[NET]: allow 32 bit socket ioctl in 64 bit kernel
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/divert.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
116 unsigned long count, loff_t *ppos);
117 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
118 unsigned long count, loff_t *ppos);
119 static ssize_t sock_sendpage(struct file *file, struct page *page,
120 int offset, size_t size, loff_t *ppos, int more);
121
122
123 /*
124 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
125 * in the operation structures but are done directly via the socketcall() multiplexor.
126 */
127
128 static struct file_operations socket_file_ops = {
129 .owner = THIS_MODULE,
130 .llseek = no_llseek,
131 .aio_read = sock_aio_read,
132 .aio_write = sock_aio_write,
133 .poll = sock_poll,
134 .unlocked_ioctl = sock_ioctl,
135 #ifdef CONFIG_COMPAT
136 .compat_ioctl = compat_sock_ioctl,
137 #endif
138 .mmap = sock_mmap,
139 .open = sock_no_open, /* special open code to disallow open via /proc */
140 .release = sock_close,
141 .fasync = sock_fasync,
142 .readv = sock_readv,
143 .writev = sock_writev,
144 .sendpage = sock_sendpage
145 };
146
147 /*
148 * The protocol list. Each protocol is registered in here.
149 */
150
151 static struct net_proto_family *net_families[NPROTO];
152
153 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
154 static atomic_t net_family_lockct = ATOMIC_INIT(0);
155 static DEFINE_SPINLOCK(net_family_lock);
156
157 /* The strategy is: modifications net_family vector are short, do not
158 sleep and veeery rare, but read access should be free of any exclusive
159 locks.
160 */
161
162 static void net_family_write_lock(void)
163 {
164 spin_lock(&net_family_lock);
165 while (atomic_read(&net_family_lockct) != 0) {
166 spin_unlock(&net_family_lock);
167
168 yield();
169
170 spin_lock(&net_family_lock);
171 }
172 }
173
174 static __inline__ void net_family_write_unlock(void)
175 {
176 spin_unlock(&net_family_lock);
177 }
178
179 static __inline__ void net_family_read_lock(void)
180 {
181 atomic_inc(&net_family_lockct);
182 spin_unlock_wait(&net_family_lock);
183 }
184
185 static __inline__ void net_family_read_unlock(void)
186 {
187 atomic_dec(&net_family_lockct);
188 }
189
190 #else
191 #define net_family_write_lock() do { } while(0)
192 #define net_family_write_unlock() do { } while(0)
193 #define net_family_read_lock() do { } while(0)
194 #define net_family_read_unlock() do { } while(0)
195 #endif
196
197
198 /*
199 * Statistics counters of the socket lists
200 */
201
202 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
203
204 /*
205 * Support routines. Move socket addresses back and forth across the kernel/user
206 * divide and look after the messy bits.
207 */
208
209 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
210 16 for IP, 16 for IPX,
211 24 for IPv6,
212 about 80 for AX.25
213 must be at least one bigger than
214 the AF_UNIX size (see net/unix/af_unix.c
215 :unix_mkname()).
216 */
217
218 /**
219 * move_addr_to_kernel - copy a socket address into kernel space
220 * @uaddr: Address in user space
221 * @kaddr: Address in kernel space
222 * @ulen: Length in user space
223 *
224 * The address is copied into kernel space. If the provided address is
225 * too long an error code of -EINVAL is returned. If the copy gives
226 * invalid addresses -EFAULT is returned. On a success 0 is returned.
227 */
228
229 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
230 {
231 if(ulen<0||ulen>MAX_SOCK_ADDR)
232 return -EINVAL;
233 if(ulen==0)
234 return 0;
235 if(copy_from_user(kaddr,uaddr,ulen))
236 return -EFAULT;
237 return audit_sockaddr(ulen, kaddr);
238 }
239
240 /**
241 * move_addr_to_user - copy an address to user space
242 * @kaddr: kernel space address
243 * @klen: length of address in kernel
244 * @uaddr: user space address
245 * @ulen: pointer to user length field
246 *
247 * The value pointed to by ulen on entry is the buffer length available.
248 * This is overwritten with the buffer space used. -EINVAL is returned
249 * if an overlong buffer is specified or a negative buffer size. -EFAULT
250 * is returned if either the buffer or the length field are not
251 * accessible.
252 * After copying the data up to the limit the user specifies, the true
253 * length of the data is written over the length limit the user
254 * specified. Zero is returned for a success.
255 */
256
257 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
258 {
259 int err;
260 int len;
261
262 if((err=get_user(len, ulen)))
263 return err;
264 if(len>klen)
265 len=klen;
266 if(len<0 || len> MAX_SOCK_ADDR)
267 return -EINVAL;
268 if(len)
269 {
270 if(copy_to_user(uaddr,kaddr,len))
271 return -EFAULT;
272 }
273 /*
274 * "fromlen shall refer to the value before truncation.."
275 * 1003.1g
276 */
277 return __put_user(klen, ulen);
278 }
279
280 #define SOCKFS_MAGIC 0x534F434B
281
282 static kmem_cache_t * sock_inode_cachep __read_mostly;
283
284 static struct inode *sock_alloc_inode(struct super_block *sb)
285 {
286 struct socket_alloc *ei;
287 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
288 if (!ei)
289 return NULL;
290 init_waitqueue_head(&ei->socket.wait);
291
292 ei->socket.fasync_list = NULL;
293 ei->socket.state = SS_UNCONNECTED;
294 ei->socket.flags = 0;
295 ei->socket.ops = NULL;
296 ei->socket.sk = NULL;
297 ei->socket.file = NULL;
298 ei->socket.flags = 0;
299
300 return &ei->vfs_inode;
301 }
302
303 static void sock_destroy_inode(struct inode *inode)
304 {
305 kmem_cache_free(sock_inode_cachep,
306 container_of(inode, struct socket_alloc, vfs_inode));
307 }
308
309 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
310 {
311 struct socket_alloc *ei = (struct socket_alloc *) foo;
312
313 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
314 SLAB_CTOR_CONSTRUCTOR)
315 inode_init_once(&ei->vfs_inode);
316 }
317
318 static int init_inodecache(void)
319 {
320 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
321 sizeof(struct socket_alloc),
322 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
323 init_once, NULL);
324 if (sock_inode_cachep == NULL)
325 return -ENOMEM;
326 return 0;
327 }
328
329 static struct super_operations sockfs_ops = {
330 .alloc_inode = sock_alloc_inode,
331 .destroy_inode =sock_destroy_inode,
332 .statfs = simple_statfs,
333 };
334
335 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
336 int flags, const char *dev_name, void *data)
337 {
338 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
339 }
340
341 static struct vfsmount *sock_mnt __read_mostly;
342
343 static struct file_system_type sock_fs_type = {
344 .name = "sockfs",
345 .get_sb = sockfs_get_sb,
346 .kill_sb = kill_anon_super,
347 };
348 static int sockfs_delete_dentry(struct dentry *dentry)
349 {
350 return 1;
351 }
352 static struct dentry_operations sockfs_dentry_operations = {
353 .d_delete = sockfs_delete_dentry,
354 };
355
356 /*
357 * Obtains the first available file descriptor and sets it up for use.
