Merge tag 'fcoe' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354
355 if (dname) {
356 name.name = dname;
357 name.len = strlen(name.name);
358 } else if (sock->sk) {
359 name.name = sock->sk->sk_prot_creator->name;
360 name.len = strlen(name.name);
361 }
362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 if (unlikely(!path.dentry))
364 return ERR_PTR(-ENOMEM);
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(IS_ERR(file))) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 return file;
377 }
378
379 sock->file = file;
380 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 file->private_data = sock;
382 return file;
383 }
384 EXPORT_SYMBOL(sock_alloc_file);
385
386 static int sock_map_fd(struct socket *sock, int flags)
387 {
388 struct file *newfile;
389 int fd = get_unused_fd_flags(flags);
390 if (unlikely(fd < 0))
391 return fd;
392
393 newfile = sock_alloc_file(sock, flags, NULL);
394 if (likely(!IS_ERR(newfile))) {
395 fd_install(fd, newfile);
396 return fd;
397 }
398
399 put_unused_fd(fd);
400 return PTR_ERR(newfile);
401 }
402
403 struct socket *sock_from_file(struct file *file, int *err)
404 {
405 if (file->f_op == &socket_file_ops)
406 return file->private_data; /* set in sock_map_fd */
407
408 *err = -ENOTSOCK;
409 return NULL;
410 }
411 EXPORT_SYMBOL(sock_from_file);
412
413 /**
414 * sockfd_lookup - Go from a file number to its socket slot
415 * @fd: file handle
416 * @err: pointer to an error code return
417 *
418 * The file handle passed in is locked and the socket it is bound
419 * too is returned. If an error occurs the err pointer is overwritten
420 * with a negative errno code and NULL is returned. The function checks
421 * for both invalid handles and passing a handle which is not a socket.
422 *
423 * On a success the socket object pointer is returned.
424 */
425
426 struct socket *sockfd_lookup(int fd, int *err)
427 {
428 struct file *file;
429 struct socket *sock;
430
431 file = fget(fd);
432 if (!file) {
433 *err = -EBADF;
434 return NULL;
435 }
436
437 sock = sock_from_file(file, err);
438 if (!sock)
439 fput(file);
440 return sock;
441 }
442 EXPORT_SYMBOL(sockfd_lookup);
443
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445 {
446 struct file *file;
447 struct socket *sock;
448
449 *err = -EBADF;
450 file = fget_light(fd, fput_needed);
451 if (file) {
452 sock = sock_from_file(file, err);
453 if (sock)
454 return sock;
455 fput_light(file, *fput_needed);
456 }
457 return NULL;
458 }
459
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 const char *name, void *value, size_t size)
465 {
466 const char *proto_name;
467 size_t proto_size;
468 int error;
469
470 error = -ENODATA;
471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 proto_name = dentry->d_name.name;
473 proto_size = strlen(proto_name);
474
475 if (value) {
476 error = -ERANGE;
477 if (proto_size + 1 > size)
478 goto out;
479
480 strncpy(value, proto_name, proto_size + 1);
481 }
482 error = proto_size + 1;
483 }
484
485 out:
486 return error;
487 }
488
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 size_t size)
491 {
492 ssize_t len;
493 ssize_t used = 0;
494
495 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 if (len < 0)
497 return len;
498 used += len;
499 if (buffer) {
500 if (size < used)
501 return -ERANGE;
502 buffer += len;
503 }
504
505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 buffer += len;
512 }
513
514 return used;
515 }
516
517 static const struct inode_operations sockfs_inode_ops = {
518 .getxattr = sockfs_getxattr,
519 .listxattr = sockfs_listxattr,
520 };
521
522 /**
523 * sock_alloc - allocate a socket
524 *
525 * Allocate a new inode and socket object. The two are bound together
526 * and initialised. The socket is then returned. If we are out of inodes
527 * NULL is returned.
528 */
529
530 static struct socket *sock_alloc(void)
531 {
532 struct inode *inode;
533 struct socket *sock;
534
535 inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 if (!inode)
537 return NULL;
538
539 sock = SOCKET_I(inode);
540
541 kmemcheck_annotate_bitfield(sock, type);
542 inode->i_ino = get_next_ino();
543 inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 inode->i_uid = current_fsuid();
545 inode->i_gid = current_fsgid();
546 inode->i_op = &sockfs_inode_ops;
547
548 this_cpu_add(sockets_in_use, 1);
549 return sock;
550 }
551
552 /*
553 * In theory you can't get an open on this inode, but /proc provides
554 * a back door. Remember to keep it shut otherwise you'll let the
555 * creepy crawlies in.
556 */
557
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
559 {
560 return -ENXIO;
561 }
562
563 const struct file_operations bad_sock_fops = {
564 .owner = THIS_MODULE,
565 .open = sock_no_open,
566 .llseek = noop_llseek,
567 };
568
569 /**
570 * sock_release - close a socket
571 * @sock: socket to close
572 *
573 * The socket is released from the protocol stack if it has a release
574 * callback, and the inode is then released if the socket is bound to
575 * an inode not a file.
576 */
577
578 void sock_release(struct socket *sock)
579 {
580 if (sock->ops) {
581 struct module *owner = sock->ops->owner;
582
583 sock->ops->release(sock);
584 sock->ops = NULL;
585 module_put(owner);
586 }
587
588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 printk(KERN_ERR "sock_release: fasync list not empty!\n");
590
591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 return;
593
594 this_cpu_sub(sockets_in_use, 1);
595 if (!sock->file) {
596 iput(SOCK_INODE(sock));
597 return;
598 }
599 sock->file = NULL;
600 }
601 EXPORT_SYMBOL(sock_release);
602
603 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
604 {
605 *tx_flags = 0;
606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 *tx_flags |= SKBTX_HW_TSTAMP;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 *tx_flags |= SKBTX_SW_TSTAMP;
610 if (sock_flag(sk, SOCK_WIFI_STATUS))
611 *tx_flags |= SKBTX_WIFI_STATUS;
612 }
613 EXPORT_SYMBOL(sock_tx_timestamp);
614
615 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
616 struct msghdr *msg, size_t size)
617 {
618 struct sock_iocb *si = kiocb_to_siocb(iocb);
619
620 si->sock = sock;
621 si->scm = NULL;
622 si->msg = msg;
623 si->size = size;
624
625 return sock->ops->sendmsg(iocb, sock, msg, size);
626 }
627
628 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
629 struct msghdr *msg, size_t size)
630 {
631 int err = security_socket_sendmsg(sock, msg, size);
632
633 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
634 }
635
636 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
637 {
638 struct kiocb iocb;
639 struct sock_iocb siocb;
640 int ret;
641
642 init_sync_kiocb(&iocb, NULL);
643 iocb.private = &siocb;
644 ret = __sock_sendmsg(&iocb, sock, msg, size);
645 if (-EIOCBQUEUED == ret)
646 ret = wait_on_sync_kiocb(&iocb);
647 return ret;
648 }
649 EXPORT_SYMBOL(sock_sendmsg);
650
651 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
652 {
653 struct kiocb iocb;
654 struct sock_iocb siocb;
655 int ret;
656
657 init_sync_kiocb(&iocb, NULL);
658 iocb.private = &siocb;
659 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
660 if (-EIOCBQUEUED == ret)
661 ret = wait_on_sync_kiocb(&iocb);
662 return ret;
663 }
664
665 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
666 struct kvec *vec, size_t num, size_t size)
667 {
668 mm_segment_t oldfs = get_fs();
669 int result;
670
671 set_fs(KERNEL_DS);
672 /*
673 * the following is safe, since for compiler definitions of kvec and
674 * iovec are identical, yielding the same in-core layout and alignment
675 */
676 msg->msg_iov = (struct iovec *)vec;
677 msg->msg_iovlen = num;
678 result = sock_sendmsg(sock, msg, size);
679 set_fs(oldfs);
680 return result;
681 }
682 EXPORT_SYMBOL(kernel_sendmsg);
683
684 /*
685 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
686 */
687 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
688 struct sk_buff *skb)
689 {
690 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
691 struct timespec ts[3];
692 int empty = 1;
693 struct skb_shared_hwtstamps *shhwtstamps =
694 skb_hwtstamps(skb);
695
696 /* Race occurred between timestamp enabling and packet
697 receiving. Fill in the current time for now. */
698 if (need_software_tstamp && skb->tstamp.tv64 == 0)
699 __net_timestamp(skb);
700
701 if (need_software_tstamp) {
702 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
703 struct timeval tv;
704 skb_get_timestamp(skb, &tv);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
706 sizeof(tv), &tv);
707 } else {
708 skb_get_timestampns(skb, &ts[0]);
709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
710 sizeof(ts[0]), &ts[0]);
711 }
712 }
713
714
715 memset(ts, 0, sizeof(ts));
716 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
717 ktime_to_timespec_cond(skb->tstamp, ts + 0))
718 empty = 0;
719 if (shhwtstamps) {
720 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
721 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
722 empty = 0;
723 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
724 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
725 empty = 0;
726 }
727 if (!empty)
728 put_cmsg(msg, SOL_SOCKET,
729 SCM_TIMESTAMPING, sizeof(ts), &ts);
730 }
731 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
732
733 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
734 struct sk_buff *skb)
735 {
736 int ack;
737
738 if (!sock_flag(sk, SOCK_WIFI_STATUS))
739 return;
740 if (!skb->wifi_acked_valid)
741 return;
742
743 ack = skb->wifi_acked;
744
745 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
746 }
747 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
748
749 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
750 struct sk_buff *skb)
751 {
752 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
753 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
754 sizeof(__u32), &skb->dropcount);
755 }
756
757 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 sock_recv_timestamp(msg, sk, skb);
761 sock_recv_drops(msg, sk, skb);
762 }
763 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
764
765 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
766 struct msghdr *msg, size_t size, int flags)
767 {
768 struct sock_iocb *si = kiocb_to_siocb(iocb);
769
770 si->sock = sock;
771 si->scm = NULL;
772 si->msg = msg;
773 si->size = size;
774 si->flags = flags;
775
776 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
777 }
778
779 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
780 struct msghdr *msg, size_t size, int flags)
781 {
782 int err = security_socket_recvmsg(sock, msg, size, flags);
783
784 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
785 }
786
787 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
788 size_t size, int flags)
789 {
790 struct kiocb iocb;
791 struct sock_iocb siocb;
792 int ret;
793
794 init_sync_kiocb(&iocb, NULL);
795 iocb.private = &siocb;
796 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
797 if (-EIOCBQUEUED == ret)
798 ret = wait_on_sync_kiocb(&iocb);
799 return ret;
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802
803 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 size_t size, int flags)
805 {
806 struct kiocb iocb;
807 struct sock_iocb siocb;
808 int ret;
809
810 init_sync_kiocb(&iocb, NULL);
811 iocb.private = &siocb;
812 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
813 if (-EIOCBQUEUED == ret)
814 ret = wait_on_sync_kiocb(&iocb);
815 return ret;
816 }
817
818 /**
819 * kernel_recvmsg - Receive a message from a socket (kernel space)
820 * @sock: The socket to receive the message from
821 * @msg: Received message
822 * @vec: Input s/g array for message data
823 * @num: Size of input s/g array
824 * @size: Number of bytes to read
825 * @flags: Message flags (MSG_DONTWAIT, etc...)
