Merge branch 'for-2.6.37' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
254
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
260
261 return &ei->vfs_inode;
262 }
263
264
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268
269 kfree(wq);
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 kmem_cache_free(sock_inode_cachep, ei);
279 }
280
281 static void init_once(void *foo)
282 {
283 struct socket_alloc *ei = (struct socket_alloc *)foo;
284
285 inode_init_once(&ei->vfs_inode);
286 }
287
288 static int init_inodecache(void)
289 {
290 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 sizeof(struct socket_alloc),
292 0,
293 (SLAB_HWCACHE_ALIGN |
294 SLAB_RECLAIM_ACCOUNT |
295 SLAB_MEM_SPREAD),
296 init_once);
297 if (sock_inode_cachep == NULL)
298 return -ENOMEM;
299 return 0;
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 int flags, const char *dev_name, void *data,
310 struct vfsmount *mnt)
311 {
312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 mnt);
314 }
315
316 static struct vfsmount *sock_mnt __read_mostly;
317
318 static struct file_system_type sock_fs_type = {
319 .name = "sockfs",
320 .get_sb = sockfs_get_sb,
321 .kill_sb = kill_anon_super,
322 };
323
324 /*
325 * sockfs_dname() is called from d_path().
326 */
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328 {
329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 dentry->d_inode->i_ino);
331 }
332
333 static const struct dentry_operations sockfs_dentry_operations = {
334 .d_dname = sockfs_dname,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359 int fd;
360
361 fd = get_unused_fd_flags(flags);
362 if (unlikely(fd < 0))
363 return fd;
364
365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 if (unlikely(!path.dentry)) {
367 put_unused_fd(fd);
368 return -ENOMEM;
369 }
370 path.mnt = mntget(sock_mnt);
371
372 path.dentry->d_op = &sockfs_dentry_operations;
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(!file)) {
379 /* drop dentry, keep inode */
380 atomic_inc(&path.dentry->d_inode->i_count);
381 path_put(&path);
382 put_unused_fd(fd);
383 return -ENFILE;
384 }
385
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->f_pos = 0;
389 file->private_data = sock;
390
391 *f = file;
392 return fd;
393 }
394
395 int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = sock_alloc_file(sock, &newfile, flags);
399
400 if (likely(fd >= 0))
401 fd_install(fd, newfile);
402
403 return fd;
404 }
405 EXPORT_SYMBOL(sock_map_fd);
406
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
411
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415
416 /**
417 * sockfd_lookup - Go from a file number to its socket slot
418 * @fd: file handle
419 * @err: pointer to an error code return
420 *
421 * The file handle passed in is locked and the socket it is bound
422 * too is returned. If an error occurs the err pointer is overwritten
423 * with a negative errno code and NULL is returned. The function checks
424 * for both invalid handles and passing a handle which is not a socket.
425 *
426 * On a success the socket object pointer is returned.
427 */
428
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 struct file *file;
432 struct socket *sock;
433
434 file = fget(fd);
435 if (!file) {
436 *err = -EBADF;
437 return NULL;
438 }
439
440 sock = sock_from_file(file, err);
441 if (!sock)
442 fput(file);
443 return sock;
444 }
445 EXPORT_SYMBOL(sockfd_lookup);
446
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 struct file *file;
450 struct socket *sock;
451
452 *err = -EBADF;
453 file = fget_light(fd, fput_needed);
454 if (file) {
455 sock = sock_from_file(file, err);
456 if (sock)
457 return sock;
458 fput_light(file, *fput_needed);
459 }
460 return NULL;
461 }
462
463 /**
464 * sock_alloc - allocate a socket
465 *
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
468 * NULL is returned.
469 */
470
471 static struct socket *sock_alloc(void)
472 {
473 struct inode *inode;
474 struct socket *sock;
475
476 inode = new_inode(sock_mnt->mnt_sb);
477 if (!inode)
478 return NULL;
479
480 sock = SOCKET_I(inode);
481
482 kmemcheck_annotate_bitfield(sock, type);
483 inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 inode->i_uid = current_fsuid();
485 inode->i_gid = current_fsgid();
486
487 percpu_add(sockets_in_use, 1);
488 return sock;
489 }
490
491 /*
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
495 */
496
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 return -ENXIO;
500 }
501
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
505 .llseek = noop_llseek,
506 };
507
508 /**
509 * sock_release - close a socket
510 * @sock: socket to close
511 *
512 * The socket is released from the protocol stack if it has a release
513 * callback, and the inode is then released if the socket is bound to
514 * an inode not a file.