358 *
359 * These functions create file structures and maps them to fd space
360 * of the current process. On success it returns file descriptor
361 * and file struct implicitly stored in sock->file.
362 * Note that another thread may close file descriptor before we return
363 * from this function. We use the fact that now we do not refer
364 * to socket after mapping. If one day we will need it, this
365 * function will increment ref. count on file by 1.
366 *
367 * In any case returned fd MAY BE not valid!
368 * This race condition is unavoidable
369 * with shared fd spaces, we cannot solve it inside kernel,
370 * but we take care of internal coherence yet.
371 */
372
373 static int sock_alloc_fd(struct file **filep)
374 {
375 int fd;
376
377 fd = get_unused_fd();
378 if (likely(fd >= 0)) {
379 struct file *file = get_empty_filp();
380
381 *filep = file;
382 if (unlikely(!file)) {
383 put_unused_fd(fd);
384 return -ENFILE;
385 }
386 } else
387 *filep = NULL;
388 return fd;
389 }
390
391 static int sock_attach_fd(struct socket *sock, struct file *file)
392 {
393 struct qstr this;
394 char name[32];
395
396 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
397 this.name = name;
398 this.hash = SOCK_INODE(sock)->i_ino;
399
400 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
401 if (unlikely(!file->f_dentry))
402 return -ENOMEM;
403
404 file->f_dentry->d_op = &sockfs_dentry_operations;
405 d_add(file->f_dentry, SOCK_INODE(sock));
406 file->f_vfsmnt = mntget(sock_mnt);
407 file->f_mapping = file->f_dentry->d_inode->i_mapping;
408
409 sock->file = file;
410 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
411 file->f_mode = FMODE_READ | FMODE_WRITE;
412 file->f_flags = O_RDWR;
413 file->f_pos = 0;
414 file->private_data = sock;
415
416 return 0;
417 }
418
419 int sock_map_fd(struct socket *sock)
420 {
421 struct file *newfile;
422 int fd = sock_alloc_fd(&newfile);
423
424 if (likely(fd >= 0)) {
425 int err = sock_attach_fd(sock, newfile);
426
427 if (unlikely(err < 0)) {
428 put_filp(newfile);
429 put_unused_fd(fd);
430 return err;
431 }
432 fd_install(fd, newfile);
433 }
434 return fd;
435 }
436
437 static struct socket *sock_from_file(struct file *file, int *err)
438 {
439 struct inode *inode;
440 struct socket *sock;
441
442 if (file->f_op == &socket_file_ops)
443 return file->private_data; /* set in sock_map_fd */
444
445 inode = file->f_dentry->d_inode;
446 if (!S_ISSOCK(inode->i_mode)) {
447 *err = -ENOTSOCK;
448 return NULL;
449 }
450
451 sock = SOCKET_I(inode);
452 if (sock->file != file) {
453 printk(KERN_ERR "socki_lookup: socket file changed!\n");
454 sock->file = file;
455 }
456 return sock;
457 }
458
459 /**
460 * sockfd_lookup - Go from a file number to its socket slot
461 * @fd: file handle
462 * @err: pointer to an error code return
463 *
464 * The file handle passed in is locked and the socket it is bound
465 * too is returned. If an error occurs the err pointer is overwritten
466 * with a negative errno code and NULL is returned. The function checks
467 * for both invalid handles and passing a handle which is not a socket.
468 *
469 * On a success the socket object pointer is returned.
470 */
471
472 struct socket *sockfd_lookup(int fd, int *err)
473 {
474 struct file *file;
475 struct socket *sock;
476
477 if (!(file = fget(fd))) {
478 *err = -EBADF;
479 return NULL;
480 }
481 sock = sock_from_file(file, err);
482 if (!sock)
483 fput(file);
484 return sock;
485 }
486
487 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
488 {
489 struct file *file;
490 struct socket *sock;
491
492 file = fget_light(fd, fput_needed);
493 if (file) {
494 sock = sock_from_file(file, err);
495 if (sock)
496 return sock;
497 fput_light(file, *fput_needed);
498 }
499 return NULL;
500 }
501
502 /**
503 * sock_alloc - allocate a socket
504 *
505 * Allocate a new inode and socket object. The two are bound together
506 * and initialised. The socket is then returned. If we are out of inodes
507 * NULL is returned.
508 */
509
510 static struct socket *sock_alloc(void)
511 {
512 struct inode * inode;
513 struct socket * sock;
514
515 inode = new_inode(sock_mnt->mnt_sb);
516 if (!inode)
517 return NULL;
518
519 sock = SOCKET_I(inode);
520
521 inode->i_mode = S_IFSOCK|S_IRWXUGO;
522 inode->i_uid = current->fsuid;
523 inode->i_gid = current->fsgid;
524
525 get_cpu_var(sockets_in_use)++;
526 put_cpu_var(sockets_in_use);
527 return sock;
528 }
529
530 /*
531 * In theory you can't get an open on this inode, but /proc provides
532 * a back door. Remember to keep it shut otherwise you'll let the
533 * creepy crawlies in.
534 */
535
536 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
537 {
538 return -ENXIO;
539 }
540
541 struct file_operations bad_sock_fops = {
542 .owner = THIS_MODULE,
543 .open = sock_no_open,
544 };
545
546 /**
547 * sock_release - close a socket
548 * @sock: socket to close
549 *
550 * The socket is released from the protocol stack if it has a release
551 * callback, and the inode is then released if the socket is bound to
552 * an inode not a file.
