ipvs: fix info leak in getsockopt(IP_VS_SO_GET_TIMEOUT)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387 }
388
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400
401 struct socket *sock_from_file(struct file *file, int *err)
402 {
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408 }
409 EXPORT_SYMBOL(sock_from_file);
410
411 /**
412 * sockfd_lookup - Go from a file number to its socket slot
413 * @fd: file handle
414 * @err: pointer to an error code return
415 *
416 * The file handle passed in is locked and the socket it is bound
417 * too is returned. If an error occurs the err pointer is overwritten
418 * with a negative errno code and NULL is returned. The function checks
419 * for both invalid handles and passing a handle which is not a socket.
420 *
421 * On a success the socket object pointer is returned.
422 */
423
424 struct socket *sockfd_lookup(int fd, int *err)
425 {
426 struct file *file;
427 struct socket *sock;
428
429 file = fget(fd);
430 if (!file) {
431 *err = -EBADF;
432 return NULL;
433 }
434
435 sock = sock_from_file(file, err);
436 if (!sock)
437 fput(file);
438 return sock;
439 }
440 EXPORT_SYMBOL(sockfd_lookup);
441
442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
443 {
444 struct file *file;
445 struct socket *sock;
446
447 *err = -EBADF;
448 file = fget_light(fd, fput_needed);
449 if (file) {
450 sock = sock_from_file(file, err);
451 if (sock)
452 return sock;
453 fput_light(file, *fput_needed);
454 }
455 return NULL;
456 }
457
458 /**
459 * sock_alloc - allocate a socket
460 *
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
463 * NULL is returned.
464 */
465
466 static struct socket *sock_alloc(void)
467 {
468 struct inode *inode;
469 struct socket *sock;
470
471 inode = new_inode_pseudo(sock_mnt->mnt_sb);
472 if (!inode)
473 return NULL;
474
475 sock = SOCKET_I(inode);
476
477 kmemcheck_annotate_bitfield(sock, type);
478 inode->i_ino = get_next_ino();
479 inode->i_mode = S_IFSOCK | S_IRWXUGO;
480 inode->i_uid = current_fsuid();
481 inode->i_gid = current_fsgid();
482
483 this_cpu_add(sockets_in_use, 1);
484 return sock;
485 }
486
487 /*
488 * In theory you can't get an open on this inode, but /proc provides
489 * a back door. Remember to keep it shut otherwise you'll let the
490 * creepy crawlies in.
491 */
492
493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
494 {
495 return -ENXIO;
496 }
497
498 const struct file_operations bad_sock_fops = {
499 .owner = THIS_MODULE,
500 .open = sock_no_open,
501 .llseek = noop_llseek,
502 };
503
504 /**
505 * sock_release - close a socket
506 * @sock: socket to close
507 *
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
511 */
512
513 void sock_release(struct socket *sock)
514 {
515 if (sock->ops) {
516 struct module *owner = sock->ops->owner;
517
518 sock->ops->release(sock);
519 sock->ops = NULL;
520 module_put(owner);
521 }
522
523 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
524 printk(KERN_ERR "sock_release: fasync list not empty!\n");
525
526 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
527 return;
528
529 this_cpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
533 }
534 sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 if (sock_flag(sk, SOCK_WIFI_STATUS))
546 *tx_flags |= SKBTX_WIFI_STATUS;
547 return 0;
548 }
549 EXPORT_SYMBOL(sock_tx_timestamp);
550
551 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
552 struct msghdr *msg, size_t size)
553 {
554 struct sock_iocb *si = kiocb_to_siocb(iocb);
555
556 sock_update_classid(sock->sk);
557
558 si->sock = sock;
559 si->scm = NULL;
560 si->msg = msg;
561 si->size = size;
562
563 return sock->ops->sendmsg(iocb, sock, msg, size);
564 }
565
566 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
567 struct msghdr *msg, size_t size)
568 {
569 int err = security_socket_sendmsg(sock, msg, size);
570
571 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
572 }
573
574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
575 {
576 struct kiocb iocb;
577 struct sock_iocb siocb;
578 int ret;
579
580 init_sync_kiocb(&iocb, NULL);
581 iocb.private = &siocb;
582 ret = __sock_sendmsg(&iocb, sock, msg, size);
583 if (-EIOCBQUEUED == ret)
584 ret = wait_on_sync_kiocb(&iocb);
585 return ret;
586 }
587 EXPORT_SYMBOL(sock_sendmsg);
588
589 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
590 {
591 struct kiocb iocb;
592 struct sock_iocb siocb;
593 int ret;
594
595 init_sync_kiocb(&iocb, NULL);
596 iocb.private = &siocb;
597 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
598 if (-EIOCBQUEUED == ret)
599 ret = wait_on_sync_kiocb(&iocb);
600 return ret;
601 }
602
603 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
604 struct kvec *vec, size_t num, size_t size)
605 {
606 mm_segment_t oldfs = get_fs();
607 int result;
608
609 set_fs(KERNEL_DS);
610 /*
611 * the following is safe, since for compiler definitions of kvec and
612 * iovec are identical, yielding the same in-core layout and alignment
613 */
614 msg->msg_iov = (struct iovec *)vec;
615 msg->msg_iovlen = num;
616 result = sock_sendmsg(sock, msg, size);
617 set_fs(oldfs);
618 return result;
619 }
620 EXPORT_SYMBOL(kernel_sendmsg);
621
622 static int ktime2ts(ktime_t kt, struct timespec *ts)
623 {
624 if (kt.tv64) {
625 *ts = ktime_to_timespec(kt);
626 return 1;
627 } else {
628 return 0;
629 }
630 }
631
632 /*
633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634 */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 struct sk_buff *skb)
637 {
638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 struct timespec ts[3];
640 int empty = 1;
641 struct skb_shared_hwtstamps *shhwtstamps =
642 skb_hwtstamps(skb);
643
644 /* Race occurred between timestamp enabling and packet
645 receiving. Fill in the current time for now. */
646 if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 __net_timestamp(skb);
648
649 if (need_software_tstamp) {
650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 struct timeval tv;
652 skb_get_timestamp(skb, &tv);
653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 sizeof(tv), &tv);
655 } else {
656 skb_get_timestampns(skb, &ts[0]);
657 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 sizeof(ts[0]), &ts[0]);
659 }
660 }
661
662
663 memset(ts, 0, sizeof(ts));
664 if (skb->tstamp.tv64 &&
665 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
666 skb_get_timestampns(skb, ts + 0);
667 empty = 0;
668 }
669 if (shhwtstamps) {
670 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
671 ktime2ts(shhwtstamps->syststamp, ts + 1))
672 empty = 0;
673 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
674 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
675 empty = 0;
676 }
677 if (!empty)
678 put_cmsg(msg, SOL_SOCKET,
679 SCM_TIMESTAMPING, sizeof(ts), &ts);
680 }
681 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
682
683 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
684 struct sk_buff *skb)
685 {
686 int ack;
687
688 if (!sock_flag(sk, SOCK_WIFI_STATUS))
689 return;
690 if (!skb->wifi_acked_valid)
691 return;
692
693 ack = skb->wifi_acked;
694
695 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
696 }
697 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
698
699 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
700 struct sk_buff *skb)
701 {
702 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
703 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
704 sizeof(__u32), &skb->dropcount);
705 }
706
707 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
708 struct sk_buff *skb)
709 {
710 sock_recv_timestamp(msg, sk, skb);
711 sock_recv_drops(msg, sk, skb);
712 }
713 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
714
715 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
716 struct msghdr *msg, size_t size, int flags)
717 {
718 struct sock_iocb *si = kiocb_to_siocb(iocb);
719
720 sock_update_classid(sock->sk);
721
722 si->sock = sock;
723 si->scm = NULL;
724 si->msg = msg;
725 si->size = size;
726 si->flags = flags;
727
728 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
729 }
730
731 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
732 struct msghdr *msg, size_t size, int flags)
733 {
734 int err = security_socket_recvmsg(sock, msg, size, flags);
735
736 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
737 }
738
739 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
740 size_t size, int flags)
741 {
742 struct kiocb iocb;
743 struct sock_iocb siocb;
744 int ret;
745
746 init_sync_kiocb(&iocb, NULL);
747 iocb.private = &siocb;
748 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
749 if (-EIOCBQUEUED == ret)
750 ret = wait_on_sync_kiocb(&iocb);
751 return ret;
752 }
753 EXPORT_SYMBOL(sock_recvmsg);
754
755 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
756 size_t size, int flags)
757 {
758 struct kiocb iocb;
759 struct sock_iocb siocb;
760 int ret;
761
762 init_sync_kiocb(&iocb, NULL);
763 iocb.private = &siocb;
764 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
765 if (-EIOCBQUEUED == ret)
766 ret = wait_on_sync_kiocb(&iocb);
767 return ret;
768 }
769
770 /**
771 * kernel_recvmsg - Receive a message from a socket (kernel space)
772 * @sock: The socket to receive the message from
773 * @msg: Received message
774 * @vec: Input s/g array for message data
775 * @num: Size of input s/g array
776 * @size: Number of bytes to read
777 * @flags: Message flags (MSG_DONTWAIT, etc...)
778 *
779 * On return the msg structure contains the scatter/gather array passed in the
780 * vec argument. The array is modified so that it consists of the unfilled
781 * portion of the original array.
782 *
783 * The returned value is the total number of bytes received, or an error.
