[PATCH] Vectorize aio_read/aio_write fileop methods
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91
92 #include <net/compat.h>
93
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
114 unsigned long count, loff_t *ppos);
115 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
116 unsigned long count, loff_t *ppos);
117 static ssize_t sock_sendpage(struct file *file, struct page *page,
118 int offset, size_t size, loff_t *ppos, int more);
119
120 /*
121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122 * in the operation structures but are done directly via the socketcall() multiplexor.
123 */
124
125 static struct file_operations socket_file_ops = {
126 .owner = THIS_MODULE,
127 .llseek = no_llseek,
128 .aio_read = sock_aio_read,
129 .aio_write = sock_aio_write,
130 .poll = sock_poll,
131 .unlocked_ioctl = sock_ioctl,
132 #ifdef CONFIG_COMPAT
133 .compat_ioctl = compat_sock_ioctl,
134 #endif
135 .mmap = sock_mmap,
136 .open = sock_no_open, /* special open code to disallow open via /proc */
137 .release = sock_close,
138 .fasync = sock_fasync,
139 .readv = sock_readv,
140 .writev = sock_writev,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 };
144
145 /*
146 * The protocol list. Each protocol is registered in here.
147 */
148
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151
152 /*
153 * Statistics counters of the socket lists
154 */
155
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157
158 /*
159 * Support routines.
160 * Move socket addresses back and forth across the kernel/user
161 * divide and look after the messy bits.
162 */
163
164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
165 16 for IP, 16 for IPX,
166 24 for IPv6,
167 about 80 for AX.25
168 must be at least one bigger than
169 the AF_UNIX size (see net/unix/af_unix.c
170 :unix_mkname()).
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
185 {
186 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
213 int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > MAX_SOCK_ADDR)
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 #define SOCKFS_MAGIC 0x534F434B
239
240 static kmem_cache_t *sock_inode_cachep __read_mostly;
241
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 struct socket_alloc *ei;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
247 if (!ei)
248 return NULL;
249 init_waitqueue_head(&ei->socket.wait);
250
251 ei->socket.fasync_list = NULL;
252 ei->socket.state = SS_UNCONNECTED;
253 ei->socket.flags = 0;
254 ei->socket.ops = NULL;
255 ei->socket.sk = NULL;
256 ei->socket.file = NULL;
257
258 return &ei->vfs_inode;
259 }
260
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 kmem_cache_free(sock_inode_cachep,
264 container_of(inode, struct socket_alloc, vfs_inode));
265 }
266
267 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
268 {
269 struct socket_alloc *ei = (struct socket_alloc *)foo;
270
271 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
272 == SLAB_CTOR_CONSTRUCTOR)
273 inode_init_once(&ei->vfs_inode);
274 }
275
276 static int init_inodecache(void)
277 {
278 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
279 sizeof(struct socket_alloc),
280 0,
281 (SLAB_HWCACHE_ALIGN |
282 SLAB_RECLAIM_ACCOUNT |
283 SLAB_MEM_SPREAD),
284 init_once,
285 NULL);
286 if (sock_inode_cachep == NULL)
287 return -ENOMEM;
288 return 0;
289 }
290
291 static struct super_operations sockfs_ops = {
292 .alloc_inode = sock_alloc_inode,
293 .destroy_inode =sock_destroy_inode,
294 .statfs = simple_statfs,
295 };
296
297 static int sockfs_get_sb(struct file_system_type *fs_type,
298 int flags, const char *dev_name, void *data,
299 struct vfsmount *mnt)
300 {
301 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
302 mnt);
303 }
304
305 static struct vfsmount *sock_mnt __read_mostly;
306
307 static struct file_system_type sock_fs_type = {
308 .name = "sockfs",
309 .get_sb = sockfs_get_sb,
310 .kill_sb = kill_anon_super,
311 };
312
313 static int sockfs_delete_dentry(struct dentry *dentry)
314 {
315 return 1;
316 }
317 static struct dentry_operations sockfs_dentry_operations = {
318 .d_delete = sockfs_delete_dentry,
319 };
320
321 /*
322 * Obtains the first available file descriptor and sets it up for use.
323 *
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
331 *
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
336 */
337
338 static int sock_alloc_fd(struct file **filep)
339 {
340 int fd;
341
342 fd = get_unused_fd();
343 if (likely(fd >= 0)) {
344 struct file *file = get_empty_filp();
345
346 *filep = file;
347 if (unlikely(!file)) {
348 put_unused_fd(fd);
349 return -ENFILE;
350 }
351 } else
352 *filep = NULL;
353 return fd;
354 }
355
356 static int sock_attach_fd(struct socket *sock, struct file *file)
357 {
358 struct qstr this;
359 char name[32];
360
361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
362 this.name = name;
363 this.hash = SOCK_INODE(sock)->i_ino;
364
365 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 if (unlikely(!file->f_dentry))
367 return -ENOMEM;
368
369 file->f_dentry->d_op = &sockfs_dentry_operations;
370 d_add(file->f_dentry, SOCK_INODE(sock));
371 file->f_vfsmnt = mntget(sock_mnt);
372 file->f_mapping = file->f_dentry->d_inode->i_mapping;
373
374 sock->file = file;
375 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 file->f_mode = FMODE_READ | FMODE_WRITE;
377 file->f_flags = O_RDWR;
378 file->f_pos = 0;
379 file->private_data = sock;
380
381 return 0;
382 }
383
384 int sock_map_fd(struct socket *sock)
385 {
386 struct file *newfile;
387 int fd = sock_alloc_fd(&newfile);
388
389 if (likely(fd >= 0)) {
390 int err = sock_attach_fd(sock, newfile);
391
392 if (unlikely(err < 0)) {
393 put_filp(newfile);
394 put_unused_fd(fd);
395 return err;
396 }
397 fd_install(fd, newfile);
398 }
399 return fd;
400 }
401
402 static struct socket *sock_from_file(struct file *file, int *err)
403 {
404 struct inode *inode;
405 struct socket *sock;
406
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
409
410 inode = file->f_dentry->d_inode;
411 if (!S_ISSOCK(inode->i_mode)) {
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415
416 sock = SOCKET_I(inode);
417 if (sock->file != file) {
418 printk(KERN_ERR "socki_lookup: socket file changed!\n");
419 sock->file = file;
420 }
421 return sock;
422 }
423
424 /**
425 * sockfd_lookup - Go from a file number to its socket slot
426 * @fd: file handle
427 * @err: pointer to an error code return
428 *
429 * The file handle passed in is locked and the socket it is bound
430 * too is returned. If an error occurs the err pointer is overwritten
431 * with a negative errno code and NULL is returned. The function checks
432 * for both invalid handles and passing a handle which is not a socket.
433 *
434 * On a success the socket object pointer is returned.
435 */
436
437 struct socket *sockfd_lookup(int fd, int *err)
438 {
439 struct file *file;
440 struct socket *sock;
441
442 file = fget(fd);
443 if (!file) {
444 *err = -EBADF;
445 return NULL;
446 }
447
448 sock = sock_from_file(file, err);
449 if (!sock)
450 fput(file);
451 return sock;
452 }
453
454 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
455 {
456 struct file *file;
457 struct socket *sock;
458
459 *err = -EBADF;
460 file = fget_light(fd, fput_needed);
461 if (file) {
462 sock = sock_from_file(file, err);
463 if (sock)
464 return sock;
465 fput_light(file, *fput_needed);
466 }
467 return NULL;
468 }
469
470 /**
471 * sock_alloc - allocate a socket
472 *
473 * Allocate a new inode and socket object. The two are bound together
474 * and initialised. The socket is then returned. If we are out of inodes
475 * NULL is returned.