553 */
554
555 void sock_release(struct socket *sock)
556 {
557 if (sock->ops) {
558 struct module *owner = sock->ops->owner;
559
560 sock->ops->release(sock);
561 sock->ops = NULL;
562 module_put(owner);
563 }
564
565 if (sock->fasync_list)
566 printk(KERN_ERR "sock_release: fasync list not empty!\n");
567
568 get_cpu_var(sockets_in_use)--;
569 put_cpu_var(sockets_in_use);
570 if (!sock->file) {
571 iput(SOCK_INODE(sock));
572 return;
573 }
574 sock->file=NULL;
575 }
576
577 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
578 struct msghdr *msg, size_t size)
579 {
580 struct sock_iocb *si = kiocb_to_siocb(iocb);
581 int err;
582
583 si->sock = sock;
584 si->scm = NULL;
585 si->msg = msg;
586 si->size = size;
587
588 err = security_socket_sendmsg(sock, msg, size);
589 if (err)
590 return err;
591
592 return sock->ops->sendmsg(iocb, sock, msg, size);
593 }
594
595 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
596 {
597 struct kiocb iocb;
598 struct sock_iocb siocb;
599 int ret;
600
601 init_sync_kiocb(&iocb, NULL);
602 iocb.private = &siocb;
603 ret = __sock_sendmsg(&iocb, sock, msg, size);
604 if (-EIOCBQUEUED == ret)
605 ret = wait_on_sync_kiocb(&iocb);
606 return ret;
607 }
608
609 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
610 struct kvec *vec, size_t num, size_t size)
611 {
612 mm_segment_t oldfs = get_fs();
613 int result;
614
615 set_fs(KERNEL_DS);
616 /*
617 * the following is safe, since for compiler definitions of kvec and
618 * iovec are identical, yielding the same in-core layout and alignment
619 */
620 msg->msg_iov = (struct iovec *)vec,
621 msg->msg_iovlen = num;
622 result = sock_sendmsg(sock, msg, size);
623 set_fs(oldfs);
624 return result;
625 }
626
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628 struct msghdr *msg, size_t size, int flags)
629 {
630 int err;
631 struct sock_iocb *si = kiocb_to_siocb(iocb);
632
633 si->sock = sock;
634 si->scm = NULL;
635 si->msg = msg;
636 si->size = size;
637 si->flags = flags;
638
639 err = security_socket_recvmsg(sock, msg, size, flags);
640 if (err)
641 return err;
642
643 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
644 }
645
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647 size_t size, int flags)
648 {
649 struct kiocb iocb;
650 struct sock_iocb siocb;
651 int ret;
652
653 init_sync_kiocb(&iocb, NULL);
654 iocb.private = &siocb;
655 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656 if (-EIOCBQUEUED == ret)
657 ret = wait_on_sync_kiocb(&iocb);
658 return ret;
659 }
660
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662 struct kvec *vec, size_t num,
663 size_t size, int flags)
664 {
665 mm_segment_t oldfs = get_fs();
666 int result;
667
668 set_fs(KERNEL_DS);
669 /*
670 * the following is safe, since for compiler definitions of kvec and
671 * iovec are identical, yielding the same in-core layout and alignment
672 */
673 msg->msg_iov = (struct iovec *)vec,
674 msg->msg_iovlen = num;
675 result = sock_recvmsg(sock, msg, size, flags);
676 set_fs(oldfs);
677 return result;
678 }
679
680 static void sock_aio_dtor(struct kiocb *iocb)
681 {
682 kfree(iocb->private);
683 }
684
685 static ssize_t sock_sendpage(struct file *file, struct page *page,
686 int offset, size_t size, loff_t *ppos, int more)
687 {
688 struct socket *sock;
689 int flags;
690
691 sock = file->private_data;
692
693 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
694 if (more)
695 flags |= MSG_MORE;
696
697 return sock->ops->sendpage(sock, page, offset, size, flags);
698 }
699
700 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
701 char __user *ubuf, size_t size, struct sock_iocb *siocb)
702 {
703 if (!is_sync_kiocb(iocb)) {
704 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
705 if (!siocb)
706 return NULL;
707 iocb->ki_dtor = sock_aio_dtor;
708 }
709
710 siocb->kiocb = iocb;
711 siocb->async_iov.iov_base = ubuf;
712 siocb->async_iov.iov_len = size;
713
714 iocb->private = siocb;
715 return siocb;
716 }
717
718 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
719 struct file *file, struct iovec *iov, unsigned long nr_segs)
720 {
721 struct socket *sock = file->private_data;
722 size_t size = 0;
723 int i;
724
725 for (i = 0 ; i < nr_segs ; i++)
726 size += iov[i].iov_len;
727
728 msg->msg_name = NULL;
729 msg->msg_namelen = 0;
730 msg->msg_control = NULL;
731 msg->msg_controllen = 0;
732 msg->msg_iov = (struct iovec *) iov;
733 msg->msg_iovlen = nr_segs;
734 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
735
736 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
737 }
738
739 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
740 unsigned long nr_segs, loff_t *ppos)
741 {
742 struct kiocb iocb;
743 struct sock_iocb siocb;
744 struct msghdr msg;
745 int ret;
746
747 init_sync_kiocb(&iocb, NULL);
748 iocb.private = &siocb;
749
750 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
751 if (-EIOCBQUEUED == ret)
752 ret = wait_on_sync_kiocb(&iocb);
753 return ret;
754 }
755
756 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
757 size_t count, loff_t pos)
758 {
759 struct sock_iocb siocb, *x;
760
761 if (pos != 0)
762 return -ESPIPE;
763 if (count == 0) /* Match SYS5 behaviour */
764 return 0;
765
766 x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
767 if (!x)
768 return -ENOMEM;
769 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
770 &x->async_iov, 1);
771 }
772
773 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
774 struct file *file, struct iovec *iov, unsigned long nr_segs)
775 {
776 struct socket *sock = file->private_data;
777 size_t size = 0;
778 int i;
779
780 for (i = 0 ; i < nr_segs ; i++)
781 size += iov[i].iov_len;
782
783 msg->msg_name = NULL;
784 msg->msg_namelen = 0;
785 msg->msg_control = NULL;
786 msg->msg_controllen = 0;
787 msg->msg_iov = (struct iovec *) iov;
788 msg->msg_iovlen = nr_segs;
789 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
790 if (sock->type == SOCK_SEQPACKET)
791 msg->msg_flags |= MSG_EOR;
792
793 return __sock_sendmsg(iocb, sock, msg, size);
794 }
795
796 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
797 unsigned long nr_segs, loff_t *ppos)
798 {
799 struct msghdr msg;
800 struct kiocb iocb;
801 struct sock_iocb siocb;
802 int ret;
803
804 init_sync_kiocb(&iocb, NULL);
805 iocb.private = &siocb;
806
807 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
808 if (-EIOCBQUEUED == ret)
809 ret = wait_on_sync_kiocb(&iocb);
810 return ret;
811 }
812
813 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
814 size_t count, loff_t pos)
815 {
816 struct sock_iocb siocb, *x;
817
818 if (pos != 0)
819 return -ESPIPE;
820 if (count == 0) /* Match SYS5 behaviour */
821 return 0;
822
823 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
824 if (!x)
825 return -ENOMEM;
826
827 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
828 &x->async_iov, 1);
829 }
830
831
832 /*
833 * Atomic setting of ioctl hooks to avoid race
834 * with module unload.
835 */
836
837 static DEFINE_MUTEX(br_ioctl_mutex);
838 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
839
840 void brioctl_set(int (*hook)(unsigned int, void __user *))
841 {
842 mutex_lock(&br_ioctl_mutex);
843 br_ioctl_hook = hook;
844 mutex_unlock(&br_ioctl_mutex);
845 }
846 EXPORT_SYMBOL(brioctl_set);
847
848 static DEFINE_MUTEX(vlan_ioctl_mutex);
849 static int (*vlan_ioctl_hook)(void __user *arg);
850
851 void vlan_ioctl_set(int (*hook)(void __user *))
852 {
853 mutex_lock(&vlan_ioctl_mutex);
854 vlan_ioctl_hook = hook;
855 mutex_unlock(&vlan_ioctl_mutex);
856 }
857 EXPORT_SYMBOL(vlan_ioctl_set);
858
859 static DEFINE_MUTEX(dlci_ioctl_mutex);
860 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
861
862 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
863 {
864 mutex_lock(&dlci_ioctl_mutex);
865 dlci_ioctl_hook = hook;
866 mutex_unlock(&dlci_ioctl_mutex);
867 }
868 EXPORT_SYMBOL(dlci_ioctl_set);
869
870 /*
871 * With an ioctl, arg may well be a user mode pointer, but we don't know
872 * what to do with it - that's up to the protocol still.