784 */
785 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
786 struct kvec *vec, size_t num, size_t size, int flags)
787 {
788 mm_segment_t oldfs = get_fs();
789 int result;
790
791 set_fs(KERNEL_DS);
792 /*
793 * the following is safe, since for compiler definitions of kvec and
794 * iovec are identical, yielding the same in-core layout and alignment
795 */
796 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
797 result = sock_recvmsg(sock, msg, size, flags);
798 set_fs(oldfs);
799 return result;
800 }
801 EXPORT_SYMBOL(kernel_recvmsg);
802
803 static void sock_aio_dtor(struct kiocb *iocb)
804 {
805 kfree(iocb->private);
806 }
807
808 static ssize_t sock_sendpage(struct file *file, struct page *page,
809 int offset, size_t size, loff_t *ppos, int more)
810 {
811 struct socket *sock;
812 int flags;
813
814 sock = file->private_data;
815
816 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
817 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
818 flags |= more;
819
820 return kernel_sendpage(sock, page, offset, size, flags);
821 }
822
823 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
824 struct pipe_inode_info *pipe, size_t len,
825 unsigned int flags)
826 {
827 struct socket *sock = file->private_data;
828
829 if (unlikely(!sock->ops->splice_read))
830 return -EINVAL;
831
832 sock_update_classid(sock->sk);
833
834 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
835 }
836
837 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
838 struct sock_iocb *siocb)
839 {
840 if (!is_sync_kiocb(iocb)) {
841 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
842 if (!siocb)
843 return NULL;
844 iocb->ki_dtor = sock_aio_dtor;
845 }
846
847 siocb->kiocb = iocb;
848 iocb->private = siocb;
849 return siocb;
850 }
851
852 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
853 struct file *file, const struct iovec *iov,
854 unsigned long nr_segs)
855 {
856 struct socket *sock = file->private_data;
857 size_t size = 0;
858 int i;
859
860 for (i = 0; i < nr_segs; i++)
861 size += iov[i].iov_len;
862
863 msg->msg_name = NULL;
864 msg->msg_namelen = 0;
865 msg->msg_control = NULL;
866 msg->msg_controllen = 0;
867 msg->msg_iov = (struct iovec *)iov;
868 msg->msg_iovlen = nr_segs;
869 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
870
871 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
872 }
873
874 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
875 unsigned long nr_segs, loff_t pos)
876 {
877 struct sock_iocb siocb, *x;
878
879 if (pos != 0)
880 return -ESPIPE;
881
882 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
883 return 0;
884
885
886 x = alloc_sock_iocb(iocb, &siocb);
887 if (!x)
888 return -ENOMEM;
889 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
890 }
891
892 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
893 struct file *file, const struct iovec *iov,
894 unsigned long nr_segs)
895 {
896 struct socket *sock = file->private_data;
897 size_t size = 0;
898 int i;
899
900 for (i = 0; i < nr_segs; i++)
901 size += iov[i].iov_len;
902
903 msg->msg_name = NULL;
904 msg->msg_namelen = 0;
905 msg->msg_control = NULL;
906 msg->msg_controllen = 0;
907 msg->msg_iov = (struct iovec *)iov;
908 msg->msg_iovlen = nr_segs;
909 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
910 if (sock->type == SOCK_SEQPACKET)
911 msg->msg_flags |= MSG_EOR;
912
913 return __sock_sendmsg(iocb, sock, msg, size);
914 }
915
916 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
917 unsigned long nr_segs, loff_t pos)
918 {
919 struct sock_iocb siocb, *x;
920
921 if (pos != 0)
922 return -ESPIPE;
923
924 x = alloc_sock_iocb(iocb, &siocb);
925 if (!x)
926 return -ENOMEM;
927
928 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
929 }
930
931 /*
932 * Atomic setting of ioctl hooks to avoid race
933 * with module unload.
934 */
935
936 static DEFINE_MUTEX(br_ioctl_mutex);
937 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
938
939 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
940 {
941 mutex_lock(&br_ioctl_mutex);
942 br_ioctl_hook = hook;
943 mutex_unlock(&br_ioctl_mutex);
944 }
945 EXPORT_SYMBOL(brioctl_set);
946
947 static DEFINE_MUTEX(vlan_ioctl_mutex);
948 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
949
950 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
951 {
952 mutex_lock(&vlan_ioctl_mutex);
953 vlan_ioctl_hook = hook;
954 mutex_unlock(&vlan_ioctl_mutex);
955 }
956 EXPORT_SYMBOL(vlan_ioctl_set);
957
958 static DEFINE_MUTEX(dlci_ioctl_mutex);
959 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
960
961 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
962 {
963 mutex_lock(&dlci_ioctl_mutex);
964 dlci_ioctl_hook = hook;
965 mutex_unlock(&dlci_ioctl_mutex);
966 }
967 EXPORT_SYMBOL(dlci_ioctl_set);
968
969 static long sock_do_ioctl(struct net *net, struct socket *sock,
970 unsigned int cmd, unsigned long arg)
971 {
972 int err;
973 void __user *argp = (void __user *)arg;
974
975 err = sock->ops->ioctl(sock, cmd, arg);
976
977 /*
978 * If this ioctl is unknown try to hand it down
979 * to the NIC driver.
980 */
981 if (err == -ENOIOCTLCMD)
982 err = dev_ioctl(net, cmd, argp);
983
984 return err;
985 }
986
987 /*
988 * With an ioctl, arg may well be a user mode pointer, but we don't know
989 * what to do with it - that's up to the protocol still.
990 */
991
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 {
994 struct socket *sock;
995 struct sock *sk;
996 void __user *argp = (void __user *)arg;
997 int pid, err;
998 struct net *net;
999
1000 sock = file->private_data;
1001 sk = sock->sk;
1002 net = sock_net(sk);
1003 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1004 err = dev_ioctl(net, cmd, argp);
1005 } else
1006 #ifdef CONFIG_WEXT_CORE
1007 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1008 err = dev_ioctl(net, cmd, argp);
1009 } else
1010 #endif
1011 switch (cmd) {
1012 case FIOSETOWN:
1013 case SIOCSPGRP:
1014 err = -EFAULT;
1015 if (get_user(pid, (int __user *)argp))
1016 break;
1017 err = f_setown(sock->file, pid, 1);
1018 break;
1019 case FIOGETOWN:
1020 case SIOCGPGRP:
1021 err = put_user(f_getown(sock->file),
1022 (int __user *)argp);
1023 break;
1024 case SIOCGIFBR:
1025 case SIOCSIFBR:
1026 case SIOCBRADDBR:
1027 case SIOCBRDELBR:
1028 err = -ENOPKG;
1029 if (!br_ioctl_hook)
1030 request_module("bridge");
1031
1032 mutex_lock(&br_ioctl_mutex);
1033 if (br_ioctl_hook)
1034 err = br_ioctl_hook(net, cmd, argp);
1035 mutex_unlock(&br_ioctl_mutex);
1036 break;
1037 case SIOCGIFVLAN:
1038 case SIOCSIFVLAN:
1039 err = -ENOPKG;
1040 if (!vlan_ioctl_hook)
1041 request_module("8021q");
1042
1043 mutex_lock(&vlan_ioctl_mutex);
1044 if (vlan_ioctl_hook)
1045 err = vlan_ioctl_hook(net, argp);
1046 mutex_unlock(&vlan_ioctl_mutex);
1047 break;
1048 case SIOCADDDLCI:
1049 case SIOCDELDLCI:
1050 err = -ENOPKG;
1051 if (!dlci_ioctl_hook)
1052 request_module("dlci");
1053
1054 mutex_lock(&dlci_ioctl_mutex);
1055 if (dlci_ioctl_hook)
1056 err = dlci_ioctl_hook(cmd, argp);
1057 mutex_unlock(&dlci_ioctl_mutex);
1058 break;
1059 default:
1060 err = sock_do_ioctl(net, sock, cmd, arg);
1061 break;
1062 }
1063 return err;
1064 }
1065
1066 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1067 {
1068 int err;
1069 struct socket *sock = NULL;
1070
1071 err = security_socket_create(family, type, protocol, 1);
1072 if (err)
1073 goto out;
1074
1075 sock = sock_alloc();
1076 if (!sock) {
1077 err = -ENOMEM;
1078 goto out;
1079 }
1080
1081 sock->type = type;
1082 err = security_socket_post_create(sock, family, type, protocol, 1);
1083 if (err)
1084 goto out_release;
1085
1086 out:
1087 *res = sock;
1088 return err;
1089 out_release:
1090 sock_release(sock);
1091 sock = NULL;
1092 goto out;
1093 }
1094 EXPORT_SYMBOL(sock_create_lite);
1095
1096 /* No kernel lock held - perfect */
1097 static unsigned int sock_poll(struct file *file, poll_table *wait)
1098 {
1099 struct socket *sock;
1100
1101 /*
1102 * We can't return errors to poll, so it's either yes or no.
1103 */
1104 sock = file->private_data;
1105 return sock->ops->poll(file, sock, wait);
1106 }
1107
1108 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1109 {
1110 struct socket *sock = file->private_data;
1111
1112 return sock->ops->mmap(file, sock, vma);
1113 }
1114
1115 static int sock_close(struct inode *inode, struct file *filp)
1116 {
1117 /*
1118 * It was possible the inode is NULL we were
1119 * closing an unfinished socket.
1120 */
1121
1122 if (!inode) {
1123 printk(KERN_DEBUG "sock_close: NULL inode\n");
1124 return 0;
1125 }
1126 sock_release(SOCKET_I(inode));
1127 return 0;
1128 }
1129
1130 /*
1131 * Update the socket async list
1132 *
1133 * Fasync_list locking strategy.
1134 *
1135 * 1. fasync_list is modified only under process context socket lock
1136 * i.e. under semaphore.
