datagrams were able to be sent */
2086 if (datagrams != 0)
2087 return datagrams;
2088
2089 return err;
2090 }
2091
2092 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2093 unsigned int, vlen, unsigned int, flags)
2094 {
2095 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2096 }
2097
2098 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2099 struct msghdr *msg_sys, unsigned flags, int nosec)
2100 {
2101 struct compat_msghdr __user *msg_compat =
2102 (struct compat_msghdr __user *)msg;
2103 struct iovec iovstack[UIO_FASTIOV];
2104 struct iovec *iov = iovstack;
2105 unsigned long cmsg_ptr;
2106 int err, iov_size, total_len, len;
2107
2108 /* kernel mode address */
2109 struct sockaddr_storage addr;
2110
2111 /* user mode address pointers */
2112 struct sockaddr __user *uaddr;
2113 int __user *uaddr_len;
2114
2115 if (MSG_CMSG_COMPAT & flags) {
2116 if (get_compat_msghdr(msg_sys, msg_compat))
2117 return -EFAULT;
2118 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2119 return -EFAULT;
2120
2121 err = -EMSGSIZE;
2122 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123 goto out;
2124
2125 /* Check whether to allocate the iovec area */
2126 err = -ENOMEM;
2127 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2128 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2129 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2130 if (!iov)
2131 goto out;
2132 }
2133
2134 /*
2135 * Save the user-mode address (verify_iovec will change the
2136 * kernel msghdr to use the kernel address space)
2137 */
2138
2139 uaddr = (__force void __user *)msg_sys->msg_name;
2140 uaddr_len = COMPAT_NAMELEN(msg);
2141 if (MSG_CMSG_COMPAT & flags) {
2142 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2143 } else
2144 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2145 if (err < 0)
2146 goto out_freeiov;
2147 total_len = err;
2148
2149 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2150 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2151
2152 if (sock->file->f_flags & O_NONBLOCK)
2153 flags |= MSG_DONTWAIT;
2154 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2155 total_len, flags);
2156 if (err < 0)
2157 goto out_freeiov;
2158 len = err;
2159
2160 if (uaddr != NULL) {
2161 err = move_addr_to_user(&addr,
2162 msg_sys->msg_namelen, uaddr,
2163 uaddr_len);
2164 if (err < 0)
2165 goto out_freeiov;
2166 }
2167 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2168 COMPAT_FLAGS(msg));
2169 if (err)
2170 goto out_freeiov;
2171 if (MSG_CMSG_COMPAT & flags)
2172 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173 &msg_compat->msg_controllen);
2174 else
2175 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2176 &msg->msg_controllen);
2177 if (err)
2178 goto out_freeiov;
2179 err = len;
2180
2181 out_freeiov:
2182 if (iov != iovstack)
2183 sock_kfree_s(sock->sk, iov, iov_size);
2184 out:
2185 return err;
2186 }
2187
2188 /*
2189 * BSD recvmsg interface
2190 */
2191
2192 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2193 unsigned int, flags)
2194 {
2195 int fput_needed, err;
2196 struct msghdr msg_sys;
2197 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198
2199 if (!sock)
2200 goto out;
2201
2202 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2203
2204 fput_light(sock->file, fput_needed);
2205 out:
2206 return err;
2207 }
2208
2209 /*
2210 * Linux recvmmsg interface
2211 */
2212
2213 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2214 unsigned int flags, struct timespec *timeout)
2215 {
2216 int fput_needed, err, datagrams;
2217 struct socket *sock;
2218 struct mmsghdr __user *entry;
2219 struct compat_mmsghdr __user *compat_entry;
2220 struct msghdr msg_sys;
2221 struct timespec end_time;
2222
2223 if (timeout &&
2224 poll_select_set_timeout(&end_time, timeout->tv_sec,
2225 timeout->tv_nsec))
2226 return -EINVAL;
2227
2228 datagrams = 0;
2229
2230 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2231 if (!sock)
2232 return err;
2233
2234 err = sock_error(sock->sk);
2235 if (err)
2236 goto out_put;
2237
2238 entry = mmsg;
2239 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2240
2241 while (datagrams < vlen) {
2242 /*
2243 * No need to ask LSM for more than the first datagram.