873 */
874
875 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
876 {
877 struct socket *sock;
878 void __user *argp = (void __user *)arg;
879 int pid, err;
880
881 sock = file->private_data;
882 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
883 err = dev_ioctl(cmd, argp);
884 } else
885 #ifdef CONFIG_WIRELESS_EXT
886 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
887 err = dev_ioctl(cmd, argp);
888 } else
889 #endif /* CONFIG_WIRELESS_EXT */
890 switch (cmd) {
891 case FIOSETOWN:
892 case SIOCSPGRP:
893 err = -EFAULT;
894 if (get_user(pid, (int __user *)argp))
895 break;
896 err = f_setown(sock->file, pid, 1);
897 break;
898 case FIOGETOWN:
899 case SIOCGPGRP:
900 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
901 break;
902 case SIOCGIFBR:
903 case SIOCSIFBR:
904 case SIOCBRADDBR:
905 case SIOCBRDELBR:
906 err = -ENOPKG;
907 if (!br_ioctl_hook)
908 request_module("bridge");
909
910 mutex_lock(&br_ioctl_mutex);
911 if (br_ioctl_hook)
912 err = br_ioctl_hook(cmd, argp);
913 mutex_unlock(&br_ioctl_mutex);
914 break;
915 case SIOCGIFVLAN:
916 case SIOCSIFVLAN:
917 err = -ENOPKG;
918 if (!vlan_ioctl_hook)
919 request_module("8021q");
920
921 mutex_lock(&vlan_ioctl_mutex);
922 if (vlan_ioctl_hook)
923 err = vlan_ioctl_hook(argp);
924 mutex_unlock(&vlan_ioctl_mutex);
925 break;
926 case SIOCGIFDIVERT:
927 case SIOCSIFDIVERT:
928 /* Convert this to call through a hook */
929 err = divert_ioctl(cmd, argp);
930 break;
931 case SIOCADDDLCI:
932 case SIOCDELDLCI:
933 err = -ENOPKG;
934 if (!dlci_ioctl_hook)
935 request_module("dlci");
936
937 if (dlci_ioctl_hook) {
938 mutex_lock(&dlci_ioctl_mutex);
939 err = dlci_ioctl_hook(cmd, argp);
940 mutex_unlock(&dlci_ioctl_mutex);
941 }
942 break;
943 default:
944 err = sock->ops->ioctl(sock, cmd, arg);
945
946 /*
947 * If this ioctl is unknown try to hand it down
948 * to the NIC driver.
949 */
950 if (err == -ENOIOCTLCMD)
951 err = dev_ioctl(cmd, argp);
952 break;
953 }
954 return err;
955 }
956
957 int sock_create_lite(int family, int type, int protocol, struct socket **res)
958 {
959 int err;
960 struct socket *sock = NULL;
961
962 err = security_socket_create(family, type, protocol, 1);
963 if (err)
964 goto out;
965
966 sock = sock_alloc();
967 if (!sock) {
968 err = -ENOMEM;
969 goto out;
970 }
971
972 security_socket_post_create(sock, family, type, protocol, 1);
973 sock->type = type;
974 out:
975 *res = sock;
976 return err;
977 }
978
979 /* No kernel lock held - perfect */
980 static unsigned int sock_poll(struct file *file, poll_table * wait)
981 {
982 struct socket *sock;
983
984 /*
985 * We can't return errors to poll, so it's either yes or no.
986 */
987 sock = file->private_data;
988 return sock->ops->poll(file, sock, wait);
989 }
990
991 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
992 {
993 struct socket *sock = file->private_data;
994
995 return sock->ops->mmap(file, sock, vma);
996 }
997
998 static int sock_close(struct inode *inode, struct file *filp)
999 {
1000 /*
1001 * It was possible the inode is NULL we were
1002 * closing an unfinished socket.
1003 */
1004
1005 if (!inode)
1006 {
1007 printk(KERN_DEBUG "sock_close: NULL inode\n");
1008 return 0;
1009 }
1010 sock_fasync(-1, filp, 0);
1011 sock_release(SOCKET_I(inode));
1012 return 0;
1013 }
1014
1015 /*
1016 * Update the socket async list
1017 *
1018 * Fasync_list locking strategy.
1019 *
1020 * 1. fasync_list is modified only under process context socket lock
1021 * i.e. under semaphore.
1022 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1023 * or under socket lock.
1024 * 3. fasync_list can be used from softirq context, so that
1025 * modification under socket lock have to be enhanced with
1026 * write_lock_bh(&sk->sk_callback_lock).
1027 * --ANK (990710)
1028 */
1029
1030 static int sock_fasync(int fd, struct file *filp, int on)
1031 {
1032 struct fasync_struct *fa, *fna=NULL, **prev;
1033 struct socket *sock;
1034 struct sock *sk;
1035
1036 if (on)
1037 {
1038 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1039 if(fna==NULL)
1040 return -ENOMEM;
1041 }
1042
1043 sock = filp->private_data;
1044
1045 if ((sk=sock->sk) == NULL) {
1046 kfree(fna);
1047 return -EINVAL;
1048 }
1049
1050 lock_sock(sk);
1051
1052 prev=&(sock->fasync_list);
1053
1054 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1055 if (fa->fa_file==filp)
1056 break;
1057
1058 if(on)
1059 {
1060 if(fa!=NULL)
1061 {
1062 write_lock_bh(&sk->sk_callback_lock);
1063 fa->fa_fd=fd;
1064 write_unlock_bh(&sk->sk_callback_lock);
1065
1066 kfree(fna);
1067 goto out;
1068 }
1069 fna->fa_file=filp;
1070 fna->fa_fd=fd;
1071 fna->magic=FASYNC_MAGIC;
1072 fna->fa_next=sock->fasync_list;
1073 write_lock_bh(&sk->sk_callback_lock);
1074 sock->fasync_list=fna;
1075 write_unlock_bh(&sk->sk_callback_lock);
1076 }
1077 else
1078 {
1079 if (fa!=NULL)
1080 {
1081 write_lock_bh(&sk->sk_callback_lock);
1082 *prev=fa->fa_next;
1083 write_unlock_bh(&sk->sk_callback_lock);
1084 kfree(fa);
1085 }
1086 }
1087
1088 out:
1089 release_sock(sock->sk);
1090 return 0;
1091 }
1092
1093 /* This function may be called only under socket lock or callback_lock */
1094
1095 int sock_wake_async(struct socket *sock, int how, int band)
1096 {
1097 if (!sock || !sock->fasync_list)
1098 return -1;
1099 switch (how)
1100 {
1101 case 1:
1102
1103 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1104 break;
1105 goto call_kill;
1106 case 2:
1107 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1108 break;
1109 /* fall through */
1110 case 0:
1111 call_kill:
1112 __kill_fasync(sock->fasync_list, SIGIO, band);
1113 break;
1114 case 3:
1115 __kill_fasync(sock->fasync_list, SIGURG, band);
1116 }
1117 return 0;
1118 }
1119
1120 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1121 {
1122 int err;
1123 struct socket *sock;
1124
1125 /*
1126 * Check protocol is in range
1127 */
1128 if (family < 0 || family >= NPROTO)
1129 return -EAFNOSUPPORT;
1130 if (type < 0 || type >= SOCK_MAX)
1131 return -EINVAL;
1132
1133 /* Compatibility.
