Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354
355 if (dname) {
356 name.name = dname;
357 name.len = strlen(name.name);
358 } else if (sock->sk) {
359 name.name = sock->sk->sk_prot_creator->name;
360 name.len = strlen(name.name);
361 }
362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 if (unlikely(!path.dentry))
364 return ERR_PTR(-ENOMEM);
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(IS_ERR(file))) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 return file;
377 }
378
379 sock->file = file;
380 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 file->private_data = sock;
382 return file;
383 }
384 EXPORT_SYMBOL(sock_alloc_file);
385
386 static int sock_map_fd(struct socket *sock, int flags)
387 {
388 struct file *newfile;
389 int fd = get_unused_fd_flags(flags);
390 if (unlikely(fd < 0))
391 return fd;
392
393 newfile = sock_alloc_file(sock, flags, NULL);
394 if (likely(!IS_ERR(newfile))) {
395 fd_install(fd, newfile);
396 return fd;
397 }
398
399 put_unused_fd(fd);
400 return PTR_ERR(newfile);
401 }
402
403 struct socket *sock_from_file(struct file *file, int *err)
404 {
405 if (file->f_op == &socket_file_ops)
406 return file->private_data; /* set in sock_map_fd */
407
408 *err = -ENOTSOCK;
409 return NULL;
410 }
411 EXPORT_SYMBOL(sock_from_file);
412
413 /**
414 * sockfd_lookup - Go from a file number to its socket slot
415 * @fd: file handle
416 * @err: pointer to an error code return
417 *
418 * The file handle passed in is locked and the socket it is bound
419 * too is returned. If an error occurs the err pointer is overwritten
420 * with a negative errno code and NULL is returned. The function checks
421 * for both invalid handles and passing a handle which is not a socket.
422 *
423 * On a success the socket object pointer is returned.
424 */
425
426 struct socket *sockfd_lookup(int fd, int *err)
427 {
428 struct file *file;
429 struct socket *sock;
430
431 file = fget(fd);
432 if (!file) {
433 *err = -EBADF;
434 return NULL;
435 }
436
437 sock = sock_from_file(file, err);
438 if (!sock)
439 fput(file);
440 return sock;
441 }
442 EXPORT_SYMBOL(sockfd_lookup);
443
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445 {
446 struct file *file;
447 struct socket *sock;
448
449 *err = -EBADF;
450 file = fget_light(fd, fput_needed);
451 if (file) {
452 sock = sock_from_file(file, err);
453 if (sock)
454 return sock;
455 fput_light(file, *fput_needed);
456 }
457 return NULL;
458 }
459
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 const char *name, void *value, size_t size)
465 {
466 const char *proto_name;
467 size_t proto_size;
468 int error;
469
470 error = -ENODATA;
471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 proto_name = dentry->d_name.name;
473 proto_size = strlen(proto_name);
474
475 if (value) {
476 error = -ERANGE;
477 if (proto_size + 1 > size)
478 goto out;
479
480 strncpy(value, proto_name, proto_size + 1);
481 }
482 error = proto_size + 1;
483 }
484
485 out:
486 return error;
487 }
488
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 size_t size)
491 {
492 ssize_t len;
493 ssize_t used = 0;
494
495 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 if (len < 0)
497 return len;
498 used += len;
499 if (buffer) {
500 if (size < used)
501 return -ERANGE;
502 buffer += len;
503 }
504
505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 buffer += len;
512 }
513
514 return used;
515 }
516
517 static const struct inode_operations sockfs_inode_ops = {
518 .getxattr = sockfs_getxattr,
519 .listxattr = sockfs_listxattr,
520 };
521
522 /**
523 * sock_alloc - allocate a socket
524 *
525 * Allocate a new inode and socket object. The two are bound together
526 * and initialised. The socket is then returned. If we are out of inodes
527 * NULL is returned.
528 */
529
530 static struct socket *sock_alloc(void)
531 {
532 struct inode *inode;
533 struct socket *sock;
534
535 inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 if (!inode)
537 return NULL;
538
539 sock = SOCKET_I(inode);
540
541 kmemcheck_annotate_bitfield(sock, type);
542 inode->i_ino = get_next_ino();
543 inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 inode->i_uid = current_fsuid();
545 inode->i_gid = current_fsgid();
546 inode->i_op = &sockfs_inode_ops;
547
548 this_cpu_add(sockets_in_use, 1);
549 return sock;
550 }
551
552 /*
553 * In theory you can't get an open on this inode, but /proc provides
554 * a back door. Remember to keep it shut otherwise you'll let the
555 * creepy crawlies in.
556 */
557
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
559 {
560 return -ENXIO;
561 }
562
563 const struct file_operations bad_sock_fops = {
564 .owner = THIS_MODULE,
565 .open = sock_no_open,
566 .llseek = noop_llseek,
567 };
568
569 /**
570 * sock_release - close a socket
571 * @sock: socket to close
572 *
573 * The socket is released from the protocol stack if it has a release
574 * callback, and the inode is then released if the socket is bound to
575 * an inode not a file.
576 */
577
578 void sock_release(struct socket *sock)
579 {
580 if (sock->ops) {
581 struct module *owner = sock->ops->owner;
582
583 sock->ops->release(sock);
584 sock->ops = NULL;
585 module_put(owner);
586 }
587
588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 printk(KERN_ERR "sock_release: fasync list not empty!\n");
590
591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 return;
593
594 this_cpu_sub(sockets_in_use, 1);
595 if (!sock->file) {
596 iput(SOCK_INODE(sock));
597 return;
598 }
599 sock->file = NULL;
600 }
601 EXPORT_SYMBOL(sock_release);
602
603 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
604 {
605 *tx_flags = 0;
606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 *tx_flags |= SKBTX_HW_TSTAMP;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 *tx_flags |= SKBTX_SW_TSTAMP;
610 if (sock_flag(sk, SOCK_WIFI_STATUS))
611 *tx_flags |= SKBTX_WIFI_STATUS;
612 return 0;
613 }
614 EXPORT_SYMBOL(sock_tx_timestamp);
615
616 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
617 struct msghdr *msg, size_t size)
618 {
619 struct sock_iocb *si = kiocb_to_siocb(iocb);
620
621 si->sock = sock;
622 si->scm = NULL;
623 si->msg = msg;
624 si->size = size;
625
626 return sock->ops->sendmsg(iocb, sock, msg, size);
627 }
628
629 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
630 struct msghdr *msg, size_t size)
631 {
632 int err = security_socket_sendmsg(sock, msg, size);
633
634 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
635 }
636
637 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
638 {
639 struct kiocb iocb;
640 struct sock_iocb siocb;
641 int ret;
642
643 init_sync_kiocb(&iocb, NULL);
644 iocb.private = &siocb;
645 ret = __sock_sendmsg(&iocb, sock, msg, size);
646 if (-EIOCBQUEUED == ret)
647 ret = wait_on_sync_kiocb(&iocb);
648 return ret;
649 }
650 EXPORT_SYMBOL(sock_sendmsg);
651
652 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
653 {
654 struct kiocb iocb;
655 struct sock_iocb siocb;
656 int ret;
657
658 init_sync_kiocb(&iocb, NULL);
659 iocb.private = &siocb;
660 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
661 if (-EIOCBQUEUED == ret)
662 ret = wait_on_sync_kiocb(&iocb);
663 return ret;
664 }
665
666 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
667 struct kvec *vec, size_t num, size_t size)
668 {
669 mm_segment_t oldfs = get_fs();
670 int result;
671
672 set_fs(KERNEL_DS);
673 /*
674 * the following is safe, since for compiler definitions of kvec and
675 * iovec are identical, yielding the same in-core layout and alignment
676 */
677 msg->msg_iov = (struct iovec *)vec;
678 msg->msg_iovlen = num;
679 result = sock_sendmsg(sock, msg, size);
680 set_fs(oldfs);
681 return result;
682 }
683 EXPORT_SYMBOL(kernel_sendmsg);
684
685 static int ktime2ts(ktime_t kt, struct timespec *ts)
686 {
687 if (kt.tv64) {
688 *ts = ktime_to_timespec(kt);
689 return 1;
690 } else {
691 return 0;
692 }
693 }
694
695 /*
696 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
697 */
698 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
699 struct sk_buff *skb)
700 {
701 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
702 struct timespec ts[3];
703 int empty = 1;
704 struct skb_shared_hwtstamps *shhwtstamps =
705 skb_hwtstamps(skb);
706
707 /* Race occurred between timestamp enabling and packet
708 receiving. Fill in the current time for now. */
709 if (need_software_tstamp && skb->tstamp.tv64 == 0)
710 __net_timestamp(skb);
711
712 if (need_software_tstamp) {
713 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
714 struct timeval tv;
715 skb_get_timestamp(skb, &tv);
716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
717 sizeof(tv), &tv);
718 } else {
719 skb_get_timestampns(skb, &ts[0]);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
721 sizeof(ts[0]), &ts[0]);
722 }
723 }
724
725
726 memset(ts, 0, sizeof(ts));
727 if (skb->tstamp.tv64 &&
728 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
729 skb_get_timestampns(skb, ts + 0);
730 empty = 0;
731 }
732 if (shhwtstamps) {
733 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
734 ktime2ts(shhwtstamps->syststamp, ts + 1))
735 empty = 0;
736 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
737 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
738 empty = 0;
739 }
740 if (!empty)
741 put_cmsg(msg, SOL_SOCKET,
742 SCM_TIMESTAMPING, sizeof(ts), &ts);
743 }
744 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
745
746 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
747 struct sk_buff *skb)
748 {
749 int ack;
750
751 if (!sock_flag(sk, SOCK_WIFI_STATUS))
752 return;
753 if (!skb->wifi_acked_valid)
754 return;
755
756 ack = skb->wifi_acked;
757
758 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
759 }
760 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
761
762 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
763 struct sk_buff *skb)
764 {
765 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
766 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
767 sizeof(__u32), &skb->dropcount);
768 }
769
770 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
772 {
773 sock_recv_timestamp(msg, sk, skb);
774 sock_recv_drops(msg, sk, skb);
775 }
776 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
777
778 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
779 struct msghdr *msg, size_t size, int flags)
780 {
781 struct sock_iocb *si = kiocb_to_siocb(iocb);
782
783 si->sock = sock;
784 si->scm = NULL;
785 si->msg = msg;
786 si->size = size;
787 si->flags = flags;
788
789 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
790 }
791
792 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
793 struct msghdr *msg, size_t size, int flags)
794 {
795 int err = security_socket_recvmsg(sock, msg, size, flags);
796
797 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
798 }
799
800 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
801 size_t size, int flags)
802 {
803 struct kiocb iocb;
804 struct sock_iocb siocb;
805 int ret;
806
807 init_sync_kiocb(&iocb, NULL);
808 iocb.private = &siocb;
809 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
810 if (-EIOCBQUEUED == ret)
811 ret = wait_on_sync_kiocb(&iocb);
812 return ret;
813 }
814 EXPORT_SYMBOL(sock_recvmsg);
815
816 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
817 size_t size, int flags)
818 {
819 struct kiocb iocb;
820 struct sock_iocb siocb;
821 int ret;
822
823 init_sync_kiocb(&iocb, NULL);
824 iocb.private = &siocb;
825 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
826 if (-EIOCBQUEUED == ret)
827 ret = wait_on_sync_kiocb(&iocb);
828 return ret;
829 }
830
831 /**
832 * kernel_recvmsg - Receive a message from a socket (kernel space)
833 * @sock: The socket to receive the message from
834 * @msg: Received message
835 * @vec: Input s/g array for message data
836 * @num: Size of input s/g array
837 * @size: Number of bytes to read
838 * @flags: Message flags (MSG_DONTWAIT, etc...)