2244 */
2245 if (MSG_CMSG_COMPAT & flags) {
2246 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2247 &msg_sys, flags & ~MSG_WAITFORONE,
2248 datagrams);
2249 if (err < 0)
2250 break;
2251 err = __put_user(err, &compat_entry->msg_len);
2252 ++compat_entry;
2253 } else {
2254 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2255 &msg_sys, flags & ~MSG_WAITFORONE,
2256 datagrams);
2257 if (err < 0)
2258 break;
2259 err = put_user(err, &entry->msg_len);
2260 ++entry;
2261 }
2262
2263 if (err)
2264 break;
2265 ++datagrams;
2266
2267 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2268 if (flags & MSG_WAITFORONE)
2269 flags |= MSG_DONTWAIT;
2270
2271 if (timeout) {
2272 ktime_get_ts(timeout);
2273 *timeout = timespec_sub(end_time, *timeout);
2274 if (timeout->tv_sec < 0) {
2275 timeout->tv_sec = timeout->tv_nsec = 0;
2276 break;
2277 }
2278
2279 /* Timeout, return less than vlen datagrams */
2280 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281 break;
2282 }
2283
2284 /* Out of band data, return right away */
2285 if (msg_sys.msg_flags & MSG_OOB)
2286 break;
2287 }
2288
2289 out_put:
2290 fput_light(sock->file, fput_needed);
2291
2292 if (err == 0)
2293 return datagrams;
2294
2295 if (datagrams != 0) {
2296 /*
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2299 */
2300 if (err != -EAGAIN) {
2301 /*
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2306 */
2307 sock->sk->sk_err = -err;
2308 }
2309
2310 return datagrams;
2311 }
2312
2313 return err;
2314 }
2315
2316 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2317 unsigned int, vlen, unsigned int, flags,
2318 struct timespec __user *, timeout)
2319 {
2320 int datagrams;
2321 struct timespec timeout_sys;
2322
2323 if (!timeout)
2324 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2325
2326 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2327 return -EFAULT;
2328
2329 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2330
2331 if (datagrams > 0 &&
2332 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2333 datagrams = -EFAULT;
2334
2335 return datagrams;
2336 }
2337
2338 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2339 /* Argument list sizes for sys_socketcall */
2340 #define AL(x) ((x) * sizeof(unsigned long))
2341 static const unsigned char nargs[21] = {
2342 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2343 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2344 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2345 AL(4), AL(5), AL(4)
2346 };
2347
2348 #undef AL
2349
2350 /*
2351 * System call vectors.
2352 *
2353 * Argument checking cleaned up. Saved 20% in size.
2354 * This function doesn't need to set the kernel lock because
2355 * it is set by the callees.
2356 */
2357
2358 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2359 {
2360 unsigned long a[6];
2361 unsigned long a0, a1;
2362 int err;
2363 unsigned int len;
2364
2365 if (call < 1 || call > SYS_SENDMMSG)
2366 return -EINVAL;
2367
2368 len = nargs[call];
2369 if (len > sizeof(a))
2370 return -EINVAL;
2371
2372 /* copy_from_user should be SMP safe. */
2373 if (copy_from_user(a, args, len))
2374 return -EFAULT;
2375
2376 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2377
2378 a0 = a[0];
2379 a1 = a[1];
2380
2381 switch (call) {
2382 case SYS_SOCKET:
2383 err = sys_socket(a0, a1, a[2]);
2384 break;
2385 case SYS_BIND:
2386 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2387 break;
2388 case SYS_CONNECT:
2389 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2390 break;
2391 case SYS_LISTEN:
2392 err = sys_listen(a0, a1);
2393 break;
2394 case SYS_ACCEPT:
2395 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2396 (int __user *)a[2], 0);
2397 break;
2398 case SYS_GETSOCKNAME:
2399 err =
2400 sys_getsockname(a0, (struct sockaddr __user *)a1,
2401 (int __user *)a[2]);
2402 break;
2403 case SYS_GETPEERNAME:
2404 err =
2405 sys_getpeername(a0, (struct sockaddr __user *)a1,
2406 (int __user *)a[2]);
2407 break;
2408 case SYS_SOCKETPAIR:
2409 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2410 break;
2411 case SYS_SEND:
2412 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2413 break;
2414 case SYS_SENDTO:
2415 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2416 (struct sockaddr __user *)a[4], a[5]);
2417 break;
2418 case SYS_RECV:
2419 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2420 break;
2421 case SYS_RECVFROM:
2422 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2423 (struct sockaddr __user *)a[4],
2424 (int __user *)a[5]);
2425 break;
2426 case SYS_SHUTDOWN:
2427 err = sys_shutdown(a0, a1);
2428 break;
2429 case SYS_SETSOCKOPT:
2430 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2431 break;
2432 case SYS_GETSOCKOPT:
2433 err =
2434 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2435 (int __user *)a[4]);
2436 break;
2437 case SYS_SENDMSG:
2438 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2439 break;
2440 case SYS_SENDMMSG:
2441 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2442 break;
2443 case SYS_RECVMSG:
2444 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2445 break;
2446 case SYS_RECVMMSG:
2447 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2448 (struct timespec __user *)a[4]);
2449 break;
2450 case SYS_ACCEPT4:
2451 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2452 (int __user *)a[2], a[3]);
2453 break;
2454 default:
2455 err = -EINVAL;
2456 break;
2457 }
2458 return err;
2459 }
2460
2461 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2462
2463 /**
2464 * sock_register - add a socket protocol handler
2465 * @ops: description of protocol
2466 *
2467 * This function is called by a protocol handler that wants to
2468 * advertise its address family, and have it linked into the
2469 * socket interface. The value ops->family coresponds to the
2470 * socket system call protocol family.