1134
1135 This uglymoron is moved from INET layer to here to avoid
1136 deadlock in module load.
1137 */
1138 if (family == PF_INET && type == SOCK_PACKET) {
1139 static int warned;
1140 if (!warned) {
1141 warned = 1;
1142 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1143 }
1144 family = PF_PACKET;
1145 }
1146
1147 err = security_socket_create(family, type, protocol, kern);
1148 if (err)
1149 return err;
1150
1151 #if defined(CONFIG_KMOD)
1152 /* Attempt to load a protocol module if the find failed.
1153 *
1154 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1155 * requested real, full-featured networking support upon configuration.
1156 * Otherwise module support will break!
1157 */
1158 if (net_families[family]==NULL)
1159 {
1160 request_module("net-pf-%d",family);
1161 }
1162 #endif
1163
1164 net_family_read_lock();
1165 if (net_families[family] == NULL) {
1166 err = -EAFNOSUPPORT;
1167 goto out;
1168 }
1169
1170 /*
1171 * Allocate the socket and allow the family to set things up. if
1172 * the protocol is 0, the family is instructed to select an appropriate
1173 * default.
1174 */
1175
1176 if (!(sock = sock_alloc())) {
1177 printk(KERN_WARNING "socket: no more sockets\n");
1178 err = -ENFILE; /* Not exactly a match, but its the
1179 closest posix thing */
1180 goto out;
1181 }
1182
1183 sock->type = type;
1184
1185 /*
1186 * We will call the ->create function, that possibly is in a loadable
1187 * module, so we have to bump that loadable module refcnt first.
1188 */
1189 err = -EAFNOSUPPORT;
1190 if (!try_module_get(net_families[family]->owner))
1191 goto out_release;
1192
1193 if ((err = net_families[family]->create(sock, protocol)) < 0) {
1194 sock->ops = NULL;
1195 goto out_module_put;
1196 }
1197
1198 /*
1199 * Now to bump the refcnt of the [loadable] module that owns this
1200 * socket at sock_release time we decrement its refcnt.
1201 */
1202 if (!try_module_get(sock->ops->owner)) {
1203 sock->ops = NULL;
1204 goto out_module_put;
1205 }
1206 /*
1207 * Now that we're done with the ->create function, the [loadable]
1208 * module can have its refcnt decremented
1209 */
1210 module_put(net_families[family]->owner);
1211 *res = sock;
1212 security_socket_post_create(sock, family, type, protocol, kern);
1213
1214 out:
1215 net_family_read_unlock();
1216 return err;
1217 out_module_put:
1218 module_put(net_families[family]->owner);
1219 out_release:
1220 sock_release(sock);
1221 goto out;
1222 }
1223
1224 int sock_create(int family, int type, int protocol, struct socket **res)
1225 {
1226 return __sock_create(family, type, protocol, res, 0);
1227 }
1228
1229 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1230 {
1231 return __sock_create(family, type, protocol, res, 1);
1232 }
1233
1234 asmlinkage long sys_socket(int family, int type, int protocol)
1235 {
1236 int retval;
1237 struct socket *sock;
1238
1239 retval = sock_create(family, type, protocol, &sock);
1240 if (retval < 0)
1241 goto out;
1242
1243 retval = sock_map_fd(sock);
1244 if (retval < 0)
1245 goto out_release;
1246
1247 out:
1248 /* It may be already another descriptor 8) Not kernel problem. */
1249 return retval;
1250
1251 out_release:
1252 sock_release(sock);
1253 return retval;
1254 }
1255
1256 /*
1257 * Create a pair of connected sockets.
1258 */
1259
1260 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1261 {
1262 struct socket *sock1, *sock2;
1263 int fd1, fd2, err;
1264
1265 /*
1266 * Obtain the first socket and check if the underlying protocol
1267 * supports the socketpair call.
1268 */
1269
1270 err = sock_create(family, type, protocol, &sock1);
1271 if (err < 0)
1272 goto out;
1273
1274 err = sock_create(family, type, protocol, &sock2);
1275 if (err < 0)
1276 goto out_release_1;
1277
1278 err = sock1->ops->socketpair(sock1, sock2);
1279 if (err < 0)
1280 goto out_release_both;
1281
1282 fd1 = fd2 = -1;
1283
1284 err = sock_map_fd(sock1);
1285 if (err < 0)
1286 goto out_release_both;
1287 fd1 = err;
1288
1289 err = sock_map_fd(sock2);
1290 if (err < 0)
1291 goto out_close_1;
1292 fd2 = err;
1293
1294 /* fd1 and fd2 may be already another descriptors.
1295 * Not kernel problem.
1296 */
1297
1298 err = put_user(fd1, &usockvec[0]);
1299 if (!err)
1300 err = put_user(fd2, &usockvec[1]);
1301 if (!err)
1302 return 0;
1303
1304 sys_close(fd2);
1305 sys_close(fd1);
1306 return err;
1307
1308 out_close_1:
1309 sock_release(sock2);
1310 sys_close(fd1);
1311 return err;
1312
1313 out_release_both:
1314 sock_release(sock2);
1315 out_release_1:
1316 sock_release(sock1);
1317 out:
1318 return err;
1319 }
1320
1321
1322 /*
1323 * Bind a name to a socket. Nothing much to do here since it's
1324 * the protocol's responsibility to handle the local address.
1325 *
1326 * We move the socket address to kernel space before we call
1327 * the protocol layer (having also checked the address is ok).
1328 */
1329
1330 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1331 {
1332 struct socket *sock;
1333 char address[MAX_SOCK_ADDR];
1334 int err, fput_needed;
1335
1336 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1337 {
1338 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1339 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1340 if (!err)
1341 err = sock->ops->bind(sock,
1342 (struct sockaddr *)address, addrlen);
1343 }
1344 fput_light(sock->file, fput_needed);
1345 }
1346 return err;
1347 }
1348
1349
1350 /*
1351 * Perform a listen. Basically, we allow the protocol to do anything
1352 * necessary for a listen, and if that works, we mark the socket as
1353 * ready for listening.
1354 */
1355
1356 int sysctl_somaxconn = SOMAXCONN;
1357
1358 asmlinkage long sys_listen(int fd, int backlog)
1359 {
1360 struct socket *sock;
1361 int err, fput_needed;
1362
1363 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1364 if ((unsigned) backlog > sysctl_somaxconn)
1365 backlog = sysctl_somaxconn;
1366
1367 err = security_socket_listen(sock, backlog);
1368 if (!err)
1369 err = sock->ops->listen(sock, backlog);
1370
1371 fput_light(sock->file, fput_needed);
1372 }
1373 return err;
1374 }
1375
1376
1377 /*
1378 * For accept, we attempt to create a new socket, set up the link
1379 * with the client, wake up the client, then return the new
1380 * connected fd. We collect the address of the connector in kernel
1381 * space and move it to user at the very end. This is unclean because
1382 * we open the socket then return an error.