839 *
840 * On return the msg structure contains the scatter/gather array passed in the
841 * vec argument. The array is modified so that it consists of the unfilled
842 * portion of the original array.
843 *
844 * The returned value is the total number of bytes received, or an error.
845 */
846 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
847 struct kvec *vec, size_t num, size_t size, int flags)
848 {
849 mm_segment_t oldfs = get_fs();
850 int result;
851
852 set_fs(KERNEL_DS);
853 /*
854 * the following is safe, since for compiler definitions of kvec and
855 * iovec are identical, yielding the same in-core layout and alignment
856 */
857 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
858 result = sock_recvmsg(sock, msg, size, flags);
859 set_fs(oldfs);
860 return result;
861 }
862 EXPORT_SYMBOL(kernel_recvmsg);
863
864 static void sock_aio_dtor(struct kiocb *iocb)
865 {
866 kfree(iocb->private);
867 }
868
869 static ssize_t sock_sendpage(struct file *file, struct page *page,
870 int offset, size_t size, loff_t *ppos, int more)
871 {
872 struct socket *sock;
873 int flags;
874
875 sock = file->private_data;
876
877 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
878 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
879 flags |= more;
880
881 return kernel_sendpage(sock, page, offset, size, flags);
882 }
883
884 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
885 struct pipe_inode_info *pipe, size_t len,
886 unsigned int flags)
887 {
888 struct socket *sock = file->private_data;
889
890 if (unlikely(!sock->ops->splice_read))
891 return -EINVAL;
892
893 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
894 }
895
896 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
897 struct sock_iocb *siocb)
898 {
899 if (!is_sync_kiocb(iocb)) {
900 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
901 if (!siocb)
902 return NULL;
903 iocb->ki_dtor = sock_aio_dtor;
904 }
905
906 siocb->kiocb = iocb;
907 iocb->private = siocb;
908 return siocb;
909 }
910
911 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
912 struct file *file, const struct iovec *iov,
913 unsigned long nr_segs)
914 {
915 struct socket *sock = file->private_data;
916 size_t size = 0;
917 int i;
918
919 for (i = 0; i < nr_segs; i++)
920 size += iov[i].iov_len;
921
922 msg->msg_name = NULL;
923 msg->msg_namelen = 0;
924 msg->msg_control = NULL;
925 msg->msg_controllen = 0;
926 msg->msg_iov = (struct iovec *)iov;
927 msg->msg_iovlen = nr_segs;
928 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
929
930 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
931 }
932
933 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
934 unsigned long nr_segs, loff_t pos)
935 {
936 struct sock_iocb siocb, *x;
937
938 if (pos != 0)
939 return -ESPIPE;
940
941 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
942 return 0;
943
944
945 x = alloc_sock_iocb(iocb, &siocb);
946 if (!x)
947 return -ENOMEM;
948 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
949 }
950
951 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
952 struct file *file, const struct iovec *iov,
953 unsigned long nr_segs)
954 {
955 struct socket *sock = file->private_data;
956 size_t size = 0;
957 int i;
958
959 for (i = 0; i < nr_segs; i++)
960 size += iov[i].iov_len;
961
962 msg->msg_name = NULL;
963 msg->msg_namelen = 0;
964 msg->msg_control = NULL;
965 msg->msg_controllen = 0;
966 msg->msg_iov = (struct iovec *)iov;
967 msg->msg_iovlen = nr_segs;
968 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
969 if (sock->type == SOCK_SEQPACKET)
970 msg->msg_flags |= MSG_EOR;
971
972 return __sock_sendmsg(iocb, sock, msg, size);
973 }
974
975 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
976 unsigned long nr_segs, loff_t pos)
977 {
978 struct sock_iocb siocb, *x;
979
980 if (pos != 0)
981 return -ESPIPE;
982
983 x = alloc_sock_iocb(iocb, &siocb);
984 if (!x)
985 return -ENOMEM;
986
987 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
988 }
989
990 /*
991 * Atomic setting of ioctl hooks to avoid race
992 * with module unload.
993 */
994
995 static DEFINE_MUTEX(br_ioctl_mutex);
996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
997
998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
999 {
1000 mutex_lock(&br_ioctl_mutex);
1001 br_ioctl_hook = hook;
1002 mutex_unlock(&br_ioctl_mutex);
1003 }
1004 EXPORT_SYMBOL(brioctl_set);
1005
1006 static DEFINE_MUTEX(vlan_ioctl_mutex);
1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1008
1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1010 {
1011 mutex_lock(&vlan_ioctl_mutex);
1012 vlan_ioctl_hook = hook;
1013 mutex_unlock(&vlan_ioctl_mutex);
1014 }
1015 EXPORT_SYMBOL(vlan_ioctl_set);
1016
1017 static DEFINE_MUTEX(dlci_ioctl_mutex);
1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1019
1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1021 {
1022 mutex_lock(&dlci_ioctl_mutex);
1023 dlci_ioctl_hook = hook;
1024 mutex_unlock(&dlci_ioctl_mutex);
1025 }
1026 EXPORT_SYMBOL(dlci_ioctl_set);
1027
1028 static long sock_do_ioctl(struct net *net, struct socket *sock,
1029 unsigned int cmd, unsigned long arg)
1030 {
1031 int err;
1032 void __user *argp = (void __user *)arg;
1033
1034 err = sock->ops->ioctl(sock, cmd, arg);
1035
1036 /*
1037 * If this ioctl is unknown try to hand it down
1038 * to the NIC driver.
1039 */
1040 if (err == -ENOIOCTLCMD)
1041 err = dev_ioctl(net, cmd, argp);
1042
1043 return err;
1044 }
1045
1046 /*
1047 * With an ioctl, arg may well be a user mode pointer, but we don't know
1048 * what to do with it - that's up to the protocol still.
1049 */
1050
1051 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1052 {
1053 struct socket *sock;
1054 struct sock *sk;
1055 void __user *argp = (void __user *)arg;
1056 int pid, err;
1057 struct net *net;
1058
1059 sock = file->private_data;
1060 sk = sock->sk;
1061 net = sock_net(sk);
1062 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1063 err = dev_ioctl(net, cmd, argp);
1064 } else
1065 #ifdef CONFIG_WEXT_CORE
1066 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1067 err = dev_ioctl(net, cmd, argp);
1068 } else
1069 #endif
1070 switch (cmd) {
1071 case FIOSETOWN:
1072 case SIOCSPGRP:
1073 err = -EFAULT;
1074 if (get_user(pid, (int __user *)argp))
1075 break;
1076 err = f_setown(sock->file, pid, 1);
1077 break;
1078 case FIOGETOWN:
1079 case SIOCGPGRP:
1080 err = put_user(f_getown(sock->file),
1081 (int __user *)argp);
1082 break;
1083 case SIOCGIFBR:
1084 case SIOCSIFBR:
1085 case SIOCBRADDBR:
1086 case SIOCBRDELBR:
1087 err = -ENOPKG;
1088 if (!br_ioctl_hook)
1089 request_module("bridge");
1090
1091 mutex_lock(&br_ioctl_mutex);
1092 if (br_ioctl_hook)
1093 err = br_ioctl_hook(net, cmd, argp);
1094 mutex_unlock(&br_ioctl_mutex);
1095 break;
1096 case SIOCGIFVLAN:
1097 case SIOCSIFVLAN:
1098 err = -ENOPKG;
1099 if (!vlan_ioctl_hook)
1100 request_module("8021q");
1101
1102 mutex_lock(&vlan_ioctl_mutex);
1103 if (vlan_ioctl_hook)
1104 err = vlan_ioctl_hook(net, argp);
1105 mutex_unlock(&vlan_ioctl_mutex);
1106 break;
1107 case SIOCADDDLCI:
1108 case SIOCDELDLCI:
1109 err = -ENOPKG;
1110 if (!dlci_ioctl_hook)
1111 request_module("dlci");
1112
1113 mutex_lock(&dlci_ioctl_mutex);
1114 if (dlci_ioctl_hook)
1115 err = dlci_ioctl_hook(cmd, argp);
1116 mutex_unlock(&dlci_ioctl_mutex);
1117 break;
1118 default:
1119 err = sock_do_ioctl(net, sock, cmd, arg);
1120 break;
1121 }
1122 return err;
1123 }
1124
1125 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1126 {
1127 int err;
1128 struct socket *sock = NULL;
1129
1130 err = security_socket_create(family, type, protocol, 1);
1131 if (err)
1132 goto out;
1133
1134 sock = sock_alloc();
1135 if (!sock) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139
1140 sock->type = type;
1141 err = security_socket_post_create(sock, family, type, protocol, 1);
1142 if (err)
1143 goto out_release;
1144
1145 out:
1146 *res = sock;
1147 return err;
1148 out_release:
1149 sock_release(sock);
1150 sock = NULL;
1151 goto out;
1152 }
1153 EXPORT_SYMBOL(sock_create_lite);
1154
1155 /* No kernel lock held - perfect */
1156 static unsigned int sock_poll(struct file *file, poll_table *wait)
1157 {
1158 struct socket *sock;
1159
1160 /*
1161 * We can't return errors to poll, so it's either yes or no.
1162 */
1163 sock = file->private_data;
1164 return sock->ops->poll(file, sock, wait);
1165 }
1166
1167 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1168 {
1169 struct socket *sock = file->private_data;
1170
1171 return sock->ops->mmap(file, sock, vma);
1172 }
1173
1174 static int sock_close(struct inode *inode, struct file *filp)
1175 {
1176 /*
1177 * It was possible the inode is NULL we were
1178 * closing an unfinished socket.