826 *
827 * On return the msg structure contains the scatter/gather array passed in the
828 * vec argument. The array is modified so that it consists of the unfilled
829 * portion of the original array.
830 *
831 * The returned value is the total number of bytes received, or an error.
832 */
833 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
834 struct kvec *vec, size_t num, size_t size, int flags)
835 {
836 mm_segment_t oldfs = get_fs();
837 int result;
838
839 set_fs(KERNEL_DS);
840 /*
841 * the following is safe, since for compiler definitions of kvec and
842 * iovec are identical, yielding the same in-core layout and alignment
843 */
844 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
845 result = sock_recvmsg(sock, msg, size, flags);
846 set_fs(oldfs);
847 return result;
848 }
849 EXPORT_SYMBOL(kernel_recvmsg);
850
851 static void sock_aio_dtor(struct kiocb *iocb)
852 {
853 kfree(iocb->private);
854 }
855
856 static ssize_t sock_sendpage(struct file *file, struct page *page,
857 int offset, size_t size, loff_t *ppos, int more)
858 {
859 struct socket *sock;
860 int flags;
861
862 sock = file->private_data;
863
864 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
865 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866 flags |= more;
867
868 return kernel_sendpage(sock, page, offset, size, flags);
869 }
870
871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
872 struct pipe_inode_info *pipe, size_t len,
873 unsigned int flags)
874 {
875 struct socket *sock = file->private_data;
876
877 if (unlikely(!sock->ops->splice_read))
878 return -EINVAL;
879
880 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
881 }
882
883 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
884 struct sock_iocb *siocb)
885 {
886 if (!is_sync_kiocb(iocb)) {
887 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
888 if (!siocb)
889 return NULL;
890 iocb->ki_dtor = sock_aio_dtor;
891 }
892
893 siocb->kiocb = iocb;
894 iocb->private = siocb;
895 return siocb;
896 }
897
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 struct file *file, const struct iovec *iov,
900 unsigned long nr_segs)
901 {
902 struct socket *sock = file->private_data;
903 size_t size = 0;
904 int i;
905
906 for (i = 0; i < nr_segs; i++)
907 size += iov[i].iov_len;
908
909 msg->msg_name = NULL;
910 msg->msg_namelen = 0;
911 msg->msg_control = NULL;
912 msg->msg_controllen = 0;
913 msg->msg_iov = (struct iovec *)iov;
914 msg->msg_iovlen = nr_segs;
915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 }
919
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 unsigned long nr_segs, loff_t pos)
922 {
923 struct sock_iocb siocb, *x;
924
925 if (pos != 0)
926 return -ESPIPE;
927
928 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
929 return 0;
930
931
932 x = alloc_sock_iocb(iocb, &siocb);
933 if (!x)
934 return -ENOMEM;
935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 }
937
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 struct file *file, const struct iovec *iov,
940 unsigned long nr_segs)
941 {
942 struct socket *sock = file->private_data;
943 size_t size = 0;
944 int i;
945
946 for (i = 0; i < nr_segs; i++)
947 size += iov[i].iov_len;
948
949 msg->msg_name = NULL;
950 msg->msg_namelen = 0;
951 msg->msg_control = NULL;
952 msg->msg_controllen = 0;
953 msg->msg_iov = (struct iovec *)iov;
954 msg->msg_iovlen = nr_segs;
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
958
959 return __sock_sendmsg(iocb, sock, msg, size);
960 }
961
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
964 {
965 struct sock_iocb siocb, *x;
966
967 if (pos != 0)
968 return -ESPIPE;
969
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
973
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976
977 /*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1017 {
1018 int err;
1019 void __user *argp = (void __user *)arg;
1020
1021 err = sock->ops->ioctl(sock, cmd, arg);
1022
1023 /*
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1026 */
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1029
1030 return err;
1031 }
1032
1033 /*
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1036 */
1037
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1045
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052 #ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056 #endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 err = f_setown(sock->file, pid, 1);
1064 break;
1065 case FIOGETOWN:
1066 case SIOCGPGRP:
1067 err = put_user(f_getown(sock->file),
1068 (int __user *)argp);
1069 break;
1070 case SIOCGIFBR:
1071 case SIOCSIFBR:
1072 case SIOCBRADDBR:
1073 case SIOCBRDELBR:
1074 err = -ENOPKG;
1075 if (!br_ioctl_hook)
1076 request_module("bridge");
1077
1078 mutex_lock(&br_ioctl_mutex);
1079 if (br_ioctl_hook)
1080 err = br_ioctl_hook(net, cmd, argp);
1081 mutex_unlock(&br_ioctl_mutex);
1082 break;
1083 case SIOCGIFVLAN:
1084 case SIOCSIFVLAN:
1085 err = -ENOPKG;
1086 if (!vlan_ioctl_hook)
1087 request_module("8021q");
1088
1089 mutex_lock(&vlan_ioctl_mutex);
1090 if (vlan_ioctl_hook)
1091 err = vlan_ioctl_hook(net, argp);
1092 mutex_unlock(&vlan_ioctl_mutex);
1093 break;
1094 case SIOCADDDLCI:
1095 case SIOCDELDLCI:
1096 err = -ENOPKG;
1097 if (!dlci_ioctl_hook)
1098 request_module("dlci");
1099
1100 mutex_lock(&dlci_ioctl_mutex);
1101 if (dlci_ioctl_hook)
1102 err = dlci_ioctl_hook(cmd, argp);
1103 mutex_unlock(&dlci_ioctl_mutex);
1104 break;
1105 default:
1106 err = sock_do_ioctl(net, sock, cmd, arg);
1107 break;
1108 }
1109 return err;
1110 }
1111
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113 {
1114 int err;
1115 struct socket *sock = NULL;
1116
1117 err = security_socket_create(family, type, protocol, 1);
1118 if (err)
1119 goto out;
1120
1121 sock = sock_alloc();
1122 if (!sock) {
1123 err = -ENOMEM;
1124 goto out;
1125 }
1126
1127 sock->type = type;
1128 err = security_socket_post_create(sock, family, type, protocol, 1);
1129 if (err)
1130 goto out_release;
1131
1132 out:
1133 *res = sock;
1134 return err;
1135 out_release:
1136 sock_release(sock);
1137 sock = NULL;
1138 goto out;
1139 }
1140 EXPORT_SYMBOL(sock_create_lite);
1141
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1144 {
1145 struct socket *sock;
1146
1147 /*
1148 * We can't return errors to poll, so it's either yes or no.
1149 */
1150 sock = file->private_data;
1151 return sock->ops->poll(file, sock, wait);
1152 }
1153
1154 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1155 {
1156 struct socket *sock = file->private_data;
1157
1158 return sock->ops->mmap(file, sock, vma);
1159 }
1160
1161 static int sock_close(struct inode *inode, struct file *filp)
1162 {
1163 sock_release(SOCKET_I(inode));
1164 return 0;
1165 }
1166
1167 /*
1168 * Update the socket async list
1169 *
1170 * Fasync_list locking strategy.
1171 *
1172 * 1. fasync_list is modified only under process context socket lock
1173 * i.e. under semaphore.
1174 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1175 * or under socket lock
1176 */
1177
1178 static int sock_fasync(int fd, struct file *filp, int on)
1179 {
1180 struct socket *sock = filp->private_data;
1181 struct sock *sk = sock->sk;
1182 struct socket_wq *wq;
1183
1184 if (sk == NULL)
1185 return -EINVAL;
1186
1187 lock_sock(sk);
1188 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1189 fasync_helper(fd, filp, on, &wq->fasync_list);
1190
1191 if (!wq->fasync_list)
1192 sock_reset_flag(sk, SOCK_FASYNC);
1193 else
1194 sock_set_flag(sk, SOCK_FASYNC);
1195
1196 release_sock(sk);
1197 return 0;
1198 }
1199
1200 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1201
1202 int sock_wake_async(struct socket *sock, int how, int band)
1203 {
1204 struct socket_wq *wq;
1205
1206 if (!sock)
1207 return -1;
1208 rcu_read_lock();
1209 wq = rcu_dereference(sock->wq);
1210 if (!wq || !wq->fasync_list) {
1211 rcu_read_unlock();
1212 return -1;
1213 }
1214 switch (how) {
1215 case SOCK_WAKE_WAITD:
1216 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1217 break;
1218 goto call_kill;
1219 case SOCK_WAKE_SPACE:
1220 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1221 break;
1222 /* fall through */
1223 case SOCK_WAKE_IO:
1224 call_kill:
1225 kill_fasync(&wq->fasync_list, SIGIO, band);
1226 break;
1227 case SOCK_WAKE_URG:
1228 kill_fasync(&wq->fasync_list, SIGURG, band);
1229 }
1230 rcu_read_unlock();
1231 return 0;
1232 }
1233 EXPORT_SYMBOL(sock_wake_async);
1234
1235 int __sock_create(struct net *net, int family, int type, int protocol,
1236 struct socket **res, int kern)
1237 {
1238 int err;
1239 struct socket *sock;
1240 const struct net_proto_family *pf;
1241
1242 /*
1243 * Check protocol is in range
1244 */
1245 if (family < 0 || family >= NPROTO)
1246 return -EAFNOSUPPORT;
1247 if (type < 0 || type >= SOCK_MAX)
1248 return -EINVAL;
1249
1250 /* Compatibility.