515 */
516
517 void sock_release(struct socket *sock)
518 {
519 if (sock->ops) {
520 struct module *owner = sock->ops->owner;
521
522 sock->ops->release(sock);
523 sock->ops = NULL;
524 module_put(owner);
525 }
526
527 if (sock->wq->fasync_list)
528 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529
530 percpu_sub(sockets_in_use, 1);
531 if (!sock->file) {
532 iput(SOCK_INODE(sock));
533 return;
534 }
535 sock->file = NULL;
536 }
537 EXPORT_SYMBOL(sock_release);
538
539 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
540 {
541 *tx_flags = 0;
542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
543 *tx_flags |= SKBTX_HW_TSTAMP;
544 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
545 *tx_flags |= SKBTX_SW_TSTAMP;
546 return 0;
547 }
548 EXPORT_SYMBOL(sock_tx_timestamp);
549
550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
551 struct msghdr *msg, size_t size)
552 {
553 struct sock_iocb *si = kiocb_to_siocb(iocb);
554 int err;
555
556 sock_update_classid(sock->sk);
557
558 si->sock = sock;
559 si->scm = NULL;
560 si->msg = msg;
561 si->size = size;
562
563 err = security_socket_sendmsg(sock, msg, size);
564 if (err)
565 return err;
566
567 return sock->ops->sendmsg(iocb, sock, msg, size);
568 }
569
570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 {
572 struct kiocb iocb;
573 struct sock_iocb siocb;
574 int ret;
575
576 init_sync_kiocb(&iocb, NULL);
577 iocb.private = &siocb;
578 ret = __sock_sendmsg(&iocb, sock, msg, size);
579 if (-EIOCBQUEUED == ret)
580 ret = wait_on_sync_kiocb(&iocb);
581 return ret;
582 }
583 EXPORT_SYMBOL(sock_sendmsg);
584
585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
586 struct kvec *vec, size_t num, size_t size)
587 {
588 mm_segment_t oldfs = get_fs();
589 int result;
590
591 set_fs(KERNEL_DS);
592 /*
593 * the following is safe, since for compiler definitions of kvec and
594 * iovec are identical, yielding the same in-core layout and alignment
595 */
596 msg->msg_iov = (struct iovec *)vec;
597 msg->msg_iovlen = num;
598 result = sock_sendmsg(sock, msg, size);
599 set_fs(oldfs);
600 return result;
601 }
602 EXPORT_SYMBOL(kernel_sendmsg);
603
604 static int ktime2ts(ktime_t kt, struct timespec *ts)
605 {
606 if (kt.tv64) {
607 *ts = ktime_to_timespec(kt);
608 return 1;
609 } else {
610 return 0;
611 }
612 }
613
614 /*
615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
616 */
617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
618 struct sk_buff *skb)
619 {
620 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
621 struct timespec ts[3];
622 int empty = 1;
623 struct skb_shared_hwtstamps *shhwtstamps =
624 skb_hwtstamps(skb);
625
626 /* Race occurred between timestamp enabling and packet
627 receiving. Fill in the current time for now. */
628 if (need_software_tstamp && skb->tstamp.tv64 == 0)
629 __net_timestamp(skb);
630
631 if (need_software_tstamp) {
632 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
633 struct timeval tv;
634 skb_get_timestamp(skb, &tv);
635 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
636 sizeof(tv), &tv);
637 } else {
638 skb_get_timestampns(skb, &ts[0]);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
640 sizeof(ts[0]), &ts[0]);
641 }
642 }
643
644
645 memset(ts, 0, sizeof(ts));
646 if (skb->tstamp.tv64 &&
647 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
648 skb_get_timestampns(skb, ts + 0);
649 empty = 0;
650 }
651 if (shhwtstamps) {
652 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
653 ktime2ts(shhwtstamps->syststamp, ts + 1))
654 empty = 0;
655 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
656 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
657 empty = 0;
658 }
659 if (!empty)
660 put_cmsg(msg, SOL_SOCKET,
661 SCM_TIMESTAMPING, sizeof(ts), &ts);
662 }
663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
664
665 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
666 struct sk_buff *skb)
667 {
668 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
669 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
670 sizeof(__u32), &skb->dropcount);
671 }
672
673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
674 struct sk_buff *skb)
675 {
676 sock_recv_timestamp(msg, sk, skb);
677 sock_recv_drops(msg, sk, skb);
678 }
679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
680
681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
682 struct msghdr *msg, size_t size, int flags)
683 {
684 struct sock_iocb *si = kiocb_to_siocb(iocb);
685
686 sock_update_classid(sock->sk);
687
688 si->sock = sock;
689 si->scm = NULL;
690 si->msg = msg;
691 si->size = size;
692 si->flags = flags;
693
694 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
695 }
696
697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
698 struct msghdr *msg, size_t size, int flags)
699 {
700 int err = security_socket_recvmsg(sock, msg, size, flags);
701
702 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
703 }
704
705 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
706 size_t size, int flags)
707 {
708 struct kiocb iocb;
709 struct sock_iocb siocb;
710 int ret;
711
712 init_sync_kiocb(&iocb, NULL);
713 iocb.private = &siocb;
714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
715 if (-EIOCBQUEUED == ret)
716 ret = wait_on_sync_kiocb(&iocb);
717 return ret;
718 }
719 EXPORT_SYMBOL(sock_recvmsg);
720
721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
722 size_t size, int flags)
723 {
724 struct kiocb iocb;
725 struct sock_iocb siocb;
726 int ret;
727
728 init_sync_kiocb(&iocb, NULL);
729 iocb.private = &siocb;
730 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
731 if (-EIOCBQUEUED == ret)
732 ret = wait_on_sync_kiocb(&iocb);
733 return ret;
734 }
735
736 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
737 struct kvec *vec, size_t num, size_t size, int flags)
738 {
739 mm_segment_t oldfs = get_fs();
740 int result;
741
742 set_fs(KERNEL_DS);
743 /*
744 * the following is safe, since for compiler definitions of kvec and
745 * iovec are identical, yielding the same in-core layout and alignment
746 */
747 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
748 result = sock_recvmsg(sock, msg, size, flags);
749 set_fs(oldfs);
750 return result;
751 }
752 EXPORT_SYMBOL(kernel_recvmsg);
753
754 static void sock_aio_dtor(struct kiocb *iocb)
755 {
756 kfree(iocb->private);
757 }
758
759 static ssize_t sock_sendpage(struct file *file, struct page *page,
760 int offset, size_t size, loff_t *ppos, int more)
761 {
762 struct socket *sock;
763 int flags;
764
765 sock = file->private_data;
766
767 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
768 if (more)
769 flags |= MSG_MORE;
770
771 return kernel_sendpage(sock, page, offset, size, flags);
772 }
773
774 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777 {