2471 */
2472 int sock_register(const struct net_proto_family *ops)
2473 {
2474 int err;
2475
2476 if (ops->family >= NPROTO) {
2477 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2478 NPROTO);
2479 return -ENOBUFS;
2480 }
2481
2482 spin_lock(&net_family_lock);
2483 if (rcu_dereference_protected(net_families[ops->family],
2484 lockdep_is_held(&net_family_lock)))
2485 err = -EEXIST;
2486 else {
2487 rcu_assign_pointer(net_families[ops->family], ops);
2488 err = 0;
2489 }
2490 spin_unlock(&net_family_lock);
2491
2492 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2493 return err;
2494 }
2495 EXPORT_SYMBOL(sock_register);
2496
2497 /**
2498 * sock_unregister - remove a protocol handler
2499 * @family: protocol family to remove
2500 *
2501 * This function is called by a protocol handler that wants to
2502 * remove its address family, and have it unlinked from the
2503 * new socket creation.
2504 *
2505 * If protocol handler is a module, then it can use module reference
2506 * counts to protect against new references. If protocol handler is not
2507 * a module then it needs to provide its own protection in
2508 * the ops->create routine.
2509 */
2510 void sock_unregister(int family)
2511 {
2512 BUG_ON(family < 0 || family >= NPROTO);
2513
2514 spin_lock(&net_family_lock);
2515 RCU_INIT_POINTER(net_families[family], NULL);
2516 spin_unlock(&net_family_lock);
2517
2518 synchronize_rcu();
2519
2520 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2521 }
2522 EXPORT_SYMBOL(sock_unregister);
2523
2524 static int __init sock_init(void)
2525 {
2526 int err;
2527
2528 /*
2529 * Initialize sock SLAB cache.
2530 */
2531
2532 sk_init();
2533
2534 /*
2535 * Initialize skbuff SLAB cache
2536 */
2537 skb_init();
2538
2539 /*
2540 * Initialize the protocols module.
2541 */
2542
2543 init_inodecache();
2544
2545 err = register_filesystem(&sock_fs_type);
2546 if (err)
2547 goto out_fs;
2548 sock_mnt = kern_mount(&sock_fs_type);
2549 if (IS_ERR(sock_mnt)) {
2550 err = PTR_ERR(sock_mnt);
2551 goto out_mount;
2552 }
2553
2554 /* The real protocol initialization is performed in later initcalls.
2555 */
2556
2557 #ifdef CONFIG_NETFILTER
2558 netfilter_init();
2559 #endif
2560
2561 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2562 skb_timestamping_init();
2563 #endif
2564
2565 out:
2566 return err;
2567
2568 out_mount:
2569 unregister_filesystem(&sock_fs_type);
2570 out_fs:
2571 goto out;
2572 }
2573
2574 core_initcall(sock_init); /* early initcall */
2575
2576 #ifdef CONFIG_PROC_FS
2577 void socket_seq_show(struct seq_file *seq)
2578 {
2579 int cpu;
2580 int counter = 0;
2581
2582 for_each_possible_cpu(cpu)
2583 counter += per_cpu(sockets_in_use, cpu);
2584
2585 /* It can be negative, by the way. 8) */
2586 if (counter < 0)
2587 counter = 0;
2588
2589 seq_printf(seq, "sockets: used %d\n", counter);
2590 }
2591 #endif /* CONFIG_PROC_FS */
2592
2593 #ifdef CONFIG_COMPAT
2594 static int do_siocgstamp(struct net *net, struct socket *sock,
2595 unsigned int cmd, void __user *up)
2596 {
2597 mm_segment_t old_fs = get_fs();
2598 struct timeval ktv;
2599 int err;
2600
2601 set_fs(KERNEL_DS);
2602 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2603 set_fs(old_fs);
2604 if (!err)
2605 err = compat_put_timeval(up, &ktv);
2606
2607 return err;
2608 }
2609
2610 static int do_siocgstampns(struct net *net, struct socket *sock,
2611 unsigned int cmd, void __user *up)
2612 {
2613 mm_segment_t old_fs = get_fs();
2614 struct timespec kts;
2615 int err;
2616
2617 set_fs(KERNEL_DS);
2618 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2619 set_fs(old_fs);
2620 if (!err)
2621 err = compat_put_timespec(up, &kts);
2622
2623 return err;
2624 }
2625
2626 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2627 {
2628 struct ifreq __user *uifr;
2629 int err;
2630
2631 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2632 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2633 return -EFAULT;