1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 * or under socket lock
1139 */
1140
1141 static int sock_fasync(int fd, struct file *filp, int on)
1142 {
1143 struct socket *sock = filp->private_data;
1144 struct sock *sk = sock->sk;
1145 struct socket_wq *wq;
1146
1147 if (sk == NULL)
1148 return -EINVAL;
1149
1150 lock_sock(sk);
1151 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1152 fasync_helper(fd, filp, on, &wq->fasync_list);
1153
1154 if (!wq->fasync_list)
1155 sock_reset_flag(sk, SOCK_FASYNC);
1156 else
1157 sock_set_flag(sk, SOCK_FASYNC);
1158
1159 release_sock(sk);
1160 return 0;
1161 }
1162
1163 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1164
1165 int sock_wake_async(struct socket *sock, int how, int band)
1166 {
1167 struct socket_wq *wq;
1168
1169 if (!sock)
1170 return -1;
1171 rcu_read_lock();
1172 wq = rcu_dereference(sock->wq);
1173 if (!wq || !wq->fasync_list) {
1174 rcu_read_unlock();
1175 return -1;
1176 }
1177 switch (how) {
1178 case SOCK_WAKE_WAITD:
1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 break;
1181 goto call_kill;
1182 case SOCK_WAKE_SPACE:
1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 break;
1185 /* fall through */
1186 case SOCK_WAKE_IO:
1187 call_kill:
1188 kill_fasync(&wq->fasync_list, SIGIO, band);
1189 break;
1190 case SOCK_WAKE_URG:
1191 kill_fasync(&wq->fasync_list, SIGURG, band);
1192 }
1193 rcu_read_unlock();
1194 return 0;
1195 }
1196 EXPORT_SYMBOL(sock_wake_async);
1197
1198 int __sock_create(struct net *net, int family, int type, int protocol,
1199 struct socket **res, int kern)
1200 {
1201 int err;
1202 struct socket *sock;
1203 const struct net_proto_family *pf;
1204
1205 /*
1206 * Check protocol is in range
1207 */
1208 if (family < 0 || family >= NPROTO)
1209 return -EAFNOSUPPORT;
1210 if (type < 0 || type >= SOCK_MAX)
1211 return -EINVAL;
1212
1213 /* Compatibility.
1214
1215 This uglymoron is moved from INET layer to here to avoid
1216 deadlock in module load.
1217 */
1218 if (family == PF_INET && type == SOCK_PACKET) {
1219 static int warned;
1220 if (!warned) {
1221 warned = 1;
1222 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1223 current->comm);
1224 }
1225 family = PF_PACKET;
1226 }
1227
1228 err = security_socket_create(family, type, protocol, kern);
1229 if (err)
1230 return err;
1231
1232 /*
1233 * Allocate the socket and allow the family to set things up. if
1234 * the protocol is 0, the family is instructed to select an appropriate
1235 * default.
1236 */
1237 sock = sock_alloc();
1238 if (!sock) {
1239 net_warn_ratelimited("socket: no more sockets\n");
1240 return -ENFILE; /* Not exactly a match, but its the
1241 closest posix thing */
1242 }
1243
1244 sock->type = type;
1245
1246 #ifdef CONFIG_MODULES
1247 /* Attempt to load a protocol module if the find failed.
1248 *
1249 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1250 * requested real, full-featured networking support upon configuration.
1251 * Otherwise module support will break!
1252 */
1253 if (rcu_access_pointer(net_families[family]) == NULL)
1254 request_module("net-pf-%d", family);
1255 #endif
1256
1257 rcu_read_lock();
1258 pf = rcu_dereference(net_families[family]);
1259 err = -EAFNOSUPPORT;
1260 if (!pf)
1261 goto out_release;
1262
1263 /*
1264 * We will call the ->create function, that possibly is in a loadable
1265 * module, so we have to bump that loadable module refcnt first.
1266 */
1267 if (!try_module_get(pf->owner))
1268 goto out_release;
1269
1270 /* Now protected by module ref count */
1271 rcu_read_unlock();
1272
1273 err = pf->create(net, sock, protocol, kern);
1274 if (err < 0)
1275 goto out_module_put;
1276
1277 /*
1278 * Now to bump the refcnt of the [loadable] module that owns this
1279 * socket at sock_release time we decrement its refcnt.
1280 */
1281 if (!try_module_get(sock->ops->owner))
1282 goto out_module_busy;
1283
1284 /*
1285 * Now that we're done with the ->create function, the [loadable]
1286 * module can have its refcnt decremented
1287 */
1288 module_put(pf->owner);
1289 err = security_socket_post_create(sock, family, type, protocol, kern);
1290 if (err)
1291 goto out_sock_release;
1292 *res = sock;
1293
1294 return 0;
1295
1296 out_module_busy:
1297 err = -EAFNOSUPPORT;
1298 out_module_put:
1299 sock->ops = NULL;
1300 module_put(pf->owner);
1301 out_sock_release:
1302 sock_release(sock);
1303 return err;
1304
1305 out_release:
1306 rcu_read_unlock();
1307 goto out_sock_release;
1308 }
1309 EXPORT_SYMBOL(__sock_create);
1310
1311 int sock_create(int family, int type, int protocol, struct socket **res)
1312 {
1313 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1314 }
1315 EXPORT_SYMBOL(sock_create);
1316
1317 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1318 {
1319 return __sock_create(&init_net, family, type, protocol, res, 1);
1320 }
1321 EXPORT_SYMBOL(sock_create_kern);
1322
1323 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1324 {
1325 int retval;
1326 struct socket *sock;
1327 int flags;
1328
1329 /* Check the SOCK_* constants for consistency. */
1330 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1331 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1332 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1333 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1334
1335 flags = type & ~SOCK_TYPE_MASK;
1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337 return -EINVAL;
1338 type &= SOCK_TYPE_MASK;
1339
1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342
1343 retval = sock_create(family, type, protocol, &sock);
1344 if (retval < 0)
1345 goto out;
1346
1347 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1348 if (retval < 0)
1349 goto out_release;
1350
1351 out:
1352 /* It may be already another descriptor 8) Not kernel problem. */
1353 return retval;
1354
1355 out_release:
1356 sock_release(sock);
1357 return retval;
1358 }
1359
1360 /*
1361 * Create a pair of connected sockets.
1362 */
1363
1364 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1365 int __user *, usockvec)
1366 {
1367 struct socket *sock1, *sock2;
1368 int fd1, fd2, err;
1369 struct file *newfile1, *newfile2;
1370 int flags;
1371
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 return -EINVAL;
1375 type &= SOCK_TYPE_MASK;
1376
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379
1380 /*
1381 * Obtain the first socket and check if the underlying protocol
1382 * supports the socketpair call.
1383 */
1384
1385 err = sock_create(family, type, protocol, &sock1);
1386 if (err < 0)
1387 goto out;
1388
1389 err = sock_create(family, type, protocol, &sock2);
1390 if (err < 0)
1391 goto out_release_1;
1392
1393 err = sock1->ops->socketpair(sock1, sock2);
1394 if (err < 0)
1395 goto out_release_both;
1396
1397 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1398 if (unlikely(fd1 < 0)) {
1399 err = fd1;
1400 goto out_release_both;
1401 }
1402
1403 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1404 if (unlikely(fd2 < 0)) {
1405 err = fd2;
1406 fput(newfile1);
1407 put_unused_fd(fd1);
1408 sock_release(sock2);
1409 goto out;
1410 }
1411
1412 audit_fd_pair(fd1, fd2);
1413 fd_install(fd1, newfile1);
1414 fd_install(fd2, newfile2);
1415 /* fd1 and fd2 may be already another descriptors.
1416 * Not kernel problem.
1417 */
1418
1419 err = put_user(fd1, &usockvec[0]);
1420 if (!err)
1421 err = put_user(fd2, &usockvec[1]);
1422 if (!err)
1423 return 0;
1424
1425 sys_close(fd2);
1426 sys_close(fd1);
1427 return err;
1428
1429 out_release_both:
1430 sock_release(sock2);
1431 out_release_1:
1432 sock_release(sock1);
1433 out:
1434 return err;
1435 }
1436
1437 /*
1438 * Bind a name to a socket. Nothing much to do here since it's
1439 * the protocol's responsibility to handle the local address.
1440 *
1441 * We move the socket address to kernel space before we call
1442 * the protocol layer (having also checked the address is ok).
1443 */
1444
1445 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1446 {
1447 struct socket *sock;
1448 struct sockaddr_storage address;
1449 int err, fput_needed;
1450
1451 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 if (sock) {
1453 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1454 if (err >= 0) {
1455 err = security_socket_bind(sock,
1456 (struct sockaddr *)&address,
1457 addrlen);
1458 if (!err)
1459 err = sock->ops->bind(sock,
1460 (struct sockaddr *)
1461 &address, addrlen);
1462 }
1463 fput_light(sock->file, fput_needed);
1464 }
1465 return err;
1466 }
1467
1468 /*
1469 * Perform a listen. Basically, we allow the protocol to do anything
1470 * necessary for a listen, and if that works, we mark the socket as
1471 * ready for listening.
1472 */
1473
1474 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1475 {
1476 struct socket *sock;
1477 int err, fput_needed;
1478 int somaxconn;
1479
1480 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 if (sock) {
1482 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1483 if ((unsigned int)backlog > somaxconn)
1484 backlog = somaxconn;
1485
1486 err = security_socket_listen(sock, backlog);
1487 if (!err)
1488 err = sock->ops->listen(sock, backlog);
1489
1490 fput_light(sock->file, fput_needed);
1491 }
1492 return err;
1493 }
1494
1495 /*
1496 * For accept, we attempt to create a new socket, set up the link
1497 * with the client, wake up the client, then return the new
1498 * connected fd. We collect the address of the connector in kernel
1499 * space and move it to user at the very end. This is unclean because
1500 * we open the socket then return an error.
1501 *
1502 * 1003.1g adds the ability to recvmsg() to query connection pending
1503 * status to recvmsg. We need to add that support in a way thats
1504 * clean when we restucture accept also.
1505 */
1506
1507 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508 int __user *, upeer_addrlen, int, flags)
1509 {
1510 struct socket *sock, *newsock;
1511 struct file *newfile;
1512 int err, len, newfd, fput_needed;
1513 struct sockaddr_storage address;
1514
1515 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516 return -EINVAL;
1517
1518 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1519 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1520
1521 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1522 if (!sock)
1523 goto out;
1524
1525 err = -ENFILE;
1526 newsock = sock_alloc();
1527 if (!newsock)
1528 goto out_put;
1529
1530 newsock->type = sock->type;
1531 newsock->ops = sock->ops;
1532
1533 /*
1534 * We don't need try_module_get here, as the listening socket (sock)
1535 * has the protocol module (sock->ops->owner) held.