778 struct socket *sock = file->private_data;
779
780 if (unlikely(!sock->ops->splice_read))
781 return -EINVAL;
782
783 sock_update_classid(sock->sk);
784
785 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
786 }
787
788 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
789 struct sock_iocb *siocb)
790 {
791 if (!is_sync_kiocb(iocb)) {
792 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
793 if (!siocb)
794 return NULL;
795 iocb->ki_dtor = sock_aio_dtor;
796 }
797
798 siocb->kiocb = iocb;
799 iocb->private = siocb;
800 return siocb;
801 }
802
803 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
804 struct file *file, const struct iovec *iov,
805 unsigned long nr_segs)
806 {
807 struct socket *sock = file->private_data;
808 size_t size = 0;
809 int i;
810
811 for (i = 0; i < nr_segs; i++)
812 size += iov[i].iov_len;
813
814 msg->msg_name = NULL;
815 msg->msg_namelen = 0;
816 msg->msg_control = NULL;
817 msg->msg_controllen = 0;
818 msg->msg_iov = (struct iovec *)iov;
819 msg->msg_iovlen = nr_segs;
820 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
821
822 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
823 }
824
825 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
826 unsigned long nr_segs, loff_t pos)
827 {
828 struct sock_iocb siocb, *x;
829
830 if (pos != 0)
831 return -ESPIPE;
832
833 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
834 return 0;
835
836
837 x = alloc_sock_iocb(iocb, &siocb);
838 if (!x)
839 return -ENOMEM;
840 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
841 }
842
843 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
844 struct file *file, const struct iovec *iov,
845 unsigned long nr_segs)
846 {
847 struct socket *sock = file->private_data;
848 size_t size = 0;
849 int i;
850
851 for (i = 0; i < nr_segs; i++)
852 size += iov[i].iov_len;
853
854 msg->msg_name = NULL;
855 msg->msg_namelen = 0;
856 msg->msg_control = NULL;
857 msg->msg_controllen = 0;
858 msg->msg_iov = (struct iovec *)iov;
859 msg->msg_iovlen = nr_segs;
860 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
861 if (sock->type == SOCK_SEQPACKET)
862 msg->msg_flags |= MSG_EOR;
863
864 return __sock_sendmsg(iocb, sock, msg, size);
865 }
866
867 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
868 unsigned long nr_segs, loff_t pos)
869 {
870 struct sock_iocb siocb, *x;
871
872 if (pos != 0)
873 return -ESPIPE;
874
875 x = alloc_sock_iocb(iocb, &siocb);
876 if (!x)
877 return -ENOMEM;
878
879 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
880 }
881
882 /*
883 * Atomic setting of ioctl hooks to avoid race
884 * with module unload.
885 */
886
887 static DEFINE_MUTEX(br_ioctl_mutex);
888 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
889
890 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
891 {
892 mutex_lock(&br_ioctl_mutex);
893 br_ioctl_hook = hook;
894 mutex_unlock(&br_ioctl_mutex);
895 }
896 EXPORT_SYMBOL(brioctl_set);
897
898 static DEFINE_MUTEX(vlan_ioctl_mutex);
899 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
900
901 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
902 {
903 mutex_lock(&vlan_ioctl_mutex);
904 vlan_ioctl_hook = hook;
905 mutex_unlock(&vlan_ioctl_mutex);
906 }
907 EXPORT_SYMBOL(vlan_ioctl_set);
908
909 static DEFINE_MUTEX(dlci_ioctl_mutex);
910 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
911
912 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
913 {
914 mutex_lock(&dlci_ioctl_mutex);
915 dlci_ioctl_hook = hook;
916 mutex_unlock(&dlci_ioctl_mutex);
917 }
918 EXPORT_SYMBOL(dlci_ioctl_set);
919
920 static long sock_do_ioctl(struct net *net, struct socket *sock,
921 unsigned int cmd, unsigned long arg)
922 {
923 int err;
924 void __user *argp = (void __user *)arg;
925
926 err = sock->ops->ioctl(sock, cmd, arg);
927
928 /*
929 * If this ioctl is unknown try to hand it down
930 * to the NIC driver.
931 */
932 if (err == -ENOIOCTLCMD)
933 err = dev_ioctl(net, cmd, argp);
934
935 return err;
936 }
937
938 /*
939 * With an ioctl, arg may well be a user mode pointer, but we don't know
940 * what to do with it - that's up to the protocol still.
941 */
942
943 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
944 {
945 struct socket *sock;
946 struct sock *sk;
947 void __user *argp = (void __user *)arg;
948 int pid, err;
949 struct net *net;
950
951 sock = file->private_data;
952 sk = sock->sk;
953 net = sock_net(sk);
954 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
955 err = dev_ioctl(net, cmd, argp);
956 } else
957 #ifdef CONFIG_WEXT_CORE
958 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
959 err = dev_ioctl(net, cmd, argp);
960 } else
961 #endif
962 switch (cmd) {
963 case FIOSETOWN:
964 case SIOCSPGRP:
965 err = -EFAULT;
966 if (get_user(pid, (int __user *)argp))
967 break;
968 err = f_setown(sock->file, pid, 1);
969 break;
970 case FIOGETOWN:
971 case SIOCGPGRP:
972 err = put_user(f_getown(sock->file),
973 (int __user *)argp);
974 break;
975 case SIOCGIFBR:
976 case SIOCSIFBR:
977 case SIOCBRADDBR:
978 case SIOCBRDELBR:
979 err = -ENOPKG;
980 if (!br_ioctl_hook)
981 request_module("bridge");
982
983 mutex_lock(&br_ioctl_mutex);
984 if (br_ioctl_hook)
985 err = br_ioctl_hook(net, cmd, argp);
986 mutex_unlock(&br_ioctl_mutex);
987 break;
988 case SIOCGIFVLAN:
989 case SIOCSIFVLAN:
990 err = -ENOPKG;
991 if (!vlan_ioctl_hook)
992 request_module("8021q");
993
994 mutex_lock(&vlan_ioctl_mutex);
995 if (vlan_ioctl_hook)
996 err = vlan_ioctl_hook(net, argp);
997 mutex_unlock(&vlan_ioctl_mutex);
998 break;
999 case SIOCADDDLCI:
1000 case SIOCDELDLCI:
1001 err = -ENOPKG;
1002 if (!dlci_ioctl_hook)
1003 request_module("dlci");
1004
1005 mutex_lock(&dlci_ioctl_mutex);
1006 if (dlci_ioctl_hook)
1007 err = dlci_ioctl_hook(cmd, argp);
1008 mutex_unlock(&dlci_ioctl_mutex);
1009 break;
1010 default:
1011 err = sock_do_ioctl(net, sock, cmd, arg);
1012 break;
1013 }
1014 return err;
1015 }
1016
1017 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1018 {
1019 int err;
1020 struct socket *sock = NULL;
1021
1022 err = security_socket_create(family, type, protocol, 1);
1023 if (err)
1024 goto out;
1025
1026 sock = sock_alloc();
1027 if (!sock) {
1028 err = -ENOMEM;
1029 goto out;
1030 }
1031
1032 sock->type = type;
1033 err = security_socket_post_create(sock, family, type, protocol, 1);
1034 if (err)
1035 goto out_release;
1036
1037 out:
1038 *res = sock;
1039 return err;
1040 out_release:
1041 sock_release(sock);
1042 sock = NULL;
1043 goto out;
1044 }
1045 EXPORT_SYMBOL(sock_create_lite);
1046
1047 /* No kernel lock held - perfect */
1048 static unsigned int sock_poll(struct file *file, poll_table *wait)
1049 {
1050 struct socket *sock;
1051
1052 /*
1053 * We can't return errors to poll, so it's either yes or no.