1251
1252 This uglymoron is moved from INET layer to here to avoid
1253 deadlock in module load.
1254 */
1255 if (family == PF_INET && type == SOCK_PACKET) {
1256 static int warned;
1257 if (!warned) {
1258 warned = 1;
1259 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1260 current->comm);
1261 }
1262 family = PF_PACKET;
1263 }
1264
1265 err = security_socket_create(family, type, protocol, kern);
1266 if (err)
1267 return err;
1268
1269 /*
1270 * Allocate the socket and allow the family to set things up. if
1271 * the protocol is 0, the family is instructed to select an appropriate
1272 * default.
1273 */
1274 sock = sock_alloc();
1275 if (!sock) {
1276 net_warn_ratelimited("socket: no more sockets\n");
1277 return -ENFILE; /* Not exactly a match, but its the
1278 closest posix thing */
1279 }
1280
1281 sock->type = type;
1282
1283 #ifdef CONFIG_MODULES
1284 /* Attempt to load a protocol module if the find failed.
1285 *
1286 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287 * requested real, full-featured networking support upon configuration.
1288 * Otherwise module support will break!
1289 */
1290 if (rcu_access_pointer(net_families[family]) == NULL)
1291 request_module("net-pf-%d", family);
1292 #endif
1293
1294 rcu_read_lock();
1295 pf = rcu_dereference(net_families[family]);
1296 err = -EAFNOSUPPORT;
1297 if (!pf)
1298 goto out_release;
1299
1300 /*
1301 * We will call the ->create function, that possibly is in a loadable
1302 * module, so we have to bump that loadable module refcnt first.
1303 */
1304 if (!try_module_get(pf->owner))
1305 goto out_release;
1306
1307 /* Now protected by module ref count */
1308 rcu_read_unlock();
1309
1310 err = pf->create(net, sock, protocol, kern);
1311 if (err < 0)
1312 goto out_module_put;
1313
1314 /*
1315 * Now to bump the refcnt of the [loadable] module that owns this
1316 * socket at sock_release time we decrement its refcnt.
1317 */
1318 if (!try_module_get(sock->ops->owner))
1319 goto out_module_busy;
1320
1321 /*
1322 * Now that we're done with the ->create function, the [loadable]
1323 * module can have its refcnt decremented
1324 */
1325 module_put(pf->owner);
1326 err = security_socket_post_create(sock, family, type, protocol, kern);
1327 if (err)
1328 goto out_sock_release;
1329 *res = sock;
1330
1331 return 0;
1332
1333 out_module_busy:
1334 err = -EAFNOSUPPORT;
1335 out_module_put:
1336 sock->ops = NULL;
1337 module_put(pf->owner);
1338 out_sock_release:
1339 sock_release(sock);
1340 return err;
1341
1342 out_release:
1343 rcu_read_unlock();
1344 goto out_sock_release;
1345 }
1346 EXPORT_SYMBOL(__sock_create);
1347
1348 int sock_create(int family, int type, int protocol, struct socket **res)
1349 {
1350 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1351 }
1352 EXPORT_SYMBOL(sock_create);
1353
1354 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1355 {
1356 return __sock_create(&init_net, family, type, protocol, res, 1);
1357 }
1358 EXPORT_SYMBOL(sock_create_kern);
1359
1360 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1361 {
1362 int retval;
1363 struct socket *sock;
1364 int flags;
1365
1366 /* Check the SOCK_* constants for consistency. */
1367 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1371
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 return -EINVAL;
1375 type &= SOCK_TYPE_MASK;
1376
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379
1380 retval = sock_create(family, type, protocol, &sock);
1381 if (retval < 0)
1382 goto out;
1383
1384 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385 if (retval < 0)
1386 goto out_release;
1387
1388 out:
1389 /* It may be already another descriptor 8) Not kernel problem. */
1390 return retval;
1391
1392 out_release:
1393 sock_release(sock);
1394 return retval;
1395 }
1396
1397 /*
1398 * Create a pair of connected sockets.
1399 */
1400
1401 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1402 int __user *, usockvec)
1403 {
1404 struct socket *sock1, *sock2;
1405 int fd1, fd2, err;
1406 struct file *newfile1, *newfile2;
1407 int flags;
1408
1409 flags = type & ~SOCK_TYPE_MASK;
1410 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1411 return -EINVAL;
1412 type &= SOCK_TYPE_MASK;
1413
1414 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1415 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1416
1417 /*
1418 * Obtain the first socket and check if the underlying protocol
1419 * supports the socketpair call.
1420 */
1421
1422 err = sock_create(family, type, protocol, &sock1);
1423 if (err < 0)
1424 goto out;
1425
1426 err = sock_create(family, type, protocol, &sock2);
1427 if (err < 0)
1428 goto out_release_1;
1429
1430 err = sock1->ops->socketpair(sock1, sock2);
1431 if (err < 0)
1432 goto out_release_both;
1433
1434 fd1 = get_unused_fd_flags(flags);
1435 if (unlikely(fd1 < 0)) {
1436 err = fd1;
1437 goto out_release_both;
1438 }
1439 fd2 = get_unused_fd_flags(flags);
1440 if (unlikely(fd2 < 0)) {
1441 err = fd2;
1442 put_unused_fd(fd1);
1443 goto out_release_both;
1444 }
1445
1446 newfile1 = sock_alloc_file(sock1, flags, NULL);
1447 if (unlikely(IS_ERR(newfile1))) {
1448 err = PTR_ERR(newfile1);
1449 put_unused_fd(fd1);
1450 put_unused_fd(fd2);
1451 goto out_release_both;
1452 }
1453
1454 newfile2 = sock_alloc_file(sock2, flags, NULL);
1455 if (IS_ERR(newfile2)) {
1456 err = PTR_ERR(newfile2);
1457 fput(newfile1);
1458 put_unused_fd(fd1);
1459 put_unused_fd(fd2);
1460 sock_release(sock2);
1461 goto out;
1462 }
1463
1464 audit_fd_pair(fd1, fd2);
1465 fd_install(fd1, newfile1);
1466 fd_install(fd2, newfile2);
1467 /* fd1 and fd2 may be already another descriptors.
1468 * Not kernel problem.
1469 */
1470
1471 err = put_user(fd1, &usockvec[0]);
1472 if (!err)
1473 err = put_user(fd2, &usockvec[1]);
1474 if (!err)
1475 return 0;
1476
1477 sys_close(fd2);
1478 sys_close(fd1);
1479 return err;
1480
1481 out_release_both:
1482 sock_release(sock2);
1483 out_release_1:
1484 sock_release(sock1);
1485 out:
1486 return err;
1487 }
1488
1489 /*
1490 * Bind a name to a socket. Nothing much to do here since it's
1491 * the protocol's responsibility to handle the local address.
1492 *
1493 * We move the socket address to kernel space before we call
1494 * the protocol layer (having also checked the address is ok).
1495 */
1496
1497 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1498 {
1499 struct socket *sock;
1500 struct sockaddr_storage address;
1501 int err, fput_needed;
1502
1503 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1504 if (sock) {
1505 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1506 if (err >= 0) {
1507 err = security_socket_bind(sock,
1508 (struct sockaddr *)&address,
1509 addrlen);
1510 if (!err)
1511 err = sock->ops->bind(sock,
1512 (struct sockaddr *)
1513 &address, addrlen);
1514 }
1515 fput_light(sock->file, fput_needed);
1516 }
1517 return err;
1518 }
1519
1520 /*
1521 * Perform a listen. Basically, we allow the protocol to do anything
1522 * necessary for a listen, and if that works, we mark the socket as
1523 * ready for listening.
1524 */
1525
1526 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1527 {
1528 struct socket *sock;
1529 int err, fput_needed;
1530 int somaxconn;
1531
1532 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 if (sock) {
1534 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1535 if ((unsigned int)backlog > somaxconn)
1536 backlog = somaxconn;
1537
1538 err = security_socket_listen(sock, backlog);
1539 if (!err)
1540 err = sock->ops->listen(sock, backlog);
1541
1542 fput_light(sock->file, fput_needed);
1543 }
1544 return err;
1545 }
1546
1547 /*
1548 * For accept, we attempt to create a new socket, set up the link
1549 * with the client, wake up the client, then return the new
1550 * connected fd. We collect the address of the connector in kernel
1551 * space and move it to user at the very end. This is unclean because
1552 * we open the socket then return an error.
1553 *
1554 * 1003.1g adds the ability to recvmsg() to query connection pending
1555 * status to recvmsg. We need to add that support in a way thats
1556 * clean when we restucture accept also.
1557 */
1558
1559 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1560 int __user *, upeer_addrlen, int, flags)
1561 {
1562 struct socket *sock, *newsock;
1563 struct file *newfile;
1564 int err, len, newfd, fput_needed;
1565 struct sockaddr_storage address;
1566
1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1568 return -EINVAL;
1569
1570 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1571 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1572
1573 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1574 if (!sock)
1575 goto out;
1576
1577 err = -ENFILE;
1578 newsock = sock_alloc();
1579 if (!newsock)
1580 goto out_put;
1581
1582 newsock->type = sock->type;
1583 newsock->ops = sock->ops;
1584
1585 /*
1586 * We don't need try_module_get here, as the listening socket (sock)
1587 * has the protocol module (sock->ops->owner) held.