1383 *
1384 * 1003.1g adds the ability to recvmsg() to query connection pending
1385 * status to recvmsg. We need to add that support in a way thats
1386 * clean when we restucture accept also.
1387 */
1388
1389 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1390 {
1391 struct socket *sock, *newsock;
1392 struct file *newfile;
1393 int err, len, newfd, fput_needed;
1394 char address[MAX_SOCK_ADDR];
1395
1396 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1397 if (!sock)
1398 goto out;
1399
1400 err = -ENFILE;
1401 if (!(newsock = sock_alloc()))
1402 goto out_put;
1403
1404 newsock->type = sock->type;
1405 newsock->ops = sock->ops;
1406
1407 /*
1408 * We don't need try_module_get here, as the listening socket (sock)
1409 * has the protocol module (sock->ops->owner) held.
1410 */
1411 __module_get(newsock->ops->owner);
1412
1413 newfd = sock_alloc_fd(&newfile);
1414 if (unlikely(newfd < 0)) {
1415 err = newfd;
1416 goto out_release;
1417 }
1418
1419 err = sock_attach_fd(newsock, newfile);
1420 if (err < 0)
1421 goto out_fd;
1422
1423 err = security_socket_accept(sock, newsock);
1424 if (err)
1425 goto out_fd;
1426
1427 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1428 if (err < 0)
1429 goto out_fd;
1430
1431 if (upeer_sockaddr) {
1432 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1433 err = -ECONNABORTED;
1434 goto out_fd;
1435 }
1436 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1437 if (err < 0)
1438 goto out_fd;
1439 }
1440
1441 /* File flags are not inherited via accept() unlike another OSes. */
1442
1443 fd_install(newfd, newfile);
1444 err = newfd;
1445
1446 security_socket_post_accept(sock, newsock);
1447
1448 out_put:
1449 fput_light(sock->file, fput_needed);
1450 out:
1451 return err;
1452 out_fd:
1453 put_filp(newfile);
1454 put_unused_fd(newfd);
1455 out_release:
1456 sock_release(newsock);
1457 goto out_put;
1458 }
1459
1460
1461 /*
1462 * Attempt to connect to a socket with the server address. The address
1463 * is in user space so we verify it is OK and move it to kernel space.
1464 *
1465 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1466 * break bindings
1467 *
1468 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1469 * other SEQPACKET protocols that take time to connect() as it doesn't
1470 * include the -EINPROGRESS status for such sockets.
1471 */
1472
1473 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1474 {
1475 struct socket *sock;
1476 char address[MAX_SOCK_ADDR];
1477 int err, fput_needed;
1478
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (!sock)
1481 goto out;
1482 err = move_addr_to_kernel(uservaddr, addrlen, address);
1483 if (err < 0)
1484 goto out_put;
1485
1486 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1487 if (err)
1488 goto out_put;
1489
1490 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1491 sock->file->f_flags);
1492 out_put:
1493 fput_light(sock->file, fput_needed);
1494 out:
1495 return err;
1496 }
1497
1498 /*
1499 * Get the local address ('name') of a socket object. Move the obtained
1500 * name to user space.
1501 */
1502
1503 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1504 {
1505 struct socket *sock;
1506 char address[MAX_SOCK_ADDR];
1507 int len, err, fput_needed;
1508
1509 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 if (!sock)
1511 goto out;
1512
1513 err = security_socket_getsockname(sock);
1514 if (err)
1515 goto out_put;
1516
1517 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1518 if (err)
1519 goto out_put;
1520 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1521
1522 out_put:
1523 fput_light(sock->file, fput_needed);
1524 out:
1525 return err;
1526 }
1527
1528 /*
1529 * Get the remote address ('name') of a socket object. Move the obtained
1530 * name to user space.
1531 */
1532
1533 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1534 {
1535 struct socket *sock;
1536 char address[MAX_SOCK_ADDR];
1537 int len, err, fput_needed;
1538
1539 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1540 err = security_socket_getpeername(sock);
1541 if (err) {
1542 fput_light(sock->file, fput_needed);
1543 return err;
1544 }
1545
1546 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1547 if (!err)
1548 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1549 fput_light(sock->file, fput_needed);
1550 }
1551 return err;
1552 }
1553
1554 /*
1555 * Send a datagram to a given address. We move the address into kernel
1556 * space and check the user space data area is readable before invoking
1557 * the protocol.
1558 */
1559
1560 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1561 struct sockaddr __user *addr, int addr_len)
1562 {
1563 struct socket *sock;
1564 char address[MAX_SOCK_ADDR];
1565 int err;
1566 struct msghdr msg;
1567 struct iovec iov;
1568 int fput_needed;
1569 struct file *sock_file;
1570
1571 sock_file = fget_light(fd, &fput_needed);
1572 if (!sock_file)
1573 return -EBADF;
1574
1575 sock = sock_from_file(sock_file, &err);
1576 if (!sock)
1577 goto out_put;
1578 iov.iov_base=buff;
1579 iov.iov_len=len;
1580 msg.msg_name=NULL;
1581 msg.msg_iov=&iov;
1582 msg.msg_iovlen=1;
1583 msg.msg_control=NULL;
1584 msg.msg_controllen=0;
1585 msg.msg_namelen=0;
1586 if (addr) {
1587 err = move_addr_to_kernel(addr, addr_len, address);
1588 if (err < 0)
1589 goto out_put;
1590 msg.msg_name=address;
1591 msg.msg_namelen=addr_len;
1592 }
1593 if (sock->file->f_flags & O_NONBLOCK)
1594 flags |= MSG_DONTWAIT;
1595 msg.msg_flags = flags;
1596 err = sock_sendmsg(sock, &msg, len);
1597
1598 out_put:
1599 fput_light(sock_file, fput_needed);
1600 return err;
1601 }
1602
1603 /*
1604 * Send a datagram down a socket.
1605 */
1606
1607 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1608 {
1609 return sys_sendto(fd, buff, len, flags, NULL, 0);
1610 }
1611
1612 /*
1613 * Receive a frame from the socket and optionally record the address of the
1614 * sender. We verify the buffers are writable and if needed move the
1615 * sender address from kernel to user space.
1616 */
1617
1618 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1619 struct sockaddr __user *addr, int __user *addr_len)
1620 {
1621 struct socket *sock;
1622 struct iovec iov;
1623 struct msghdr msg;
1624 char address[MAX_SOCK_ADDR];
1625 int err,err2;
1626 struct file *sock_file;
1627 int fput_needed;
1628
1629 sock_file = fget_light(fd, &fput_needed);
1630 if (!sock_file)
1631 return -EBADF;
1632
1633 sock = sock_from_file(sock_file, &err);
1634 if (!sock)
1635 goto out;
1636
1637 msg.msg_control=NULL;
1638 msg.msg_controllen=0;
1639 msg.msg_iovlen=1;
1640 msg.msg_iov=&iov;
1641 iov.iov_len=size;
1642 iov.iov_base=ubuf;
1643 msg.msg_name=address;
1644 msg.msg_namelen=MAX_SOCK_ADDR;
1645 if (sock->file->f_flags & O_NONBLOCK)
1646 flags |= MSG_DONTWAIT;
1647 err=sock_recvmsg(sock, &msg, size, flags);
1648
1649 if(err >= 0 && addr != NULL)
1650 {
1651 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1652 if(err2<0)
1653 err=err2;
1654 }
1655 out:
1656 fput_light(sock_file, fput_needed);
1657 return err;
1658 }
1659
1660 /*
1661 * Receive a datagram from a socket.