2634
2635 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2636 if (err)
2637 return err;
2638
2639 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2640 return -EFAULT;
2641
2642 return 0;
2643 }
2644
2645 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2646 {
2647 struct compat_ifconf ifc32;
2648 struct ifconf ifc;
2649 struct ifconf __user *uifc;
2650 struct compat_ifreq __user *ifr32;
2651 struct ifreq __user *ifr;
2652 unsigned int i, j;
2653 int err;
2654
2655 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2656 return -EFAULT;
2657
2658 if (ifc32.ifcbuf == 0) {
2659 ifc32.ifc_len = 0;
2660 ifc.ifc_len = 0;
2661 ifc.ifc_req = NULL;
2662 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2663 } else {
2664 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2665 sizeof(struct ifreq);
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2667 ifc.ifc_len = len;
2668 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2669 ifr32 = compat_ptr(ifc32.ifcbuf);
2670 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2671 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2672 return -EFAULT;
2673 ifr++;
2674 ifr32++;
2675 }
2676 }
2677 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2678 return -EFAULT;
2679
2680 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2681 if (err)
2682 return err;
2683
2684 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2685 return -EFAULT;
2686
2687 ifr = ifc.ifc_req;
2688 ifr32 = compat_ptr(ifc32.ifcbuf);
2689 for (i = 0, j = 0;
2690 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2691 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2692 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2693 return -EFAULT;
2694 ifr32++;
2695 ifr++;
2696 }
2697
2698 if (ifc32.ifcbuf == 0) {
2699 /* Translate from 64-bit structure multiple to
2700 * a 32-bit one.
2701 */
2702 i = ifc.ifc_len;
2703 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2704 ifc32.ifc_len = i;
2705 } else {
2706 ifc32.ifc_len = i;
2707 }
2708 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2709 return -EFAULT;
2710
2711 return 0;
2712 }
2713
2714 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2715 {
2716 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2717 bool convert_in = false, convert_out = false;
2718 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2719 struct ethtool_rxnfc __user *rxnfc;
2720 struct ifreq __user *ifr;
2721 u32 rule_cnt = 0, actual_rule_cnt;
2722 u32 ethcmd;
2723 u32 data;
2724 int ret;
2725
2726 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2727 return -EFAULT;
2728
2729 compat_rxnfc = compat_ptr(data);
2730
2731 if (get_user(ethcmd, &compat_rxnfc->cmd))
2732 return -EFAULT;
2733
2734 /* Most ethtool structures are defined without padding.
2735 * Unfortunately struct ethtool_rxnfc is an exception.
2736 */
2737 switch (ethcmd) {
2738 default:
2739 break;
2740 case ETHTOOL_GRXCLSRLALL:
2741 /* Buffer size is variable */
2742 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2743 return -EFAULT;
2744 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2745 return -ENOMEM;
2746 buf_size += rule_cnt * sizeof(u32);
2747 /* fall through */
2748 case ETHTOOL_GRXRINGS:
2749 case ETHTOOL_GRXCLSRLCNT:
2750 case ETHTOOL_GRXCLSRULE:
2751 case ETHTOOL_SRXCLSRLINS:
2752 convert_out = true;
2753 /* fall through */
2754 case ETHTOOL_SRXCLSRLDEL:
2755 buf_size += sizeof(struct ethtool_rxnfc);
2756 convert_in = true;
2757 break;
2758 }
2759
2760 ifr = compat_alloc_user_space(buf_size);
2761 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2762
2763 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2764 return -EFAULT;
2765
2766 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2767 &ifr->ifr_ifru.ifru_data))
2768 return -EFAULT;
2769
2770 if (convert_in) {
2771 /* We expect there to be holes between fs.m_ext and
2772 * fs.ring_cookie and at the end of fs, but nowhere else.