1588 */
1589 __module_get(newsock->ops->owner);
1590
1591 newfd = get_unused_fd_flags(flags);
1592 if (unlikely(newfd < 0)) {
1593 err = newfd;
1594 sock_release(newsock);
1595 goto out_put;
1596 }
1597 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1598 if (unlikely(IS_ERR(newfile))) {
1599 err = PTR_ERR(newfile);
1600 put_unused_fd(newfd);
1601 sock_release(newsock);
1602 goto out_put;
1603 }
1604
1605 err = security_socket_accept(sock, newsock);
1606 if (err)
1607 goto out_fd;
1608
1609 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1610 if (err < 0)
1611 goto out_fd;
1612
1613 if (upeer_sockaddr) {
1614 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1615 &len, 2) < 0) {
1616 err = -ECONNABORTED;
1617 goto out_fd;
1618 }
1619 err = move_addr_to_user(&address,
1620 len, upeer_sockaddr, upeer_addrlen);
1621 if (err < 0)
1622 goto out_fd;
1623 }
1624
1625 /* File flags are not inherited via accept() unlike another OSes. */
1626
1627 fd_install(newfd, newfile);
1628 err = newfd;
1629
1630 out_put:
1631 fput_light(sock->file, fput_needed);
1632 out:
1633 return err;
1634 out_fd:
1635 fput(newfile);
1636 put_unused_fd(newfd);
1637 goto out_put;
1638 }
1639
1640 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1641 int __user *, upeer_addrlen)
1642 {
1643 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1644 }
1645
1646 /*
1647 * Attempt to connect to a socket with the server address. The address
1648 * is in user space so we verify it is OK and move it to kernel space.
1649 *
1650 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1651 * break bindings
1652 *
1653 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1654 * other SEQPACKET protocols that take time to connect() as it doesn't
1655 * include the -EINPROGRESS status for such sockets.
1656 */
1657
1658 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1659 int, addrlen)
1660 {
1661 struct socket *sock;
1662 struct sockaddr_storage address;
1663 int err, fput_needed;
1664
1665 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666 if (!sock)
1667 goto out;
1668 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1669 if (err < 0)
1670 goto out_put;
1671
1672 err =
1673 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1674 if (err)
1675 goto out_put;
1676
1677 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1678 sock->file->f_flags);
1679 out_put:
1680 fput_light(sock->file, fput_needed);
1681 out:
1682 return err;
1683 }
1684
1685 /*
1686 * Get the local address ('name') of a socket object. Move the obtained
1687 * name to user space.
1688 */
1689
1690 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1691 int __user *, usockaddr_len)
1692 {
1693 struct socket *sock;
1694 struct sockaddr_storage address;
1695 int len, err, fput_needed;
1696
1697 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 if (!sock)
1699 goto out;
1700
1701 err = security_socket_getsockname(sock);
1702 if (err)
1703 goto out_put;
1704
1705 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1706 if (err)
1707 goto out_put;
1708 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1709
1710 out_put:
1711 fput_light(sock->file, fput_needed);
1712 out:
1713 return err;
1714 }
1715
1716 /*
1717 * Get the remote address ('name') of a socket object. Move the obtained
1718 * name to user space.
1719 */
1720
1721 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1722 int __user *, usockaddr_len)
1723 {
1724 struct socket *sock;
1725 struct sockaddr_storage address;
1726 int len, err, fput_needed;
1727
1728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 if (sock != NULL) {
1730 err = security_socket_getpeername(sock);
1731 if (err) {
1732 fput_light(sock->file, fput_needed);
1733 return err;
1734 }
1735
1736 err =
1737 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1738 1);
1739 if (!err)
1740 err = move_addr_to_user(&address, len, usockaddr,
1741 usockaddr_len);
1742 fput_light(sock->file, fput_needed);
1743 }
1744 return err;
1745 }
1746
1747 /*
1748 * Send a datagram to a given address. We move the address into kernel
1749 * space and check the user space data area is readable before invoking
1750 * the protocol.
1751 */
1752
1753 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1754 unsigned int, flags, struct sockaddr __user *, addr,
1755 int, addr_len)
1756 {
1757 struct socket *sock;
1758 struct sockaddr_storage address;
1759 int err;
1760 struct msghdr msg;
1761 struct iovec iov;
1762 int fput_needed;
1763
1764 if (len > INT_MAX)
1765 len = INT_MAX;
1766 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 if (!sock)
1768 goto out;
1769
1770 iov.iov_base = buff;
1771 iov.iov_len = len;
1772 msg.msg_name = NULL;
1773 msg.msg_iov = &iov;
1774 msg.msg_iovlen = 1;
1775 msg.msg_control = NULL;
1776 msg.msg_controllen = 0;
1777 msg.msg_namelen = 0;
1778 if (addr) {
1779 err = move_addr_to_kernel(addr, addr_len, &address);
1780 if (err < 0)
1781 goto out_put;
1782 msg.msg_name = (struct sockaddr *)&address;
1783 msg.msg_namelen = addr_len;
1784 }
1785 if (sock->file->f_flags & O_NONBLOCK)
1786 flags |= MSG_DONTWAIT;
1787 msg.msg_flags = flags;
1788 err = sock_sendmsg(sock, &msg, len);
1789
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 out:
1793 return err;
1794 }
1795
1796 /*
1797 * Send a datagram down a socket.
1798 */
1799
1800 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1801 unsigned int, flags)
1802 {
1803 return sys_sendto(fd, buff, len, flags, NULL, 0);
1804 }
1805
1806 /*
1807 * Receive a frame from the socket and optionally record the address of the
1808 * sender. We verify the buffers are writable and if needed move the
1809 * sender address from kernel to user space.
1810 */
1811
1812 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1813 unsigned int, flags, struct sockaddr __user *, addr,
1814 int __user *, addr_len)
1815 {
1816 struct socket *sock;
1817 struct iovec iov;
1818 struct msghdr msg;
1819 struct sockaddr_storage address;
1820 int err, err2;
1821 int fput_needed;
1822
1823 if (size > INT_MAX)
1824 size = INT_MAX;
1825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 if (!sock)
1827 goto out;
1828
1829 msg.msg_control = NULL;
1830 msg.msg_controllen = 0;
1831 msg.msg_iovlen = 1;
1832 msg.msg_iov = &iov;
1833 iov.iov_len = size;
1834 iov.iov_base = ubuf;
1835 msg.msg_name = (struct sockaddr *)&address;
1836 msg.msg_namelen = sizeof(address);
1837 if (sock->file->f_flags & O_NONBLOCK)
1838 flags |= MSG_DONTWAIT;
1839 err = sock_recvmsg(sock, &msg, size, flags);
1840
1841 if (err >= 0 && addr != NULL) {
1842 err2 = move_addr_to_user(&address,
1843 msg.msg_namelen, addr, addr_len);
1844 if (err2 < 0)
1845 err = err2;
1846 }
1847
1848 fput_light(sock->file, fput_needed);
1849 out:
1850 return err;
1851 }
1852
1853 /*
1854 * Receive a datagram from a socket.
1855 */
1856
1857 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1858 unsigned int flags)
1859 {
1860 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1861 }
1862
1863 /*
1864 * Set a socket option. Because we don't know the option lengths we have
1865 * to pass the user mode parameter for the protocols to sort out.
1866 */
1867
1868 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1869 char __user *, optval, int, optlen)
1870 {
1871 int err, fput_needed;
1872 struct socket *sock;
1873
1874 if (optlen < 0)
1875 return -EINVAL;
1876
1877 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 if (sock != NULL) {
1879 err = security_socket_setsockopt(sock, level, optname);
1880 if (err)
1881 goto out_put;
1882
1883 if (level == SOL_SOCKET)
1884 err =
1885 sock_setsockopt(sock, level, optname, optval,
1886 optlen);
1887 else
1888 err =
1889 sock->ops->setsockopt(sock, level, optname, optval,
1890 optlen);
1891 out_put:
1892 fput_light(sock->file, fput_needed);
1893 }
1894 return err;
1895 }
1896
1897 /*
1898 * Get a socket option. Because we don't know the option lengths we have
1899 * to pass a user mode parameter for the protocols to sort out.
1900 */
1901
1902 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1903 char __user *, optval, int __user *, optlen)
1904 {
1905 int err, fput_needed;
1906 struct socket *sock;
1907
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 if (sock != NULL) {
1910 err = security_socket_getsockopt(sock, level, optname);
1911 if (err)
1912 goto out_put;
1913
1914 if (level == SOL_SOCKET)
1915 err =
1916 sock_getsockopt(sock, level, optname, optval,
1917 optlen);
1918 else
1919 err =
1920 sock->ops->getsockopt(sock, level, optname, optval,
1921 optlen);
1922 out_put:
1923 fput_light(sock->file, fput_needed);
1924 }
1925 return err;
1926 }
1927
1928 /*
1929 * Shutdown a socket.
1930 */
1931
1932 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1933 {
1934 int err, fput_needed;
1935 struct socket *sock;
1936
1937 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 if (sock != NULL) {
1939 err = security_socket_shutdown(sock, how);
1940 if (!err)
1941 err = sock->ops->shutdown(sock, how);
1942 fput_light(sock->file, fput_needed);
1943 }
1944 return err;
1945 }
1946
1947 /* A couple of helpful macros for getting the address of the 32/64 bit
1948 * fields which are the same type (int / unsigned) on our platforms.
1949 */
1950 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1951 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1952 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1953
1954 struct used_address {
1955 struct sockaddr_storage name;
1956 unsigned int name_len;
1957 };
1958
1959 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1960 struct msghdr *msg_sys, unsigned int flags,
1961 struct used_address *used_address)
1962 {
1963 struct compat_msghdr __user *msg_compat =
1964 (struct compat_msghdr __user *)msg;
1965 struct sockaddr_storage address;
1966 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1969 /* 20 is size of ipv6_pktinfo */
1970 unsigned char *ctl_buf = ctl;
1971 int err, ctl_len, total_len;
1972
1973 err = -EFAULT;
1974 if (MSG_CMSG_COMPAT & flags) {
1975 if (get_compat_msghdr(msg_sys, msg_compat))
1976 return -EFAULT;
1977 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1978 return -EFAULT;
1979
1980 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1981 err = -EMSGSIZE;
1982 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1983 goto out;
1984 err = -ENOMEM;
1985 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1986 GFP_KERNEL);
1987 if (!iov)
1988 goto out;
1989 }
1990
1991 /* This will also move the address data into kernel space */
1992 if (MSG_CMSG_COMPAT & flags) {
1993 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1994 } else
1995 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1996 if (err < 0)
1997 goto out_freeiov;
1998 total_len = err;
1999
2000 err = -ENOBUFS;
2001
2002 if (msg_sys->msg_controllen > INT_MAX)
2003 goto out_freeiov;
2004 ctl_len = msg_sys->msg_controllen;
2005 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006 err =
2007 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2008 sizeof(ctl));
2009 if (err)
2010 goto out_freeiov;
2011 ctl_buf = msg_sys->msg_control;
2012 ctl_len = msg_sys->msg_controllen;
2013 } else if (ctl_len) {
2014 if (ctl_len > sizeof(ctl)) {
2015 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016 if (ctl_buf == NULL)
2017 goto out_freeiov;
2018 }
2019 err = -EFAULT;
2020 /*
2021 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023 * checking falls down on this.