1662 */
1663
1664 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1665 {
1666 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1667 }
1668
1669 /*
1670 * Set a socket option. Because we don't know the option lengths we have
1671 * to pass the user mode parameter for the protocols to sort out.
1672 */
1673
1674 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1675 {
1676 int err, fput_needed;
1677 struct socket *sock;
1678
1679 if (optlen < 0)
1680 return -EINVAL;
1681
1682 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL)
1683 {
1684 err = security_socket_setsockopt(sock,level,optname);
1685 if (err)
1686 goto out_put;
1687
1688 if (level == SOL_SOCKET)
1689 err=sock_setsockopt(sock,level,optname,optval,optlen);
1690 else
1691 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1692 out_put:
1693 fput_light(sock->file, fput_needed);
1694 }
1695 return err;
1696 }
1697
1698 /*
1699 * Get a socket option. Because we don't know the option lengths we have
1700 * to pass a user mode parameter for the protocols to sort out.
1701 */
1702
1703 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1704 {
1705 int err, fput_needed;
1706 struct socket *sock;
1707
1708 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1709 err = security_socket_getsockopt(sock, level, optname);
1710 if (err)
1711 goto out_put;
1712
1713 if (level == SOL_SOCKET)
1714 err=sock_getsockopt(sock,level,optname,optval,optlen);
1715 else
1716 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1717 out_put:
1718 fput_light(sock->file, fput_needed);
1719 }
1720 return err;
1721 }
1722
1723
1724 /*
1725 * Shutdown a socket.
1726 */
1727
1728 asmlinkage long sys_shutdown(int fd, int how)
1729 {
1730 int err, fput_needed;
1731 struct socket *sock;
1732
1733 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1734 {
1735 err = security_socket_shutdown(sock, how);
1736 if (!err)
1737 err = sock->ops->shutdown(sock, how);
1738 fput_light(sock->file, fput_needed);
1739 }
1740 return err;
1741 }
1742
1743 /* A couple of helpful macros for getting the address of the 32/64 bit
1744 * fields which are the same type (int / unsigned) on our platforms.
1745 */
1746 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1747 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1748 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1749
1750
1751 /*
1752 * BSD sendmsg interface
1753 */
1754
1755 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1756 {
1757 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1758 struct socket *sock;
1759 char address[MAX_SOCK_ADDR];
1760 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1761 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1762 __attribute__ ((aligned (sizeof(__kernel_size_t))));
1763 /* 20 is size of ipv6_pktinfo */
1764 unsigned char *ctl_buf = ctl;
1765 struct msghdr msg_sys;
1766 int err, ctl_len, iov_size, total_len;
1767 int fput_needed;
1768
1769 err = -EFAULT;
1770 if (MSG_CMSG_COMPAT & flags) {
1771 if (get_compat_msghdr(&msg_sys, msg_compat))
1772 return -EFAULT;
1773 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1774 return -EFAULT;
1775
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (!sock)
1778 goto out;
1779
1780 /* do not move before msg_sys is valid */
1781 err = -EMSGSIZE;
1782 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1783 goto out_put;
1784
1785 /* Check whether to allocate the iovec area*/
1786 err = -ENOMEM;
1787 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1788 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1789 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1790 if (!iov)
1791 goto out_put;
1792 }
1793
1794 /* This will also move the address data into kernel space */
1795 if (MSG_CMSG_COMPAT & flags) {
1796 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1797 } else
1798 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1799 if (err < 0)
1800 goto out_freeiov;
1801 total_len = err;
1802
1803 err = -ENOBUFS;
1804
1805 if (msg_sys.msg_controllen > INT_MAX)
1806 goto out_freeiov;
1807 ctl_len = msg_sys.msg_controllen;
1808 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1809 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1810 if (err)
1811 goto out_freeiov;
1812 ctl_buf = msg_sys.msg_control;
1813 ctl_len = msg_sys.msg_controllen;
1814 } else if (ctl_len) {
1815 if (ctl_len > sizeof(ctl))
1816 {
1817 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1818 if (ctl_buf == NULL)
1819 goto out_freeiov;
1820 }
1821 err = -EFAULT;
1822 /*
1823 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1824 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1825 * checking falls down on this.
1826 */
1827 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1828 goto out_freectl;
1829 msg_sys.msg_control = ctl_buf;
1830 }
1831 msg_sys.msg_flags = flags;
1832
1833 if (sock->file->f_flags & O_NONBLOCK)
1834 msg_sys.msg_flags |= MSG_DONTWAIT;
1835 err = sock_sendmsg(sock, &msg_sys, total_len);
1836
1837 out_freectl:
1838 if (ctl_buf != ctl)
1839 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1840 out_freeiov:
1841 if (iov != iovstack)
1842 sock_kfree_s(sock->sk, iov, iov_size);
1843 out_put:
1844 fput_light(sock->file, fput_needed);
1845 out:
1846 return err;
1847 }
1848
1849 /*
1850 * BSD recvmsg interface
1851 */
1852
1853 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1854 {
1855 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1856 struct socket *sock;
1857 struct iovec iovstack[UIO_FASTIOV];
1858 struct iovec *iov=iovstack;
1859 struct msghdr msg_sys;
1860 unsigned long cmsg_ptr;
1861 int err, iov_size, total_len, len;
1862 int fput_needed;
1863
1864 /* kernel mode address */
1865 char addr[MAX_SOCK_ADDR];
1866
1867 /* user mode address pointers */
1868 struct sockaddr __user *uaddr;
1869 int __user *uaddr_len;
1870
1871 if (MSG_CMSG_COMPAT & flags) {
1872 if (get_compat_msghdr(&msg_sys, msg_compat))
1873 return -EFAULT;
1874 } else
1875 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1876 return -EFAULT;
1877
1878 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879 if (!sock)
1880 goto out;
1881
1882 err = -EMSGSIZE;
1883 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1884 goto out_put;
1885
1886 /* Check whether to allocate the iovec area*/
1887 err = -ENOMEM;
1888 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1889 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1890 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1891 if (!iov)
1892 goto out_put;
1893 }
1894
1895 /*
1896 * Save the user-mode address (verify_iovec will change the
1897 * kernel msghdr to use the kernel address space)
1898 */
1899
1900 uaddr = (void __user *) msg_sys.msg_name;
1901 uaddr_len = COMPAT_NAMELEN(msg);
1902 if (MSG_CMSG_COMPAT & flags) {
1903 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1904 } else
1905 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1906 if (err < 0)
1907 goto out_freeiov;
1908 total_len=err;
1909
1910 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1911 msg_sys.msg_flags = 0;
1912 if (MSG_CMSG_COMPAT & flags)
1913 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1914
1915 if (sock->file->f_flags & O_NONBLOCK)
1916 flags |= MSG_DONTWAIT;
1917 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1918 if (err < 0)
1919 goto out_freeiov;
1920 len = err;
1921
1922 if (uaddr != NULL) {
1923 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1924 if (err < 0)
1925 goto out_freeiov;
1926 }
1927 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1928 COMPAT_FLAGS(msg));
1929 if (err)
1930 goto out_freeiov;
1931 if (MSG_CMSG_COMPAT & flags)
1932 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1933 &msg_compat->msg_controllen);
1934 else
1935 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1936 &msg->msg_controllen);
1937 if (err)
1938 goto out_freeiov;
1939 err = len;
1940
1941 out_freeiov:
1942 if (iov != iovstack)
1943 sock_kfree_s(sock->sk, iov, iov_size);
1944 out_put:
1945 fput_light(sock->file, fput_needed);
1946 out:
1947 return err;
1948 }
1949
1950 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1951
1952 /* Argument list sizes for sys_socketcall */
1953 #define AL(x) ((x) * sizeof(unsigned long))
1954 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1955 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1956 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1957 #undef AL
1958
1959 /*
1960 * System call vectors.