476 */
477
478 static struct socket *sock_alloc(void)
479 {
480 struct inode *inode;
481 struct socket *sock;
482
483 inode = new_inode(sock_mnt->mnt_sb);
484 if (!inode)
485 return NULL;
486
487 sock = SOCKET_I(inode);
488
489 inode->i_mode = S_IFSOCK | S_IRWXUGO;
490 inode->i_uid = current->fsuid;
491 inode->i_gid = current->fsgid;
492
493 get_cpu_var(sockets_in_use)++;
494 put_cpu_var(sockets_in_use);
495 return sock;
496 }
497
498 /*
499 * In theory you can't get an open on this inode, but /proc provides
500 * a back door. Remember to keep it shut otherwise you'll let the
501 * creepy crawlies in.
502 */
503
504 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
505 {
506 return -ENXIO;
507 }
508
509 const struct file_operations bad_sock_fops = {
510 .owner = THIS_MODULE,
511 .open = sock_no_open,
512 };
513
514 /**
515 * sock_release - close a socket
516 * @sock: socket to close
517 *
518 * The socket is released from the protocol stack if it has a release
519 * callback, and the inode is then released if the socket is bound to
520 * an inode not a file.
521 */
522
523 void sock_release(struct socket *sock)
524 {
525 if (sock->ops) {
526 struct module *owner = sock->ops->owner;
527
528 sock->ops->release(sock);
529 sock->ops = NULL;
530 module_put(owner);
531 }
532
533 if (sock->fasync_list)
534 printk(KERN_ERR "sock_release: fasync list not empty!\n");
535
536 get_cpu_var(sockets_in_use)--;
537 put_cpu_var(sockets_in_use);
538 if (!sock->file) {
539 iput(SOCK_INODE(sock));
540 return;
541 }
542 sock->file = NULL;
543 }
544
545 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
546 struct msghdr *msg, size_t size)
547 {
548 struct sock_iocb *si = kiocb_to_siocb(iocb);
549 int err;
550
551 si->sock = sock;
552 si->scm = NULL;
553 si->msg = msg;
554 si->size = size;
555
556 err = security_socket_sendmsg(sock, msg, size);
557 if (err)
558 return err;
559
560 return sock->ops->sendmsg(iocb, sock, msg, size);
561 }
562
563 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
564 {
565 struct kiocb iocb;
566 struct sock_iocb siocb;
567 int ret;
568
569 init_sync_kiocb(&iocb, NULL);
570 iocb.private = &siocb;
571 ret = __sock_sendmsg(&iocb, sock, msg, size);
572 if (-EIOCBQUEUED == ret)
573 ret = wait_on_sync_kiocb(&iocb);
574 return ret;
575 }
576
577 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
578 struct kvec *vec, size_t num, size_t size)
579 {
580 mm_segment_t oldfs = get_fs();
581 int result;
582
583 set_fs(KERNEL_DS);
584 /*
585 * the following is safe, since for compiler definitions of kvec and
586 * iovec are identical, yielding the same in-core layout and alignment
587 */
588 msg->msg_iov = (struct iovec *)vec;
589 msg->msg_iovlen = num;
590 result = sock_sendmsg(sock, msg, size);
591 set_fs(oldfs);
592 return result;
593 }
594
595 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
596 struct msghdr *msg, size_t size, int flags)
597 {
598 int err;
599 struct sock_iocb *si = kiocb_to_siocb(iocb);
600
601 si->sock = sock;
602 si->scm = NULL;
603 si->msg = msg;
604 si->size = size;
605 si->flags = flags;
606
607 err = security_socket_recvmsg(sock, msg, size, flags);
608 if (err)
609 return err;
610
611 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
612 }
613
614 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
615 size_t size, int flags)
616 {
617 struct kiocb iocb;
618 struct sock_iocb siocb;
619 int ret;
620
621 init_sync_kiocb(&iocb, NULL);
622 iocb.private = &siocb;
623 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
624 if (-EIOCBQUEUED == ret)
625 ret = wait_on_sync_kiocb(&iocb);
626 return ret;
627 }
628
629 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
630 struct kvec *vec, size_t num, size_t size, int flags)
631 {
632 mm_segment_t oldfs = get_fs();
633 int result;
634
635 set_fs(KERNEL_DS);
636 /*
637 * the following is safe, since for compiler definitions of kvec and
638 * iovec are identical, yielding the same in-core layout and alignment
639 */
640 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
641 result = sock_recvmsg(sock, msg, size, flags);
642 set_fs(oldfs);
643 return result;
644 }
645
646 static void sock_aio_dtor(struct kiocb *iocb)
647 {
648 kfree(iocb->private);
649 }
650
651 static ssize_t sock_sendpage(struct file *file, struct page *page,
652 int offset, size_t size, loff_t *ppos, int more)
653 {
654 struct socket *sock;
655 int flags;
656
657 sock = file->private_data;
658
659 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
660 if (more)
661 flags |= MSG_MORE;
662
663 return sock->ops->sendpage(sock, page, offset, size, flags);
664 }
665
666 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
667 struct sock_iocb *siocb)
668 {
669 if (!is_sync_kiocb(iocb)) {
670 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
671 if (!siocb)
672 return NULL;
673 iocb->ki_dtor = sock_aio_dtor;
674 }
675
676 siocb->kiocb = iocb;
677 iocb->private = siocb;
678 return siocb;
679 }
680
681 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
682 struct file *file, const struct iovec *iov,
683 unsigned long nr_segs)
684 {
685 struct socket *sock = file->private_data;
686 size_t size = 0;
687 int i;
688
689 for (i = 0; i < nr_segs; i++)
690 size += iov[i].iov_len;
691
692 msg->msg_name = NULL;
693 msg->msg_namelen = 0;
694 msg->msg_control = NULL;
695 msg->msg_controllen = 0;
696 msg->msg_iov = (struct iovec *)iov;
697 msg->msg_iovlen = nr_segs;
698 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
699
700 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
701 }
702
703 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
704 unsigned long nr_segs, loff_t *ppos)
705 {
706 struct kiocb iocb;
707 struct sock_iocb siocb;
708 struct msghdr msg;
709 int ret;
710
711 init_sync_kiocb(&iocb, NULL);
712 iocb.private = &siocb;
713
714 ret = do_sock_read(&msg, &iocb, file, iov, nr_segs);
715 if (-EIOCBQUEUED == ret)
716 ret = wait_on_sync_kiocb(&iocb);
717 return ret;
718 }
719
720 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
721 unsigned long nr_segs, loff_t pos)
722 {
723 struct sock_iocb siocb, *x;
724
725 if (pos != 0)
726 return -ESPIPE;
727
728 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
729 return 0;
730
731
732 x = alloc_sock_iocb(iocb, &siocb);
733 if (!x)
734 return -ENOMEM;
735 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
736 }
737
738 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
739 struct file *file, const struct iovec *iov,
740 unsigned long nr_segs)
741 {
742 struct socket *sock = file->private_data;
743 size_t size = 0;
744 int i;
745
746 for (i = 0; i < nr_segs; i++)
747 size += iov[i].iov_len;
748
749 msg->msg_name = NULL;
750 msg->msg_namelen = 0;
751 msg->msg_control = NULL;
752 msg->msg_controllen = 0;
753 msg->msg_iov = (struct iovec *)iov;
754 msg->msg_iovlen = nr_segs;
755 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
756 if (sock->type == SOCK_SEQPACKET)
757 msg->msg_flags |= MSG_EOR;
758
759 return __sock_sendmsg(iocb, sock, msg, size);
760 }
761
762 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
763 unsigned long nr_segs, loff_t *ppos)
764 {
765 struct msghdr msg;
766 struct kiocb iocb;
767 struct sock_iocb siocb;
768 int ret;
769
770 init_sync_kiocb(&iocb, NULL);
771 iocb.private = &siocb;
772
773 ret = do_sock_write(&msg, &iocb, file, iov, nr_segs);
774 if (-EIOCBQUEUED == ret)
775 ret = wait_on_sync_kiocb(&iocb);
776 return ret;
777 }
778
779 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
780 unsigned long nr_segs, loff_t pos)
781 {
782 struct sock_iocb siocb, *x;
783
784 if (pos != 0)
785 return -ESPIPE;
786
787 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
788 return 0;
789
790 x = alloc_sock_iocb(iocb, &siocb);
791 if (!x)
792 return -ENOMEM;
793
794 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
795 }
796
797 /*
798 * Atomic setting of ioctl hooks to avoid race
799 * with module unload.