2024 */
2025 if (copy_from_user(ctl_buf,
2026 (void __user __force *)msg_sys->msg_control,
2027 ctl_len))
2028 goto out_freectl;
2029 msg_sys->msg_control = ctl_buf;
2030 }
2031 msg_sys->msg_flags = flags;
2032
2033 if (sock->file->f_flags & O_NONBLOCK)
2034 msg_sys->msg_flags |= MSG_DONTWAIT;
2035 /*
2036 * If this is sendmmsg() and current destination address is same as
2037 * previously succeeded address, omit asking LSM's decision.
2038 * used_address->name_len is initialized to UINT_MAX so that the first
2039 * destination address never matches.
2040 */
2041 if (used_address && msg_sys->msg_name &&
2042 used_address->name_len == msg_sys->msg_namelen &&
2043 !memcmp(&used_address->name, msg_sys->msg_name,
2044 used_address->name_len)) {
2045 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2046 goto out_freectl;
2047 }
2048 err = sock_sendmsg(sock, msg_sys, total_len);
2049 /*
2050 * If this is sendmmsg() and sending to current destination address was
2051 * successful, remember it.
2052 */
2053 if (used_address && err >= 0) {
2054 used_address->name_len = msg_sys->msg_namelen;
2055 if (msg_sys->msg_name)
2056 memcpy(&used_address->name, msg_sys->msg_name,
2057 used_address->name_len);
2058 }
2059
2060 out_freectl:
2061 if (ctl_buf != ctl)
2062 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063 out_freeiov:
2064 if (iov != iovstack)
2065 kfree(iov);
2066 out:
2067 return err;
2068 }
2069
2070 /*
2071 * BSD sendmsg interface
2072 */
2073
2074 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2075 {
2076 int fput_needed, err;
2077 struct msghdr msg_sys;
2078 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079
2080 if (!sock)
2081 goto out;
2082
2083 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2084
2085 fput_light(sock->file, fput_needed);
2086 out:
2087 return err;
2088 }
2089
2090 /*
2091 * Linux sendmmsg interface
2092 */
2093
2094 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2095 unsigned int flags)
2096 {
2097 int fput_needed, err, datagrams;
2098 struct socket *sock;
2099 struct mmsghdr __user *entry;
2100 struct compat_mmsghdr __user *compat_entry;
2101 struct msghdr msg_sys;
2102 struct used_address used_address;
2103
2104 if (vlen > UIO_MAXIOV)
2105 vlen = UIO_MAXIOV;
2106
2107 datagrams = 0;
2108
2109 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2110 if (!sock)
2111 return err;
2112
2113 used_address.name_len = UINT_MAX;
2114 entry = mmsg;
2115 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2116 err = 0;
2117
2118 while (datagrams < vlen) {
2119 if (MSG_CMSG_COMPAT & flags) {
2120 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2121 &msg_sys, flags, &used_address);
2122 if (err < 0)
2123 break;
2124 err = __put_user(err, &compat_entry->msg_len);
2125 ++compat_entry;
2126 } else {
2127 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2128 &msg_sys, flags, &used_address);
2129 if (err < 0)
2130 break;
2131 err = put_user(err, &entry->msg_len);
2132 ++entry;
2133 }
2134
2135 if (err)
2136 break;
2137 ++datagrams;
2138 }
2139
2140 fput_light(sock->file, fput_needed);
2141
2142 /* We only return an error if no datagrams were able to be sent */
2143 if (datagrams != 0)
2144 return datagrams;
2145
2146 return err;
2147 }
2148
2149 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2150 unsigned int, vlen, unsigned int, flags)
2151 {
2152 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2153 }
2154
2155 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2156 struct msghdr *msg_sys, unsigned int flags, int nosec)
2157 {
2158 struct compat_msghdr __user *msg_compat =
2159 (struct compat_msghdr __user *)msg;
2160 struct iovec iovstack[UIO_FASTIOV];
2161 struct iovec *iov = iovstack;
2162 unsigned long cmsg_ptr;
2163 int err, total_len, len;
2164
2165 /* kernel mode address */
2166 struct sockaddr_storage addr;
2167
2168 /* user mode address pointers */
2169 struct sockaddr __user *uaddr;
2170 int __user *uaddr_len;
2171
2172 if (MSG_CMSG_COMPAT & flags) {
2173 if (get_compat_msghdr(msg_sys, msg_compat))
2174 return -EFAULT;
2175 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2176 return -EFAULT;
2177
2178 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2179 err = -EMSGSIZE;
2180 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2181 goto out;
2182 err = -ENOMEM;
2183 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2184 GFP_KERNEL);
2185 if (!iov)
2186 goto out;
2187 }
2188
2189 /*
2190 * Save the user-mode address (verify_iovec will change the
2191 * kernel msghdr to use the kernel address space)
2192 */
2193
2194 uaddr = (__force void __user *)msg_sys->msg_name;
2195 uaddr_len = COMPAT_NAMELEN(msg);
2196 if (MSG_CMSG_COMPAT & flags) {
2197 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2198 } else
2199 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2200 if (err < 0)
2201 goto out_freeiov;
2202 total_len = err;
2203
2204 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2205 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2206
2207 if (sock->file->f_flags & O_NONBLOCK)
2208 flags |= MSG_DONTWAIT;
2209 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2210 total_len, flags);
2211 if (err < 0)
2212 goto out_freeiov;
2213 len = err;
2214
2215 if (uaddr != NULL) {
2216 err = move_addr_to_user(&addr,
2217 msg_sys->msg_namelen, uaddr,
2218 uaddr_len);
2219 if (err < 0)
2220 goto out_freeiov;
2221 }
2222 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2223 COMPAT_FLAGS(msg));
2224 if (err)
2225 goto out_freeiov;
2226 if (MSG_CMSG_COMPAT & flags)
2227 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2228 &msg_compat->msg_controllen);
2229 else
2230 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2231 &msg->msg_controllen);
2232 if (err)
2233 goto out_freeiov;
2234 err = len;
2235
2236 out_freeiov:
2237 if (iov != iovstack)
2238 kfree(iov);
2239 out:
2240 return err;
2241 }
2242
2243 /*
2244 * BSD recvmsg interface
2245 */
2246
2247 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2248 unsigned int, flags)
2249 {
2250 int fput_needed, err;
2251 struct msghdr msg_sys;
2252 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2253
2254 if (!sock)
2255 goto out;
2256
2257 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2258
2259 fput_light(sock->file, fput_needed);
2260 out:
2261 return err;
2262 }
2263
2264 /*
2265 * Linux recvmmsg interface
2266 */
2267
2268 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2269 unsigned int flags, struct timespec *timeout)
2270 {
2271 int fput_needed, err, datagrams;
2272 struct socket *sock;
2273 struct mmsghdr __user *entry;
2274 struct compat_mmsghdr __user *compat_entry;
2275 struct msghdr msg_sys;
2276 struct timespec end_time;
2277
2278 if (timeout &&
2279 poll_select_set_timeout(&end_time, timeout->tv_sec,
2280 timeout->tv_nsec))
2281 return -EINVAL;
2282
2283 datagrams = 0;
2284
2285 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2286 if (!sock)
2287 return err;
2288
2289 err = sock_error(sock->sk);
2290 if (err)
2291 goto out_put;
2292
2293 entry = mmsg;
2294 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2295
2296 while (datagrams < vlen) {
2297 /*
2298 * No need to ask LSM for more than the first datagram.
2299 */
2300 if (MSG_CMSG_COMPAT & flags) {
2301 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2302 &msg_sys, flags & ~MSG_WAITFORONE,
2303 datagrams);
2304 if (err < 0)
2305 break;
2306 err = __put_user(err, &compat_entry->msg_len);
2307 ++compat_entry;
2308 } else {
2309 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2310 &msg_sys, flags & ~MSG_WAITFORONE,
2311 datagrams);
2312 if (err < 0)
2313 break;
2314 err = put_user(err, &entry->msg_len);
2315 ++entry;
2316 }
2317
2318 if (err)
2319 break;
2320 ++datagrams;
2321
2322 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2323 if (flags & MSG_WAITFORONE)
2324 flags |= MSG_DONTWAIT;
2325
2326 if (timeout) {
2327 ktime_get_ts(timeout);
2328 *timeout = timespec_sub(end_time, *timeout);
2329 if (timeout->tv_sec < 0) {
2330 timeout->tv_sec = timeout->tv_nsec = 0;
2331 break;
2332 }
2333
2334 /* Timeout, return less than vlen datagrams */
2335 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2336 break;
2337 }
2338
2339 /* Out of band data, return right away */
2340 if (msg_sys.msg_flags & MSG_OOB)
2341 break;
2342 }
2343
2344 out_put:
2345 fput_light(sock->file, fput_needed);
2346
2347 if (err == 0)
2348 return datagrams;
2349
2350 if (datagrams != 0) {
2351 /*
2352 * We may return less entries than requested (vlen) if the
2353 * sock is non block and there aren't enough datagrams...
2354 */
2355 if (err != -EAGAIN) {
2356 /*
2357 * ... or if recvmsg returns an error after we
2358 * received some datagrams, where we record the
2359 * error to return on the next call or if the
2360 * app asks about it using getsockopt(SO_ERROR).