1536 */
1537 __module_get(newsock->ops->owner);
1538
1539 newfd = sock_alloc_file(newsock, &newfile, flags);
1540 if (unlikely(newfd < 0)) {
1541 err = newfd;
1542 sock_release(newsock);
1543 goto out_put;
1544 }
1545
1546 err = security_socket_accept(sock, newsock);
1547 if (err)
1548 goto out_fd;
1549
1550 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1551 if (err < 0)
1552 goto out_fd;
1553
1554 if (upeer_sockaddr) {
1555 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1556 &len, 2) < 0) {
1557 err = -ECONNABORTED;
1558 goto out_fd;
1559 }
1560 err = move_addr_to_user(&address,
1561 len, upeer_sockaddr, upeer_addrlen);
1562 if (err < 0)
1563 goto out_fd;
1564 }
1565
1566 /* File flags are not inherited via accept() unlike another OSes. */
1567
1568 fd_install(newfd, newfile);
1569 err = newfd;
1570
1571 out_put:
1572 fput_light(sock->file, fput_needed);
1573 out:
1574 return err;
1575 out_fd:
1576 fput(newfile);
1577 put_unused_fd(newfd);
1578 goto out_put;
1579 }
1580
1581 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 int __user *, upeer_addrlen)
1583 {
1584 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1585 }
1586
1587 /*
1588 * Attempt to connect to a socket with the server address. The address
1589 * is in user space so we verify it is OK and move it to kernel space.
1590 *
1591 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1592 * break bindings
1593 *
1594 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1595 * other SEQPACKET protocols that take time to connect() as it doesn't
1596 * include the -EINPROGRESS status for such sockets.
1597 */
1598
1599 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1600 int, addrlen)
1601 {
1602 struct socket *sock;
1603 struct sockaddr_storage address;
1604 int err, fput_needed;
1605
1606 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1607 if (!sock)
1608 goto out;
1609 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1610 if (err < 0)
1611 goto out_put;
1612
1613 err =
1614 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1615 if (err)
1616 goto out_put;
1617
1618 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1619 sock->file->f_flags);
1620 out_put:
1621 fput_light(sock->file, fput_needed);
1622 out:
1623 return err;
1624 }
1625
1626 /*
1627 * Get the local address ('name') of a socket object. Move the obtained
1628 * name to user space.
1629 */
1630
1631 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1632 int __user *, usockaddr_len)
1633 {
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int len, err, fput_needed;
1637
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (!sock)
1640 goto out;
1641
1642 err = security_socket_getsockname(sock);
1643 if (err)
1644 goto out_put;
1645
1646 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1647 if (err)
1648 goto out_put;
1649 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1650
1651 out_put:
1652 fput_light(sock->file, fput_needed);
1653 out:
1654 return err;
1655 }
1656
1657 /*
1658 * Get the remote address ('name') of a socket object. Move the obtained
1659 * name to user space.
1660 */
1661
1662 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1663 int __user *, usockaddr_len)
1664 {
1665 struct socket *sock;
1666 struct sockaddr_storage address;
1667 int len, err, fput_needed;
1668
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 if (sock != NULL) {
1671 err = security_socket_getpeername(sock);
1672 if (err) {
1673 fput_light(sock->file, fput_needed);
1674 return err;
1675 }
1676
1677 err =
1678 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1679 1);
1680 if (!err)
1681 err = move_addr_to_user(&address, len, usockaddr,
1682 usockaddr_len);
1683 fput_light(sock->file, fput_needed);
1684 }
1685 return err;
1686 }
1687
1688 /*
1689 * Send a datagram to a given address. We move the address into kernel
1690 * space and check the user space data area is readable before invoking
1691 * the protocol.
1692 */
1693
1694 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1695 unsigned int, flags, struct sockaddr __user *, addr,
1696 int, addr_len)
1697 {
1698 struct socket *sock;
1699 struct sockaddr_storage address;
1700 int err;
1701 struct msghdr msg;
1702 struct iovec iov;
1703 int fput_needed;
1704
1705 if (len > INT_MAX)
1706 len = INT_MAX;
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (!sock)
1709 goto out;
1710
1711 iov.iov_base = buff;
1712 iov.iov_len = len;
1713 msg.msg_name = NULL;
1714 msg.msg_iov = &iov;
1715 msg.msg_iovlen = 1;
1716 msg.msg_control = NULL;
1717 msg.msg_controllen = 0;
1718 msg.msg_namelen = 0;
1719 if (addr) {
1720 err = move_addr_to_kernel(addr, addr_len, &address);
1721 if (err < 0)
1722 goto out_put;
1723 msg.msg_name = (struct sockaddr *)&address;
1724 msg.msg_namelen = addr_len;
1725 }
1726 if (sock->file->f_flags & O_NONBLOCK)
1727 flags |= MSG_DONTWAIT;
1728 msg.msg_flags = flags;
1729 err = sock_sendmsg(sock, &msg, len);
1730
1731 out_put:
1732 fput_light(sock->file, fput_needed);
1733 out:
1734 return err;
1735 }
1736
1737 /*
1738 * Send a datagram down a socket.
1739 */
1740
1741 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1742 unsigned int, flags)
1743 {
1744 return sys_sendto(fd, buff, len, flags, NULL, 0);
1745 }
1746
1747 /*
1748 * Receive a frame from the socket and optionally record the address of the
1749 * sender. We verify the buffers are writable and if needed move the
1750 * sender address from kernel to user space.
1751 */
1752
1753 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1754 unsigned int, flags, struct sockaddr __user *, addr,
1755 int __user *, addr_len)
1756 {
1757 struct socket *sock;
1758 struct iovec iov;
1759 struct msghdr msg;
1760 struct sockaddr_storage address;
1761 int err, err2;
1762 int fput_needed;
1763
1764 if (size > INT_MAX)
1765 size = INT_MAX;
1766 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 if (!sock)
1768 goto out;
1769
1770 msg.msg_control = NULL;
1771 msg.msg_controllen = 0;
1772 msg.msg_iovlen = 1;
1773 msg.msg_iov = &iov;
1774 iov.iov_len = size;
1775 iov.iov_base = ubuf;
1776 msg.msg_name = (struct sockaddr *)&address;
1777 msg.msg_namelen = sizeof(address);
1778 if (sock->file->f_flags & O_NONBLOCK)
1779 flags |= MSG_DONTWAIT;
1780 err = sock_recvmsg(sock, &msg, size, flags);
1781
1782 if (err >= 0 && addr != NULL) {
1783 err2 = move_addr_to_user(&address,
1784 msg.msg_namelen, addr, addr_len);
1785 if (err2 < 0)
1786 err = err2;
1787 }
1788
1789 fput_light(sock->file, fput_needed);
1790 out:
1791 return err;
1792 }
1793
1794 /*
1795 * Receive a datagram from a socket.
1796 */
1797
1798 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1799 unsigned int flags)
1800 {
1801 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1802 }
1803
1804 /*
1805 * Set a socket option. Because we don't know the option lengths we have
1806 * to pass the user mode parameter for the protocols to sort out.
1807 */
1808
1809 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1810 char __user *, optval, int, optlen)
1811 {
1812 int err, fput_needed;
1813 struct socket *sock;
1814
1815 if (optlen < 0)
1816 return -EINVAL;
1817
1818 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 if (sock != NULL) {
1820 err = security_socket_setsockopt(sock, level, optname);
1821 if (err)
1822 goto out_put;
1823
1824 if (level == SOL_SOCKET)
1825 err =
1826 sock_setsockopt(sock, level, optname, optval,
1827 optlen);
1828 else
1829 err =
1830 sock->ops->setsockopt(sock, level, optname, optval,
1831 optlen);
1832 out_put:
1833 fput_light(sock->file, fput_needed);
1834 }
1835 return err;
1836 }
1837
1838 /*
1839 * Get a socket option. Because we don't know the option lengths we have
1840 * to pass a user mode parameter for the protocols to sort out.
1841 */
1842
1843 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1844 char __user *, optval, int __user *, optlen)
1845 {
1846 int err, fput_needed;
1847 struct socket *sock;
1848
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (sock != NULL) {
1851 err = security_socket_getsockopt(sock, level, optname);
1852 if (err)
1853 goto out_put;
1854
1855 if (level == SOL_SOCKET)
1856 err =
1857 sock_getsockopt(sock, level, optname, optval,
1858 optlen);
1859 else
1860 err =
1861 sock->ops->getsockopt(sock, level, optname, optval,
1862 optlen);
1863 out_put:
1864 fput_light(sock->file, fput_needed);
1865 }
1866 return err;
1867 }
1868
1869 /*
1870 * Shutdown a socket.
1871 */
1872
1873 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1874 {
1875 int err, fput_needed;
1876 struct socket *sock;
1877
1878 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879 if (sock != NULL) {
1880 err = security_socket_shutdown(sock, how);
1881 if (!err)
1882 err = sock->ops->shutdown(sock, how);
1883 fput_light(sock->file, fput_needed);
1884 }
1885 return err;
1886 }
1887
1888 /* A couple of helpful macros for getting the address of the 32/64 bit
1889 * fields which are the same type (int / unsigned) on our platforms.
1890 */
1891 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1892 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1893 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1894
1895 struct used_address {
1896 struct sockaddr_storage name;
1897 unsigned int name_len;
1898 };
1899
1900 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1901 struct msghdr *msg_sys, unsigned int flags,
1902 struct used_address *used_address)
1903 {
1904 struct compat_msghdr __user *msg_compat =
1905 (struct compat_msghdr __user *)msg;
1906 struct sockaddr_storage address;
1907 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1908 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1909 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1910 /* 20 is size of ipv6_pktinfo */
1911 unsigned char *ctl_buf = ctl;
1912 int err, ctl_len, total_len;
1913
1914 err = -EFAULT;
1915 if (MSG_CMSG_COMPAT & flags) {
1916 if (get_compat_msghdr(msg_sys, msg_compat))
1917 return -EFAULT;
1918 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1919 return -EFAULT;
1920
1921 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1922 err = -EMSGSIZE;
1923 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1924 goto out;
1925 err = -ENOMEM;
1926 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1927 GFP_KERNEL);
1928 if (!iov)
1929 goto out;
1930 }
1931
1932 /* This will also move the address data into kernel space */
1933 if (MSG_CMSG_COMPAT & flags) {
1934 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1935 } else
1936 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1937 if (err < 0)
1938 goto out_freeiov;
1939 total_len = err;
1940
1941 err = -ENOBUFS;
1942
1943 if (msg_sys->msg_controllen > INT_MAX)
1944 goto out_freeiov;
1945 ctl_len = msg_sys->msg_controllen;
1946 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1947 err =
1948 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1949 sizeof(ctl));
1950 if (err)
1951 goto out_freeiov;
1952 ctl_buf = msg_sys->msg_control;
1953 ctl_len = msg_sys->msg_controllen;
1954 } else if (ctl_len) {
1955 if (ctl_len > sizeof(ctl)) {
1956 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1957 if (ctl_buf == NULL)
1958 goto out_freeiov;
1959 }
1960 err = -EFAULT;
1961 /*
1962 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1963 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1964 * checking falls down on this.