800 */
801
802 static DEFINE_MUTEX(br_ioctl_mutex);
803 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
804
805 void brioctl_set(int (*hook) (unsigned int, void __user *))
806 {
807 mutex_lock(&br_ioctl_mutex);
808 br_ioctl_hook = hook;
809 mutex_unlock(&br_ioctl_mutex);
810 }
811
812 EXPORT_SYMBOL(brioctl_set);
813
814 static DEFINE_MUTEX(vlan_ioctl_mutex);
815 static int (*vlan_ioctl_hook) (void __user *arg);
816
817 void vlan_ioctl_set(int (*hook) (void __user *))
818 {
819 mutex_lock(&vlan_ioctl_mutex);
820 vlan_ioctl_hook = hook;
821 mutex_unlock(&vlan_ioctl_mutex);
822 }
823
824 EXPORT_SYMBOL(vlan_ioctl_set);
825
826 static DEFINE_MUTEX(dlci_ioctl_mutex);
827 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
828
829 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
830 {
831 mutex_lock(&dlci_ioctl_mutex);
832 dlci_ioctl_hook = hook;
833 mutex_unlock(&dlci_ioctl_mutex);
834 }
835
836 EXPORT_SYMBOL(dlci_ioctl_set);
837
838 /*
839 * With an ioctl, arg may well be a user mode pointer, but we don't know
840 * what to do with it - that's up to the protocol still.
841 */
842
843 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
844 {
845 struct socket *sock;
846 void __user *argp = (void __user *)arg;
847 int pid, err;
848
849 sock = file->private_data;
850 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
851 err = dev_ioctl(cmd, argp);
852 } else
853 #ifdef CONFIG_WIRELESS_EXT
854 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
855 err = dev_ioctl(cmd, argp);
856 } else
857 #endif /* CONFIG_WIRELESS_EXT */
858 switch (cmd) {
859 case FIOSETOWN:
860 case SIOCSPGRP:
861 err = -EFAULT;
862 if (get_user(pid, (int __user *)argp))
863 break;
864 err = f_setown(sock->file, pid, 1);
865 break;
866 case FIOGETOWN:
867 case SIOCGPGRP:
868 err = put_user(sock->file->f_owner.pid,
869 (int __user *)argp);
870 break;
871 case SIOCGIFBR:
872 case SIOCSIFBR:
873 case SIOCBRADDBR:
874 case SIOCBRDELBR:
875 err = -ENOPKG;
876 if (!br_ioctl_hook)
877 request_module("bridge");
878
879 mutex_lock(&br_ioctl_mutex);
880 if (br_ioctl_hook)
881 err = br_ioctl_hook(cmd, argp);
882 mutex_unlock(&br_ioctl_mutex);
883 break;
884 case SIOCGIFVLAN:
885 case SIOCSIFVLAN:
886 err = -ENOPKG;
887 if (!vlan_ioctl_hook)
888 request_module("8021q");
889
890 mutex_lock(&vlan_ioctl_mutex);
891 if (vlan_ioctl_hook)
892 err = vlan_ioctl_hook(argp);
893 mutex_unlock(&vlan_ioctl_mutex);
894 break;
895 case SIOCGIFDIVERT:
896 case SIOCSIFDIVERT:
897 /* Convert this to call through a hook */
898 err = divert_ioctl(cmd, argp);
899 break;
900 case SIOCADDDLCI:
901 case SIOCDELDLCI:
902 err = -ENOPKG;
903 if (!dlci_ioctl_hook)
904 request_module("dlci");
905
906 if (dlci_ioctl_hook) {
907 mutex_lock(&dlci_ioctl_mutex);
908 err = dlci_ioctl_hook(cmd, argp);
909 mutex_unlock(&dlci_ioctl_mutex);
910 }
911 break;
912 default:
913 err = sock->ops->ioctl(sock, cmd, arg);
914
915 /*
916 * If this ioctl is unknown try to hand it down
917 * to the NIC driver.
918 */
919 if (err == -ENOIOCTLCMD)
920 err = dev_ioctl(cmd, argp);
921 break;
922 }
923 return err;
924 }
925
926 int sock_create_lite(int family, int type, int protocol, struct socket **res)
927 {
928 int err;
929 struct socket *sock = NULL;
930
931 err = security_socket_create(family, type, protocol, 1);
932 if (err)
933 goto out;
934
935 sock = sock_alloc();
936 if (!sock) {
937 err = -ENOMEM;
938 goto out;
939 }
940
941 sock->type = type;
942 err = security_socket_post_create(sock, family, type, protocol, 1);
943 if (err)
944 goto out_release;
945
946 out:
947 *res = sock;
948 return err;
949 out_release:
950 sock_release(sock);
951 sock = NULL;
952 goto out;
953 }
954
955 /* No kernel lock held - perfect */
956 static unsigned int sock_poll(struct file *file, poll_table *wait)
957 {
958 struct socket *sock;
959
960 /*
961 * We can't return errors to poll, so it's either yes or no.
962 */
963 sock = file->private_data;
964 return sock->ops->poll(file, sock, wait);
965 }
966
967 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
968 {
969 struct socket *sock = file->private_data;
970
971 return sock->ops->mmap(file, sock, vma);
972 }
973
974 static int sock_close(struct inode *inode, struct file *filp)
975 {
976 /*
977 * It was possible the inode is NULL we were
978 * closing an unfinished socket.
979 */
980
981 if (!inode) {
982 printk(KERN_DEBUG "sock_close: NULL inode\n");
983 return 0;
984 }
985 sock_fasync(-1, filp, 0);
986 sock_release(SOCKET_I(inode));
987 return 0;
988 }
989
990 /*
991 * Update the socket async list
992 *
993 * Fasync_list locking strategy.
994 *
995 * 1. fasync_list is modified only under process context socket lock
996 * i.e. under semaphore.
997 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
998 * or under socket lock.
999 * 3. fasync_list can be used from softirq context, so that
1000 * modification under socket lock have to be enhanced with
1001 * write_lock_bh(&sk->sk_callback_lock).