2773 */
2774 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2775 sizeof(compat_rxnfc->fs.m_ext) !=
2776 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2777 sizeof(rxnfc->fs.m_ext));
2778 BUILD_BUG_ON(
2779 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2780 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2781 offsetof(struct ethtool_rxnfc, fs.location) -
2782 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2783
2784 if (copy_in_user(rxnfc, compat_rxnfc,
2785 (void *)(&rxnfc->fs.m_ext + 1) -
2786 (void *)rxnfc) ||
2787 copy_in_user(&rxnfc->fs.ring_cookie,
2788 &compat_rxnfc->fs.ring_cookie,
2789 (void *)(&rxnfc->fs.location + 1) -
2790 (void *)&rxnfc->fs.ring_cookie) ||
2791 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2792 sizeof(rxnfc->rule_cnt)))
2793 return -EFAULT;
2794 }
2795
2796 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2797 if (ret)
2798 return ret;
2799
2800 if (convert_out) {
2801 if (copy_in_user(compat_rxnfc, rxnfc,
2802 (const void *)(&rxnfc->fs.m_ext + 1) -
2803 (const void *)rxnfc) ||
2804 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2805 &rxnfc->fs.ring_cookie,
2806 (const void *)(&rxnfc->fs.location + 1) -
2807 (const void *)&rxnfc->fs.ring_cookie) ||
2808 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2809 sizeof(rxnfc->rule_cnt)))
2810 return -EFAULT;
2811
2812 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2813 /* As an optimisation, we only copy the actual
2814 * number of rules that the underlying
2815 * function returned. Since Mallory might
2816 * change the rule count in user memory, we
2817 * check that it is less than the rule count
2818 * originally given (as the user buffer size),
2819 * which has been range-checked.
2820 */
2821 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2822 return -EFAULT;
2823 if (actual_rule_cnt < rule_cnt)
2824 rule_cnt = actual_rule_cnt;
2825 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2826 &rxnfc->rule_locs[0],
2827 rule_cnt * sizeof(u32)))
2828 return -EFAULT;
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
2835 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2836 {
2837 void __user *uptr;
2838 compat_uptr_t uptr32;
2839 struct ifreq __user *uifr;
2840
2841 uifr = compat_alloc_user_space(sizeof(*uifr));
2842 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2843 return -EFAULT;
2844
2845 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2846 return -EFAULT;
2847
2848 uptr = compat_ptr(uptr32);
2849
2850 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2851 return -EFAULT;
2852
2853 return dev_ioctl(net, SIOCWANDEV, uifr);
2854 }
2855
2856 static int bond_ioctl(struct net *net, unsigned int cmd,
2857 struct compat_ifreq __user *ifr32)
2858 {
2859 struct ifreq kifr;
2860 struct ifreq __user *uifr;
2861 mm_segment_t old_fs;
2862 int err;
2863 u32 data;
2864 void __user *datap;
2865
2866 switch (cmd) {
2867 case SIOCBONDENSLAVE:
2868 case SIOCBONDRELEASE:
2869 case SIOCBONDSETHWADDR:
2870 case SIOCBONDCHANGEACTIVE:
2871 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2872 return -EFAULT;
2873
2874 old_fs = get_fs();
2875 set_fs(KERNEL_DS);
2876 err = dev_ioctl(net, cmd,
2877 (struct ifreq __user __force *) &kifr);
2878 set_fs(old_fs);
2879
2880 return err;
2881 case SIOCBONDSLAVEINFOQUERY:
2882 case SIOCBONDINFOQUERY:
2883 uifr = compat_alloc_user_space(sizeof(*uifr));
2884 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2885 return -EFAULT;
2886
2887 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2888 return -EFAULT;
2889
2890 datap = compat_ptr(data);
2891 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2892 return -EFAULT;
2893
2894 return dev_ioctl(net, cmd, uifr);
2895 default:
2896 return -ENOIOCTLCMD;
2897 }
2898 }
2899
2900 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2901 struct compat_ifreq __user *u_ifreq32)
2902 {
2903 struct ifreq __user *u_ifreq64;
2904 char tmp_buf[IFNAMSIZ];
2905 void __user *data64;
2906 u32 data32;
2907
2908 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2909 IFNAMSIZ))
2910 return -EFAULT;
2911 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2912 return -EFAULT;
2913 data64 = compat_ptr(data32);
2914
2915 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2916
2917 /* Don't check these user accesses, just let that get trapped
2918 * in the ioctl handler instead.