1179 */
1180
1181 if (!inode) {
1182 printk(KERN_DEBUG "sock_close: NULL inode\n");
1183 return 0;
1184 }
1185 sock_release(SOCKET_I(inode));
1186 return 0;
1187 }
1188
1189 /*
1190 * Update the socket async list
1191 *
1192 * Fasync_list locking strategy.
1193 *
1194 * 1. fasync_list is modified only under process context socket lock
1195 * i.e. under semaphore.
1196 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1197 * or under socket lock
1198 */
1199
1200 static int sock_fasync(int fd, struct file *filp, int on)
1201 {
1202 struct socket *sock = filp->private_data;
1203 struct sock *sk = sock->sk;
1204 struct socket_wq *wq;
1205
1206 if (sk == NULL)
1207 return -EINVAL;
1208
1209 lock_sock(sk);
1210 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1211 fasync_helper(fd, filp, on, &wq->fasync_list);
1212
1213 if (!wq->fasync_list)
1214 sock_reset_flag(sk, SOCK_FASYNC);
1215 else
1216 sock_set_flag(sk, SOCK_FASYNC);
1217
1218 release_sock(sk);
1219 return 0;
1220 }
1221
1222 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1223
1224 int sock_wake_async(struct socket *sock, int how, int band)
1225 {
1226 struct socket_wq *wq;
1227
1228 if (!sock)
1229 return -1;
1230 rcu_read_lock();
1231 wq = rcu_dereference(sock->wq);
1232 if (!wq || !wq->fasync_list) {
1233 rcu_read_unlock();
1234 return -1;
1235 }
1236 switch (how) {
1237 case SOCK_WAKE_WAITD:
1238 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1239 break;
1240 goto call_kill;
1241 case SOCK_WAKE_SPACE:
1242 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1243 break;
1244 /* fall through */
1245 case SOCK_WAKE_IO:
1246 call_kill:
1247 kill_fasync(&wq->fasync_list, SIGIO, band);
1248 break;
1249 case SOCK_WAKE_URG:
1250 kill_fasync(&wq->fasync_list, SIGURG, band);
1251 }
1252 rcu_read_unlock();
1253 return 0;
1254 }
1255 EXPORT_SYMBOL(sock_wake_async);
1256
1257 int __sock_create(struct net *net, int family, int type, int protocol,
1258 struct socket **res, int kern)
1259 {
1260 int err;
1261 struct socket *sock;
1262 const struct net_proto_family *pf;
1263
1264 /*
1265 * Check protocol is in range
1266 */
1267 if (family < 0 || family >= NPROTO)
1268 return -EAFNOSUPPORT;
1269 if (type < 0 || type >= SOCK_MAX)
1270 return -EINVAL;
1271
1272 /* Compatibility.
1273
1274 This uglymoron is moved from INET layer to here to avoid
1275 deadlock in module load.
1276 */
1277 if (family == PF_INET && type == SOCK_PACKET) {
1278 static int warned;
1279 if (!warned) {
1280 warned = 1;
1281 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1282 current->comm);
1283 }
1284 family = PF_PACKET;
1285 }
1286
1287 err = security_socket_create(family, type, protocol, kern);
1288 if (err)
1289 return err;
1290
1291 /*
1292 * Allocate the socket and allow the family to set things up. if
1293 * the protocol is 0, the family is instructed to select an appropriate
1294 * default.
1295 */
1296 sock = sock_alloc();
1297 if (!sock) {
1298 net_warn_ratelimited("socket: no more sockets\n");
1299 return -ENFILE; /* Not exactly a match, but its the
1300 closest posix thing */
1301 }
1302
1303 sock->type = type;
1304
1305 #ifdef CONFIG_MODULES
1306 /* Attempt to load a protocol module if the find failed.
1307 *
1308 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1309 * requested real, full-featured networking support upon configuration.
1310 * Otherwise module support will break!
1311 */
1312 if (rcu_access_pointer(net_families[family]) == NULL)
1313 request_module("net-pf-%d", family);
1314 #endif
1315
1316 rcu_read_lock();
1317 pf = rcu_dereference(net_families[family]);
1318 err = -EAFNOSUPPORT;
1319 if (!pf)
1320 goto out_release;
1321
1322 /*
1323 * We will call the ->create function, that possibly is in a loadable
1324 * module, so we have to bump that loadable module refcnt first.
1325 */
1326 if (!try_module_get(pf->owner))
1327 goto out_release;
1328
1329 /* Now protected by module ref count */
1330 rcu_read_unlock();
1331
1332 err = pf->create(net, sock, protocol, kern);
1333 if (err < 0)
1334 goto out_module_put;
1335
1336 /*
1337 * Now to bump the refcnt of the [loadable] module that owns this
1338 * socket at sock_release time we decrement its refcnt.
1339 */
1340 if (!try_module_get(sock->ops->owner))
1341 goto out_module_busy;
1342
1343 /*
1344 * Now that we're done with the ->create function, the [loadable]
1345 * module can have its refcnt decremented
1346 */
1347 module_put(pf->owner);
1348 err = security_socket_post_create(sock, family, type, protocol, kern);
1349 if (err)
1350 goto out_sock_release;
1351 *res = sock;
1352
1353 return 0;
1354
1355 out_module_busy:
1356 err = -EAFNOSUPPORT;
1357 out_module_put:
1358 sock->ops = NULL;
1359 module_put(pf->owner);
1360 out_sock_release:
1361 sock_release(sock);
1362 return err;
1363
1364 out_release:
1365 rcu_read_unlock();
1366 goto out_sock_release;
1367 }
1368 EXPORT_SYMBOL(__sock_create);
1369
1370 int sock_create(int family, int type, int protocol, struct socket **res)
1371 {
1372 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1373 }
1374 EXPORT_SYMBOL(sock_create);
1375
1376 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1377 {
1378 return __sock_create(&init_net, family, type, protocol, res, 1);
1379 }
1380 EXPORT_SYMBOL(sock_create_kern);
1381
1382 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1383 {
1384 int retval;
1385 struct socket *sock;
1386 int flags;
1387
1388 /* Check the SOCK_* constants for consistency. */
1389 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1390 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1391 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1392 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1393
1394 flags = type & ~SOCK_TYPE_MASK;
1395 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1396 return -EINVAL;
1397 type &= SOCK_TYPE_MASK;
1398
1399 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1400 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1401
1402 retval = sock_create(family, type, protocol, &sock);
1403 if (retval < 0)
1404 goto out;
1405
1406 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1407 if (retval < 0)
1408 goto out_release;
1409
1410 out:
1411 /* It may be already another descriptor 8) Not kernel problem. */
1412 return retval;
1413
1414 out_release:
1415 sock_release(sock);
1416 return retval;
1417 }
1418
1419 /*
1420 * Create a pair of connected sockets.
1421 */
1422
1423 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1424 int __user *, usockvec)
1425 {
1426 struct socket *sock1, *sock2;
1427 int fd1, fd2, err;
1428 struct file *newfile1, *newfile2;
1429 int flags;
1430
1431 flags = type & ~SOCK_TYPE_MASK;
1432 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 return -EINVAL;
1434 type &= SOCK_TYPE_MASK;
1435
1436 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1437 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1438
1439 /*
1440 * Obtain the first socket and check if the underlying protocol
1441 * supports the socketpair call.
1442 */
1443
1444 err = sock_create(family, type, protocol, &sock1);
1445 if (err < 0)
1446 goto out;
1447
1448 err = sock_create(family, type, protocol, &sock2);
1449 if (err < 0)
1450 goto out_release_1;
1451
1452 err = sock1->ops->socketpair(sock1, sock2);
1453 if (err < 0)
1454 goto out_release_both;
1455
1456 fd1 = get_unused_fd_flags(flags);
1457 if (unlikely(fd1 < 0)) {
1458 err = fd1;
1459 goto out_release_both;
1460 }
1461 fd2 = get_unused_fd_flags(flags);
1462 if (unlikely(fd2 < 0)) {
1463 err = fd2;
1464 put_unused_fd(fd1);
1465 goto out_release_both;
1466 }
1467
1468 newfile1 = sock_alloc_file(sock1, flags, NULL);
1469 if (unlikely(IS_ERR(newfile1))) {
1470 err = PTR_ERR(newfile1);
1471 put_unused_fd(fd1);
1472 put_unused_fd(fd2);
1473 goto out_release_both;
1474 }
1475
1476 newfile2 = sock_alloc_file(sock2, flags, NULL);
1477 if (IS_ERR(newfile2)) {
1478 err = PTR_ERR(newfile2);
1479 fput(newfile1);
1480 put_unused_fd(fd1);
1481 put_unused_fd(fd2);
1482 sock_release(sock2);
1483 goto out;
1484 }
1485
1486 audit_fd_pair(fd1, fd2);
1487 fd_install(fd1, newfile1);
1488 fd_install(fd2, newfile2);
1489 /* fd1 and fd2 may be already another descriptors.
1490 * Not kernel problem.
1491 */
1492
1493 err = put_user(fd1, &usockvec[0]);
1494 if (!err)
1495 err = put_user(fd2, &usockvec[1]);
1496 if (!err)
1497 return 0;
1498
1499 sys_close(fd2);
1500 sys_close(fd1);
1501 return err;
1502
1503 out_release_both:
1504 sock_release(sock2);
1505 out_release_1:
1506 sock_release(sock1);
1507 out:
1508 return err;
1509 }
1510
1511 /*
1512 * Bind a name to a socket. Nothing much to do here since it's
1513 * the protocol's responsibility to handle the local address.
1514 *
1515 * We move the socket address to kernel space before we call
1516 * the protocol layer (having also checked the address is ok).
1517 */
1518
1519 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1520 {
1521 struct socket *sock;
1522 struct sockaddr_storage address;
1523 int err, fput_needed;
1524
1525 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 if (sock) {
1527 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1528 if (err >= 0) {
1529 err = security_socket_bind(sock,
1530 (struct sockaddr *)&address,
1531 addrlen);
1532 if (!err)
1533 err = sock->ops->bind(sock,
1534 (struct sockaddr *)
1535 &address, addrlen);
1536 }
1537 fput_light(sock->file, fput_needed);
1538 }
1539 return err;
1540 }
1541
1542 /*
1543 * Perform a listen. Basically, we allow the protocol to do anything
1544 * necessary for a listen, and if that works, we mark the socket as
1545 * ready for listening.