1002 * --ANK (990710)
1003 */
1004
1005 static int sock_fasync(int fd, struct file *filp, int on)
1006 {
1007 struct fasync_struct *fa, *fna = NULL, **prev;
1008 struct socket *sock;
1009 struct sock *sk;
1010
1011 if (on) {
1012 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1013 if (fna == NULL)
1014 return -ENOMEM;
1015 }
1016
1017 sock = filp->private_data;
1018
1019 sk = sock->sk;
1020 if (sk == NULL) {
1021 kfree(fna);
1022 return -EINVAL;
1023 }
1024
1025 lock_sock(sk);
1026
1027 prev = &(sock->fasync_list);
1028
1029 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1030 if (fa->fa_file == filp)
1031 break;
1032
1033 if (on) {
1034 if (fa != NULL) {
1035 write_lock_bh(&sk->sk_callback_lock);
1036 fa->fa_fd = fd;
1037 write_unlock_bh(&sk->sk_callback_lock);
1038
1039 kfree(fna);
1040 goto out;
1041 }
1042 fna->fa_file = filp;
1043 fna->fa_fd = fd;
1044 fna->magic = FASYNC_MAGIC;
1045 fna->fa_next = sock->fasync_list;
1046 write_lock_bh(&sk->sk_callback_lock);
1047 sock->fasync_list = fna;
1048 write_unlock_bh(&sk->sk_callback_lock);
1049 } else {
1050 if (fa != NULL) {
1051 write_lock_bh(&sk->sk_callback_lock);
1052 *prev = fa->fa_next;
1053 write_unlock_bh(&sk->sk_callback_lock);
1054 kfree(fa);
1055 }
1056 }
1057
1058 out:
1059 release_sock(sock->sk);
1060 return 0;
1061 }
1062
1063 /* This function may be called only under socket lock or callback_lock */
1064
1065 int sock_wake_async(struct socket *sock, int how, int band)
1066 {
1067 if (!sock || !sock->fasync_list)
1068 return -1;
1069 switch (how) {
1070 case 1:
1071
1072 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1073 break;
1074 goto call_kill;
1075 case 2:
1076 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1077 break;
1078 /* fall through */
1079 case 0:
1080 call_kill:
1081 __kill_fasync(sock->fasync_list, SIGIO, band);
1082 break;
1083 case 3:
1084 __kill_fasync(sock->fasync_list, SIGURG, band);
1085 }
1086 return 0;
1087 }
1088
1089 static int __sock_create(int family, int type, int protocol,
1090 struct socket **res, int kern)
1091 {
1092 int err;
1093 struct socket *sock;
1094 const struct net_proto_family *pf;
1095
1096 /*
1097 * Check protocol is in range
1098 */
1099 if (family < 0 || family >= NPROTO)
1100 return -EAFNOSUPPORT;
1101 if (type < 0 || type >= SOCK_MAX)
1102 return -EINVAL;
1103
1104 /* Compatibility.
1105
1106 This uglymoron is moved from INET layer to here to avoid
1107 deadlock in module load.
1108 */
1109 if (family == PF_INET && type == SOCK_PACKET) {
1110 static int warned;
1111 if (!warned) {
1112 warned = 1;
1113 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1114 current->comm);
1115 }
1116 family = PF_PACKET;
1117 }
1118
1119 err = security_socket_create(family, type, protocol, kern);
1120 if (err)
1121 return err;
1122
1123 /*
1124 * Allocate the socket and allow the family to set things up. if
1125 * the protocol is 0, the family is instructed to select an appropriate
1126 * default.
1127 */
1128 sock = sock_alloc();
1129 if (!sock) {
1130 if (net_ratelimit())
1131 printk(KERN_WARNING "socket: no more sockets\n");
1132 return -ENFILE; /* Not exactly a match, but its the
1133 closest posix thing */
1134 }
1135
1136 sock->type = type;
1137
1138 #if defined(CONFIG_KMOD)
1139 /* Attempt to load a protocol module if the find failed.
1140 *
1141 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1142 * requested real, full-featured networking support upon configuration.
1143 * Otherwise module support will break!
1144 */
1145 if (net_families[family] == NULL)
1146 request_module("net-pf-%d", family);
1147 #endif
1148
1149 rcu_read_lock();
1150 pf = rcu_dereference(net_families[family]);
1151 err = -EAFNOSUPPORT;
1152 if (!pf)
1153 goto out_release;
1154
1155 /*
1156 * We will call the ->create function, that possibly is in a loadable
1157 * module, so we have to bump that loadable module refcnt first.
1158 */
1159 if (!try_module_get(pf->owner))
1160 goto out_release;
1161
1162 /* Now protected by module ref count */
1163 rcu_read_unlock();
1164
1165 err = pf->create(sock, protocol);
1166 if (err < 0)
1167 goto out_module_put;
1168
1169 /*
1170 * Now to bump the refcnt of the [loadable] module that owns this
1171 * socket at sock_release time we decrement its refcnt.
1172 */
1173 if (!try_module_get(sock->ops->owner))
1174 goto out_module_busy;
1175
1176 /*
1177 * Now that we're done with the ->create function, the [loadable]
1178 * module can have its refcnt decremented
1179 */
1180 module_put(pf->owner);
1181 err = security_socket_post_create(sock, family, type, protocol, kern);
1182 if (err)
1183 goto out_release;
1184 *res = sock;
1185
1186 return 0;
1187
1188 out_module_busy:
1189 err = -EAFNOSUPPORT;
1190 out_module_put:
1191 sock->ops = NULL;
1192 module_put(pf->owner);
1193 out_sock_release:
1194 sock_release(sock);
1195 return err;
1196
1197 out_release:
1198 rcu_read_unlock();
1199 goto out_sock_release;
1200 }
1201
1202 int sock_create(int family, int type, int protocol, struct socket **res)
1203 {
1204 return __sock_create(family, type, protocol, res, 0);
1205 }
1206
1207 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1208 {
1209 return __sock_create(family, type, protocol, res, 1);
1210 }
1211
1212 asmlinkage long sys_socket(int family, int type, int protocol)
1213 {
1214 int retval;
1215 struct socket *sock;
1216
1217 retval = sock_create(family, type, protocol, &sock);
1218 if (retval < 0)
1219 goto out;
1220
1221 retval = sock_map_fd(sock);
1222 if (retval < 0)
1223 goto out_release;
1224
1225 out:
1226 /* It may be already another descriptor 8) Not kernel problem. */
1227 return retval;
1228
1229 out_release:
1230 sock_release(sock);
1231 return retval;
1232 }
1233
1234 /*
1235 * Create a pair of connected sockets.
1236 */
1237
1238 asmlinkage long sys_socketpair(int family, int type, int protocol,
1239 int __user *usockvec)
1240 {
1241 struct socket *sock1, *sock2;
1242 int fd1, fd2, err;
1243
1244 /*
1245 * Obtain the first socket and check if the underlying protocol
1246 * supports the socketpair call.
1247 */
1248
1249 err = sock_create(family, type, protocol, &sock1);
1250 if (err < 0)
1251 goto out;
1252
1253 err = sock_create(family, type, protocol, &sock2);
1254 if (err < 0)
1255 goto out_release_1;
1256
1257 err = sock1->ops->socketpair(sock1, sock2);
1258 if (err < 0)
1259 goto out_release_both;
1260
1261 fd1 = fd2 = -1;
1262
1263 err = sock_map_fd(sock1);
1264 if (err < 0)
1265 goto out_release_both;
1266 fd1 = err;
1267
1268 err = sock_map_fd(sock2);
1269 if (err < 0)
1270 goto out_close_1;
1271 fd2 = err;
1272
1273 /* fd1 and fd2 may be already another descriptors.