2361 */
2362 sock->sk->sk_err = -err;
2363 }
2364
2365 return datagrams;
2366 }
2367
2368 return err;
2369 }
2370
2371 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2372 unsigned int, vlen, unsigned int, flags,
2373 struct timespec __user *, timeout)
2374 {
2375 int datagrams;
2376 struct timespec timeout_sys;
2377
2378 if (!timeout)
2379 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2380
2381 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2382 return -EFAULT;
2383
2384 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2385
2386 if (datagrams > 0 &&
2387 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2388 datagrams = -EFAULT;
2389
2390 return datagrams;
2391 }
2392
2393 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2394 /* Argument list sizes for sys_socketcall */
2395 #define AL(x) ((x) * sizeof(unsigned long))
2396 static const unsigned char nargs[21] = {
2397 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2398 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2399 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2400 AL(4), AL(5), AL(4)
2401 };
2402
2403 #undef AL
2404
2405 /*
2406 * System call vectors.
2407 *
2408 * Argument checking cleaned up. Saved 20% in size.
2409 * This function doesn't need to set the kernel lock because
2410 * it is set by the callees.
2411 */
2412
2413 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2414 {
2415 unsigned long a[AUDITSC_ARGS];
2416 unsigned long a0, a1;
2417 int err;
2418 unsigned int len;
2419
2420 if (call < 1 || call > SYS_SENDMMSG)
2421 return -EINVAL;
2422
2423 len = nargs[call];
2424 if (len > sizeof(a))
2425 return -EINVAL;
2426
2427 /* copy_from_user should be SMP safe. */
2428 if (copy_from_user(a, args, len))
2429 return -EFAULT;
2430
2431 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2432 if (err)
2433 return err;
2434
2435 a0 = a[0];
2436 a1 = a[1];
2437
2438 switch (call) {
2439 case SYS_SOCKET:
2440 err = sys_socket(a0, a1, a[2]);
2441 break;
2442 case SYS_BIND:
2443 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2444 break;
2445 case SYS_CONNECT:
2446 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2447 break;
2448 case SYS_LISTEN:
2449 err = sys_listen(a0, a1);
2450 break;
2451 case SYS_ACCEPT:
2452 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2453 (int __user *)a[2], 0);
2454 break;
2455 case SYS_GETSOCKNAME:
2456 err =
2457 sys_getsockname(a0, (struct sockaddr __user *)a1,
2458 (int __user *)a[2]);
2459 break;
2460 case SYS_GETPEERNAME:
2461 err =
2462 sys_getpeername(a0, (struct sockaddr __user *)a1,
2463 (int __user *)a[2]);
2464 break;
2465 case SYS_SOCKETPAIR:
2466 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2467 break;
2468 case SYS_SEND:
2469 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2470 break;
2471 case SYS_SENDTO:
2472 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2473 (struct sockaddr __user *)a[4], a[5]);
2474 break;
2475 case SYS_RECV:
2476 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2477 break;
2478 case SYS_RECVFROM:
2479 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2480 (struct sockaddr __user *)a[4],
2481 (int __user *)a[5]);
2482 break;
2483 case SYS_SHUTDOWN:
2484 err = sys_shutdown(a0, a1);
2485 break;
2486 case SYS_SETSOCKOPT:
2487 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2488 break;
2489 case SYS_GETSOCKOPT:
2490 err =
2491 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2492 (int __user *)a[4]);
2493 break;
2494 case SYS_SENDMSG:
2495 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2496 break;
2497 case SYS_SENDMMSG:
2498 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2499 break;
2500 case SYS_RECVMSG:
2501 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2502 break;
2503 case SYS_RECVMMSG:
2504 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2505 (struct timespec __user *)a[4]);
2506 break;
2507 case SYS_ACCEPT4:
2508 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2509 (int __user *)a[2], a[3]);
2510 break;
2511 default:
2512 err = -EINVAL;
2513 break;
2514 }
2515 return err;
2516 }
2517
2518 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2519
2520 /**
2521 * sock_register - add a socket protocol handler
2522 * @ops: description of protocol
2523 *
2524 * This function is called by a protocol handler that wants to
2525 * advertise its address family, and have it linked into the
2526 * socket interface. The value ops->family coresponds to the
2527 * socket system call protocol family.
2528 */
2529 int sock_register(const struct net_proto_family *ops)
2530 {
2531 int err;
2532
2533 if (ops->family >= NPROTO) {
2534 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2535 NPROTO);
2536 return -ENOBUFS;
2537 }
2538
2539 spin_lock(&net_family_lock);
2540 if (rcu_dereference_protected(net_families[ops->family],
2541 lockdep_is_held(&net_family_lock)))
2542 err = -EEXIST;
2543 else {
2544 rcu_assign_pointer(net_families[ops->family], ops);
2545 err = 0;
2546 }
2547 spin_unlock(&net_family_lock);
2548
2549 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2550 return err;
2551 }
2552 EXPORT_SYMBOL(sock_register);
2553
2554 /**
2555 * sock_unregister - remove a protocol handler
2556 * @family: protocol family to remove
2557 *
2558 * This function is called by a protocol handler that wants to
2559 * remove its address family, and have it unlinked from the
2560 * new socket creation.
2561 *
2562 * If protocol handler is a module, then it can use module reference
2563 * counts to protect against new references. If protocol handler is not
2564 * a module then it needs to provide its own protection in
2565 * the ops->create routine.
2566 */
2567 void sock_unregister(int family)
2568 {
2569 BUG_ON(family < 0 || family >= NPROTO);
2570
2571 spin_lock(&net_family_lock);
2572 RCU_INIT_POINTER(net_families[family], NULL);
2573 spin_unlock(&net_family_lock);
2574
2575 synchronize_rcu();
2576
2577 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2578 }
2579 EXPORT_SYMBOL(sock_unregister);
2580
2581 static int __init sock_init(void)
2582 {
2583 int err;
2584 /*
2585 * Initialize the network sysctl infrastructure.
2586 */
2587 err = net_sysctl_init();
2588 if (err)
2589 goto out;
2590
2591 /*
2592 * Initialize skbuff SLAB cache
2593 */
2594 skb_init();
2595
2596 /*
2597 * Initialize the protocols module.
2598 */
2599
2600 init_inodecache();
2601
2602 err = register_filesystem(&sock_fs_type);
2603 if (err)
2604 goto out_fs;
2605 sock_mnt = kern_mount(&sock_fs_type);
2606 if (IS_ERR(sock_mnt)) {
2607 err = PTR_ERR(sock_mnt);
2608 goto out_mount;
2609 }
2610
2611 /* The real protocol initialization is performed in later initcalls.
2612 */
2613
2614 #ifdef CONFIG_NETFILTER
2615 netfilter_init();
2616 #endif
2617
2618 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2619 skb_timestamping_init();
2620 #endif
2621
2622 out:
2623 return err;
2624
2625 out_mount:
2626 unregister_filesystem(&sock_fs_type);
2627 out_fs:
2628 goto out;
2629 }
2630
2631 core_initcall(sock_init); /* early initcall */
2632
2633 #ifdef CONFIG_PROC_FS
2634 void socket_seq_show(struct seq_file *seq)
2635 {
2636 int cpu;
2637 int counter = 0;
2638
2639 for_each_possible_cpu(cpu)
2640 counter += per_cpu(sockets_in_use, cpu);
2641
2642 /* It can be negative, by the way. 8) */
2643 if (counter < 0)
2644 counter = 0;
2645
2646 seq_printf(seq, "sockets: used %d\n", counter);
2647 }
2648 #endif /* CONFIG_PROC_FS */
2649
2650 #ifdef CONFIG_COMPAT
2651 static int do_siocgstamp(struct net *net, struct socket *sock,
2652 unsigned int cmd, void __user *up)
2653 {
2654 mm_segment_t old_fs = get_fs();
2655 struct timeval ktv;
2656 int err;
2657
2658 set_fs(KERNEL_DS);
2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2660 set_fs(old_fs);
2661 if (!err)
2662 err = compat_put_timeval(&ktv, up);
2663
2664 return err;
2665 }
2666
2667 static int do_siocgstampns(struct net *net, struct socket *sock,
2668 unsigned int cmd, void __user *up)
2669 {
2670 mm_segment_t old_fs = get_fs();
2671 struct timespec kts;
2672 int err;
2673
2674 set_fs(KERNEL_DS);
2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2676 set_fs(old_fs);
2677 if (!err)
2678 err = compat_put_timespec(&kts, up);
2679
2680 return err;
2681 }
2682
2683 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2684 {
2685 struct ifreq __user *uifr;
2686 int err;
2687
2688 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2689 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2690 return -EFAULT;
2691
2692 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2693 if (err)
2694 return err;
2695
2696 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698
2699 return 0;
2700 }
2701
2702 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2703 {
2704 struct compat_ifconf ifc32;
2705 struct ifconf ifc;
2706 struct ifconf __user *uifc;
2707 struct compat_ifreq __user *ifr32;
2708 struct ifreq __user *ifr;
2709 unsigned int i, j;
2710 int err;
2711
2712 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2714
2715 memset(&ifc, 0, sizeof(ifc));
2716 if (ifc32.ifcbuf == 0) {
2717 ifc32.ifc_len = 0;
2718 ifc.ifc_len = 0;
2719 ifc.ifc_req = NULL;
2720 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2721 } else {
2722 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2723 sizeof(struct ifreq);
2724 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2725 ifc.ifc_len = len;
2726 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2727 ifr32 = compat_ptr(ifc32.ifcbuf);
2728 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2729 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2730 return -EFAULT;
2731 ifr++;
2732 ifr32++;
2733 }
2734 }
2735 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2736 return -EFAULT;
2737
2738 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2739 if (err)
2740 return err;
2741
2742 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2743 return -EFAULT;
2744
2745 ifr = ifc.ifc_req;
2746 ifr32 = compat_ptr(ifc32.ifcbuf);
2747 for (i = 0, j = 0;
2748 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2749 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2750 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2751 return -EFAULT;
2752 ifr32++;
2753 ifr++;
2754 }
2755
2756 if (ifc32.ifcbuf == 0) {
2757 /* Translate from 64-bit structure multiple to
2758 * a 32-bit one.