1546 */
1547
1548 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1549 {
1550 struct socket *sock;
1551 int err, fput_needed;
1552 int somaxconn;
1553
1554 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 if (sock) {
1556 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1557 if ((unsigned int)backlog > somaxconn)
1558 backlog = somaxconn;
1559
1560 err = security_socket_listen(sock, backlog);
1561 if (!err)
1562 err = sock->ops->listen(sock, backlog);
1563
1564 fput_light(sock->file, fput_needed);
1565 }
1566 return err;
1567 }
1568
1569 /*
1570 * For accept, we attempt to create a new socket, set up the link
1571 * with the client, wake up the client, then return the new
1572 * connected fd. We collect the address of the connector in kernel
1573 * space and move it to user at the very end. This is unclean because
1574 * we open the socket then return an error.
1575 *
1576 * 1003.1g adds the ability to recvmsg() to query connection pending
1577 * status to recvmsg. We need to add that support in a way thats
1578 * clean when we restucture accept also.
1579 */
1580
1581 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 int __user *, upeer_addrlen, int, flags)
1583 {
1584 struct socket *sock, *newsock;
1585 struct file *newfile;
1586 int err, len, newfd, fput_needed;
1587 struct sockaddr_storage address;
1588
1589 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1590 return -EINVAL;
1591
1592 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1593 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1594
1595 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596 if (!sock)
1597 goto out;
1598
1599 err = -ENFILE;
1600 newsock = sock_alloc();
1601 if (!newsock)
1602 goto out_put;
1603
1604 newsock->type = sock->type;
1605 newsock->ops = sock->ops;
1606
1607 /*
1608 * We don't need try_module_get here, as the listening socket (sock)
1609 * has the protocol module (sock->ops->owner) held.
1610 */
1611 __module_get(newsock->ops->owner);
1612
1613 newfd = get_unused_fd_flags(flags);
1614 if (unlikely(newfd < 0)) {
1615 err = newfd;
1616 sock_release(newsock);
1617 goto out_put;
1618 }
1619 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1620 if (unlikely(IS_ERR(newfile))) {
1621 err = PTR_ERR(newfile);
1622 put_unused_fd(newfd);
1623 sock_release(newsock);
1624 goto out_put;
1625 }
1626
1627 err = security_socket_accept(sock, newsock);
1628 if (err)
1629 goto out_fd;
1630
1631 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1632 if (err < 0)
1633 goto out_fd;
1634
1635 if (upeer_sockaddr) {
1636 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1637 &len, 2) < 0) {
1638 err = -ECONNABORTED;
1639 goto out_fd;
1640 }
1641 err = move_addr_to_user(&address,
1642 len, upeer_sockaddr, upeer_addrlen);
1643 if (err < 0)
1644 goto out_fd;
1645 }
1646
1647 /* File flags are not inherited via accept() unlike another OSes. */
1648
1649 fd_install(newfd, newfile);
1650 err = newfd;
1651
1652 out_put:
1653 fput_light(sock->file, fput_needed);
1654 out:
1655 return err;
1656 out_fd:
1657 fput(newfile);
1658 put_unused_fd(newfd);
1659 goto out_put;
1660 }
1661
1662 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1663 int __user *, upeer_addrlen)
1664 {
1665 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1666 }
1667
1668 /*
1669 * Attempt to connect to a socket with the server address. The address
1670 * is in user space so we verify it is OK and move it to kernel space.
1671 *
1672 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1673 * break bindings
1674 *
1675 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1676 * other SEQPACKET protocols that take time to connect() as it doesn't
1677 * include the -EINPROGRESS status for such sockets.
1678 */
1679
1680 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1681 int, addrlen)
1682 {
1683 struct socket *sock;
1684 struct sockaddr_storage address;
1685 int err, fput_needed;
1686
1687 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 if (!sock)
1689 goto out;
1690 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1691 if (err < 0)
1692 goto out_put;
1693
1694 err =
1695 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1696 if (err)
1697 goto out_put;
1698
1699 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1700 sock->file->f_flags);
1701 out_put:
1702 fput_light(sock->file, fput_needed);
1703 out:
1704 return err;
1705 }
1706
1707 /*
1708 * Get the local address ('name') of a socket object. Move the obtained
1709 * name to user space.
1710 */
1711
1712 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1713 int __user *, usockaddr_len)
1714 {
1715 struct socket *sock;
1716 struct sockaddr_storage address;
1717 int len, err, fput_needed;
1718
1719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 if (!sock)
1721 goto out;
1722
1723 err = security_socket_getsockname(sock);
1724 if (err)
1725 goto out_put;
1726
1727 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1728 if (err)
1729 goto out_put;
1730 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1731
1732 out_put:
1733 fput_light(sock->file, fput_needed);
1734 out:
1735 return err;
1736 }
1737
1738 /*
1739 * Get the remote address ('name') of a socket object. Move the obtained
1740 * name to user space.
1741 */
1742
1743 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1744 int __user *, usockaddr_len)
1745 {
1746 struct socket *sock;
1747 struct sockaddr_storage address;
1748 int len, err, fput_needed;
1749
1750 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 if (sock != NULL) {
1752 err = security_socket_getpeername(sock);
1753 if (err) {
1754 fput_light(sock->file, fput_needed);
1755 return err;
1756 }
1757
1758 err =
1759 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1760 1);
1761 if (!err)
1762 err = move_addr_to_user(&address, len, usockaddr,
1763 usockaddr_len);
1764 fput_light(sock->file, fput_needed);
1765 }
1766 return err;
1767 }
1768
1769 /*
1770 * Send a datagram to a given address. We move the address into kernel
1771 * space and check the user space data area is readable before invoking
1772 * the protocol.
1773 */
1774
1775 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1776 unsigned int, flags, struct sockaddr __user *, addr,
1777 int, addr_len)
1778 {
1779 struct socket *sock;
1780 struct sockaddr_storage address;
1781 int err;
1782 struct msghdr msg;
1783 struct iovec iov;
1784 int fput_needed;
1785
1786 if (len > INT_MAX)
1787 len = INT_MAX;
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (!sock)
1790 goto out;
1791
1792 iov.iov_base = buff;
1793 iov.iov_len = len;
1794 msg.msg_name = NULL;
1795 msg.msg_iov = &iov;
1796 msg.msg_iovlen = 1;
1797 msg.msg_control = NULL;
1798 msg.msg_controllen = 0;
1799 msg.msg_namelen = 0;
1800 if (addr) {
1801 err = move_addr_to_kernel(addr, addr_len, &address);
1802 if (err < 0)
1803 goto out_put;
1804 msg.msg_name = (struct sockaddr *)&address;
1805 msg.msg_namelen = addr_len;
1806 }
1807 if (sock->file->f_flags & O_NONBLOCK)
1808 flags |= MSG_DONTWAIT;
1809 msg.msg_flags = flags;
1810 err = sock_sendmsg(sock, &msg, len);
1811
1812 out_put:
1813 fput_light(sock->file, fput_needed);
1814 out:
1815 return err;
1816 }
1817
1818 /*
1819 * Send a datagram down a socket.
1820 */
1821
1822 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1823 unsigned int, flags)
1824 {
1825 return sys_sendto(fd, buff, len, flags, NULL, 0);
1826 }
1827
1828 /*
1829 * Receive a frame from the socket and optionally record the address of the
1830 * sender. We verify the buffers are writable and if needed move the
1831 * sender address from kernel to user space.
1832 */
1833
1834 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1835 unsigned int, flags, struct sockaddr __user *, addr,
1836 int __user *, addr_len)
1837 {
1838 struct socket *sock;
1839 struct iovec iov;
1840 struct msghdr msg;
1841 struct sockaddr_storage address;
1842 int err, err2;
1843 int fput_needed;
1844
1845 if (size > INT_MAX)
1846 size = INT_MAX;
1847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (!sock)
1849 goto out;
1850
1851 msg.msg_control = NULL;
1852 msg.msg_controllen = 0;
1853 msg.msg_iovlen = 1;
1854 msg.msg_iov = &iov;
1855 iov.iov_len = size;
1856 iov.iov_base = ubuf;
1857 msg.msg_name = (struct sockaddr *)&address;
1858 msg.msg_namelen = sizeof(address);
1859 if (sock->file->f_flags & O_NONBLOCK)
1860 flags |= MSG_DONTWAIT;
1861 err = sock_recvmsg(sock, &msg, size, flags);
1862
1863 if (err >= 0 && addr != NULL) {
1864 err2 = move_addr_to_user(&address,
1865 msg.msg_namelen, addr, addr_len);
1866 if (err2 < 0)
1867 err = err2;
1868 }
1869
1870 fput_light(sock->file, fput_needed);
1871 out:
1872 return err;
1873 }
1874
1875 /*
1876 * Receive a datagram from a socket.
1877 */
1878
1879 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1880 unsigned int flags)
1881 {
1882 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1883 }
1884
1885 /*
1886 * Set a socket option. Because we don't know the option lengths we have
1887 * to pass the user mode parameter for the protocols to sort out.
1888 */
1889
1890 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1891 char __user *, optval, int, optlen)
1892 {
1893 int err, fput_needed;
1894 struct socket *sock;
1895
1896 if (optlen < 0)
1897 return -EINVAL;
1898
1899 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 if (sock != NULL) {
1901 err = security_socket_setsockopt(sock, level, optname);
1902 if (err)
1903 goto out_put;
1904
1905 if (level == SOL_SOCKET)
1906 err =
1907 sock_setsockopt(sock, level, optname, optval,
1908 optlen);
1909 else
1910 err =
1911 sock->ops->setsockopt(sock, level, optname, optval,
1912 optlen);
1913 out_put:
1914 fput_light(sock->file, fput_needed);
1915 }
1916 return err;
1917 }
1918
1919 /*
1920 * Get a socket option. Because we don't know the option lengths we have
1921 * to pass a user mode parameter for the protocols to sort out.
1922 */
1923
1924 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1925 char __user *, optval, int __user *, optlen)
1926 {
1927 int err, fput_needed;
1928 struct socket *sock;
1929
1930 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1931 if (sock != NULL) {
1932 err = security_socket_getsockopt(sock, level, optname);
1933 if (err)
1934 goto out_put;
1935
1936 if (level == SOL_SOCKET)
1937 err =
1938 sock_getsockopt(sock, level, optname, optval,
1939 optlen);
1940 else
1941 err =
1942 sock->ops->getsockopt(sock, level, optname, optval,
1943 optlen);
1944 out_put:
1945 fput_light(sock->file, fput_needed);
1946 }
1947 return err;
1948 }
1949
1950 /*
1951 * Shutdown a socket.