1054 */
1055 sock = file->private_data;
1056 return sock->ops->poll(file, sock, wait);
1057 }
1058
1059 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1060 {
1061 struct socket *sock = file->private_data;
1062
1063 return sock->ops->mmap(file, sock, vma);
1064 }
1065
1066 static int sock_close(struct inode *inode, struct file *filp)
1067 {
1068 /*
1069 * It was possible the inode is NULL we were
1070 * closing an unfinished socket.
1071 */
1072
1073 if (!inode) {
1074 printk(KERN_DEBUG "sock_close: NULL inode\n");
1075 return 0;
1076 }
1077 sock_release(SOCKET_I(inode));
1078 return 0;
1079 }
1080
1081 /*
1082 * Update the socket async list
1083 *
1084 * Fasync_list locking strategy.
1085 *
1086 * 1. fasync_list is modified only under process context socket lock
1087 * i.e. under semaphore.
1088 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1089 * or under socket lock
1090 */
1091
1092 static int sock_fasync(int fd, struct file *filp, int on)
1093 {
1094 struct socket *sock = filp->private_data;
1095 struct sock *sk = sock->sk;
1096
1097 if (sk == NULL)
1098 return -EINVAL;
1099
1100 lock_sock(sk);
1101
1102 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1103
1104 if (!sock->wq->fasync_list)
1105 sock_reset_flag(sk, SOCK_FASYNC);
1106 else
1107 sock_set_flag(sk, SOCK_FASYNC);
1108
1109 release_sock(sk);
1110 return 0;
1111 }
1112
1113 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1114
1115 int sock_wake_async(struct socket *sock, int how, int band)
1116 {
1117 struct socket_wq *wq;
1118
1119 if (!sock)
1120 return -1;
1121 rcu_read_lock();
1122 wq = rcu_dereference(sock->wq);
1123 if (!wq || !wq->fasync_list) {
1124 rcu_read_unlock();
1125 return -1;
1126 }
1127 switch (how) {
1128 case SOCK_WAKE_WAITD:
1129 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1130 break;
1131 goto call_kill;
1132 case SOCK_WAKE_SPACE:
1133 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1134 break;
1135 /* fall through */
1136 case SOCK_WAKE_IO:
1137 call_kill:
1138 kill_fasync(&wq->fasync_list, SIGIO, band);
1139 break;
1140 case SOCK_WAKE_URG:
1141 kill_fasync(&wq->fasync_list, SIGURG, band);
1142 }
1143 rcu_read_unlock();
1144 return 0;
1145 }
1146 EXPORT_SYMBOL(sock_wake_async);
1147
1148 int __sock_create(struct net *net, int family, int type, int protocol,
1149 struct socket **res, int kern)
1150 {
1151 int err;
1152 struct socket *sock;
1153 const struct net_proto_family *pf;
1154
1155 /*
1156 * Check protocol is in range
1157 */
1158 if (family < 0 || family >= NPROTO)
1159 return -EAFNOSUPPORT;
1160 if (type < 0 || type >= SOCK_MAX)
1161 return -EINVAL;
1162
1163 /* Compatibility.
1164
1165 This uglymoron is moved from INET layer to here to avoid
1166 deadlock in module load.
1167 */
1168 if (family == PF_INET && type == SOCK_PACKET) {
1169 static int warned;
1170 if (!warned) {
1171 warned = 1;
1172 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1173 current->comm);
1174 }
1175 family = PF_PACKET;
1176 }
1177
1178 err = security_socket_create(family, type, protocol, kern);
1179 if (err)
1180 return err;
1181
1182 /*
1183 * Allocate the socket and allow the family to set things up. if
1184 * the protocol is 0, the family is instructed to select an appropriate
1185 * default.
1186 */
1187 sock = sock_alloc();
1188 if (!sock) {
1189 if (net_ratelimit())
1190 printk(KERN_WARNING "socket: no more sockets\n");
1191 return -ENFILE; /* Not exactly a match, but its the
1192 closest posix thing */
1193 }
1194
1195 sock->type = type;
1196
1197 #ifdef CONFIG_MODULES
1198 /* Attempt to load a protocol module if the find failed.
1199 *
1200 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1201 * requested real, full-featured networking support upon configuration.
1202 * Otherwise module support will break!
1203 */
1204 if (net_families[family] == NULL)
1205 request_module("net-pf-%d", family);
1206 #endif
1207
1208 rcu_read_lock();
1209 pf = rcu_dereference(net_families[family]);
1210 err = -EAFNOSUPPORT;
1211 if (!pf)
1212 goto out_release;
1213
1214 /*
1215 * We will call the ->create function, that possibly is in a loadable
1216 * module, so we have to bump that loadable module refcnt first.
1217 */
1218 if (!try_module_get(pf->owner))
1219 goto out_release;
1220
1221 /* Now protected by module ref count */
1222 rcu_read_unlock();
1223
1224 err = pf->create(net, sock, protocol, kern);
1225 if (err < 0)
1226 goto out_module_put;
1227
1228 /*
1229 * Now to bump the refcnt of the [loadable] module that owns this
1230 * socket at sock_release time we decrement its refcnt.