2919 */
2920 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2921 IFNAMSIZ))
2922 return -EFAULT;
2923 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2924 return -EFAULT;
2925
2926 return dev_ioctl(net, cmd, u_ifreq64);
2927 }
2928
2929 static int dev_ifsioc(struct net *net, struct socket *sock,
2930 unsigned int cmd, struct compat_ifreq __user *uifr32)
2931 {
2932 struct ifreq __user *uifr;
2933 int err;
2934
2935 uifr = compat_alloc_user_space(sizeof(*uifr));
2936 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2937 return -EFAULT;
2938
2939 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2940
2941 if (!err) {
2942 switch (cmd) {
2943 case SIOCGIFFLAGS:
2944 case SIOCGIFMETRIC:
2945 case SIOCGIFMTU:
2946 case SIOCGIFMEM:
2947 case SIOCGIFHWADDR:
2948 case SIOCGIFINDEX:
2949 case SIOCGIFADDR:
2950 case SIOCGIFBRDADDR:
2951 case SIOCGIFDSTADDR:
2952 case SIOCGIFNETMASK:
2953 case SIOCGIFPFLAGS:
2954 case SIOCGIFTXQLEN:
2955 case SIOCGMIIPHY:
2956 case SIOCGMIIREG:
2957 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2958 err = -EFAULT;
2959 break;
2960 }
2961 }
2962 return err;
2963 }
2964
2965 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2966 struct compat_ifreq __user *uifr32)
2967 {
2968 struct ifreq ifr;
2969 struct compat_ifmap __user *uifmap32;
2970 mm_segment_t old_fs;
2971 int err;
2972
2973 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2974 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2975 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2976 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2977 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2978 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2979 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2980 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2981 if (err)
2982 return -EFAULT;
2983
2984 old_fs = get_fs();
2985 set_fs(KERNEL_DS);
2986 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2987 set_fs(old_fs);
2988
2989 if (cmd == SIOCGIFMAP && !err) {
2990 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2991 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2992 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2993 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2994 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2995 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2996 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2997 if (err)
2998 err = -EFAULT;
2999 }
3000 return err;
3001 }
3002
3003 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3004 {
3005 void __user *uptr;
3006 compat_uptr_t uptr32;
3007 struct ifreq __user *uifr;
3008
3009 uifr = compat_alloc_user_space(sizeof(*uifr));
3010 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3011 return -EFAULT;
3012
3013 if (get_user(uptr32, &uifr32->ifr_data))
3014 return -EFAULT;
3015
3016 uptr = compat_ptr(uptr32);
3017
3018 if (put_user(uptr, &uifr->ifr_data))
3019 return -EFAULT;
3020
3021 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3022 }
3023
3024 struct rtentry32 {
3025 u32 rt_pad1;
3026 struct sockaddr rt_dst; /* target address */
3027 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3028 struct sockaddr rt_genmask; /* target network mask (IP) */
3029 unsigned short rt_flags;
3030 short rt_pad2;
3031 u32 rt_pad3;
3032 unsigned char rt_tos;
3033 unsigned char rt_class;
3034 short rt_pad4;
3035 short rt_metric; /* +1 for binary compatibility! */
3036 /* char * */ u32 rt_dev; /* forcing the device at add */
3037 u32 rt_mtu; /* per route MTU/Window */
3038 u32 rt_window; /* Window clamping */
3039 unsigned short rt_irtt; /* Initial RTT */
3040 };
3041
3042 struct in6_rtmsg32 {
3043 struct in6_addr rtmsg_dst;
3044 struct in6_addr rtmsg_src;
3045 struct in6_addr rtmsg_gateway;
3046 u32 rtmsg_type;
3047 u16 rtmsg_dst_len;
3048 u16 rtmsg_src_len;
3049 u32 rtmsg_metric;
3050 u32 rtmsg_info;
3051 u32 rtmsg_flags;
3052 s32 rtmsg_ifindex;
3053 };
3054
3055 static int routing_ioctl(struct net *net, struct socket *sock,
3056 unsigned int cmd, void __user *argp)
3057 {
3058 int ret;
3059 void *r = NULL;
3060 struct in6_rtmsg r6;
3061 struct rtentry r4;
3062 char devname[16];
3063 u32 rtdev;
3064 mm_segment_t old_fs = get_fs();
3065