1952 */
1953
1954 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1955 {
1956 int err, fput_needed;
1957 struct socket *sock;
1958
1959 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 if (sock != NULL) {
1961 err = security_socket_shutdown(sock, how);
1962 if (!err)
1963 err = sock->ops->shutdown(sock, how);
1964 fput_light(sock->file, fput_needed);
1965 }
1966 return err;
1967 }
1968
1969 /* A couple of helpful macros for getting the address of the 32/64 bit
1970 * fields which are the same type (int / unsigned) on our platforms.
1971 */
1972 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1973 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1974 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1975
1976 struct used_address {
1977 struct sockaddr_storage name;
1978 unsigned int name_len;
1979 };
1980
1981 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1982 struct msghdr *msg_sys, unsigned int flags,
1983 struct used_address *used_address)
1984 {
1985 struct compat_msghdr __user *msg_compat =
1986 (struct compat_msghdr __user *)msg;
1987 struct sockaddr_storage address;
1988 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1989 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1990 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1991 /* 20 is size of ipv6_pktinfo */
1992 unsigned char *ctl_buf = ctl;
1993 int err, ctl_len, total_len;
1994
1995 err = -EFAULT;
1996 if (MSG_CMSG_COMPAT & flags) {
1997 if (get_compat_msghdr(msg_sys, msg_compat))
1998 return -EFAULT;
1999 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2000 return -EFAULT;
2001
2002 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2003 err = -EMSGSIZE;
2004 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2005 goto out;
2006 err = -ENOMEM;
2007 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2008 GFP_KERNEL);
2009 if (!iov)
2010 goto out;
2011 }
2012
2013 /* This will also move the address data into kernel space */
2014 if (MSG_CMSG_COMPAT & flags) {
2015 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2016 } else
2017 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2018 if (err < 0)
2019 goto out_freeiov;
2020 total_len = err;
2021
2022 err = -ENOBUFS;
2023
2024 if (msg_sys->msg_controllen > INT_MAX)
2025 goto out_freeiov;
2026 ctl_len = msg_sys->msg_controllen;
2027 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2028 err =
2029 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2030 sizeof(ctl));
2031 if (err)
2032 goto out_freeiov;
2033 ctl_buf = msg_sys->msg_control;
2034 ctl_len = msg_sys->msg_controllen;
2035 } else if (ctl_len) {
2036 if (ctl_len > sizeof(ctl)) {
2037 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2038 if (ctl_buf == NULL)
2039 goto out_freeiov;
2040 }
2041 err = -EFAULT;
2042 /*
2043 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2044 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2045 * checking falls down on this.
2046 */
2047 if (copy_from_user(ctl_buf,
2048 (void __user __force *)msg_sys->msg_control,
2049 ctl_len))
2050 goto out_freectl;
2051 msg_sys->msg_control = ctl_buf;
2052 }
2053 msg_sys->msg_flags = flags;
2054
2055 if (sock->file->f_flags & O_NONBLOCK)
2056 msg_sys->msg_flags |= MSG_DONTWAIT;
2057 /*
2058 * If this is sendmmsg() and current destination address is same as
2059 * previously succeeded address, omit asking LSM's decision.
2060 * used_address->name_len is initialized to UINT_MAX so that the first
2061 * destination address never matches.
2062 */
2063 if (used_address && msg_sys->msg_name &&
2064 used_address->name_len == msg_sys->msg_namelen &&
2065 !memcmp(&used_address->name, msg_sys->msg_name,
2066 used_address->name_len)) {
2067 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2068 goto out_freectl;
2069 }
2070 err = sock_sendmsg(sock, msg_sys, total_len);
2071 /*
2072 * If this is sendmmsg() and sending to current destination address was
2073 * successful, remember it.
2074 */
2075 if (used_address && err >= 0) {
2076 used_address->name_len = msg_sys->msg_namelen;
2077 if (msg_sys->msg_name)
2078 memcpy(&used_address->name, msg_sys->msg_name,
2079 used_address->name_len);
2080 }
2081
2082 out_freectl:
2083 if (ctl_buf != ctl)
2084 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2085 out_freeiov:
2086 if (iov != iovstack)
2087 kfree(iov);
2088 out:
2089 return err;
2090 }
2091
2092 /*
2093 * BSD sendmsg interface
2094 */
2095
2096 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2097 {
2098 int fput_needed, err;
2099 struct msghdr msg_sys;
2100 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2101
2102 if (!sock)
2103 goto out;
2104
2105 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2106
2107 fput_light(sock->file, fput_needed);
2108 out:
2109 return err;
2110 }
2111
2112 /*
2113 * Linux sendmmsg interface
2114 */
2115
2116 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2117 unsigned int flags)
2118 {
2119 int fput_needed, err, datagrams;
2120 struct socket *sock;
2121 struct mmsghdr __user *entry;
2122 struct compat_mmsghdr __user *compat_entry;
2123 struct msghdr msg_sys;
2124 struct used_address used_address;
2125
2126 if (vlen > UIO_MAXIOV)
2127 vlen = UIO_MAXIOV;
2128
2129 datagrams = 0;
2130
2131 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2132 if (!sock)
2133 return err;
2134
2135 used_address.name_len = UINT_MAX;
2136 entry = mmsg;
2137 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2138 err = 0;
2139
2140 while (datagrams < vlen) {
2141 if (MSG_CMSG_COMPAT & flags) {
2142 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2143 &msg_sys, flags, &used_address);
2144 if (err < 0)
2145 break;
2146 err = __put_user(err, &compat_entry->msg_len);
2147 ++compat_entry;
2148 } else {
2149 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2150 &msg_sys, flags, &used_address);
2151 if (err < 0)
2152 break;
2153 err = put_user(err, &entry->msg_len);
2154 ++entry;
2155 }
2156
2157 if (err)
2158 break;
2159 ++datagrams;
2160 }
2161
2162 fput_light(sock->file, fput_needed);
2163
2164 /* We only return an error if no datagrams were able to be sent */
2165 if (datagrams != 0)
2166 return datagrams;
2167
2168 return err;
2169 }
2170
2171 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2172 unsigned int, vlen, unsigned int, flags)
2173 {
2174 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2175 }
2176
2177 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2178 struct msghdr *msg_sys, unsigned int flags, int nosec)
2179 {
2180 struct compat_msghdr __user *msg_compat =
2181 (struct compat_msghdr __user *)msg;
2182 struct iovec iovstack[UIO_FASTIOV];
2183 struct iovec *iov = iovstack;
2184 unsigned long cmsg_ptr;
2185 int err, total_len, len;
2186
2187 /* kernel mode address */
2188 struct sockaddr_storage addr;
2189
2190 /* user mode address pointers */
2191 struct sockaddr __user *uaddr;
2192 int __user *uaddr_len;
2193
2194 if (MSG_CMSG_COMPAT & flags) {
2195 if (get_compat_msghdr(msg_sys, msg_compat))
2196 return -EFAULT;
2197 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2198 return -EFAULT;
2199
2200 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2201 err = -EMSGSIZE;
2202 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2203 goto out;
2204 err = -ENOMEM;
2205 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2206 GFP_KERNEL);
2207 if (!iov)
2208 goto out;
2209 }
2210
2211 /*
2212 * Save the user-mode address (verify_iovec will change the
2213 * kernel msghdr to use the kernel address space)
2214 */
2215
2216 uaddr = (__force void __user *)msg_sys->msg_name;
2217 uaddr_len = COMPAT_NAMELEN(msg);
2218 if (MSG_CMSG_COMPAT & flags) {
2219 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2220 } else
2221 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2222 if (err < 0)
2223 goto out_freeiov;
2224 total_len = err;
2225
2226 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2227 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2228
2229 if (sock->file->f_flags & O_NONBLOCK)
2230 flags |= MSG_DONTWAIT;
2231 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2232 total_len, flags);
2233 if (err < 0)
2234 goto out_freeiov;
2235 len = err;
2236
2237 if (uaddr != NULL) {
2238 err = move_addr_to_user(&addr,
2239 msg_sys->msg_namelen, uaddr,
2240 uaddr_len);
2241 if (err < 0)
2242 goto out_freeiov;
2243 }
2244 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2245 COMPAT_FLAGS(msg));
2246 if (err)
2247 goto out_freeiov;
2248 if (MSG_CMSG_COMPAT & flags)
2249 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2250 &msg_compat->msg_controllen);
2251 else
2252 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2253 &msg->msg_controllen);
2254 if (err)
2255 goto out_freeiov;
2256 err = len;
2257
2258 out_freeiov:
2259 if (iov != iovstack)
2260 kfree(iov);
2261 out:
2262 return err;
2263 }
2264
2265 /*
2266 * BSD recvmsg interface
2267 */
2268
2269 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2270 unsigned int, flags)
2271 {
2272 int fput_needed, err;
2273 struct msghdr msg_sys;
2274 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2275
2276 if (!sock)
2277 goto out;
2278
2279 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2280
2281 fput_light(sock->file, fput_needed);
2282 out:
2283 return err;
2284 }
2285
2286 /*
2287 * Linux recvmmsg interface
2288 */
2289
2290 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2291 unsigned int flags, struct timespec *timeout)
2292 {
2293 int fput_needed, err, datagrams;
2294 struct socket *sock;
2295 struct mmsghdr __user *entry;
2296 struct compat_mmsghdr __user *compat_entry;
2297 struct msghdr msg_sys;
2298 struct timespec end_time;
2299
2300 if (timeout &&
2301 poll_select_set_timeout(&end_time, timeout->tv_sec,
2302 timeout->tv_nsec))
2303 return -EINVAL;
2304
2305 datagrams = 0;
2306
2307 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2308 if (!sock)
2309 return err;
2310
2311 err = sock_error(sock->sk);
2312 if (err)
2313 goto out_put;
2314
2315 entry = mmsg;
2316 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2317
2318 while (datagrams < vlen) {
2319 /*
2320 * No need to ask LSM for more than the first datagram.