1231 */
1232 if (!try_module_get(sock->ops->owner))
1233 goto out_module_busy;
1234
1235 /*
1236 * Now that we're done with the ->create function, the [loadable]
1237 * module can have its refcnt decremented
1238 */
1239 module_put(pf->owner);
1240 err = security_socket_post_create(sock, family, type, protocol, kern);
1241 if (err)
1242 goto out_sock_release;
1243 *res = sock;
1244
1245 return 0;
1246
1247 out_module_busy:
1248 err = -EAFNOSUPPORT;
1249 out_module_put:
1250 sock->ops = NULL;
1251 module_put(pf->owner);
1252 out_sock_release:
1253 sock_release(sock);
1254 return err;
1255
1256 out_release:
1257 rcu_read_unlock();
1258 goto out_sock_release;
1259 }
1260 EXPORT_SYMBOL(__sock_create);
1261
1262 int sock_create(int family, int type, int protocol, struct socket **res)
1263 {
1264 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1265 }
1266 EXPORT_SYMBOL(sock_create);
1267
1268 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1269 {
1270 return __sock_create(&init_net, family, type, protocol, res, 1);
1271 }
1272 EXPORT_SYMBOL(sock_create_kern);
1273
1274 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1275 {
1276 int retval;
1277 struct socket *sock;
1278 int flags;
1279
1280 /* Check the SOCK_* constants for consistency. */
1281 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1282 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1283 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1284 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1285
1286 flags = type & ~SOCK_TYPE_MASK;
1287 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1288 return -EINVAL;
1289 type &= SOCK_TYPE_MASK;
1290
1291 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1292 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1293
1294 retval = sock_create(family, type, protocol, &sock);
1295 if (retval < 0)
1296 goto out;
1297
1298 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1299 if (retval < 0)
1300 goto out_release;
1301
1302 out:
1303 /* It may be already another descriptor 8) Not kernel problem. */
1304 return retval;
1305
1306 out_release:
1307 sock_release(sock);
1308 return retval;
1309 }
1310
1311 /*
1312 * Create a pair of connected sockets.
1313 */
1314
1315 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1316 int __user *, usockvec)
1317 {
1318 struct socket *sock1, *sock2;
1319 int fd1, fd2, err;
1320 struct file *newfile1, *newfile2;
1321 int flags;
1322
1323 flags = type & ~SOCK_TYPE_MASK;
1324 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1325 return -EINVAL;
1326 type &= SOCK_TYPE_MASK;
1327
1328 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1329 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330
1331 /*
1332 * Obtain the first socket and check if the underlying protocol
1333 * supports the socketpair call.
1334 */
1335
1336 err = sock_create(family, type, protocol, &sock1);
1337 if (err < 0)
1338 goto out;
1339
1340 err = sock_create(family, type, protocol, &sock2);
1341 if (err < 0)
1342 goto out_release_1;
1343
1344 err = sock1->ops->socketpair(sock1, sock2);
1345 if (err < 0)
1346 goto out_release_both;
1347
1348 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1349 if (unlikely(fd1 < 0)) {
1350 err = fd1;
1351 goto out_release_both;
1352 }
1353
1354 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1355 if (unlikely(fd2 < 0)) {
1356 err = fd2;
1357 fput(newfile1);
1358 put_unused_fd(fd1);
1359 sock_release(sock2);
1360 goto out;
1361 }
1362
1363 audit_fd_pair(fd1, fd2);
1364 fd_install(fd1, newfile1);
1365 fd_install(fd2, newfile2);
1366 /* fd1 and fd2 may be already another descriptors.
1367 * Not kernel problem.
1368 */
1369
1370 err = put_user(fd1, &usockvec[0]);
1371 if (!err)
1372 err = put_user(fd2, &usockvec[1]);
1373 if (!err)
1374 return 0;
1375
1376 sys_close(fd2);
1377 sys_close(fd1);
1378 return err;
1379
1380 out_release_both:
1381 sock_release(sock2);
1382 out_release_1:
1383 sock_release(sock1);
1384 out:
1385 return err;
1386 }
1387
1388 /*
1389 * Bind a name to a socket. Nothing much to do here since it's
1390 * the protocol's responsibility to handle the local address.
1391 *
1392 * We move the socket address to kernel space before we call
1393 * the protocol layer (having also checked the address is ok).
1394 */
1395
1396 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1397 {
1398 struct socket *sock;
1399 struct sockaddr_storage address;
1400 int err, fput_needed;
1401
1402 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 if (sock) {
1404 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1405 if (err >= 0) {
1406 err = security_socket_bind(sock,
1407 (struct sockaddr *)&address,
1408 addrlen);
1409 if (!err)
1410 err = sock->ops->bind(sock,
1411 (struct sockaddr *)
1412 &address, addrlen);
1413 }
1414 fput_light(sock->file, fput_needed);
1415 }
1416 return err;
1417 }
1418
1419 /*
1420 * Perform a listen. Basically, we allow the protocol to do anything
1421 * necessary for a listen, and if that works, we mark the socket as
1422 * ready for listening.
1423 */
1424
1425 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1426 {
1427 struct socket *sock;
1428 int err, fput_needed;
1429 int somaxconn;
1430
1431 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1432 if (sock) {
1433 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1434 if ((unsigned)backlog > somaxconn)
1435 backlog = somaxconn;
1436
1437 err = security_socket_listen(sock, backlog);
1438 if (!err)
1439 err = sock->ops->listen(sock, backlog);
1440
1441 fput_light(sock->file, fput_needed);
1442 }
1443 return err;
1444 }
1445
1446 /*
1447 * For accept, we attempt to create a new socket, set up the link
1448 * with the client, wake up the client, then return the new
1449 * connected fd. We collect the address of the connector in kernel
1450 * space and move it to user at the very end. This is unclean because
1451 * we open the socket then return an error.
1452 *
1453 * 1003.1g adds the ability to recvmsg() to query connection pending
1454 * status to recvmsg. We need to add that support in a way thats
1455 * clean when we restucture accept also.