3066 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3067 struct in6_rtmsg32 __user *ur6 = argp;
3068 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3069 3 * sizeof(struct in6_addr));
3070 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3071 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3072 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3073 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3074 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3075 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3076 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3077
3078 r = (void *) &r6;
3079 } else { /* ipv4 */
3080 struct rtentry32 __user *ur4 = argp;
3081 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3082 3 * sizeof(struct sockaddr));
3083 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3084 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3085 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3086 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3087 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3088 ret |= __get_user(rtdev, &(ur4->rt_dev));
3089 if (rtdev) {
3090 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3091 r4.rt_dev = (char __user __force *)devname;
3092 devname[15] = 0;
3093 } else
3094 r4.rt_dev = NULL;
3095
3096 r = (void *) &r4;
3097 }
3098
3099 if (ret) {
3100 ret = -EFAULT;
3101 goto out;
3102 }
3103
3104 set_fs(KERNEL_DS);
3105 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3106 set_fs(old_fs);
3107
3108 out:
3109 return ret;
3110 }
3111
3112 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3113 * for some operations; this forces use of the newer bridge-utils that
3114 * use compatible ioctls
3115 */
3116 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3117 {
3118 compat_ulong_t tmp;
3119
3120 if (get_user(tmp, argp))
3121 return -EFAULT;
3122 if (tmp == BRCTL_GET_VERSION)
3123 return BRCTL_VERSION + 1;
3124 return -EINVAL;
3125 }
3126
3127 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3128 unsigned int cmd, unsigned long arg)
3129 {
3130 void __user *argp = compat_ptr(arg);
3131 struct sock *sk = sock->sk;
3132 struct net *net = sock_net(sk);
3133
3134 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3135 return siocdevprivate_ioctl(net, cmd, argp);
3136
3137 switch (cmd) {
3138 case SIOCSIFBR:
3139 case SIOCGIFBR:
3140 return old_bridge_ioctl(argp);
3141 case SIOCGIFNAME:
3142 return dev_ifname32(net, argp);
3143 case SIOCGIFCONF:
3144 return dev_ifconf(net, argp);
3145 case SIOCETHTOOL:
3146 return ethtool_ioctl(net, argp);
3147 case SIOCWANDEV:
3148 return compat_siocwandev(net, argp);
3149 case SIOCGIFMAP:
3150 case SIOCSIFMAP:
3151 return compat_sioc_ifmap(net, cmd, argp);
3152 case SIOCBONDENSLAVE:
3153 case SIOCBONDRELEASE:
3154 case SIOCBONDSETHWADDR:
3155 case SIOCBONDSLAVEINFOQUERY:
3156 case SIOCBONDINFOQUERY:
3157 case SIOCBONDCHANGEACTIVE:
3158 return bond_ioctl(net, cmd, argp);
3159 case SIOCADDRT:
3160 case SIOCDELRT:
3161 return routing_ioctl(net, sock, cmd, argp);
3162 case SIOCGSTAMP:
3163 return do_siocgstamp(net, sock, cmd, argp);
3164 case SIOCGSTAMPNS:
3165 return do_siocgstampns(net, sock, cmd, argp);
3166 case SIOCSHWTSTAMP:
3167 return compat_siocshwtstamp(net, argp);
3168
3169 case FIOSETOWN:
3170 case SIOCSPGRP:
3171 case FIOGETOWN:
3172 case SIOCGPGRP:
3173 case SIOCBRADDBR:
3174 case SIOCBRDELBR:
3175 case SIOCGIFVLAN:
3176 case SIOCSIFVLAN:
3177 case SIOCADDDLCI:
3178 case SIOCDELDLCI:
3179 return sock_ioctl(file, cmd, arg);
3180
3181 case SIOCGIFFLAGS:
3182 case SIOCSIFFLAGS:
3183 case SIOCGIFMETRIC:
3184 case SIOCSIFMETRIC:
3185 case SIOCGIFMTU:
3186 case SIOCSIFMTU:
3187 case SIOCGIFMEM:
3188 case SIOCSIFMEM:
3189 case SIOCGIFHWADDR:
3190 case SIOCSIFHWADDR:
3191 case SIOCADDMULTI:
3192 case SIOCDELMULTI:
3193 case SIOCGIFINDEX:
3194 case SIOCGIFADDR:
3195 case SIOCSIFADDR:
3196 case SIOCSIFHWBROADCAST:
3197 case SIOCDIFADDR:
3198 case SIOCGIFBRDADDR:
3199 case SIOCSIFBRDADDR:
3200 case SIOCGIFDSTADDR:
3201 case SIOCSIFDSTADDR:
3202 case SIOCGIFNETMASK:
3203 case SIOCSIFNETMASK:
3204 case SIOCSIFPFLAGS:
3205 case SIOCGIFPFLAGS:
3206 case SIOCGIFTXQLEN:
3207 case SIOCSIFTXQLEN:
3208 case SIOCBRADDIF:
3209 case SIOCBRDELIF:
3210 case SIOCSIFNAME:
3211 case SIOCGMIIPHY:
3212 case SIOCGMIIREG:
3213 case SIOCSMIIREG:
3214 return dev_ifsioc(net, sock, cmd, argp);
3215
3216 case SIOCSARP:
3217 case SIOCGARP:
3218 case SIOCDARP:
3219 case SIOCATMARK:
3220 return sock_do_ioctl(net, sock, cmd, arg);
3221 }
3222
3223 return -ENOIOCTLCMD;
3224 }
3225
3226 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3227 unsigned long arg)
3228 {
3229 struct socket *sock = file->private_data;
3230 int ret = -ENOIOCTLCMD;
3231 struct sock *sk;
3232 struct net *net;
3233
3234 sk = sock->sk;
3235 net = sock_net(sk);
3236
3237 if (sock->ops->compat_ioctl)
3238 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3239
3240 if (ret == -ENOIOCTLCMD &&
3241 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3242 ret = compat_wext_handle_ioctl(net, cmd, arg);
3243
3244 if (ret == -ENOIOCTLCMD)
3245 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3246
3247 return ret;
3248 }
3249 #endif
3250
3251 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3252 {
3253 return sock->ops->bind(sock, addr, addrlen);
3254 }
3255 EXPORT_SYMBOL(kernel_bind);
3256
3257 int kernel_listen(struct socket *sock, int backlog)
3258 {
3259 return sock->ops->listen(sock, backlog);
3260 }
3261 EXPORT_SYMBOL(kernel_listen);
3262
3263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3264 {
3265 struct sock *sk = sock->sk;
3266 int err;
3267
3268 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3269 newsock);
3270 if (err < 0)
3271 goto done;
3272
3273 err = sock->ops->accept(sock, *newsock, flags);
3274 if (err < 0) {
3275 sock_release(*newsock);
3276 *newsock = NULL;
3277 goto done;
3278 }
3279
3280 (*newsock)->ops = sock->ops;
3281 __module_get((*newsock)->ops->owner);
3282
3283 done:
3284 return err;
3285 }
3286 EXPORT_SYMBOL(kernel_accept);
3287
3288 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3289 int flags)
3290 {
3291 return sock->ops->connect(sock, addr, addrlen, flags);
3292 }
3293 EXPORT_SYMBOL(kernel_connect);
3294
3295 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3296 int *addrlen)
3297 {
3298 return sock->ops->getname(sock, addr, addrlen, 0);
3299 }
3300 EXPORT_SYMBOL(kernel_getsockname);
3301
3302 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3303 int *addrlen)
3304 {
3305 return sock->ops->getname(sock, addr, addrlen, 1);
3306 }
3307 EXPORT_SYMBOL(kernel_getpeername);
3308
3309 int kernel_getsockopt(struct socket *sock, int level, int optname,
3310 char *optval, int *optlen)
3311 {
3312 mm_segment_t oldfs = get_fs();
3313 char __user *uoptval;
3314 int __user *uoptlen;
3315 int err;
3316
3317 uoptval = (char __user __force *) optval;
3318 uoptlen = (int __user __force *) optlen;
3319
3320 set_fs(KERNEL_DS);
3321 if (level == SOL_SOCKET)
3322 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3323 else
3324 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3325 uoptlen);
3326 set_fs(oldfs);
3327 return err;
3328 }
3329 EXPORT_SYMBOL(kernel_getsockopt);
3330
3331 int kernel_setsockopt(struct socket *sock, int level, int optname,
3332 char *optval, unsigned int optlen)
3333 {
3334 mm_segment_t oldfs = get_fs();
3335 char __user *uoptval;
3336 int err;
3337
3338 uoptval = (char __user __force *) optval;
3339
3340 set_fs(KERNEL_DS);
3341 if (level == SOL_SOCKET)
3342 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3343 else
3344 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3345 optlen);
3346 set_fs(oldfs);
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_setsockopt);
3350
3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3352 size_t size, int flags)
3353 {
3354 sock_update_classid(sock->sk);
3355
3356 if (sock->ops->sendpage)
3357 return sock->ops->sendpage(sock, page, offset, size, flags);
3358
3359 return sock_no_sendpage(sock, page, offset, size, flags);
3360 }
3361 EXPORT_SYMBOL(kernel_sendpage);
3362
3363 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3364 {
3365 mm_segment_t oldfs = get_fs();
3366 int err;
3367
3368 set_fs(KERNEL_DS);
3369 err = sock->ops->ioctl(sock, cmd, arg);
3370 set_fs(oldfs);
3371
3372 return err;
3373 }
3374 EXPORT_SYMBOL(kernel_sock_ioctl);
3375
3376 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3377 {
3378 return sock->ops->shutdown(sock, how);
3379 }
3380 EXPORT_SYMBOL(kernel_sock_shutdown);