1961 *
1962 * Argument checking cleaned up. Saved 20% in size.
1963 * This function doesn't need to set the kernel lock because
1964 * it is set by the callees.
1965 */
1966
1967 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1968 {
1969 unsigned long a[6];
1970 unsigned long a0,a1;
1971 int err;
1972
1973 if(call<1||call>SYS_RECVMSG)
1974 return -EINVAL;
1975
1976 /* copy_from_user should be SMP safe. */
1977 if (copy_from_user(a, args, nargs[call]))
1978 return -EFAULT;
1979
1980 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1981 if (err)
1982 return err;
1983
1984 a0=a[0];
1985 a1=a[1];
1986
1987 switch(call)
1988 {
1989 case SYS_SOCKET:
1990 err = sys_socket(a0,a1,a[2]);
1991 break;
1992 case SYS_BIND:
1993 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1994 break;
1995 case SYS_CONNECT:
1996 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1997 break;
1998 case SYS_LISTEN:
1999 err = sys_listen(a0,a1);
2000 break;
2001 case SYS_ACCEPT:
2002 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2003 break;
2004 case SYS_GETSOCKNAME:
2005 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2006 break;
2007 case SYS_GETPEERNAME:
2008 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
2009 break;
2010 case SYS_SOCKETPAIR:
2011 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
2012 break;
2013 case SYS_SEND:
2014 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2015 break;
2016 case SYS_SENDTO:
2017 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
2018 (struct sockaddr __user *)a[4], a[5]);
2019 break;
2020 case SYS_RECV:
2021 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2022 break;
2023 case SYS_RECVFROM:
2024 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2025 (struct sockaddr __user *)a[4], (int __user *)a[5]);
2026 break;
2027 case SYS_SHUTDOWN:
2028 err = sys_shutdown(a0,a1);
2029 break;
2030 case SYS_SETSOCKOPT:
2031 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2032 break;
2033 case SYS_GETSOCKOPT:
2034 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2035 break;
2036 case SYS_SENDMSG:
2037 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2038 break;
2039 case SYS_RECVMSG:
2040 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2041 break;
2042 default:
2043 err = -EINVAL;
2044 break;
2045 }
2046 return err;
2047 }
2048
2049 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2050
2051 /*
2052 * This function is called by a protocol handler that wants to
2053 * advertise its address family, and have it linked into the
2054 * SOCKET module.
2055 */
2056
2057 int sock_register(struct net_proto_family *ops)
2058 {
2059 int err;
2060
2061 if (ops->family >= NPROTO) {
2062 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2063 return -ENOBUFS;
2064 }
2065 net_family_write_lock();
2066 err = -EEXIST;
2067 if (net_families[ops->family] == NULL) {
2068 net_families[ops->family]=ops;
2069 err = 0;
2070 }
2071 net_family_write_unlock();
2072 printk(KERN_INFO "NET: Registered protocol family %d\n",
2073 ops->family);
2074 return err;
2075 }
2076
2077 /*
2078 * This function is called by a protocol handler that wants to
2079 * remove its address family, and have it unlinked from the
2080 * SOCKET module.
2081 */
2082
2083 int sock_unregister(int family)
2084 {
2085 if (family < 0 || family >= NPROTO)
2086 return -1;
2087
2088 net_family_write_lock();
2089 net_families[family]=NULL;
2090 net_family_write_unlock();
2091 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2092 family);
2093 return 0;
2094 }
2095
2096 static int __init sock_init(void)
2097 {
2098 /*
2099 * Initialize sock SLAB cache.
2100 */
2101
2102 sk_init();
2103
2104 /*
2105 * Initialize skbuff SLAB cache
2106 */
2107 skb_init();
2108
2109 /*
2110 * Initialize the protocols module.
2111 */
2112
2113 init_inodecache();
2114 register_filesystem(&sock_fs_type);
2115 sock_mnt = kern_mount(&sock_fs_type);
2116
2117 /* The real protocol initialization is performed in later initcalls.
2118 */
2119
2120 #ifdef CONFIG_NETFILTER
2121 netfilter_init();
2122 #endif
2123
2124 return 0;
2125 }
2126
2127 core_initcall(sock_init); /* early initcall */
2128
2129 #ifdef CONFIG_PROC_FS
2130 void socket_seq_show(struct seq_file *seq)
2131 {
2132 int cpu;
2133 int counter = 0;
2134
2135 for_each_cpu(cpu)
2136 counter += per_cpu(sockets_in_use, cpu);
2137
2138 /* It can be negative, by the way. 8) */
2139 if (counter < 0)
2140 counter = 0;
2141
2142 seq_printf(seq, "sockets: used %d\n", counter);
2143 }
2144 #endif /* CONFIG_PROC_FS */
2145
2146 #ifdef CONFIG_COMPAT
2147 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2148 unsigned long arg)
2149 {
2150 struct socket *sock = file->private_data;
2151 int ret = -ENOIOCTLCMD;
2152
2153 if (sock->ops->compat_ioctl)
2154 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2155
2156 return ret;
2157 }
2158 #endif
2159
2160 /* ABI emulation layers need these two */
2161 EXPORT_SYMBOL(move_addr_to_kernel);
2162 EXPORT_SYMBOL(move_addr_to_user);
2163 EXPORT_SYMBOL(sock_create);
2164 EXPORT_SYMBOL(sock_create_kern);
2165 EXPORT_SYMBOL(sock_create_lite);
2166 EXPORT_SYMBOL(sock_map_fd);
2167 EXPORT_SYMBOL(sock_recvmsg);
2168 EXPORT_SYMBOL(sock_register);
2169 EXPORT_SYMBOL(sock_release);
2170 EXPORT_SYMBOL(sock_sendmsg);
2171 EXPORT_SYMBOL(sock_unregister);
2172 EXPORT_SYMBOL(sock_wake_async);
2173 EXPORT_SYMBOL(sockfd_lookup);
2174 EXPORT_SYMBOL(kernel_sendmsg);
2175 EXPORT_SYMBOL(kernel_recvmsg);