1456 */
1457
1458 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1459 int __user *, upeer_addrlen, int, flags)
1460 {
1461 struct socket *sock, *newsock;
1462 struct file *newfile;
1463 int err, len, newfd, fput_needed;
1464 struct sockaddr_storage address;
1465
1466 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1467 return -EINVAL;
1468
1469 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1470 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1471
1472 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1473 if (!sock)
1474 goto out;
1475
1476 err = -ENFILE;
1477 newsock = sock_alloc();
1478 if (!newsock)
1479 goto out_put;
1480
1481 newsock->type = sock->type;
1482 newsock->ops = sock->ops;
1483
1484 /*
1485 * We don't need try_module_get here, as the listening socket (sock)
1486 * has the protocol module (sock->ops->owner) held.
1487 */
1488 __module_get(newsock->ops->owner);
1489
1490 newfd = sock_alloc_file(newsock, &newfile, flags);
1491 if (unlikely(newfd < 0)) {
1492 err = newfd;
1493 sock_release(newsock);
1494 goto out_put;
1495 }
1496
1497 err = security_socket_accept(sock, newsock);
1498 if (err)
1499 goto out_fd;
1500
1501 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1502 if (err < 0)
1503 goto out_fd;
1504
1505 if (upeer_sockaddr) {
1506 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1507 &len, 2) < 0) {
1508 err = -ECONNABORTED;
1509 goto out_fd;
1510 }
1511 err = move_addr_to_user((struct sockaddr *)&address,
1512 len, upeer_sockaddr, upeer_addrlen);
1513 if (err < 0)
1514 goto out_fd;
1515 }
1516
1517 /* File flags are not inherited via accept() unlike another OSes. */
1518
1519 fd_install(newfd, newfile);
1520 err = newfd;
1521
1522 out_put:
1523 fput_light(sock->file, fput_needed);
1524 out:
1525 return err;
1526 out_fd:
1527 fput(newfile);
1528 put_unused_fd(newfd);
1529 goto out_put;
1530 }
1531
1532 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1533 int __user *, upeer_addrlen)
1534 {
1535 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1536 }
1537
1538 /*
1539 * Attempt to connect to a socket with the server address. The address
1540 * is in user space so we verify it is OK and move it to kernel space.
1541 *
1542 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1543 * break bindings
1544 *
1545 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1546 * other SEQPACKET protocols that take time to connect() as it doesn't
1547 * include the -EINPROGRESS status for such sockets.
1548 */
1549
1550 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1551 int, addrlen)
1552 {
1553 struct socket *sock;
1554 struct sockaddr_storage address;
1555 int err, fput_needed;
1556
1557 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1558 if (!sock)
1559 goto out;
1560 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1561 if (err < 0)
1562 goto out_put;
1563
1564 err =
1565 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1566 if (err)
1567 goto out_put;
1568
1569 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1570 sock->file->f_flags);
1571 out_put:
1572 fput_light(sock->file, fput_needed);
1573 out:
1574 return err;
1575 }
1576
1577 /*
1578 * Get the local address ('name') of a socket object. Move the obtained
1579 * name to user space.
1580 */
1581
1582 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1583 int __user *, usockaddr_len)
1584 {
1585 struct socket *sock;
1586 struct sockaddr_storage address;
1587 int len, err, fput_needed;
1588
1589 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1590 if (!sock)
1591 goto out;
1592
1593 err = security_socket_getsockname(sock);
1594 if (err)
1595 goto out_put;
1596
1597 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1598 if (err)
1599 goto out_put;
1600 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1601
1602 out_put:
1603 fput_light(sock->file, fput_needed);
1604 out:
1605 return err;
1606 }
1607
1608 /*
1609 * Get the remote address ('name') of a socket object. Move the obtained
1610 * name to user space.
1611 */
1612
1613 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1614 int __user *, usockaddr_len)
1615 {
1616 struct socket *sock;
1617 struct sockaddr_storage address;
1618 int len, err, fput_needed;
1619
1620 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1621 if (sock != NULL) {
1622 err = security_socket_getpeername(sock);
1623 if (err) {
1624 fput_light(sock->file, fput_needed);
1625 return err;
1626 }
1627
1628 err =
1629 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1630 1);
1631 if (!err)
1632 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1633 usockaddr_len);
1634 fput_light(sock->file, fput_needed);
1635 }
1636 return err;
1637 }
1638
1639 /*
1640 * Send a datagram to a given address. We move the address into kernel
1641 * space and check the user space data area is readable before invoking
1642 * the protocol.
1643 */
1644
1645 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1646 unsigned, flags, struct sockaddr __user *, addr,
1647 int, addr_len)
1648 {
1649 struct socket *sock;
1650 struct sockaddr_storage address;
1651 int err;
1652 struct msghdr msg;
1653 struct iovec iov;
1654 int fput_needed;
1655
1656 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657 if (!sock)
1658 goto out;
1659
1660 iov.iov_base = buff;
1661 iov.iov_len = len;
1662 msg.msg_name = NULL;
1663 msg.msg_iov = &iov;
1664 msg.msg_iovlen = 1;
1665 msg.msg_control = NULL;
1666 msg.msg_controllen = 0;
1667 msg.msg_namelen = 0;
1668 if (addr) {
1669 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1670 if (err < 0)
1671 goto out_put;
1672 msg.msg_name = (struct sockaddr *)&address;
1673 msg.msg_namelen = addr_len;
1674 }
1675 if (sock->file->f_flags & O_NONBLOCK)
1676 flags |= MSG_DONTWAIT;
1677 msg.msg_flags = flags;
1678 err = sock_sendmsg(sock, &msg, len);
1679
1680 out_put:
1681 fput_light(sock->file, fput_needed);
1682 out:
1683 return err;
1684 }
1685
1686 /*
1687 * Send a datagram down a socket.
1688 */
1689
1690 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1691 unsigned, flags)
1692 {
1693 return sys_sendto(fd, buff, len, flags, NULL, 0);
1694 }
1695
1696 /*
1697 * Receive a frame from the socket and optionally record the address of the
1698 * sender. We verify the buffers are writable and if needed move the
1699 * sender address from kernel to user space.