1274 * Not kernel problem.
1275 */
1276
1277 err = put_user(fd1, &usockvec[0]);
1278 if (!err)
1279 err = put_user(fd2, &usockvec[1]);
1280 if (!err)
1281 return 0;
1282
1283 sys_close(fd2);
1284 sys_close(fd1);
1285 return err;
1286
1287 out_close_1:
1288 sock_release(sock2);
1289 sys_close(fd1);
1290 return err;
1291
1292 out_release_both:
1293 sock_release(sock2);
1294 out_release_1:
1295 sock_release(sock1);
1296 out:
1297 return err;
1298 }
1299
1300 /*
1301 * Bind a name to a socket. Nothing much to do here since it's
1302 * the protocol's responsibility to handle the local address.
1303 *
1304 * We move the socket address to kernel space before we call
1305 * the protocol layer (having also checked the address is ok).
1306 */
1307
1308 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1309 {
1310 struct socket *sock;
1311 char address[MAX_SOCK_ADDR];
1312 int err, fput_needed;
1313
1314 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1315 if(sock) {
1316 err = move_addr_to_kernel(umyaddr, addrlen, address);
1317 if (err >= 0) {
1318 err = security_socket_bind(sock,
1319 (struct sockaddr *)address,
1320 addrlen);
1321 if (!err)
1322 err = sock->ops->bind(sock,
1323 (struct sockaddr *)
1324 address, addrlen);
1325 }
1326 fput_light(sock->file, fput_needed);
1327 }
1328 return err;
1329 }
1330
1331 /*
1332 * Perform a listen. Basically, we allow the protocol to do anything
1333 * necessary for a listen, and if that works, we mark the socket as
1334 * ready for listening.
1335 */
1336
1337 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1338
1339 asmlinkage long sys_listen(int fd, int backlog)
1340 {
1341 struct socket *sock;
1342 int err, fput_needed;
1343
1344 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1345 if (sock) {
1346 if ((unsigned)backlog > sysctl_somaxconn)
1347 backlog = sysctl_somaxconn;
1348
1349 err = security_socket_listen(sock, backlog);
1350 if (!err)
1351 err = sock->ops->listen(sock, backlog);
1352
1353 fput_light(sock->file, fput_needed);
1354 }
1355 return err;
1356 }
1357
1358 /*
1359 * For accept, we attempt to create a new socket, set up the link
1360 * with the client, wake up the client, then return the new
1361 * connected fd. We collect the address of the connector in kernel
1362 * space and move it to user at the very end. This is unclean because
1363 * we open the socket then return an error.
1364 *
1365 * 1003.1g adds the ability to recvmsg() to query connection pending
1366 * status to recvmsg. We need to add that support in a way thats
1367 * clean when we restucture accept also.
1368 */
1369
1370 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1371 int __user *upeer_addrlen)
1372 {
1373 struct socket *sock, *newsock;
1374 struct file *newfile;
1375 int err, len, newfd, fput_needed;
1376 char address[MAX_SOCK_ADDR];
1377
1378 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379 if (!sock)
1380 goto out;
1381
1382 err = -ENFILE;
1383 if (!(newsock = sock_alloc()))
1384 goto out_put;
1385
1386 newsock->type = sock->type;
1387 newsock->ops = sock->ops;
1388
1389 /*
1390 * We don't need try_module_get here, as the listening socket (sock)
1391 * has the protocol module (sock->ops->owner) held.
1392 */
1393 __module_get(newsock->ops->owner);
1394
1395 newfd = sock_alloc_fd(&newfile);
1396 if (unlikely(newfd < 0)) {
1397 err = newfd;
1398 sock_release(newsock);
1399 goto out_put;
1400 }
1401
1402 err = sock_attach_fd(newsock, newfile);
1403 if (err < 0)
1404 goto out_fd;
1405
1406 err = security_socket_accept(sock, newsock);
1407 if (err)
1408 goto out_fd;
1409
1410 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1411 if (err < 0)
1412 goto out_fd;
1413
1414 if (upeer_sockaddr) {
1415 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1416 &len, 2) < 0) {
1417 err = -ECONNABORTED;
1418 goto out_fd;
1419 }
1420 err = move_addr_to_user(address, len, upeer_sockaddr,
1421 upeer_addrlen);
1422 if (err < 0)
1423 goto out_fd;
1424 }
1425
1426 /* File flags are not inherited via accept() unlike another OSes. */
1427
1428 fd_install(newfd, newfile);
1429 err = newfd;
1430
1431 security_socket_post_accept(sock, newsock);
1432
1433 out_put:
1434 fput_light(sock->file, fput_needed);
1435 out:
1436 return err;
1437 out_fd:
1438 fput(newfile);
1439 put_unused_fd(newfd);
1440 goto out_put;
1441 }
1442
1443 /*
1444 * Attempt to connect to a socket with the server address. The address
1445 * is in user space so we verify it is OK and move it to kernel space.
1446 *
1447 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1448 * break bindings
1449 *
1450 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1451 * other SEQPACKET protocols that take time to connect() as it doesn't
1452 * include the -EINPROGRESS status for such sockets.
1453 */
1454
1455 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1456 int addrlen)
1457 {
1458 struct socket *sock;
1459 char address[MAX_SOCK_ADDR];
1460 int err, fput_needed;
1461
1462 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1463 if (!sock)
1464 goto out;
1465 err = move_addr_to_kernel(uservaddr, addrlen, address);
1466 if (err < 0)
1467 goto out_put;
1468
1469 err =
1470 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1471 if (err)
1472 goto out_put;
1473
1474 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1475 sock->file->f_flags);
1476 out_put:
1477 fput_light(sock->file, fput_needed);
1478 out:
1479 return err;
1480 }
1481
1482 /*
1483 * Get the local address ('name') of a socket object. Move the obtained
1484 * name to user space.
1485 */
1486
1487 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1488 int __user *usockaddr_len)
1489 {
1490 struct socket *sock;
1491 char address[MAX_SOCK_ADDR];
1492 int len, err, fput_needed;
1493
1494 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1495 if (!sock)
1496 goto out;
1497
1498 err = security_socket_getsockname(sock);
1499 if (err)
1500 goto out_put;
1501
1502 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1503 if (err)
1504 goto out_put;
1505 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1506
1507 out_put:
1508 fput_light(sock->file, fput_needed);
1509 out:
1510 return err;
1511 }
1512
1513 /*
1514 * Get the remote address ('name') of a socket object. Move the obtained
1515 * name to user space.
1516 */
1517
1518 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1519 int __user *usockaddr_len)
1520 {
1521 struct socket *sock;
1522 char address[MAX_SOCK_ADDR];
1523 int len, err, fput_needed;
1524
1525 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 if (sock != NULL) {
1527 err = security_socket_getpeername(sock);
1528 if (err) {
1529 fput_light(sock->file, fput_needed);
1530 return err;
1531 }
1532
1533 err =
1534 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1535 1);
1536 if (!err)
1537 err = move_addr_to_user(address, len, usockaddr,
1538 usockaddr_len);
1539 fput_light(sock->file, fput_needed);
1540 }
1541 return err;
1542 }
1543
1544 /*
1545 * Send a datagram to a given address. We move the address into kernel
1546 * space and check the user space data area is readable before invoking
1547 * the protocol.