1965 */
1966 if (copy_from_user(ctl_buf,
1967 (void __user __force *)msg_sys->msg_control,
1968 ctl_len))
1969 goto out_freectl;
1970 msg_sys->msg_control = ctl_buf;
1971 }
1972 msg_sys->msg_flags = flags;
1973
1974 if (sock->file->f_flags & O_NONBLOCK)
1975 msg_sys->msg_flags |= MSG_DONTWAIT;
1976 /*
1977 * If this is sendmmsg() and current destination address is same as
1978 * previously succeeded address, omit asking LSM's decision.
1979 * used_address->name_len is initialized to UINT_MAX so that the first
1980 * destination address never matches.
1981 */
1982 if (used_address && msg_sys->msg_name &&
1983 used_address->name_len == msg_sys->msg_namelen &&
1984 !memcmp(&used_address->name, msg_sys->msg_name,
1985 used_address->name_len)) {
1986 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1987 goto out_freectl;
1988 }
1989 err = sock_sendmsg(sock, msg_sys, total_len);
1990 /*
1991 * If this is sendmmsg() and sending to current destination address was
1992 * successful, remember it.
1993 */
1994 if (used_address && err >= 0) {
1995 used_address->name_len = msg_sys->msg_namelen;
1996 if (msg_sys->msg_name)
1997 memcpy(&used_address->name, msg_sys->msg_name,
1998 used_address->name_len);
1999 }
2000
2001 out_freectl:
2002 if (ctl_buf != ctl)
2003 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2004 out_freeiov:
2005 if (iov != iovstack)
2006 kfree(iov);
2007 out:
2008 return err;
2009 }
2010
2011 /*
2012 * BSD sendmsg interface
2013 */
2014
2015 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2016 {
2017 int fput_needed, err;
2018 struct msghdr msg_sys;
2019 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020
2021 if (!sock)
2022 goto out;
2023
2024 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2025
2026 fput_light(sock->file, fput_needed);
2027 out:
2028 return err;
2029 }
2030
2031 /*
2032 * Linux sendmmsg interface
2033 */
2034
2035 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036 unsigned int flags)
2037 {
2038 int fput_needed, err, datagrams;
2039 struct socket *sock;
2040 struct mmsghdr __user *entry;
2041 struct compat_mmsghdr __user *compat_entry;
2042 struct msghdr msg_sys;
2043 struct used_address used_address;
2044
2045 if (vlen > UIO_MAXIOV)
2046 vlen = UIO_MAXIOV;
2047
2048 datagrams = 0;
2049
2050 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2051 if (!sock)
2052 return err;
2053
2054 used_address.name_len = UINT_MAX;
2055 entry = mmsg;
2056 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2057 err = 0;
2058
2059 while (datagrams < vlen) {
2060 if (MSG_CMSG_COMPAT & flags) {
2061 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2062 &msg_sys, flags, &used_address);
2063 if (err < 0)
2064 break;
2065 err = __put_user(err, &compat_entry->msg_len);
2066 ++compat_entry;
2067 } else {
2068 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2069 &msg_sys, flags, &used_address);
2070 if (err < 0)
2071 break;
2072 err = put_user(err, &entry->msg_len);
2073 ++entry;
2074 }
2075
2076 if (err)
2077 break;
2078 ++datagrams;
2079 }
2080
2081 fput_light(sock->file, fput_needed);
2082
2083 /* We only return an error if no datagrams were able to be sent */
2084 if (datagrams != 0)
2085 return datagrams;
2086
2087 return err;
2088 }
2089
2090 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2091 unsigned int, vlen, unsigned int, flags)
2092 {
2093 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2094 }
2095
2096 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2097 struct msghdr *msg_sys, unsigned int flags, int nosec)
2098 {
2099 struct compat_msghdr __user *msg_compat =
2100 (struct compat_msghdr __user *)msg;
2101 struct iovec iovstack[UIO_FASTIOV];
2102 struct iovec *iov = iovstack;
2103 unsigned long cmsg_ptr;
2104 int err, total_len, len;
2105
2106 /* kernel mode address */
2107 struct sockaddr_storage addr;
2108
2109 /* user mode address pointers */
2110 struct sockaddr __user *uaddr;
2111 int __user *uaddr_len;
2112
2113 if (MSG_CMSG_COMPAT & flags) {
2114 if (get_compat_msghdr(msg_sys, msg_compat))
2115 return -EFAULT;
2116 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2117 return -EFAULT;
2118
2119 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2120 err = -EMSGSIZE;
2121 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2122 goto out;
2123 err = -ENOMEM;
2124 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2125 GFP_KERNEL);
2126 if (!iov)
2127 goto out;
2128 }
2129
2130 /*
2131 * Save the user-mode address (verify_iovec will change the
2132 * kernel msghdr to use the kernel address space)
2133 */
2134
2135 uaddr = (__force void __user *)msg_sys->msg_name;
2136 uaddr_len = COMPAT_NAMELEN(msg);
2137 if (MSG_CMSG_COMPAT & flags) {
2138 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2139 } else
2140 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2141 if (err < 0)
2142 goto out_freeiov;
2143 total_len = err;
2144
2145 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2146 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2147
2148 if (sock->file->f_flags & O_NONBLOCK)
2149 flags |= MSG_DONTWAIT;
2150 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2151 total_len, flags);
2152 if (err < 0)
2153 goto out_freeiov;
2154 len = err;
2155
2156 if (uaddr != NULL) {
2157 err = move_addr_to_user(&addr,
2158 msg_sys->msg_namelen, uaddr,
2159 uaddr_len);
2160 if (err < 0)
2161 goto out_freeiov;
2162 }
2163 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2164 COMPAT_FLAGS(msg));
2165 if (err)
2166 goto out_freeiov;
2167 if (MSG_CMSG_COMPAT & flags)
2168 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2169 &msg_compat->msg_controllen);
2170 else
2171 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2172 &msg->msg_controllen);
2173 if (err)
2174 goto out_freeiov;
2175 err = len;
2176
2177 out_freeiov:
2178 if (iov != iovstack)
2179 kfree(iov);
2180 out:
2181 return err;
2182 }
2183
2184 /*
2185 * BSD recvmsg interface
2186 */
2187
2188 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2189 unsigned int, flags)
2190 {
2191 int fput_needed, err;
2192 struct msghdr msg_sys;
2193 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2194
2195 if (!sock)
2196 goto out;
2197
2198 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2199
2200 fput_light(sock->file, fput_needed);
2201 out:
2202 return err;
2203 }
2204
2205 /*
2206 * Linux recvmmsg interface
2207 */
2208
2209 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2210 unsigned int flags, struct timespec *timeout)
2211 {
2212 int fput_needed, err, datagrams;
2213 struct socket *sock;
2214 struct mmsghdr __user *entry;
2215 struct compat_mmsghdr __user *compat_entry;
2216 struct msghdr msg_sys;
2217 struct timespec end_time;
2218
2219 if (timeout &&
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 timeout->tv_nsec))
2222 return -EINVAL;
2223
2224 datagrams = 0;
2225
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2229
2230 err = sock_error(sock->sk);
2231 if (err)
2232 goto out_put;
2233
2234 entry = mmsg;
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236
2237 while (datagrams < vlen) {
2238 /*
2239 * No need to ask LSM for more than the first datagram.
2240 */
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2244 datagrams);
2245 if (err < 0)
2246 break;
2247 err = __put_user(err, &compat_entry->msg_len);
2248 ++compat_entry;
2249 } else {
2250 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2251 &msg_sys, flags & ~MSG_WAITFORONE,
2252 datagrams);
2253 if (err < 0)
2254 break;
2255 err = put_user(err, &entry->msg_len);
2256 ++entry;
2257 }
2258
2259 if (err)
2260 break;
2261 ++datagrams;
2262
2263 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2264 if (flags & MSG_WAITFORONE)
2265 flags |= MSG_DONTWAIT;
2266
2267 if (timeout) {
2268 ktime_get_ts(timeout);
2269 *timeout = timespec_sub(end_time, *timeout);
2270 if (timeout->tv_sec < 0) {
2271 timeout->tv_sec = timeout->tv_nsec = 0;
2272 break;
2273 }
2274
2275 /* Timeout, return less than vlen datagrams */
2276 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2277 break;
2278 }
2279
2280 /* Out of band data, return right away */
2281 if (msg_sys.msg_flags & MSG_OOB)
2282 break;
2283 }
2284
2285 out_put:
2286 fput_light(sock->file, fput_needed);
2287
2288 if (err == 0)
2289 return datagrams;
2290
2291 if (datagrams != 0) {
2292 /*
2293 * We may return less entries than requested (vlen) if the
2294 * sock is non block and there aren't enough datagrams...
2295 */
2296 if (err != -EAGAIN) {
2297 /*
2298 * ... or if recvmsg returns an error after we
2299 * received some datagrams, where we record the
2300 * error to return on the next call or if the
2301 * app asks about it using getsockopt(SO_ERROR).
2302 */
2303 sock->sk->sk_err = -err;
2304 }
2305
2306 return datagrams;
2307 }
2308
2309 return err;
2310 }
2311
2312 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2313 unsigned int, vlen, unsigned int, flags,
2314 struct timespec __user *, timeout)
2315 {
2316 int datagrams;
2317 struct timespec timeout_sys;
2318
2319 if (!timeout)
2320 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2321
2322 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2323 return -EFAULT;
2324
2325 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2326
2327 if (datagrams > 0 &&
2328 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2329 datagrams = -EFAULT;
2330
2331 return datagrams;
2332 }
2333
2334 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2335 /* Argument list sizes for sys_socketcall */
2336 #define AL(x) ((x) * sizeof(unsigned long))
2337 static const unsigned char nargs[21] = {
2338 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2339 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2340 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2341 AL(4), AL(5), AL(4)
2342 };
2343
2344 #undef AL
2345
2346 /*
2347 * System call vectors.