1700 */
1701
1702 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1703 unsigned, flags, struct sockaddr __user *, addr,
1704 int __user *, addr_len)
1705 {
1706 struct socket *sock;
1707 struct iovec iov;
1708 struct msghdr msg;
1709 struct sockaddr_storage address;
1710 int err, err2;
1711 int fput_needed;
1712
1713 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1714 if (!sock)
1715 goto out;
1716
1717 msg.msg_control = NULL;
1718 msg.msg_controllen = 0;
1719 msg.msg_iovlen = 1;
1720 msg.msg_iov = &iov;
1721 iov.iov_len = size;
1722 iov.iov_base = ubuf;
1723 msg.msg_name = (struct sockaddr *)&address;
1724 msg.msg_namelen = sizeof(address);
1725 if (sock->file->f_flags & O_NONBLOCK)
1726 flags |= MSG_DONTWAIT;
1727 err = sock_recvmsg(sock, &msg, size, flags);
1728
1729 if (err >= 0 && addr != NULL) {
1730 err2 = move_addr_to_user((struct sockaddr *)&address,
1731 msg.msg_namelen, addr, addr_len);
1732 if (err2 < 0)
1733 err = err2;
1734 }
1735
1736 fput_light(sock->file, fput_needed);
1737 out:
1738 return err;
1739 }
1740
1741 /*
1742 * Receive a datagram from a socket.
1743 */
1744
1745 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1746 unsigned flags)
1747 {
1748 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1749 }
1750
1751 /*
1752 * Set a socket option. Because we don't know the option lengths we have
1753 * to pass the user mode parameter for the protocols to sort out.
1754 */
1755
1756 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1757 char __user *, optval, int, optlen)
1758 {
1759 int err, fput_needed;
1760 struct socket *sock;
1761
1762 if (optlen < 0)
1763 return -EINVAL;
1764
1765 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1766 if (sock != NULL) {
1767 err = security_socket_setsockopt(sock, level, optname);
1768 if (err)
1769 goto out_put;
1770
1771 if (level == SOL_SOCKET)
1772 err =
1773 sock_setsockopt(sock, level, optname, optval,
1774 optlen);
1775 else
1776 err =
1777 sock->ops->setsockopt(sock, level, optname, optval,
1778 optlen);
1779 out_put:
1780 fput_light(sock->file, fput_needed);
1781 }
1782 return err;
1783 }
1784
1785 /*
1786 * Get a socket option. Because we don't know the option lengths we have
1787 * to pass a user mode parameter for the protocols to sort out.
1788 */
1789
1790 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1791 char __user *, optval, int __user *, optlen)
1792 {
1793 int err, fput_needed;
1794 struct socket *sock;
1795
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 if (sock != NULL) {
1798 err = security_socket_getsockopt(sock, level, optname);
1799 if (err)
1800 goto out_put;
1801
1802 if (level == SOL_SOCKET)
1803 err =
1804 sock_getsockopt(sock, level, optname, optval,
1805 optlen);
1806 else
1807 err =
1808 sock->ops->getsockopt(sock, level, optname, optval,
1809 optlen);
1810 out_put:
1811 fput_light(sock->file, fput_needed);
1812 }
1813 return err;
1814 }
1815
1816 /*
1817 * Shutdown a socket.
1818 */
1819
1820 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1821 {
1822 int err, fput_needed;
1823 struct socket *sock;
1824
1825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 if (sock != NULL) {
1827 err = security_socket_shutdown(sock, how);
1828 if (!err)
1829 err = sock->ops->shutdown(sock, how);
1830 fput_light(sock->file, fput_needed);
1831 }
1832 return err;
1833 }
1834
1835 /* A couple of helpful macros for getting the address of the 32/64 bit
1836 * fields which are the same type (int / unsigned) on our platforms.
1837 */
1838 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1839 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1840 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1841
1842 /*
1843 * BSD sendmsg interface
1844 */
1845
1846 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1847 {
1848 struct compat_msghdr __user *msg_compat =
1849 (struct compat_msghdr __user *)msg;
1850 struct socket *sock;
1851 struct sockaddr_storage address;
1852 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1853 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1854 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1855 /* 20 is size of ipv6_pktinfo */
1856 unsigned char *ctl_buf = ctl;
1857 struct msghdr msg_sys;
1858 int err, ctl_len, iov_size, total_len;
1859 int fput_needed;
1860
1861 err = -EFAULT;
1862 if (MSG_CMSG_COMPAT & flags) {
1863 if (get_compat_msghdr(&msg_sys, msg_compat))
1864 return -EFAULT;
1865 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1866 return -EFAULT;
1867
1868 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1869 if (!sock)
1870 goto out;
1871
1872 /* do not move before msg_sys is valid */
1873 err = -EMSGSIZE;
1874 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1875 goto out_put;
1876
1877 /* Check whether to allocate the iovec area */
1878 err = -ENOMEM;
1879 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1880 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1881 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1882 if (!iov)
1883 goto out_put;
1884 }
1885
1886 /* This will also move the address data into kernel space */
1887 if (MSG_CMSG_COMPAT & flags) {
1888 err = verify_compat_iovec(&msg_sys, iov,
1889 (struct sockaddr *)&address,
1890 VERIFY_READ);
1891 } else
1892 err = verify_iovec(&msg_sys, iov,
1893 (struct sockaddr *)&address,
1894 VERIFY_READ);
1895 if (err < 0)
1896 goto out_freeiov;
1897 total_len = err;
1898
1899 err = -ENOBUFS;
1900
1901 if (msg_sys.msg_controllen > INT_MAX)
1902 goto out_freeiov;
1903 ctl_len = msg_sys.msg_controllen;
1904 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 err =
1906 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1907 sizeof(ctl));
1908 if (err)
1909 goto out_freeiov;
1910 ctl_buf = msg_sys.msg_control;
1911 ctl_len = msg_sys.msg_controllen;
1912 } else if (ctl_len) {
1913 if (ctl_len > sizeof(ctl)) {
1914 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 if (ctl_buf == NULL)
1916 goto out_freeiov;
1917 }
1918 err = -EFAULT;
1919 /*
1920 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1921 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 * checking falls down on this.