2321 */
2322 if (MSG_CMSG_COMPAT & flags) {
2323 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2324 &msg_sys, flags & ~MSG_WAITFORONE,
2325 datagrams);
2326 if (err < 0)
2327 break;
2328 err = __put_user(err, &compat_entry->msg_len);
2329 ++compat_entry;
2330 } else {
2331 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2332 &msg_sys, flags & ~MSG_WAITFORONE,
2333 datagrams);
2334 if (err < 0)
2335 break;
2336 err = put_user(err, &entry->msg_len);
2337 ++entry;
2338 }
2339
2340 if (err)
2341 break;
2342 ++datagrams;
2343
2344 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2345 if (flags & MSG_WAITFORONE)
2346 flags |= MSG_DONTWAIT;
2347
2348 if (timeout) {
2349 ktime_get_ts(timeout);
2350 *timeout = timespec_sub(end_time, *timeout);
2351 if (timeout->tv_sec < 0) {
2352 timeout->tv_sec = timeout->tv_nsec = 0;
2353 break;
2354 }
2355
2356 /* Timeout, return less than vlen datagrams */
2357 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2358 break;
2359 }
2360
2361 /* Out of band data, return right away */
2362 if (msg_sys.msg_flags & MSG_OOB)
2363 break;
2364 }
2365
2366 out_put:
2367 fput_light(sock->file, fput_needed);
2368
2369 if (err == 0)
2370 return datagrams;
2371
2372 if (datagrams != 0) {
2373 /*
2374 * We may return less entries than requested (vlen) if the
2375 * sock is non block and there aren't enough datagrams...
2376 */
2377 if (err != -EAGAIN) {
2378 /*
2379 * ... or if recvmsg returns an error after we
2380 * received some datagrams, where we record the
2381 * error to return on the next call or if the
2382 * app asks about it using getsockopt(SO_ERROR).
2383 */
2384 sock->sk->sk_err = -err;
2385 }
2386
2387 return datagrams;
2388 }
2389
2390 return err;
2391 }
2392
2393 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2394 unsigned int, vlen, unsigned int, flags,
2395 struct timespec __user *, timeout)
2396 {
2397 int datagrams;
2398 struct timespec timeout_sys;
2399
2400 if (!timeout)
2401 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2402
2403 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2404 return -EFAULT;
2405
2406 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2407
2408 if (datagrams > 0 &&
2409 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2410 datagrams = -EFAULT;
2411
2412 return datagrams;
2413 }
2414
2415 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2416 /* Argument list sizes for sys_socketcall */
2417 #define AL(x) ((x) * sizeof(unsigned long))
2418 static const unsigned char nargs[21] = {
2419 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2420 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2421 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2422 AL(4), AL(5), AL(4)
2423 };
2424
2425 #undef AL
2426
2427 /*
2428 * System call vectors.
2429 *
2430 * Argument checking cleaned up. Saved 20% in size.
2431 * This function doesn't need to set the kernel lock because
2432 * it is set by the callees.
2433 */
2434
2435 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2436 {
2437 unsigned long a[6];
2438 unsigned long a0, a1;
2439 int err;
2440 unsigned int len;
2441
2442 if (call < 1 || call > SYS_SENDMMSG)
2443 return -EINVAL;
2444
2445 len = nargs[call];
2446 if (len > sizeof(a))
2447 return -EINVAL;
2448
2449 /* copy_from_user should be SMP safe. */
2450 if (copy_from_user(a, args, len))
2451 return -EFAULT;
2452
2453 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2454
2455 a0 = a[0];
2456 a1 = a[1];
2457
2458 switch (call) {
2459 case SYS_SOCKET:
2460 err = sys_socket(a0, a1, a[2]);
2461 break;
2462 case SYS_BIND:
2463 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2464 break;
2465 case SYS_CONNECT:
2466 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2467 break;
2468 case SYS_LISTEN:
2469 err = sys_listen(a0, a1);
2470 break;
2471 case SYS_ACCEPT:
2472 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2473 (int __user *)a[2], 0);
2474 break;
2475 case SYS_GETSOCKNAME:
2476 err =
2477 sys_getsockname(a0, (struct sockaddr __user *)a1,
2478 (int __user *)a[2]);
2479 break;
2480 case SYS_GETPEERNAME:
2481 err =
2482 sys_getpeername(a0, (struct sockaddr __user *)a1,
2483 (int __user *)a[2]);
2484 break;
2485 case SYS_SOCKETPAIR:
2486 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2487 break;
2488 case SYS_SEND:
2489 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2490 break;
2491 case SYS_SENDTO:
2492 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2493 (struct sockaddr __user *)a[4], a[5]);
2494 break;
2495 case SYS_RECV:
2496 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2497 break;
2498 case SYS_RECVFROM:
2499 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2500 (struct sockaddr __user *)a[4],
2501 (int __user *)a[5]);
2502 break;
2503 case SYS_SHUTDOWN:
2504 err = sys_shutdown(a0, a1);
2505 break;
2506 case SYS_SETSOCKOPT:
2507 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2508 break;
2509 case SYS_GETSOCKOPT:
2510 err =
2511 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2512 (int __user *)a[4]);
2513 break;
2514 case SYS_SENDMSG:
2515 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2516 break;
2517 case SYS_SENDMMSG:
2518 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2519 break;
2520 case SYS_RECVMSG:
2521 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2522 break;
2523 case SYS_RECVMMSG:
2524 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2525 (struct timespec __user *)a[4]);
2526 break;
2527 case SYS_ACCEPT4:
2528 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2529 (int __user *)a[2], a[3]);
2530 break;
2531 default:
2532 err = -EINVAL;
2533 break;
2534 }
2535 return err;
2536 }
2537
2538 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2539
2540 /**
2541 * sock_register - add a socket protocol handler
2542 * @ops: description of protocol
2543 *
2544 * This function is called by a protocol handler that wants to
2545 * advertise its address family, and have it linked into the
2546 * socket interface. The value ops->family coresponds to the
2547 * socket system call protocol family.
2548 */
2549 int sock_register(const struct net_proto_family *ops)
2550 {
2551 int err;
2552
2553 if (ops->family >= NPROTO) {
2554 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2555 NPROTO);
2556 return -ENOBUFS;
2557 }
2558
2559 spin_lock(&net_family_lock);
2560 if (rcu_dereference_protected(net_families[ops->family],
2561 lockdep_is_held(&net_family_lock)))
2562 err = -EEXIST;
2563 else {
2564 rcu_assign_pointer(net_families[ops->family], ops);
2565 err = 0;
2566 }
2567 spin_unlock(&net_family_lock);
2568
2569 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2570 return err;
2571 }
2572 EXPORT_SYMBOL(sock_register);
2573
2574 /**
2575 * sock_unregister - remove a protocol handler
2576 * @family: protocol family to remove
2577 *
2578 * This function is called by a protocol handler that wants to
2579 * remove its address family, and have it unlinked from the
2580 * new socket creation.
2581 *
2582 * If protocol handler is a module, then it can use module reference
2583 * counts to protect against new references. If protocol handler is not
2584 * a module then it needs to provide its own protection in
2585 * the ops->create routine.
2586 */
2587 void sock_unregister(int family)
2588 {
2589 BUG_ON(family < 0 || family >= NPROTO);
2590
2591 spin_lock(&net_family_lock);
2592 RCU_INIT_POINTER(net_families[family], NULL);
2593 spin_unlock(&net_family_lock);
2594
2595 synchronize_rcu();
2596
2597 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2598 }
2599 EXPORT_SYMBOL(sock_unregister);
2600
2601 static int __init sock_init(void)
2602 {
2603 int err;
2604 /*
2605 * Initialize the network sysctl infrastructure.
2606 */
2607 err = net_sysctl_init();
2608 if (err)
2609 goto out;
2610
2611 /*
2612 * Initialize skbuff SLAB cache
2613 */
2614 skb_init();
2615
2616 /*
2617 * Initialize the protocols module.
2618 */
2619
2620 init_inodecache();
2621
2622 err = register_filesystem(&sock_fs_type);
2623 if (err)
2624 goto out_fs;
2625 sock_mnt = kern_mount(&sock_fs_type);
2626 if (IS_ERR(sock_mnt)) {
2627 err = PTR_ERR(sock_mnt);
2628 goto out_mount;
2629 }
2630
2631 /* The real protocol initialization is performed in later initcalls.
2632 */
2633
2634 #ifdef CONFIG_NETFILTER
2635 netfilter_init();
2636 #endif
2637
2638 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2639 skb_timestamping_init();
2640 #endif
2641
2642 out:
2643 return err;
2644
2645 out_mount:
2646 unregister_filesystem(&sock_fs_type);
2647 out_fs:
2648 goto out;
2649 }
2650
2651 core_initcall(sock_init); /* early initcall */
2652
2653 #ifdef CONFIG_PROC_FS
2654 void socket_seq_show(struct seq_file *seq)
2655 {
2656 int cpu;
2657 int counter = 0;
2658
2659 for_each_possible_cpu(cpu)
2660 counter += per_cpu(sockets_in_use, cpu);
2661
2662 /* It can be negative, by the way. 8) */
2663 if (counter < 0)
2664 counter = 0;
2665
2666 seq_printf(seq, "sockets: used %d\n", counter);
2667 }
2668 #endif /* CONFIG_PROC_FS */
2669
2670 #ifdef CONFIG_COMPAT
2671 static int do_siocgstamp(struct net *net, struct socket *sock,
2672 unsigned int cmd, void __user *up)
2673 {
2674 mm_segment_t old_fs = get_fs();
2675 struct timeval ktv;
2676 int err;
2677
2678 set_fs(KERNEL_DS);
2679 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2680 set_fs(old_fs);
2681 if (!err)
2682 err = compat_put_timeval(&ktv, up);
2683
2684 return err;
2685 }
2686
2687 static int do_siocgstampns(struct net *net, struct socket *sock,
2688 unsigned int cmd, void __user *up)
2689 {
2690 mm_segment_t old_fs = get_fs();
2691 struct timespec kts;
2692 int err;
2693
2694 set_fs(KERNEL_DS);
2695 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2696 set_fs(old_fs);
2697 if (!err)
2698 err = compat_put_timespec(&kts, up);
2699
2700 return err;
2701 }
2702
2703 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2704 {
2705 struct ifreq __user *uifr;
2706 int err;
2707
2708 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2709 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711
2712 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2713 if (err)
2714 return err;
2715
2716 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2717 return -EFAULT;
2718
2719 return 0;
2720 }
2721
2722 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2723 {
2724 struct compat_ifconf ifc32;
2725 struct ifconf ifc;
2726 struct ifconf __user *uifc;
2727 struct compat_ifreq __user *ifr32;
2728 struct ifreq __user *ifr;
2729 unsigned int i, j;
2730 int err;
2731
2732 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2733 return -EFAULT;
2734
2735 memset(&ifc, 0, sizeof(ifc));
2736 if (ifc32.ifcbuf == 0) {
2737 ifc32.ifc_len = 0;
2738 ifc.ifc_len = 0;
2739 ifc.ifc_req = NULL;
2740 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2741 } else {
2742 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2743 sizeof(struct ifreq);
2744 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2745 ifc.ifc_len = len;
2746 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2747 ifr32 = compat_ptr(ifc32.ifcbuf);
2748 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2749 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2750 return -EFAULT;
2751 ifr++;
2752 ifr32++;
2753 }
2754 }
2755 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2756 return -EFAULT;
2757
2758 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2759 if (err)
2760 return err;
2761
2762 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2763 return -EFAULT;
2764
2765 ifr = ifc.ifc_req;
2766 ifr32 = compat_ptr(ifc32.ifcbuf);
2767 for (i = 0, j = 0;
2768 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2769 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2770 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2771 return -EFAULT;
2772 ifr32++;
2773 ifr++;
2774 }
2775
2776 if (ifc32.ifcbuf == 0) {
2777 /* Translate from 64-bit structure multiple to
2778 * a 32-bit one.