2759 */
2760 i = ifc.ifc_len;
2761 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2762 ifc32.ifc_len = i;
2763 } else {
2764 ifc32.ifc_len = i;
2765 }
2766 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2767 return -EFAULT;
2768
2769 return 0;
2770 }
2771
2772 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2773 {
2774 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2775 bool convert_in = false, convert_out = false;
2776 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2777 struct ethtool_rxnfc __user *rxnfc;
2778 struct ifreq __user *ifr;
2779 u32 rule_cnt = 0, actual_rule_cnt;
2780 u32 ethcmd;
2781 u32 data;
2782 int ret;
2783
2784 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2785 return -EFAULT;
2786
2787 compat_rxnfc = compat_ptr(data);
2788
2789 if (get_user(ethcmd, &compat_rxnfc->cmd))
2790 return -EFAULT;
2791
2792 /* Most ethtool structures are defined without padding.
2793 * Unfortunately struct ethtool_rxnfc is an exception.
2794 */
2795 switch (ethcmd) {
2796 default:
2797 break;
2798 case ETHTOOL_GRXCLSRLALL:
2799 /* Buffer size is variable */
2800 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2801 return -EFAULT;
2802 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2803 return -ENOMEM;
2804 buf_size += rule_cnt * sizeof(u32);
2805 /* fall through */
2806 case ETHTOOL_GRXRINGS:
2807 case ETHTOOL_GRXCLSRLCNT:
2808 case ETHTOOL_GRXCLSRULE:
2809 case ETHTOOL_SRXCLSRLINS:
2810 convert_out = true;
2811 /* fall through */
2812 case ETHTOOL_SRXCLSRLDEL:
2813 buf_size += sizeof(struct ethtool_rxnfc);
2814 convert_in = true;
2815 break;
2816 }
2817
2818 ifr = compat_alloc_user_space(buf_size);
2819 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2820
2821 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2822 return -EFAULT;
2823
2824 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2825 &ifr->ifr_ifru.ifru_data))
2826 return -EFAULT;
2827
2828 if (convert_in) {
2829 /* We expect there to be holes between fs.m_ext and
2830 * fs.ring_cookie and at the end of fs, but nowhere else.
2831 */
2832 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2833 sizeof(compat_rxnfc->fs.m_ext) !=
2834 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2835 sizeof(rxnfc->fs.m_ext));
2836 BUILD_BUG_ON(
2837 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2838 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2839 offsetof(struct ethtool_rxnfc, fs.location) -
2840 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2841
2842 if (copy_in_user(rxnfc, compat_rxnfc,
2843 (void __user *)(&rxnfc->fs.m_ext + 1) -
2844 (void __user *)rxnfc) ||
2845 copy_in_user(&rxnfc->fs.ring_cookie,
2846 &compat_rxnfc->fs.ring_cookie,
2847 (void __user *)(&rxnfc->fs.location + 1) -
2848 (void __user *)&rxnfc->fs.ring_cookie) ||
2849 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2850 sizeof(rxnfc->rule_cnt)))
2851 return -EFAULT;
2852 }
2853
2854 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2855 if (ret)
2856 return ret;
2857
2858 if (convert_out) {
2859 if (copy_in_user(compat_rxnfc, rxnfc,
2860 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2861 (const void __user *)rxnfc) ||
2862 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2863 &rxnfc->fs.ring_cookie,
2864 (const void __user *)(&rxnfc->fs.location + 1) -
2865 (const void __user *)&rxnfc->fs.ring_cookie) ||
2866 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2867 sizeof(rxnfc->rule_cnt)))
2868 return -EFAULT;
2869
2870 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2871 /* As an optimisation, we only copy the actual
2872 * number of rules that the underlying
2873 * function returned. Since Mallory might
2874 * change the rule count in user memory, we
2875 * check that it is less than the rule count
2876 * originally given (as the user buffer size),
2877 * which has been range-checked.
2878 */
2879 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2880 return -EFAULT;
2881 if (actual_rule_cnt < rule_cnt)
2882 rule_cnt = actual_rule_cnt;
2883 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2884 &rxnfc->rule_locs[0],
2885 rule_cnt * sizeof(u32)))
2886 return -EFAULT;
2887 }
2888 }
2889
2890 return 0;
2891 }
2892
2893 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2894 {
2895 void __user *uptr;
2896 compat_uptr_t uptr32;
2897 struct ifreq __user *uifr;
2898
2899 uifr = compat_alloc_user_space(sizeof(*uifr));
2900 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2901 return -EFAULT;
2902
2903 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2904 return -EFAULT;
2905
2906 uptr = compat_ptr(uptr32);
2907
2908 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2909 return -EFAULT;
2910
2911 return dev_ioctl(net, SIOCWANDEV, uifr);
2912 }
2913
2914 static int bond_ioctl(struct net *net, unsigned int cmd,
2915 struct compat_ifreq __user *ifr32)
2916 {
2917 struct ifreq kifr;
2918 struct ifreq __user *uifr;
2919 mm_segment_t old_fs;
2920 int err;
2921 u32 data;
2922 void __user *datap;
2923
2924 switch (cmd) {
2925 case SIOCBONDENSLAVE:
2926 case SIOCBONDRELEASE:
2927 case SIOCBONDSETHWADDR:
2928 case SIOCBONDCHANGEACTIVE:
2929 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2930 return -EFAULT;
2931
2932 old_fs = get_fs();
2933 set_fs(KERNEL_DS);
2934 err = dev_ioctl(net, cmd,
2935 (struct ifreq __user __force *) &kifr);
2936 set_fs(old_fs);
2937
2938 return err;
2939 case SIOCBONDSLAVEINFOQUERY:
2940 case SIOCBONDINFOQUERY:
2941 uifr = compat_alloc_user_space(sizeof(*uifr));
2942 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2943 return -EFAULT;
2944
2945 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2946 return -EFAULT;
2947
2948 datap = compat_ptr(data);
2949 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2950 return -EFAULT;
2951
2952 return dev_ioctl(net, cmd, uifr);
2953 default:
2954 return -ENOIOCTLCMD;
2955 }
2956 }
2957
2958 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2959 struct compat_ifreq __user *u_ifreq32)
2960 {
2961 struct ifreq __user *u_ifreq64;
2962 char tmp_buf[IFNAMSIZ];
2963 void __user *data64;
2964 u32 data32;
2965
2966 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2967 IFNAMSIZ))
2968 return -EFAULT;
2969 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2970 return -EFAULT;
2971 data64 = compat_ptr(data32);
2972
2973 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2974
2975 /* Don't check these user accesses, just let that get trapped
2976 * in the ioctl handler instead.
2977 */
2978 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2979 IFNAMSIZ))
2980 return -EFAULT;
2981 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2982 return -EFAULT;
2983
2984 return dev_ioctl(net, cmd, u_ifreq64);
2985 }
2986
2987 static int dev_ifsioc(struct net *net, struct socket *sock,
2988 unsigned int cmd, struct compat_ifreq __user *uifr32)
2989 {
2990 struct ifreq __user *uifr;
2991 int err;
2992
2993 uifr = compat_alloc_user_space(sizeof(*uifr));
2994 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2995 return -EFAULT;
2996
2997 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2998
2999 if (!err) {
3000 switch (cmd) {
3001 case SIOCGIFFLAGS:
3002 case SIOCGIFMETRIC:
3003 case SIOCGIFMTU:
3004 case SIOCGIFMEM:
3005 case SIOCGIFHWADDR:
3006 case SIOCGIFINDEX:
3007 case SIOCGIFADDR:
3008 case SIOCGIFBRDADDR:
3009 case SIOCGIFDSTADDR:
3010 case SIOCGIFNETMASK:
3011 case SIOCGIFPFLAGS:
3012 case SIOCGIFTXQLEN:
3013 case SIOCGMIIPHY:
3014 case SIOCGMIIREG:
3015 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3016 err = -EFAULT;
3017 break;
3018 }
3019 }
3020 return err;
3021 }
3022
3023 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3024 struct compat_ifreq __user *uifr32)
3025 {
3026 struct ifreq ifr;
3027 struct compat_ifmap __user *uifmap32;
3028 mm_segment_t old_fs;
3029 int err;
3030
3031 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3032 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3033 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3034 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3035 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3036 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3037 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3038 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3039 if (err)
3040 return -EFAULT;
3041
3042 old_fs = get_fs();
3043 set_fs(KERNEL_DS);
3044 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3045 set_fs(old_fs);
3046
3047 if (cmd == SIOCGIFMAP && !err) {
3048 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3049 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3050 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3051 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3052 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3053 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3054 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3055 if (err)
3056 err = -EFAULT;
3057 }
3058 return err;
3059 }
3060
3061 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3062 {
3063 void __user *uptr;
3064 compat_uptr_t uptr32;
3065 struct ifreq __user *uifr;
3066
3067 uifr = compat_alloc_user_space(sizeof(*uifr));
3068 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3069 return -EFAULT;
3070
3071 if (get_user(uptr32, &uifr32->ifr_data))
3072 return -EFAULT;
3073
3074 uptr = compat_ptr(uptr32);
3075
3076 if (put_user(uptr, &uifr->ifr_data))
3077 return -EFAULT;
3078
3079 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3080 }
3081
3082 struct rtentry32 {
3083 u32 rt_pad1;
3084 struct sockaddr rt_dst; /* target address */