1548 */
1549
1550 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1551 unsigned flags, struct sockaddr __user *addr,
1552 int addr_len)
1553 {
1554 struct socket *sock;
1555 char address[MAX_SOCK_ADDR];
1556 int err;
1557 struct msghdr msg;
1558 struct iovec iov;
1559 int fput_needed;
1560 struct file *sock_file;
1561
1562 sock_file = fget_light(fd, &fput_needed);
1563 if (!sock_file)
1564 return -EBADF;
1565
1566 sock = sock_from_file(sock_file, &err);
1567 if (!sock)
1568 goto out_put;
1569 iov.iov_base = buff;
1570 iov.iov_len = len;
1571 msg.msg_name = NULL;
1572 msg.msg_iov = &iov;
1573 msg.msg_iovlen = 1;
1574 msg.msg_control = NULL;
1575 msg.msg_controllen = 0;
1576 msg.msg_namelen = 0;
1577 if (addr) {
1578 err = move_addr_to_kernel(addr, addr_len, address);
1579 if (err < 0)
1580 goto out_put;
1581 msg.msg_name = address;
1582 msg.msg_namelen = addr_len;
1583 }
1584 if (sock->file->f_flags & O_NONBLOCK)
1585 flags |= MSG_DONTWAIT;
1586 msg.msg_flags = flags;
1587 err = sock_sendmsg(sock, &msg, len);
1588
1589 out_put:
1590 fput_light(sock_file, fput_needed);
1591 return err;
1592 }
1593
1594 /*
1595 * Send a datagram down a socket.
1596 */
1597
1598 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1599 {
1600 return sys_sendto(fd, buff, len, flags, NULL, 0);
1601 }
1602
1603 /*
1604 * Receive a frame from the socket and optionally record the address of the
1605 * sender. We verify the buffers are writable and if needed move the
1606 * sender address from kernel to user space.
1607 */
1608
1609 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1610 unsigned flags, struct sockaddr __user *addr,
1611 int __user *addr_len)
1612 {
1613 struct socket *sock;
1614 struct iovec iov;
1615 struct msghdr msg;
1616 char address[MAX_SOCK_ADDR];
1617 int err, err2;
1618 struct file *sock_file;
1619 int fput_needed;
1620
1621 sock_file = fget_light(fd, &fput_needed);
1622 if (!sock_file)
1623 return -EBADF;
1624
1625 sock = sock_from_file(sock_file, &err);
1626 if (!sock)
1627 goto out;
1628
1629 msg.msg_control = NULL;
1630 msg.msg_controllen = 0;
1631 msg.msg_iovlen = 1;
1632 msg.msg_iov = &iov;
1633 iov.iov_len = size;
1634 iov.iov_base = ubuf;
1635 msg.msg_name = address;
1636 msg.msg_namelen = MAX_SOCK_ADDR;
1637 if (sock->file->f_flags & O_NONBLOCK)
1638 flags |= MSG_DONTWAIT;
1639 err = sock_recvmsg(sock, &msg, size, flags);
1640
1641 if (err >= 0 && addr != NULL) {
1642 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1643 if (err2 < 0)
1644 err = err2;
1645 }
1646 out:
1647 fput_light(sock_file, fput_needed);
1648 return err;
1649 }
1650
1651 /*
1652 * Receive a datagram from a socket.
1653 */
1654
1655 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1656 unsigned flags)
1657 {
1658 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1659 }
1660
1661 /*
1662 * Set a socket option. Because we don't know the option lengths we have
1663 * to pass the user mode parameter for the protocols to sort out.
1664 */
1665
1666 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1667 char __user *optval, int optlen)
1668 {
1669 int err, fput_needed;
1670 struct socket *sock;
1671
1672 if (optlen < 0)
1673 return -EINVAL;
1674
1675 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1676 if (sock != NULL) {
1677 err = security_socket_setsockopt(sock, level, optname);
1678 if (err)
1679 goto out_put;
1680
1681 if (level == SOL_SOCKET)
1682 err =
1683 sock_setsockopt(sock, level, optname, optval,
1684 optlen);
1685 else
1686 err =
1687 sock->ops->setsockopt(sock, level, optname, optval,
1688 optlen);
1689 out_put:
1690 fput_light(sock->file, fput_needed);
1691 }
1692 return err;
1693 }
1694
1695 /*
1696 * Get a socket option. Because we don't know the option lengths we have
1697 * to pass a user mode parameter for the protocols to sort out.
1698 */
1699
1700 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1701 char __user *optval, int __user *optlen)
1702 {
1703 int err, fput_needed;
1704 struct socket *sock;
1705
1706 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 if (sock != NULL) {
1708 err = security_socket_getsockopt(sock, level, optname);
1709 if (err)
1710 goto out_put;
1711
1712 if (level == SOL_SOCKET)
1713 err =
1714 sock_getsockopt(sock, level, optname, optval,
1715 optlen);
1716 else
1717 err =
1718 sock->ops->getsockopt(sock, level, optname, optval,
1719 optlen);
1720 out_put:
1721 fput_light(sock->file, fput_needed);
1722 }
1723 return err;
1724 }
1725
1726 /*
1727 * Shutdown a socket.
1728 */
1729
1730 asmlinkage long sys_shutdown(int fd, int how)
1731 {
1732 int err, fput_needed;
1733 struct socket *sock;
1734
1735 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1736 if (sock != NULL) {
1737 err = security_socket_shutdown(sock, how);
1738 if (!err)
1739 err = sock->ops->shutdown(sock, how);
1740 fput_light(sock->file, fput_needed);
1741 }
1742 return err;
1743 }
1744
1745 /* A couple of helpful macros for getting the address of the 32/64 bit
1746 * fields which are the same type (int / unsigned) on our platforms.
1747 */
1748 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1749 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1750 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1751
1752 /*
1753 * BSD sendmsg interface
1754 */
1755
1756 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1757 {
1758 struct compat_msghdr __user *msg_compat =
1759 (struct compat_msghdr __user *)msg;
1760 struct socket *sock;
1761 char address[MAX_SOCK_ADDR];
1762 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1763 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1764 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1765 /* 20 is size of ipv6_pktinfo */
1766 unsigned char *ctl_buf = ctl;
1767 struct msghdr msg_sys;
1768 int err, ctl_len, iov_size, total_len;
1769 int fput_needed;
1770
1771 err = -EFAULT;
1772 if (MSG_CMSG_COMPAT & flags) {
1773 if (get_compat_msghdr(&msg_sys, msg_compat))
1774 return -EFAULT;
1775 }
1776 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1777 return -EFAULT;
1778
1779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780 if (!sock)
1781 goto out;
1782
1783 /* do not move before msg_sys is valid */
1784 err = -EMSGSIZE;
1785 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1786 goto out_put;
1787
1788 /* Check whether to allocate the iovec area */
1789 err = -ENOMEM;
1790 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1791 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1792 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1793 if (!iov)
1794 goto out_put;
1795 }
1796
1797 /* This will also move the address data into kernel space */
1798 if (MSG_CMSG_COMPAT & flags) {
1799 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1800 } else
1801 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1802 if (err < 0)
1803 goto out_freeiov;
1804 total_len = err;
1805
1806 err = -ENOBUFS;
1807
1808 if (msg_sys.msg_controllen > INT_MAX)
1809 goto out_freeiov;
1810 ctl_len = msg_sys.msg_controllen;
1811 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1812 err =
1813 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1814 sizeof(ctl));
1815 if (err)
1816 goto out_freeiov;
1817 ctl_buf = msg_sys.msg_control;
1818 ctl_len = msg_sys.msg_controllen;
1819 } else if (ctl_len) {
1820 if (ctl_len > sizeof(ctl)) {
1821 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1822 if (ctl_buf == NULL)
1823 goto out_freeiov;
1824 }
1825 err = -EFAULT;
1826 /*
1827 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1828 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1829 * checking falls down on this.