2779 */
2780 i = ifc.ifc_len;
2781 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2782 ifc32.ifc_len = i;
2783 } else {
2784 ifc32.ifc_len = i;
2785 }
2786 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2787 return -EFAULT;
2788
2789 return 0;
2790 }
2791
2792 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2793 {
2794 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2795 bool convert_in = false, convert_out = false;
2796 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2797 struct ethtool_rxnfc __user *rxnfc;
2798 struct ifreq __user *ifr;
2799 u32 rule_cnt = 0, actual_rule_cnt;
2800 u32 ethcmd;
2801 u32 data;
2802 int ret;
2803
2804 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2805 return -EFAULT;
2806
2807 compat_rxnfc = compat_ptr(data);
2808
2809 if (get_user(ethcmd, &compat_rxnfc->cmd))
2810 return -EFAULT;
2811
2812 /* Most ethtool structures are defined without padding.
2813 * Unfortunately struct ethtool_rxnfc is an exception.
2814 */
2815 switch (ethcmd) {
2816 default:
2817 break;
2818 case ETHTOOL_GRXCLSRLALL:
2819 /* Buffer size is variable */
2820 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2821 return -EFAULT;
2822 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2823 return -ENOMEM;
2824 buf_size += rule_cnt * sizeof(u32);
2825 /* fall through */
2826 case ETHTOOL_GRXRINGS:
2827 case ETHTOOL_GRXCLSRLCNT:
2828 case ETHTOOL_GRXCLSRULE:
2829 case ETHTOOL_SRXCLSRLINS:
2830 convert_out = true;
2831 /* fall through */
2832 case ETHTOOL_SRXCLSRLDEL:
2833 buf_size += sizeof(struct ethtool_rxnfc);
2834 convert_in = true;
2835 break;
2836 }
2837
2838 ifr = compat_alloc_user_space(buf_size);
2839 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2840
2841 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2842 return -EFAULT;
2843
2844 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2845 &ifr->ifr_ifru.ifru_data))
2846 return -EFAULT;
2847
2848 if (convert_in) {
2849 /* We expect there to be holes between fs.m_ext and
2850 * fs.ring_cookie and at the end of fs, but nowhere else.
2851 */
2852 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2853 sizeof(compat_rxnfc->fs.m_ext) !=
2854 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2855 sizeof(rxnfc->fs.m_ext));
2856 BUILD_BUG_ON(
2857 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2858 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2859 offsetof(struct ethtool_rxnfc, fs.location) -
2860 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2861
2862 if (copy_in_user(rxnfc, compat_rxnfc,
2863 (void __user *)(&rxnfc->fs.m_ext + 1) -
2864 (void __user *)rxnfc) ||
2865 copy_in_user(&rxnfc->fs.ring_cookie,
2866 &compat_rxnfc->fs.ring_cookie,
2867 (void __user *)(&rxnfc->fs.location + 1) -
2868 (void __user *)&rxnfc->fs.ring_cookie) ||
2869 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2870 sizeof(rxnfc->rule_cnt)))
2871 return -EFAULT;
2872 }
2873
2874 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2875 if (ret)
2876 return ret;
2877
2878 if (convert_out) {
2879 if (copy_in_user(compat_rxnfc, rxnfc,
2880 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2881 (const void __user *)rxnfc) ||
2882 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2883 &rxnfc->fs.ring_cookie,
2884 (const void __user *)(&rxnfc->fs.location + 1) -
2885 (const void __user *)&rxnfc->fs.ring_cookie) ||
2886 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2887 sizeof(rxnfc->rule_cnt)))
2888 return -EFAULT;
2889
2890 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2891 /* As an optimisation, we only copy the actual
2892 * number of rules that the underlying
2893 * function returned. Since Mallory might
2894 * change the rule count in user memory, we
2895 * check that it is less than the rule count
2896 * originally given (as the user buffer size),
2897 * which has been range-checked.
2898 */
2899 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2900 return -EFAULT;
2901 if (actual_rule_cnt < rule_cnt)
2902 rule_cnt = actual_rule_cnt;
2903 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2904 &rxnfc->rule_locs[0],
2905 rule_cnt * sizeof(u32)))
2906 return -EFAULT;
2907 }
2908 }
2909
2910 return 0;
2911 }
2912
2913 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2914 {
2915 void __user *uptr;
2916 compat_uptr_t uptr32;
2917 struct ifreq __user *uifr;
2918
2919 uifr = compat_alloc_user_space(sizeof(*uifr));
2920 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2921 return -EFAULT;
2922
2923 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2924 return -EFAULT;
2925
2926 uptr = compat_ptr(uptr32);
2927
2928 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2929 return -EFAULT;
2930
2931 return dev_ioctl(net, SIOCWANDEV, uifr);
2932 }
2933
2934 static int bond_ioctl(struct net *net, unsigned int cmd,
2935 struct compat_ifreq __user *ifr32)
2936 {
2937 struct ifreq kifr;
2938 struct ifreq __user *uifr;
2939 mm_segment_t old_fs;
2940 int err;
2941 u32 data;
2942 void __user *datap;
2943
2944 switch (cmd) {
2945 case SIOCBONDENSLAVE:
2946 case SIOCBONDRELEASE:
2947 case SIOCBONDSETHWADDR:
2948 case SIOCBONDCHANGEACTIVE:
2949 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2950 return -EFAULT;
2951
2952 old_fs = get_fs();
2953 set_fs(KERNEL_DS);
2954 err = dev_ioctl(net, cmd,
2955 (struct ifreq __user __force *) &kifr);
2956 set_fs(old_fs);
2957
2958 return err;
2959 case SIOCBONDSLAVEINFOQUERY:
2960 case SIOCBONDINFOQUERY:
2961 uifr = compat_alloc_user_space(sizeof(*uifr));
2962 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2963 return -EFAULT;
2964
2965 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2966 return -EFAULT;
2967
2968 datap = compat_ptr(data);
2969 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2970 return -EFAULT;
2971
2972 return dev_ioctl(net, cmd, uifr);
2973 default:
2974 return -ENOIOCTLCMD;
2975 }
2976 }
2977
2978 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2979 struct compat_ifreq __user *u_ifreq32)
2980 {
2981 struct ifreq __user *u_ifreq64;
2982 char tmp_buf[IFNAMSIZ];
2983 void __user *data64;
2984 u32 data32;
2985
2986 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2987 IFNAMSIZ))
2988 return -EFAULT;
2989 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2990 return -EFAULT;
2991 data64 = compat_ptr(data32);
2992
2993 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2994
2995 /* Don't check these user accesses, just let that get trapped
2996 * in the ioctl handler instead.
2997 */
2998 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2999 IFNAMSIZ))
3000 return -EFAULT;
3001 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3002 return -EFAULT;
3003
3004 return dev_ioctl(net, cmd, u_ifreq64);
3005 }
3006
3007 static int dev_ifsioc(struct net *net, struct socket *sock,
3008 unsigned int cmd, struct compat_ifreq __user *uifr32)
3009 {
3010 struct ifreq __user *uifr;
3011 int err;
3012
3013 uifr = compat_alloc_user_space(sizeof(*uifr));
3014 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3015 return -EFAULT;
3016
3017 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3018
3019 if (!err) {
3020 switch (cmd) {
3021 case SIOCGIFFLAGS:
3022 case SIOCGIFMETRIC:
3023 case SIOCGIFMTU:
3024 case SIOCGIFMEM:
3025 case SIOCGIFHWADDR:
3026 case SIOCGIFINDEX:
3027 case SIOCGIFADDR:
3028 case SIOCGIFBRDADDR:
3029 case SIOCGIFDSTADDR:
3030 case SIOCGIFNETMASK:
3031 case SIOCGIFPFLAGS:
3032 case SIOCGIFTXQLEN:
3033 case SIOCGMIIPHY:
3034 case SIOCGMIIREG:
3035 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3036 err = -EFAULT;
3037 break;
3038 }
3039 }
3040 return err;
3041 }
3042
3043 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3044 struct compat_ifreq __user *uifr32)
3045 {
3046 struct ifreq ifr;
3047 struct compat_ifmap __user *uifmap32;
3048 mm_segment_t old_fs;
3049 int err;
3050
3051 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3052 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3053 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3054 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3055 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3056 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3057 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3058 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3059 if (err)
3060 return -EFAULT;
3061
3062 old_fs = get_fs();
3063 set_fs(KERNEL_DS);
3064 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3065 set_fs(old_fs);
3066
3067 if (cmd == SIOCGIFMAP && !err) {
3068 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3069 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3070 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3071 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3072 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3073 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3074 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3075 if (err)
3076 err = -EFAULT;
3077 }
3078 return err;
3079 }
3080
3081 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3082 {
3083 void __user *uptr;
3084 compat_uptr_t uptr32;
3085 struct ifreq __user *uifr;
3086
3087 uifr = compat_alloc_user_space(sizeof(*uifr));
3088 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3089 return -EFAULT;
3090
3091 if (get_user(uptr32, &uifr32->ifr_data))
3092 return -EFAULT;
3093
3094 uptr = compat_ptr(uptr32);
3095
3096 if (put_user(uptr, &uifr->ifr_data))
3097 return -EFAULT;
3098
3099 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3100 }
3101
3102 struct rtentry32 {
3103 u32 rt_pad1;
3104 struct sockaddr rt_dst; /* target address */