3085 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3086 struct sockaddr rt_genmask; /* target network mask (IP) */
3087 unsigned short rt_flags;
3088 short rt_pad2;
3089 u32 rt_pad3;
3090 unsigned char rt_tos;
3091 unsigned char rt_class;
3092 short rt_pad4;
3093 short rt_metric; /* +1 for binary compatibility! */
3094 /* char * */ u32 rt_dev; /* forcing the device at add */
3095 u32 rt_mtu; /* per route MTU/Window */
3096 u32 rt_window; /* Window clamping */
3097 unsigned short rt_irtt; /* Initial RTT */
3098 };
3099
3100 struct in6_rtmsg32 {
3101 struct in6_addr rtmsg_dst;
3102 struct in6_addr rtmsg_src;
3103 struct in6_addr rtmsg_gateway;
3104 u32 rtmsg_type;
3105 u16 rtmsg_dst_len;
3106 u16 rtmsg_src_len;
3107 u32 rtmsg_metric;
3108 u32 rtmsg_info;
3109 u32 rtmsg_flags;
3110 s32 rtmsg_ifindex;
3111 };
3112
3113 static int routing_ioctl(struct net *net, struct socket *sock,
3114 unsigned int cmd, void __user *argp)
3115 {
3116 int ret;
3117 void *r = NULL;
3118 struct in6_rtmsg r6;
3119 struct rtentry r4;
3120 char devname[16];
3121 u32 rtdev;
3122 mm_segment_t old_fs = get_fs();
3123
3124 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3125 struct in6_rtmsg32 __user *ur6 = argp;
3126 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3127 3 * sizeof(struct in6_addr));
3128 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3129 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3130 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3131 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3132 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3133 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3134 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3135
3136 r = (void *) &r6;
3137 } else { /* ipv4 */
3138 struct rtentry32 __user *ur4 = argp;
3139 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3140 3 * sizeof(struct sockaddr));
3141 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3142 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3143 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3144 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3145 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3146 ret |= __get_user(rtdev, &(ur4->rt_dev));
3147 if (rtdev) {
3148 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3149 r4.rt_dev = (char __user __force *)devname;
3150 devname[15] = 0;
3151 } else
3152 r4.rt_dev = NULL;
3153
3154 r = (void *) &r4;
3155 }
3156
3157 if (ret) {
3158 ret = -EFAULT;
3159 goto out;
3160 }
3161
3162 set_fs(KERNEL_DS);
3163 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3164 set_fs(old_fs);
3165
3166 out:
3167 return ret;
3168 }
3169
3170 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3171 * for some operations; this forces use of the newer bridge-utils that
3172 * use compatible ioctls
3173 */
3174 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3175 {
3176 compat_ulong_t tmp;
3177
3178 if (get_user(tmp, argp))
3179 return -EFAULT;
3180 if (tmp == BRCTL_GET_VERSION)
3181 return BRCTL_VERSION + 1;
3182 return -EINVAL;
3183 }
3184
3185 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3186 unsigned int cmd, unsigned long arg)
3187 {
3188 void __user *argp = compat_ptr(arg);
3189 struct sock *sk = sock->sk;
3190 struct net *net = sock_net(sk);
3191
3192 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3193 return siocdevprivate_ioctl(net, cmd, argp);
3194
3195 switch (cmd) {
3196 case SIOCSIFBR:
3197 case SIOCGIFBR:
3198 return old_bridge_ioctl(argp);
3199 case SIOCGIFNAME:
3200 return dev_ifname32(net, argp);
3201 case SIOCGIFCONF:
3202 return dev_ifconf(net, argp);
3203 case SIOCETHTOOL:
3204 return ethtool_ioctl(net, argp);
3205 case SIOCWANDEV:
3206 return compat_siocwandev(net, argp);
3207 case SIOCGIFMAP:
3208 case SIOCSIFMAP:
3209 return compat_sioc_ifmap(net, cmd, argp);
3210 case SIOCBONDENSLAVE:
3211 case SIOCBONDRELEASE:
3212 case SIOCBONDSETHWADDR:
3213 case SIOCBONDSLAVEINFOQUERY:
3214 case SIOCBONDINFOQUERY:
3215 case SIOCBONDCHANGEACTIVE:
3216 return bond_ioctl(net, cmd, argp);
3217 case SIOCADDRT:
3218 case SIOCDELRT:
3219 return routing_ioctl(net, sock, cmd, argp);
3220 case SIOCGSTAMP:
3221 return do_siocgstamp(net, sock, cmd, argp);
3222 case SIOCGSTAMPNS:
3223 return do_siocgstampns(net, sock, cmd, argp);
3224 case SIOCSHWTSTAMP:
3225 return compat_siocshwtstamp(net, argp);
3226
3227 case FIOSETOWN:
3228 case SIOCSPGRP:
3229 case FIOGETOWN:
3230 case SIOCGPGRP:
3231 case SIOCBRADDBR:
3232 case SIOCBRDELBR:
3233 case SIOCGIFVLAN:
3234 case SIOCSIFVLAN:
3235 case SIOCADDDLCI:
3236 case SIOCDELDLCI:
3237 return sock_ioctl(file, cmd, arg);
3238
3239 case SIOCGIFFLAGS:
3240 case SIOCSIFFLAGS:
3241 case SIOCGIFMETRIC:
3242 case SIOCSIFMETRIC:
3243 case SIOCGIFMTU:
3244 case SIOCSIFMTU:
3245 case SIOCGIFMEM:
3246 case SIOCSIFMEM:
3247 case SIOCGIFHWADDR:
3248 case SIOCSIFHWADDR:
3249 case SIOCADDMULTI:
3250 case SIOCDELMULTI:
3251 case SIOCGIFINDEX:
3252 case SIOCGIFADDR:
3253 case SIOCSIFADDR:
3254 case SIOCSIFHWBROADCAST:
3255 case SIOCDIFADDR:
3256 case SIOCGIFBRDADDR:
3257 case SIOCSIFBRDADDR:
3258 case SIOCGIFDSTADDR:
3259 case SIOCSIFDSTADDR:
3260 case SIOCGIFNETMASK:
3261 case SIOCSIFNETMASK:
3262 case SIOCSIFPFLAGS:
3263 case SIOCGIFPFLAGS:
3264 case SIOCGIFTXQLEN:
3265 case SIOCSIFTXQLEN:
3266 case SIOCBRADDIF:
3267 case SIOCBRDELIF:
3268 case SIOCSIFNAME:
3269 case SIOCGMIIPHY:
3270 case SIOCGMIIREG:
3271 case SIOCSMIIREG:
3272 return dev_ifsioc(net, sock, cmd, argp);
3273
3274 case SIOCSARP:
3275 case SIOCGARP:
3276 case SIOCDARP:
3277 case SIOCATMARK:
3278 return sock_do_ioctl(net, sock, cmd, arg);
3279 }
3280
3281 return -ENOIOCTLCMD;
3282 }
3283
3284 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3285 unsigned long arg)
3286 {
3287 struct socket *sock = file->private_data;
3288 int ret = -ENOIOCTLCMD;
3289 struct sock *sk;
3290 struct net *net;
3291
3292 sk = sock->sk;
3293 net = sock_net(sk);
3294
3295 if (sock->ops->compat_ioctl)
3296 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3297
3298 if (ret == -ENOIOCTLCMD &&
3299 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3300 ret = compat_wext_handle_ioctl(net, cmd, arg);
3301
3302 if (ret == -ENOIOCTLCMD)
3303 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3304
3305 return ret;
3306 }
3307 #endif
3308
3309 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3310 {
3311 return sock->ops->bind(sock, addr, addrlen);
3312 }
3313 EXPORT_SYMBOL(kernel_bind);
3314
3315 int kernel_listen(struct socket *sock, int backlog)
3316 {
3317 return sock->ops->listen(sock, backlog);
3318 }
3319 EXPORT_SYMBOL(kernel_listen);
3320
3321 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3322 {
3323 struct sock *sk = sock->sk;
3324 int err;
3325
3326 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3327 newsock);
3328 if (err < 0)
3329 goto done;
3330
3331 err = sock->ops->accept(sock, *newsock, flags);
3332 if (err < 0) {
3333 sock_release(*newsock);
3334 *newsock = NULL;
3335 goto done;
3336 }
3337
3338 (*newsock)->ops = sock->ops;
3339 __module_get((*newsock)->ops->owner);
3340
3341 done:
3342 return err;
3343 }
3344 EXPORT_SYMBOL(kernel_accept);
3345
3346 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3347 int flags)
3348 {
3349 return sock->ops->connect(sock, addr, addrlen, flags);
3350 }
3351 EXPORT_SYMBOL(kernel_connect);
3352
3353 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3354 int *addrlen)
3355 {
3356 return sock->ops->getname(sock, addr, addrlen, 0);
3357 }
3358 EXPORT_SYMBOL(kernel_getsockname);
3359
3360 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3361 int *addrlen)
3362 {
3363 return sock->ops->getname(sock, addr, addrlen, 1);
3364 }
3365 EXPORT_SYMBOL(kernel_getpeername);
3366
3367 int kernel_getsockopt(struct socket *sock, int level, int optname,
3368 char *optval, int *optlen)
3369 {
3370 mm_segment_t oldfs = get_fs();
3371 char __user *uoptval;
3372 int __user *uoptlen;
3373 int err;
3374
3375 uoptval = (char __user __force *) optval;
3376 uoptlen = (int __user __force *) optlen;
3377
3378 set_fs(KERNEL_DS);
3379 if (level == SOL_SOCKET)
3380 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3381 else
3382 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3383 uoptlen);
3384 set_fs(oldfs);
3385 return err;
3386 }
3387 EXPORT_SYMBOL(kernel_getsockopt);
3388
3389 int kernel_setsockopt(struct socket *sock, int level, int optname,
3390 char *optval, unsigned int optlen)
3391 {
3392 mm_segment_t oldfs = get_fs();
3393 char __user *uoptval;
3394 int err;
3395
3396 uoptval = (char __user __force *) optval;
3397
3398 set_fs(KERNEL_DS);
3399 if (level == SOL_SOCKET)
3400 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3401 else
3402 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3403 optlen);
3404 set_fs(oldfs);
3405 return err;
3406 }
3407 EXPORT_SYMBOL(kernel_setsockopt);
3408
3409 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3410 size_t size, int flags)
3411 {
3412 if (sock->ops->sendpage)
3413 return sock->ops->sendpage(sock, page, offset, size, flags);
3414
3415 return sock_no_sendpage(sock, page, offset, size, flags);
3416 }
3417 EXPORT_SYMBOL(kernel_sendpage);
3418
3419 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3420 {
3421 mm_segment_t oldfs = get_fs();
3422 int err;
3423
3424 set_fs(KERNEL_DS);
3425 err = sock->ops->ioctl(sock, cmd, arg);
3426 set_fs(oldfs);
3427
3428 return err;
3429 }
3430 EXPORT_SYMBOL(kernel_sock_ioctl);
3431
3432 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3433 {
3434 return sock->ops->shutdown(sock, how);
3435 }
3436 EXPORT_SYMBOL(kernel_sock_shutdown);