1830 */
1831 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1832 ctl_len))
1833 goto out_freectl;
1834 msg_sys.msg_control = ctl_buf;
1835 }
1836 msg_sys.msg_flags = flags;
1837
1838 if (sock->file->f_flags & O_NONBLOCK)
1839 msg_sys.msg_flags |= MSG_DONTWAIT;
1840 err = sock_sendmsg(sock, &msg_sys, total_len);
1841
1842 out_freectl:
1843 if (ctl_buf != ctl)
1844 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1845 out_freeiov:
1846 if (iov != iovstack)
1847 sock_kfree_s(sock->sk, iov, iov_size);
1848 out_put:
1849 fput_light(sock->file, fput_needed);
1850 out:
1851 return err;
1852 }
1853
1854 /*
1855 * BSD recvmsg interface
1856 */
1857
1858 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1859 unsigned int flags)
1860 {
1861 struct compat_msghdr __user *msg_compat =
1862 (struct compat_msghdr __user *)msg;
1863 struct socket *sock;
1864 struct iovec iovstack[UIO_FASTIOV];
1865 struct iovec *iov = iovstack;
1866 struct msghdr msg_sys;
1867 unsigned long cmsg_ptr;
1868 int err, iov_size, total_len, len;
1869 int fput_needed;
1870
1871 /* kernel mode address */
1872 char addr[MAX_SOCK_ADDR];
1873
1874 /* user mode address pointers */
1875 struct sockaddr __user *uaddr;
1876 int __user *uaddr_len;
1877
1878 if (MSG_CMSG_COMPAT & flags) {
1879 if (get_compat_msghdr(&msg_sys, msg_compat))
1880 return -EFAULT;
1881 }
1882 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1883 return -EFAULT;
1884
1885 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1886 if (!sock)
1887 goto out;
1888
1889 err = -EMSGSIZE;
1890 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1891 goto out_put;
1892
1893 /* Check whether to allocate the iovec area */
1894 err = -ENOMEM;
1895 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1896 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1897 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1898 if (!iov)
1899 goto out_put;
1900 }
1901
1902 /*
1903 * Save the user-mode address (verify_iovec will change the
1904 * kernel msghdr to use the kernel address space)
1905 */
1906
1907 uaddr = (void __user *)msg_sys.msg_name;
1908 uaddr_len = COMPAT_NAMELEN(msg);
1909 if (MSG_CMSG_COMPAT & flags) {
1910 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1911 } else
1912 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1913 if (err < 0)
1914 goto out_freeiov;
1915 total_len = err;
1916
1917 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1918 msg_sys.msg_flags = 0;
1919 if (MSG_CMSG_COMPAT & flags)
1920 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1921
1922 if (sock->file->f_flags & O_NONBLOCK)
1923 flags |= MSG_DONTWAIT;
1924 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1925 if (err < 0)
1926 goto out_freeiov;
1927 len = err;
1928
1929 if (uaddr != NULL) {
1930 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1931 uaddr_len);
1932 if (err < 0)
1933 goto out_freeiov;
1934 }
1935 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1936 COMPAT_FLAGS(msg));
1937 if (err)
1938 goto out_freeiov;
1939 if (MSG_CMSG_COMPAT & flags)
1940 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1941 &msg_compat->msg_controllen);
1942 else
1943 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1944 &msg->msg_controllen);
1945 if (err)
1946 goto out_freeiov;
1947 err = len;
1948
1949 out_freeiov:
1950 if (iov != iovstack)
1951 sock_kfree_s(sock->sk, iov, iov_size);
1952 out_put:
1953 fput_light(sock->file, fput_needed);
1954 out:
1955 return err;
1956 }
1957
1958 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1959
1960 /* Argument list sizes for sys_socketcall */
1961 #define AL(x) ((x) * sizeof(unsigned long))
1962 static const unsigned char nargs[18]={
1963 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1964 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1965 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1966 };
1967
1968 #undef AL
1969
1970 /*
1971 * System call vectors.
1972 *
1973 * Argument checking cleaned up. Saved 20% in size.
1974 * This function doesn't need to set the kernel lock because
1975 * it is set by the callees.
1976 */
1977
1978 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1979 {
1980 unsigned long a[6];
1981 unsigned long a0, a1;
1982 int err;
1983
1984 if (call < 1 || call > SYS_RECVMSG)
1985 return -EINVAL;
1986
1987 /* copy_from_user should be SMP safe. */
1988 if (copy_from_user(a, args, nargs[call]))
1989 return -EFAULT;
1990
1991 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1992 if (err)
1993 return err;
1994
1995 a0 = a[0];
1996 a1 = a[1];
1997
1998 switch (call) {
1999 case SYS_SOCKET:
2000 err = sys_socket(a0, a1, a[2]);
2001 break;
2002 case SYS_BIND:
2003 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2004 break;
2005 case SYS_CONNECT:
2006 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2007 break;
2008 case SYS_LISTEN:
2009 err = sys_listen(a0, a1);
2010 break;
2011 case SYS_ACCEPT:
2012 err =
2013 sys_accept(a0, (struct sockaddr __user *)a1,
2014 (int __user *)a[2]);
2015 break;
2016 case SYS_GETSOCKNAME:
2017 err =
2018 sys_getsockname(a0, (struct sockaddr __user *)a1,
2019 (int __user *)a[2]);
2020 break;
2021 case SYS_GETPEERNAME:
2022 err =
2023 sys_getpeername(a0, (struct sockaddr __user *)a1,
2024 (int __user *)a[2]);
2025 break;
2026 case SYS_SOCKETPAIR:
2027 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2028 break;
2029 case SYS_SEND:
2030 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2031 break;
2032 case SYS_SENDTO:
2033 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2034 (struct sockaddr __user *)a[4], a[5]);
2035 break;
2036 case SYS_RECV:
2037 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2038 break;
2039 case SYS_RECVFROM:
2040 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2041 (struct sockaddr __user *)a[4],
2042 (int __user *)a[5]);
2043 break;
2044 case SYS_SHUTDOWN:
2045 err = sys_shutdown(a0, a1);
2046 break;
2047 case SYS_SETSOCKOPT:
2048 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2049 break;
2050 case SYS_GETSOCKOPT:
2051 err =
2052 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2053 (int __user *)a[4]);
2054 break;
2055 case SYS_SENDMSG:
2056 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2057 break;
2058 case SYS_RECVMSG:
2059 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2060 break;
2061 default:
2062 err = -EINVAL;
2063 break;
2064 }
2065 return err;
2066 }
2067
2068 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2069
2070 /**
2071 * sock_register - add a socket protocol handler
2072 * @ops: description of protocol
2073 *
2074 * This function is called by a protocol handler that wants to
2075 * advertise its address family, and have it linked into the
2076 * socket interface. The value ops->family coresponds to the
2077 * socket system call protocol family.