2348 *
2349 * Argument checking cleaned up. Saved 20% in size.
2350 * This function doesn't need to set the kernel lock because
2351 * it is set by the callees.
2352 */
2353
2354 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2355 {
2356 unsigned long a[6];
2357 unsigned long a0, a1;
2358 int err;
2359 unsigned int len;
2360
2361 if (call < 1 || call > SYS_SENDMMSG)
2362 return -EINVAL;
2363
2364 len = nargs[call];
2365 if (len > sizeof(a))
2366 return -EINVAL;
2367
2368 /* copy_from_user should be SMP safe. */
2369 if (copy_from_user(a, args, len))
2370 return -EFAULT;
2371
2372 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2373
2374 a0 = a[0];
2375 a1 = a[1];
2376
2377 switch (call) {
2378 case SYS_SOCKET:
2379 err = sys_socket(a0, a1, a[2]);
2380 break;
2381 case SYS_BIND:
2382 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2383 break;
2384 case SYS_CONNECT:
2385 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2386 break;
2387 case SYS_LISTEN:
2388 err = sys_listen(a0, a1);
2389 break;
2390 case SYS_ACCEPT:
2391 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2392 (int __user *)a[2], 0);
2393 break;
2394 case SYS_GETSOCKNAME:
2395 err =
2396 sys_getsockname(a0, (struct sockaddr __user *)a1,
2397 (int __user *)a[2]);
2398 break;
2399 case SYS_GETPEERNAME:
2400 err =
2401 sys_getpeername(a0, (struct sockaddr __user *)a1,
2402 (int __user *)a[2]);
2403 break;
2404 case SYS_SOCKETPAIR:
2405 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2406 break;
2407 case SYS_SEND:
2408 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2409 break;
2410 case SYS_SENDTO:
2411 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2412 (struct sockaddr __user *)a[4], a[5]);
2413 break;
2414 case SYS_RECV:
2415 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2416 break;
2417 case SYS_RECVFROM:
2418 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2419 (struct sockaddr __user *)a[4],
2420 (int __user *)a[5]);
2421 break;
2422 case SYS_SHUTDOWN:
2423 err = sys_shutdown(a0, a1);
2424 break;
2425 case SYS_SETSOCKOPT:
2426 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2427 break;
2428 case SYS_GETSOCKOPT:
2429 err =
2430 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2431 (int __user *)a[4]);
2432 break;
2433 case SYS_SENDMSG:
2434 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2435 break;
2436 case SYS_SENDMMSG:
2437 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2438 break;
2439 case SYS_RECVMSG:
2440 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2441 break;
2442 case SYS_RECVMMSG:
2443 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2444 (struct timespec __user *)a[4]);
2445 break;
2446 case SYS_ACCEPT4:
2447 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2448 (int __user *)a[2], a[3]);
2449 break;
2450 default:
2451 err = -EINVAL;
2452 break;
2453 }
2454 return err;
2455 }
2456
2457 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2458
2459 /**
2460 * sock_register - add a socket protocol handler
2461 * @ops: description of protocol
2462 *
2463 * This function is called by a protocol handler that wants to
2464 * advertise its address family, and have it linked into the
2465 * socket interface. The value ops->family coresponds to the
2466 * socket system call protocol family.
2467 */
2468 int sock_register(const struct net_proto_family *ops)
2469 {
2470 int err;
2471
2472 if (ops->family >= NPROTO) {
2473 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2474 NPROTO);
2475 return -ENOBUFS;
2476 }
2477
2478 spin_lock(&net_family_lock);
2479 if (rcu_dereference_protected(net_families[ops->family],
2480 lockdep_is_held(&net_family_lock)))
2481 err = -EEXIST;
2482 else {
2483 rcu_assign_pointer(net_families[ops->family], ops);
2484 err = 0;
2485 }
2486 spin_unlock(&net_family_lock);
2487
2488 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2489 return err;
2490 }
2491 EXPORT_SYMBOL(sock_register);
2492
2493 /**
2494 * sock_unregister - remove a protocol handler
2495 * @family: protocol family to remove
2496 *
2497 * This function is called by a protocol handler that wants to
2498 * remove its address family, and have it unlinked from the
2499 * new socket creation.
2500 *
2501 * If protocol handler is a module, then it can use module reference
2502 * counts to protect against new references. If protocol handler is not
2503 * a module then it needs to provide its own protection in
2504 * the ops->create routine.
2505 */
2506 void sock_unregister(int family)
2507 {
2508 BUG_ON(family < 0 || family >= NPROTO);
2509
2510 spin_lock(&net_family_lock);
2511 RCU_INIT_POINTER(net_families[family], NULL);
2512 spin_unlock(&net_family_lock);
2513
2514 synchronize_rcu();
2515
2516 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2517 }
2518 EXPORT_SYMBOL(sock_unregister);
2519
2520 static int __init sock_init(void)
2521 {
2522 int err;
2523 /*
2524 * Initialize the network sysctl infrastructure.
2525 */
2526 err = net_sysctl_init();
2527 if (err)
2528 goto out;
2529
2530 /*
2531 * Initialize sock SLAB cache.
2532 */
2533
2534 sk_init();
2535
2536 /*
2537 * Initialize skbuff SLAB cache
2538 */
2539 skb_init();
2540
2541 /*
2542 * Initialize the protocols module.
2543 */
2544
2545 init_inodecache();
2546
2547 err = register_filesystem(&sock_fs_type);
2548 if (err)
2549 goto out_fs;
2550 sock_mnt = kern_mount(&sock_fs_type);
2551 if (IS_ERR(sock_mnt)) {
2552 err = PTR_ERR(sock_mnt);
2553 goto out_mount;
2554 }
2555
2556 /* The real protocol initialization is performed in later initcalls.
2557 */
2558
2559 #ifdef CONFIG_NETFILTER
2560 netfilter_init();
2561 #endif
2562
2563 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2564 skb_timestamping_init();
2565 #endif
2566
2567 out:
2568 return err;
2569
2570 out_mount:
2571 unregister_filesystem(&sock_fs_type);
2572 out_fs:
2573 goto out;
2574 }
2575
2576 core_initcall(sock_init); /* early initcall */
2577
2578 #ifdef CONFIG_PROC_FS
2579 void socket_seq_show(struct seq_file *seq)
2580 {
2581 int cpu;
2582 int counter = 0;
2583
2584 for_each_possible_cpu(cpu)
2585 counter += per_cpu(sockets_in_use, cpu);
2586
2587 /* It can be negative, by the way. 8) */
2588 if (counter < 0)
2589 counter = 0;
2590
2591 seq_printf(seq, "sockets: used %d\n", counter);
2592 }
2593 #endif /* CONFIG_PROC_FS */
2594
2595 #ifdef CONFIG_COMPAT
2596 static int do_siocgstamp(struct net *net, struct socket *sock,
2597 unsigned int cmd, void __user *up)
2598 {
2599 mm_segment_t old_fs = get_fs();
2600 struct timeval ktv;
2601 int err;
2602
2603 set_fs(KERNEL_DS);
2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2605 set_fs(old_fs);
2606 if (!err)
2607 err = compat_put_timeval(up, &ktv);
2608
2609 return err;
2610 }
2611
2612 static int do_siocgstampns(struct net *net, struct socket *sock,
2613 unsigned int cmd, void __user *up)
2614 {
2615 mm_segment_t old_fs = get_fs();
2616 struct timespec kts;
2617 int err;
2618
2619 set_fs(KERNEL_DS);
2620 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2621 set_fs(old_fs);
2622 if (!err)
2623 err = compat_put_timespec(up, &kts);
2624
2625 return err;
2626 }
2627
2628 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2629 {
2630 struct ifreq __user *uifr;
2631 int err;
2632
2633 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2634 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2635 return -EFAULT;
2636
2637 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2638 if (err)
2639 return err;
2640
2641 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2642 return -EFAULT;
2643
2644 return 0;
2645 }
2646
2647 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2648 {
2649 struct compat_ifconf ifc32;
2650 struct ifconf ifc;
2651 struct ifconf __user *uifc;
2652 struct compat_ifreq __user *ifr32;
2653 struct ifreq __user *ifr;
2654 unsigned int i, j;
2655 int err;
2656
2657 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2658 return -EFAULT;
2659
2660 if (ifc32.ifcbuf == 0) {
2661 ifc32.ifc_len = 0;
2662 ifc.ifc_len = 0;
2663 ifc.ifc_req = NULL;
2664 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2665 } else {
2666 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2667 sizeof(struct ifreq);
2668 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2669 ifc.ifc_len = len;
2670 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2671 ifr32 = compat_ptr(ifc32.ifcbuf);
2672 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2673 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2674 return -EFAULT;
2675 ifr++;
2676 ifr32++;
2677 }
2678 }
2679 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2680 return -EFAULT;
2681
2682 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2683 if (err)
2684 return err;
2685
2686 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2687 return -EFAULT;
2688
2689 ifr = ifc.ifc_req;
2690 ifr32 = compat_ptr(ifc32.ifcbuf);
2691 for (i = 0, j = 0;
2692 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2693 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2694 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2695 return -EFAULT;
2696 ifr32++;
2697 ifr++;
2698 }
2699
2700 if (ifc32.ifcbuf == 0) {
2701 /* Translate from 64-bit structure multiple to
2702 * a 32-bit one.