3105 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3106 struct sockaddr rt_genmask; /* target network mask (IP) */
3107 unsigned short rt_flags;
3108 short rt_pad2;
3109 u32 rt_pad3;
3110 unsigned char rt_tos;
3111 unsigned char rt_class;
3112 short rt_pad4;
3113 short rt_metric; /* +1 for binary compatibility! */
3114 /* char * */ u32 rt_dev; /* forcing the device at add */
3115 u32 rt_mtu; /* per route MTU/Window */
3116 u32 rt_window; /* Window clamping */
3117 unsigned short rt_irtt; /* Initial RTT */
3118 };
3119
3120 struct in6_rtmsg32 {
3121 struct in6_addr rtmsg_dst;
3122 struct in6_addr rtmsg_src;
3123 struct in6_addr rtmsg_gateway;
3124 u32 rtmsg_type;
3125 u16 rtmsg_dst_len;
3126 u16 rtmsg_src_len;
3127 u32 rtmsg_metric;
3128 u32 rtmsg_info;
3129 u32 rtmsg_flags;
3130 s32 rtmsg_ifindex;
3131 };
3132
3133 static int routing_ioctl(struct net *net, struct socket *sock,
3134 unsigned int cmd, void __user *argp)
3135 {
3136 int ret;
3137 void *r = NULL;
3138 struct in6_rtmsg r6;
3139 struct rtentry r4;
3140 char devname[16];
3141 u32 rtdev;
3142 mm_segment_t old_fs = get_fs();
3143
3144 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3145 struct in6_rtmsg32 __user *ur6 = argp;
3146 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3147 3 * sizeof(struct in6_addr));
3148 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3149 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3150 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3151 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3152 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3153 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3154 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3155
3156 r = (void *) &r6;
3157 } else { /* ipv4 */
3158 struct rtentry32 __user *ur4 = argp;
3159 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3160 3 * sizeof(struct sockaddr));
3161 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3162 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3163 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3164 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3165 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3166 ret |= __get_user(rtdev, &(ur4->rt_dev));
3167 if (rtdev) {
3168 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3169 r4.rt_dev = (char __user __force *)devname;
3170 devname[15] = 0;
3171 } else
3172 r4.rt_dev = NULL;
3173
3174 r = (void *) &r4;
3175 }
3176
3177 if (ret) {
3178 ret = -EFAULT;
3179 goto out;
3180 }
3181
3182 set_fs(KERNEL_DS);
3183 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3184 set_fs(old_fs);
3185
3186 out:
3187 return ret;
3188 }
3189
3190 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3191 * for some operations; this forces use of the newer bridge-utils that
3192 * use compatible ioctls
3193 */
3194 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3195 {
3196 compat_ulong_t tmp;
3197
3198 if (get_user(tmp, argp))
3199 return -EFAULT;
3200 if (tmp == BRCTL_GET_VERSION)
3201 return BRCTL_VERSION + 1;
3202 return -EINVAL;
3203 }
3204
3205 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3206 unsigned int cmd, unsigned long arg)
3207 {
3208 void __user *argp = compat_ptr(arg);
3209 struct sock *sk = sock->sk;
3210 struct net *net = sock_net(sk);
3211
3212 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3213 return siocdevprivate_ioctl(net, cmd, argp);
3214
3215 switch (cmd) {
3216 case SIOCSIFBR:
3217 case SIOCGIFBR:
3218 return old_bridge_ioctl(argp);
3219 case SIOCGIFNAME:
3220 return dev_ifname32(net, argp);
3221 case SIOCGIFCONF:
3222 return dev_ifconf(net, argp);
3223 case SIOCETHTOOL:
3224 return ethtool_ioctl(net, argp);
3225 case SIOCWANDEV:
3226 return compat_siocwandev(net, argp);
3227 case SIOCGIFMAP:
3228 case SIOCSIFMAP:
3229 return compat_sioc_ifmap(net, cmd, argp);
3230 case SIOCBONDENSLAVE:
3231 case SIOCBONDRELEASE:
3232 case SIOCBONDSETHWADDR:
3233 case SIOCBONDSLAVEINFOQUERY:
3234 case SIOCBONDINFOQUERY:
3235 case SIOCBONDCHANGEACTIVE:
3236 return bond_ioctl(net, cmd, argp);
3237 case SIOCADDRT:
3238 case SIOCDELRT:
3239 return routing_ioctl(net, sock, cmd, argp);
3240 case SIOCGSTAMP:
3241 return do_siocgstamp(net, sock, cmd, argp);
3242 case SIOCGSTAMPNS:
3243 return do_siocgstampns(net, sock, cmd, argp);
3244 case SIOCSHWTSTAMP:
3245 return compat_siocshwtstamp(net, argp);
3246
3247 case FIOSETOWN:
3248 case SIOCSPGRP:
3249 case FIOGETOWN:
3250 case SIOCGPGRP:
3251 case SIOCBRADDBR:
3252 case SIOCBRDELBR:
3253 case SIOCGIFVLAN:
3254 case SIOCSIFVLAN:
3255 case SIOCADDDLCI:
3256 case SIOCDELDLCI:
3257 return sock_ioctl(file, cmd, arg);
3258
3259 case SIOCGIFFLAGS:
3260 case SIOCSIFFLAGS:
3261 case SIOCGIFMETRIC:
3262 case SIOCSIFMETRIC:
3263 case SIOCGIFMTU:
3264 case SIOCSIFMTU:
3265 case SIOCGIFMEM:
3266 case SIOCSIFMEM:
3267 case SIOCGIFHWADDR:
3268 case SIOCSIFHWADDR:
3269 case SIOCADDMULTI:
3270 case SIOCDELMULTI:
3271 case SIOCGIFINDEX:
3272 case SIOCGIFADDR:
3273 case SIOCSIFADDR:
3274 case SIOCSIFHWBROADCAST:
3275 case SIOCDIFADDR:
3276 case SIOCGIFBRDADDR:
3277 case SIOCSIFBRDADDR:
3278 case SIOCGIFDSTADDR:
3279 case SIOCSIFDSTADDR:
3280 case SIOCGIFNETMASK:
3281 case SIOCSIFNETMASK:
3282 case SIOCSIFPFLAGS:
3283 case SIOCGIFPFLAGS:
3284 case SIOCGIFTXQLEN:
3285 case SIOCSIFTXQLEN:
3286 case SIOCBRADDIF:
3287 case SIOCBRDELIF:
3288 case SIOCSIFNAME:
3289 case SIOCGMIIPHY:
3290 case SIOCGMIIREG:
3291 case SIOCSMIIREG:
3292 return dev_ifsioc(net, sock, cmd, argp);
3293
3294 case SIOCSARP:
3295 case SIOCGARP:
3296 case SIOCDARP:
3297 case SIOCATMARK:
3298 return sock_do_ioctl(net, sock, cmd, arg);
3299 }
3300
3301 return -ENOIOCTLCMD;
3302 }
3303
3304 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3305 unsigned long arg)
3306 {
3307 struct socket *sock = file->private_data;
3308 int ret = -ENOIOCTLCMD;
3309 struct sock *sk;
3310 struct net *net;
3311
3312 sk = sock->sk;
3313 net = sock_net(sk);
3314
3315 if (sock->ops->compat_ioctl)
3316 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3317
3318 if (ret == -ENOIOCTLCMD &&
3319 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3320 ret = compat_wext_handle_ioctl(net, cmd, arg);
3321
3322 if (ret == -ENOIOCTLCMD)
3323 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3324
3325 return ret;
3326 }
3327 #endif
3328
3329 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3330 {
3331 return sock->ops->bind(sock, addr, addrlen);
3332 }
3333 EXPORT_SYMBOL(kernel_bind);
3334
3335 int kernel_listen(struct socket *sock, int backlog)
3336 {
3337 return sock->ops->listen(sock, backlog);
3338 }
3339 EXPORT_SYMBOL(kernel_listen);
3340
3341 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3342 {
3343 struct sock *sk = sock->sk;
3344 int err;
3345
3346 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3347 newsock);
3348 if (err < 0)
3349 goto done;
3350
3351 err = sock->ops->accept(sock, *newsock, flags);
3352 if (err < 0) {
3353 sock_release(*newsock);
3354 *newsock = NULL;
3355 goto done;
3356 }
3357
3358 (*newsock)->ops = sock->ops;
3359 __module_get((*newsock)->ops->owner);
3360
3361 done:
3362 return err;
3363 }
3364 EXPORT_SYMBOL(kernel_accept);
3365
3366 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3367 int flags)
3368 {
3369 return sock->ops->connect(sock, addr, addrlen, flags);
3370 }
3371 EXPORT_SYMBOL(kernel_connect);
3372
3373 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3374 int *addrlen)
3375 {
3376 return sock->ops->getname(sock, addr, addrlen, 0);
3377 }
3378 EXPORT_SYMBOL(kernel_getsockname);
3379
3380 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3381 int *addrlen)
3382 {
3383 return sock->ops->getname(sock, addr, addrlen, 1);
3384 }
3385 EXPORT_SYMBOL(kernel_getpeername);
3386
3387 int kernel_getsockopt(struct socket *sock, int level, int optname,
3388 char *optval, int *optlen)
3389 {
3390 mm_segment_t oldfs = get_fs();
3391 char __user *uoptval;
3392 int __user *uoptlen;
3393 int err;
3394
3395 uoptval = (char __user __force *) optval;
3396 uoptlen = (int __user __force *) optlen;
3397
3398 set_fs(KERNEL_DS);
3399 if (level == SOL_SOCKET)
3400 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3401 else
3402 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3403 uoptlen);
3404 set_fs(oldfs);
3405 return err;
3406 }
3407 EXPORT_SYMBOL(kernel_getsockopt);
3408
3409 int kernel_setsockopt(struct socket *sock, int level, int optname,
3410 char *optval, unsigned int optlen)
3411 {
3412 mm_segment_t oldfs = get_fs();
3413 char __user *uoptval;
3414 int err;
3415
3416 uoptval = (char __user __force *) optval;
3417
3418 set_fs(KERNEL_DS);
3419 if (level == SOL_SOCKET)
3420 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3421 else
3422 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3423 optlen);
3424 set_fs(oldfs);
3425 return err;
3426 }
3427 EXPORT_SYMBOL(kernel_setsockopt);
3428
3429 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3430 size_t size, int flags)
3431 {
3432 if (sock->ops->sendpage)
3433 return sock->ops->sendpage(sock, page, offset, size, flags);
3434
3435 return sock_no_sendpage(sock, page, offset, size, flags);
3436 }
3437 EXPORT_SYMBOL(kernel_sendpage);
3438
3439 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3440 {
3441 mm_segment_t oldfs = get_fs();
3442 int err;
3443
3444 set_fs(KERNEL_DS);
3445 err = sock->ops->ioctl(sock, cmd, arg);
3446 set_fs(oldfs);
3447
3448 return err;
3449 }
3450 EXPORT_SYMBOL(kernel_sock_ioctl);
3451
3452 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3453 {
3454 return sock->ops->shutdown(sock, how);
3455 }
3456 EXPORT_SYMBOL(kernel_sock_shutdown);