2078 */
2079 int sock_register(const struct net_proto_family *ops)
2080 {
2081 int err;
2082
2083 if (ops->family >= NPROTO) {
2084 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2085 NPROTO);
2086 return -ENOBUFS;
2087 }
2088
2089 spin_lock(&net_family_lock);
2090 if (net_families[ops->family])
2091 err = -EEXIST;
2092 else {
2093 net_families[ops->family] = ops;
2094 err = 0;
2095 }
2096 spin_unlock(&net_family_lock);
2097
2098 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2099 return err;
2100 }
2101
2102 /**
2103 * sock_unregister - remove a protocol handler
2104 * @family: protocol family to remove
2105 *
2106 * This function is called by a protocol handler that wants to
2107 * remove its address family, and have it unlinked from the
2108 * new socket creation.
2109 *
2110 * If protocol handler is a module, then it can use module reference
2111 * counts to protect against new references. If protocol handler is not
2112 * a module then it needs to provide its own protection in
2113 * the ops->create routine.
2114 */
2115 void sock_unregister(int family)
2116 {
2117 BUG_ON(family < 0 || family >= NPROTO);
2118
2119 spin_lock(&net_family_lock);
2120 net_families[family] = NULL;
2121 spin_unlock(&net_family_lock);
2122
2123 synchronize_rcu();
2124
2125 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2126 }
2127
2128 static int __init sock_init(void)
2129 {
2130 /*
2131 * Initialize sock SLAB cache.
2132 */
2133
2134 sk_init();
2135
2136 /*
2137 * Initialize skbuff SLAB cache
2138 */
2139 skb_init();
2140
2141 /*
2142 * Initialize the protocols module.
2143 */
2144
2145 init_inodecache();
2146 register_filesystem(&sock_fs_type);
2147 sock_mnt = kern_mount(&sock_fs_type);
2148
2149 /* The real protocol initialization is performed in later initcalls.
2150 */
2151
2152 #ifdef CONFIG_NETFILTER
2153 netfilter_init();
2154 #endif
2155
2156 return 0;
2157 }
2158
2159 core_initcall(sock_init); /* early initcall */
2160
2161 #ifdef CONFIG_PROC_FS
2162 void socket_seq_show(struct seq_file *seq)
2163 {
2164 int cpu;
2165 int counter = 0;
2166
2167 for_each_possible_cpu(cpu)
2168 counter += per_cpu(sockets_in_use, cpu);
2169
2170 /* It can be negative, by the way. 8) */
2171 if (counter < 0)
2172 counter = 0;
2173
2174 seq_printf(seq, "sockets: used %d\n", counter);
2175 }
2176 #endif /* CONFIG_PROC_FS */
2177
2178 #ifdef CONFIG_COMPAT
2179 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2180 unsigned long arg)
2181 {
2182 struct socket *sock = file->private_data;
2183 int ret = -ENOIOCTLCMD;
2184
2185 if (sock->ops->compat_ioctl)
2186 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2187
2188 return ret;
2189 }
2190 #endif
2191
2192 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2193 {
2194 return sock->ops->bind(sock, addr, addrlen);
2195 }
2196
2197 int kernel_listen(struct socket *sock, int backlog)
2198 {
2199 return sock->ops->listen(sock, backlog);
2200 }
2201
2202 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2203 {
2204 struct sock *sk = sock->sk;
2205 int err;
2206
2207 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2208 newsock);
2209 if (err < 0)
2210 goto done;
2211
2212 err = sock->ops->accept(sock, *newsock, flags);
2213 if (err < 0) {
2214 sock_release(*newsock);
2215 goto done;
2216 }
2217
2218 (*newsock)->ops = sock->ops;
2219
2220 done:
2221 return err;
2222 }
2223
2224 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2225 int flags)
2226 {
2227 return sock->ops->connect(sock, addr, addrlen, flags);
2228 }
2229
2230 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2231 int *addrlen)
2232 {
2233 return sock->ops->getname(sock, addr, addrlen, 0);
2234 }
2235
2236 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2237 int *addrlen)
2238 {
2239 return sock->ops->getname(sock, addr, addrlen, 1);
2240 }
2241
2242 int kernel_getsockopt(struct socket *sock, int level, int optname,
2243 char *optval, int *optlen)
2244 {
2245 mm_segment_t oldfs = get_fs();
2246 int err;
2247
2248 set_fs(KERNEL_DS);
2249 if (level == SOL_SOCKET)
2250 err = sock_getsockopt(sock, level, optname, optval, optlen);
2251 else
2252 err = sock->ops->getsockopt(sock, level, optname, optval,
2253 optlen);
2254 set_fs(oldfs);
2255 return err;
2256 }
2257
2258 int kernel_setsockopt(struct socket *sock, int level, int optname,
2259 char *optval, int optlen)
2260 {
2261 mm_segment_t oldfs = get_fs();
2262 int err;
2263
2264 set_fs(KERNEL_DS);
2265 if (level == SOL_SOCKET)
2266 err = sock_setsockopt(sock, level, optname, optval, optlen);
2267 else
2268 err = sock->ops->setsockopt(sock, level, optname, optval,
2269 optlen);
2270 set_fs(oldfs);
2271 return err;
2272 }
2273
2274 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2275 size_t size, int flags)
2276 {
2277 if (sock->ops->sendpage)
2278 return sock->ops->sendpage(sock, page, offset, size, flags);
2279
2280 return sock_no_sendpage(sock, page, offset, size, flags);
2281 }
2282
2283 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2284 {
2285 mm_segment_t oldfs = get_fs();
2286 int err;
2287
2288 set_fs(KERNEL_DS);
2289 err = sock->ops->ioctl(sock, cmd, arg);
2290 set_fs(oldfs);
2291
2292 return err;
2293 }
2294
2295 /* ABI emulation layers need these two */
2296 EXPORT_SYMBOL(move_addr_to_kernel);
2297 EXPORT_SYMBOL(move_addr_to_user);
2298 EXPORT_SYMBOL(sock_create);
2299 EXPORT_SYMBOL(sock_create_kern);
2300 EXPORT_SYMBOL(sock_create_lite);
2301 EXPORT_SYMBOL(sock_map_fd);
2302 EXPORT_SYMBOL(sock_recvmsg);
2303 EXPORT_SYMBOL(sock_register);
2304 EXPORT_SYMBOL(sock_release);
2305 EXPORT_SYMBOL(sock_sendmsg);
2306 EXPORT_SYMBOL(sock_unregister);
2307 EXPORT_SYMBOL(sock_wake_async);
2308 EXPORT_SYMBOL(sockfd_lookup);
2309 EXPORT_SYMBOL(kernel_sendmsg);
2310 EXPORT_SYMBOL(kernel_recvmsg);
2311 EXPORT_SYMBOL(kernel_bind);
2312 EXPORT_SYMBOL(kernel_listen);
2313 EXPORT_SYMBOL(kernel_accept);
2314 EXPORT_SYMBOL(kernel_connect);
2315 EXPORT_SYMBOL(kernel_getsockname);
2316 EXPORT_SYMBOL(kernel_getpeername);
2317 EXPORT_SYMBOL(kernel_getsockopt);
2318 EXPORT_SYMBOL(kernel_setsockopt);
2319 EXPORT_SYMBOL(kernel_sendpage);
2320 EXPORT_SYMBOL(kernel_sock_ioctl);