2703 */
2704 i = ifc.ifc_len;
2705 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2706 ifc32.ifc_len = i;
2707 } else {
2708 ifc32.ifc_len = i;
2709 }
2710 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2711 return -EFAULT;
2712
2713 return 0;
2714 }
2715
2716 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2717 {
2718 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2719 bool convert_in = false, convert_out = false;
2720 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2721 struct ethtool_rxnfc __user *rxnfc;
2722 struct ifreq __user *ifr;
2723 u32 rule_cnt = 0, actual_rule_cnt;
2724 u32 ethcmd;
2725 u32 data;
2726 int ret;
2727
2728 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2729 return -EFAULT;
2730
2731 compat_rxnfc = compat_ptr(data);
2732
2733 if (get_user(ethcmd, &compat_rxnfc->cmd))
2734 return -EFAULT;
2735
2736 /* Most ethtool structures are defined without padding.
2737 * Unfortunately struct ethtool_rxnfc is an exception.
2738 */
2739 switch (ethcmd) {
2740 default:
2741 break;
2742 case ETHTOOL_GRXCLSRLALL:
2743 /* Buffer size is variable */
2744 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2745 return -EFAULT;
2746 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2747 return -ENOMEM;
2748 buf_size += rule_cnt * sizeof(u32);
2749 /* fall through */
2750 case ETHTOOL_GRXRINGS:
2751 case ETHTOOL_GRXCLSRLCNT:
2752 case ETHTOOL_GRXCLSRULE:
2753 case ETHTOOL_SRXCLSRLINS:
2754 convert_out = true;
2755 /* fall through */
2756 case ETHTOOL_SRXCLSRLDEL:
2757 buf_size += sizeof(struct ethtool_rxnfc);
2758 convert_in = true;
2759 break;
2760 }
2761
2762 ifr = compat_alloc_user_space(buf_size);
2763 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2764
2765 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2766 return -EFAULT;
2767
2768 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2769 &ifr->ifr_ifru.ifru_data))
2770 return -EFAULT;
2771
2772 if (convert_in) {
2773 /* We expect there to be holes between fs.m_ext and
2774 * fs.ring_cookie and at the end of fs, but nowhere else.
2775 */
2776 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2777 sizeof(compat_rxnfc->fs.m_ext) !=
2778 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2779 sizeof(rxnfc->fs.m_ext));
2780 BUILD_BUG_ON(
2781 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2782 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2783 offsetof(struct ethtool_rxnfc, fs.location) -
2784 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2785
2786 if (copy_in_user(rxnfc, compat_rxnfc,
2787 (void *)(&rxnfc->fs.m_ext + 1) -
2788 (void *)rxnfc) ||
2789 copy_in_user(&rxnfc->fs.ring_cookie,
2790 &compat_rxnfc->fs.ring_cookie,
2791 (void *)(&rxnfc->fs.location + 1) -
2792 (void *)&rxnfc->fs.ring_cookie) ||
2793 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2794 sizeof(rxnfc->rule_cnt)))
2795 return -EFAULT;
2796 }
2797
2798 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2799 if (ret)
2800 return ret;
2801
2802 if (convert_out) {
2803 if (copy_in_user(compat_rxnfc, rxnfc,
2804 (const void *)(&rxnfc->fs.m_ext + 1) -
2805 (const void *)rxnfc) ||
2806 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2807 &rxnfc->fs.ring_cookie,
2808 (const void *)(&rxnfc->fs.location + 1) -
2809 (const void *)&rxnfc->fs.ring_cookie) ||
2810 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2811 sizeof(rxnfc->rule_cnt)))
2812 return -EFAULT;
2813
2814 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2815 /* As an optimisation, we only copy the actual
2816 * number of rules that the underlying
2817 * function returned. Since Mallory might
2818 * change the rule count in user memory, we
2819 * check that it is less than the rule count
2820 * originally given (as the user buffer size),
2821 * which has been range-checked.
2822 */
2823 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2824 return -EFAULT;
2825 if (actual_rule_cnt < rule_cnt)
2826 rule_cnt = actual_rule_cnt;
2827 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2828 &rxnfc->rule_locs[0],
2829 rule_cnt * sizeof(u32)))
2830 return -EFAULT;
2831 }
2832 }
2833
2834 return 0;
2835 }
2836
2837 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2838 {
2839 void __user *uptr;
2840 compat_uptr_t uptr32;
2841 struct ifreq __user *uifr;
2842
2843 uifr = compat_alloc_user_space(sizeof(*uifr));
2844 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2845 return -EFAULT;
2846
2847 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2848 return -EFAULT;
2849
2850 uptr = compat_ptr(uptr32);
2851
2852 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2853 return -EFAULT;
2854
2855 return dev_ioctl(net, SIOCWANDEV, uifr);
2856 }
2857
2858 static int bond_ioctl(struct net *net, unsigned int cmd,
2859 struct compat_ifreq __user *ifr32)
2860 {
2861 struct ifreq kifr;
2862 struct ifreq __user *uifr;
2863 mm_segment_t old_fs;
2864 int err;
2865 u32 data;
2866 void __user *datap;
2867
2868 switch (cmd) {
2869 case SIOCBONDENSLAVE:
2870 case SIOCBONDRELEASE:
2871 case SIOCBONDSETHWADDR:
2872 case SIOCBONDCHANGEACTIVE:
2873 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2874 return -EFAULT;
2875
2876 old_fs = get_fs();
2877 set_fs(KERNEL_DS);
2878 err = dev_ioctl(net, cmd,
2879 (struct ifreq __user __force *) &kifr);
2880 set_fs(old_fs);
2881
2882 return err;
2883 case SIOCBONDSLAVEINFOQUERY:
2884 case SIOCBONDINFOQUERY:
2885 uifr = compat_alloc_user_space(sizeof(*uifr));
2886 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2887 return -EFAULT;
2888
2889 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2890 return -EFAULT;
2891
2892 datap = compat_ptr(data);
2893 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2894 return -EFAULT;
2895
2896 return dev_ioctl(net, cmd, uifr);
2897 default:
2898 return -ENOIOCTLCMD;
2899 }
2900 }
2901
2902 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2903 struct compat_ifreq __user *u_ifreq32)
2904 {
2905 struct ifreq __user *u_ifreq64;
2906 char tmp_buf[IFNAMSIZ];
2907 void __user *data64;
2908 u32 data32;
2909
2910 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2911 IFNAMSIZ))
2912 return -EFAULT;
2913 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2914 return -EFAULT;
2915 data64 = compat_ptr(data32);
2916
2917 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2918
2919 /* Don't check these user accesses, just let that get trapped
2920 * in the ioctl handler instead.
2921 */
2922 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2923 IFNAMSIZ))
2924 return -EFAULT;
2925 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2926 return -EFAULT;
2927
2928 return dev_ioctl(net, cmd, u_ifreq64);
2929 }
2930
2931 static int dev_ifsioc(struct net *net, struct socket *sock,
2932 unsigned int cmd, struct compat_ifreq __user *uifr32)
2933 {
2934 struct ifreq __user *uifr;
2935 int err;
2936
2937 uifr = compat_alloc_user_space(sizeof(*uifr));
2938 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2939 return -EFAULT;
2940
2941 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2942
2943 if (!err) {
2944 switch (cmd) {
2945 case SIOCGIFFLAGS:
2946 case SIOCGIFMETRIC:
2947 case SIOCGIFMTU:
2948 case SIOCGIFMEM:
2949 case SIOCGIFHWADDR:
2950 case SIOCGIFINDEX:
2951 case SIOCGIFADDR:
2952 case SIOCGIFBRDADDR:
2953 case SIOCGIFDSTADDR:
2954 case SIOCGIFNETMASK:
2955 case SIOCGIFPFLAGS:
2956 case SIOCGIFTXQLEN:
2957 case SIOCGMIIPHY:
2958 case SIOCGMIIREG:
2959 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2960 err = -EFAULT;
2961 break;
2962 }
2963 }
2964 return err;
2965 }
2966
2967 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2968 struct compat_ifreq __user *uifr32)
2969 {
2970 struct ifreq ifr;
2971 struct compat_ifmap __user *uifmap32;
2972 mm_segment_t old_fs;
2973 int err;
2974
2975 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2976 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2977 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2978 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2979 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2980 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2981 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2982 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2983 if (err)
2984 return -EFAULT;
2985
2986 old_fs = get_fs();
2987 set_fs(KERNEL_DS);
2988 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2989 set_fs(old_fs);
2990
2991 if (cmd == SIOCGIFMAP && !err) {
2992 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2993 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2994 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2995 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2996 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2997 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2998 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2999 if (err)
3000 err = -EFAULT;
3001 }
3002 return err;
3003 }
3004
3005 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3006 {
3007 void __user *uptr;
3008 compat_uptr_t uptr32;
3009 struct ifreq __user *uifr;
3010
3011 uifr = compat_alloc_user_space(sizeof(*uifr));
3012 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3013 return -EFAULT;
3014
3015 if (get_user(uptr32, &uifr32->ifr_data))
3016 return -EFAULT;
3017
3018 uptr = compat_ptr(uptr32);
3019
3020 if (put_user(uptr, &uifr->ifr_data))
3021 return -EFAULT;
3022
3023 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3024 }
3025
3026 struct rtentry32 {
3027 u32 rt_pad1;
3028 struct sockaddr rt_dst; /* target address */
3029 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3030 struct sockaddr rt_genmask; /* target network mask (IP) */
3031 unsigned short rt_flags;
3032 short rt_pad2;
3033 u32 rt_pad3;
3034 unsigned char rt_tos;
3035 unsigned char rt_class;
3036 short rt_pad4;
3037 short rt_metric; /* +1 for binary compatibility! */
3038 /* char * */ u32 rt_dev; /* forcing the device at add */
3039 u32 rt_mtu; /* per route MTU/Window */
3040 u32 rt_window; /* Window clamping */
3041 unsigned short rt_irtt; /* Initial RTT */
3042 };
3043
3044 struct in6_rtmsg32 {
3045 struct in6_addr rtmsg_dst;
3046 struct in6_addr rtmsg_src;
3047 struct in6_addr rtmsg_gateway;
3048 u32 rtmsg_type;
3049 u16 rtmsg_dst_len;
3050 u16 rtmsg_src_len;
3051 u32 rtmsg_metric;
3052 u32 rtmsg_info;
3053 u32 rtmsg_flags;
3054 s32 rtmsg_ifindex;
3055 };
3056
3057 static int routing_ioctl(struct net *net, struct socket *sock,
3058 unsigned int cmd, void __user *argp)
3059 {
3060 int ret;
3061 void *r = NULL;
3062 struct in6_rtmsg r6;
3063 struct rtentry r4;
3064 char devname[16];
3065 u32 rtdev;
3066 mm_segment_t old_fs = get_fs();
3067
3068 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3069 struct in6_rtmsg32 __user *ur6 = argp;
3070 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3071 3 * sizeof(struct in6_addr));
3072 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3073 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3074 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3075 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3076 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3077 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3078 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3079
3080 r = (void *) &r6;
3081 } else { /* ipv4 */
3082 struct rtentry32 __user *ur4 = argp;
3083 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3084 3 * sizeof(struct sockaddr));
3085 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3086 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3087 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3088 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3089 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3090 ret |= __get_user(rtdev, &(ur4->rt_dev));
3091 if (rtdev) {
3092 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3093 r4.rt_dev = (char __user __force *)devname;
3094 devname[15] = 0;
3095 } else
3096 r4.rt_dev = NULL;
3097
3098 r = (void *) &r4;
3099 }
3100
3101 if (ret) {
3102 ret = -EFAULT;
3103 goto out;
3104 }
3105
3106 set_fs(KERNEL_DS);
3107 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3108 set_fs(old_fs);
3109
3110 out:
3111 return ret;
3112 }
3113
3114 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3115 * for some operations; this forces use of the newer bridge-utils that
3116 * use compatible ioctls
3117 */
3118 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3119 {
3120 compat_ulong_t tmp;
3121
3122 if (get_user(tmp, argp))
3123 return -EFAULT;
3124 if (tmp == BRCTL_GET_VERSION)
3125 return BRCTL_VERSION + 1;
3126 return -EINVAL;
3127 }
3128
3129 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3130 unsigned int cmd, unsigned long arg)
3131 {
3132 void __user *argp = compat_ptr(arg);
3133 struct sock *sk = sock->sk;
3134 struct net *net = sock_net(sk);
3135
3136 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3137 return siocdevprivate_ioctl(net, cmd, argp);
3138
3139 switch (cmd) {
3140 case SIOCSIFBR:
3141 case SIOCGIFBR:
3142 return old_bridge_ioctl(argp);
3143 case SIOCGIFNAME:
3144 return dev_ifname32(net, argp);
3145 case SIOCGIFCONF:
3146 return dev_ifconf(net, argp);
3147 case SIOCETHTOOL:
3148 return ethtool_ioctl(net, argp);
3149 case SIOCWANDEV:
3150 return compat_siocwandev(net, argp);
3151 case SIOCGIFMAP:
3152 case SIOCSIFMAP:
3153 return compat_sioc_ifmap(net, cmd, argp);
3154 case SIOCBONDENSLAVE:
3155 case SIOCBONDRELEASE:
3156 case SIOCBONDSETHWADDR:
3157 case SIOCBONDSLAVEINFOQUERY:
3158 case SIOCBONDINFOQUERY:
3159 case SIOCBONDCHANGEACTIVE:
3160 return bond_ioctl(net, cmd, argp);
3161 case SIOCADDRT:
3162 case SIOCDELRT:
3163 return routing_ioctl(net, sock, cmd, argp);
3164 case SIOCGSTAMP:
3165 return do_siocgstamp(net, sock, cmd, argp);
3166 case SIOCGSTAMPNS:
3167 return do_siocgstampns(net, sock, cmd, argp);
3168 case SIOCSHWTSTAMP:
3169 return compat_siocshwtstamp(net, argp);
3170
3171 case FIOSETOWN:
3172 case SIOCSPGRP:
3173 case FIOGETOWN:
3174 case SIOCGPGRP:
3175 case SIOCBRADDBR:
3176 case SIOCBRDELBR:
3177 case SIOCGIFVLAN:
3178 case SIOCSIFVLAN:
3179 case SIOCADDDLCI:
3180 case SIOCDELDLCI:
3181 return sock_ioctl(file, cmd, arg);
3182
3183 case SIOCGIFFLAGS:
3184 case SIOCSIFFLAGS:
3185 case SIOCGIFMETRIC:
3186 case SIOCSIFMETRIC:
3187 case SIOCGIFMTU:
3188 case SIOCSIFMTU:
3189 case SIOCGIFMEM:
3190 case SIOCSIFMEM:
3191 case SIOCGIFHWADDR:
3192 case SIOCSIFHWADDR:
3193 case SIOCADDMULTI:
3194 case SIOCDELMULTI:
3195 case SIOCGIFINDEX:
3196 case SIOCGIFADDR:
3197 case SIOCSIFADDR:
3198 case SIOCSIFHWBROADCAST:
3199 case SIOCDIFADDR:
3200 case SIOCGIFBRDADDR:
3201 case SIOCSIFBRDADDR:
3202 case SIOCGIFDSTADDR:
3203 case SIOCSIFDSTADDR:
3204 case SIOCGIFNETMASK:
3205 case SIOCSIFNETMASK:
3206 case SIOCSIFPFLAGS:
3207 case SIOCGIFPFLAGS:
3208 case SIOCGIFTXQLEN:
3209 case SIOCSIFTXQLEN:
3210 case SIOCBRADDIF:
3211 case SIOCBRDELIF:
3212 case SIOCSIFNAME:
3213 case SIOCGMIIPHY:
3214 case SIOCGMIIREG:
3215 case SIOCSMIIREG:
3216 return dev_ifsioc(net, sock, cmd, argp);
3217
3218 case SIOCSARP:
3219 case SIOCGARP:
3220 case SIOCDARP:
3221 case SIOCATMARK:
3222 return sock_do_ioctl(net, sock, cmd, arg);
3223 }
3224
3225 return -ENOIOCTLCMD;
3226 }
3227
3228 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3229 unsigned long arg)
3230 {
3231 struct socket *sock = file->private_data;
3232 int ret = -ENOIOCTLCMD;
3233 struct sock *sk;
3234 struct net *net;
3235
3236 sk = sock->sk;
3237 net = sock_net(sk);
3238
3239 if (sock->ops->compat_ioctl)
3240 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3241
3242 if (ret == -ENOIOCTLCMD &&
3243 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3244 ret = compat_wext_handle_ioctl(net, cmd, arg);
3245
3246 if (ret == -ENOIOCTLCMD)
3247 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3248
3249 return ret;
3250 }
3251 #endif
3252
3253 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3254 {
3255 return sock->ops->bind(sock, addr, addrlen);
3256 }
3257 EXPORT_SYMBOL(kernel_bind);
3258
3259 int kernel_listen(struct socket *sock, int backlog)
3260 {
3261 return sock->ops->listen(sock, backlog);
3262 }
3263 EXPORT_SYMBOL(kernel_listen);
3264
3265 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3266 {
3267 struct sock *sk = sock->sk;
3268 int err;
3269
3270 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3271 newsock);
3272 if (err < 0)
3273 goto done;
3274
3275 err = sock->ops->accept(sock, *newsock, flags);
3276 if (err < 0) {
3277 sock_release(*newsock);
3278 *newsock = NULL;
3279 goto done;
3280 }
3281
3282 (*newsock)->ops = sock->ops;
3283 __module_get((*newsock)->ops->owner);
3284
3285 done:
3286 return err;
3287 }
3288 EXPORT_SYMBOL(kernel_accept);
3289
3290 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3291 int flags)
3292 {
3293 return sock->ops->connect(sock, addr, addrlen, flags);
3294 }
3295 EXPORT_SYMBOL(kernel_connect);
3296
3297 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3298 int *addrlen)
3299 {
3300 return sock->ops->getname(sock, addr, addrlen, 0);
3301 }
3302 EXPORT_SYMBOL(kernel_getsockname);
3303
3304 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3305 int *addrlen)
3306 {
3307 return sock->ops->getname(sock, addr, addrlen, 1);
3308 }
3309 EXPORT_SYMBOL(kernel_getpeername);
3310
3311 int kernel_getsockopt(struct socket *sock, int level, int optname,
3312 char *optval, int *optlen)
3313 {
3314 mm_segment_t oldfs = get_fs();
3315 char __user *uoptval;
3316 int __user *uoptlen;
3317 int err;
3318
3319 uoptval = (char __user __force *) optval;
3320 uoptlen = (int __user __force *) optlen;
3321
3322 set_fs(KERNEL_DS);
3323 if (level == SOL_SOCKET)
3324 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3325 else
3326 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3327 uoptlen);
3328 set_fs(oldfs);
3329 return err;
3330 }
3331 EXPORT_SYMBOL(kernel_getsockopt);
3332
3333 int kernel_setsockopt(struct socket *sock, int level, int optname,
3334 char *optval, unsigned int optlen)
3335 {
3336 mm_segment_t oldfs = get_fs();
3337 char __user *uoptval;
3338 int err;
3339
3340 uoptval = (char __user __force *) optval;
3341
3342 set_fs(KERNEL_DS);
3343 if (level == SOL_SOCKET)
3344 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3345 else
3346 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3347 optlen);
3348 set_fs(oldfs);
3349 return err;
3350 }
3351 EXPORT_SYMBOL(kernel_setsockopt);
3352
3353 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3354 size_t size, int flags)
3355 {
3356 sock_update_classid(sock->sk);
3357
3358 if (sock->ops->sendpage)
3359 return sock->ops->sendpage(sock, page, offset, size, flags);
3360
3361 return sock_no_sendpage(sock, page, offset, size, flags);
3362 }
3363 EXPORT_SYMBOL(kernel_sendpage);
3364
3365 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3366 {
3367 mm_segment_t oldfs = get_fs();
3368 int err;
3369
3370 set_fs(KERNEL_DS);
3371 err = sock->ops->ioctl(sock, cmd, arg);
3372 set_fs(oldfs);
3373
3374 return err;
3375 }
3376 EXPORT_SYMBOL(kernel_sock_ioctl);
3377
3378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3379 {
3380 return sock->ops->shutdown(sock, how);
3381 }
3382 EXPORT_SYMBOL(kernel_sock_shutdown);