1923 */
1924 if (copy_from_user(ctl_buf,
1925 (void __user __force *)msg_sys.msg_control,
1926 ctl_len))
1927 goto out_freectl;
1928 msg_sys.msg_control = ctl_buf;
1929 }
1930 msg_sys.msg_flags = flags;
1931
1932 if (sock->file->f_flags & O_NONBLOCK)
1933 msg_sys.msg_flags |= MSG_DONTWAIT;
1934 err = sock_sendmsg(sock, &msg_sys, total_len);
1935
1936 out_freectl:
1937 if (ctl_buf != ctl)
1938 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1939 out_freeiov:
1940 if (iov != iovstack)
1941 sock_kfree_s(sock->sk, iov, iov_size);
1942 out_put:
1943 fput_light(sock->file, fput_needed);
1944 out:
1945 return err;
1946 }
1947
1948 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1949 struct msghdr *msg_sys, unsigned flags, int nosec)
1950 {
1951 struct compat_msghdr __user *msg_compat =
1952 (struct compat_msghdr __user *)msg;
1953 struct iovec iovstack[UIO_FASTIOV];
1954 struct iovec *iov = iovstack;
1955 unsigned long cmsg_ptr;
1956 int err, iov_size, total_len, len;
1957
1958 /* kernel mode address */
1959 struct sockaddr_storage addr;
1960
1961 /* user mode address pointers */
1962 struct sockaddr __user *uaddr;
1963 int __user *uaddr_len;
1964
1965 if (MSG_CMSG_COMPAT & flags) {
1966 if (get_compat_msghdr(msg_sys, msg_compat))
1967 return -EFAULT;
1968 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1969 return -EFAULT;
1970
1971 err = -EMSGSIZE;
1972 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1973 goto out;
1974
1975 /* Check whether to allocate the iovec area */
1976 err = -ENOMEM;
1977 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1978 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1979 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1980 if (!iov)
1981 goto out;
1982 }
1983
1984 /*
1985 * Save the user-mode address (verify_iovec will change the
1986 * kernel msghdr to use the kernel address space)
1987 */
1988
1989 uaddr = (__force void __user *)msg_sys->msg_name;
1990 uaddr_len = COMPAT_NAMELEN(msg);
1991 if (MSG_CMSG_COMPAT & flags) {
1992 err = verify_compat_iovec(msg_sys, iov,
1993 (struct sockaddr *)&addr,
1994 VERIFY_WRITE);
1995 } else
1996 err = verify_iovec(msg_sys, iov,
1997 (struct sockaddr *)&addr,
1998 VERIFY_WRITE);
1999 if (err < 0)
2000 goto out_freeiov;
2001 total_len = err;
2002
2003 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2004 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2005
2006 if (sock->file->f_flags & O_NONBLOCK)
2007 flags |= MSG_DONTWAIT;
2008 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2009 total_len, flags);
2010 if (err < 0)
2011 goto out_freeiov;
2012 len = err;
2013
2014 if (uaddr != NULL) {
2015 err = move_addr_to_user((struct sockaddr *)&addr,
2016 msg_sys->msg_namelen, uaddr,
2017 uaddr_len);
2018 if (err < 0)
2019 goto out_freeiov;
2020 }
2021 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2022 COMPAT_FLAGS(msg));
2023 if (err)
2024 goto out_freeiov;
2025 if (MSG_CMSG_COMPAT & flags)
2026 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 &msg_compat->msg_controllen);
2028 else
2029 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2030 &msg->msg_controllen);
2031 if (err)
2032 goto out_freeiov;
2033 err = len;
2034
2035 out_freeiov:
2036 if (iov != iovstack)
2037 sock_kfree_s(sock->sk, iov, iov_size);
2038 out:
2039 return err;
2040 }
2041
2042 /*
2043 * BSD recvmsg interface
2044 */
2045
2046 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2047 unsigned int, flags)
2048 {
2049 int fput_needed, err;
2050 struct msghdr msg_sys;
2051 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052
2053 if (!sock)
2054 goto out;
2055
2056 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2057
2058 fput_light(sock->file, fput_needed);
2059 out:
2060 return err;
2061 }
2062
2063 /*
2064 * Linux recvmmsg interface
2065 */
2066
2067 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2068 unsigned int flags, struct timespec *timeout)
2069 {
2070 int fput_needed, err, datagrams;
2071 struct socket *sock;
2072 struct mmsghdr __user *entry;
2073 struct compat_mmsghdr __user *compat_entry;
2074 struct msghdr msg_sys;
2075 struct timespec end_time;
2076
2077 if (timeout &&
2078 poll_select_set_timeout(&end_time, timeout->tv_sec,
2079 timeout->tv_nsec))
2080 return -EINVAL;
2081
2082 datagrams = 0;
2083
2084 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2085 if (!sock)
2086 return err;
2087
2088 err = sock_error(sock->sk);
2089 if (err)
2090 goto out_put;
2091
2092 entry = mmsg;
2093 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2094
2095 while (datagrams < vlen) {
2096 /*
2097 * No need to ask LSM for more than the first datagram.
2098 */
2099 if (MSG_CMSG_COMPAT & flags) {
2100 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2101 &msg_sys, flags, datagrams);
2102 if (err < 0)
2103 break;
2104 err = __put_user(err, &compat_entry->msg_len);
2105 ++compat_entry;
2106 } else {
2107 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2108 &msg_sys, flags, datagrams);
2109 if (err < 0)
2110 break;
2111 err = put_user(err, &entry->msg_len);
2112 ++entry;
2113 }
2114
2115 if (err)
2116 break;
2117 ++datagrams;
2118
2119 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2120 if (flags & MSG_WAITFORONE)
2121 flags |= MSG_DONTWAIT;
2122
2123 if (timeout) {
2124 ktime_get_ts(timeout);
2125 *timeout = timespec_sub(end_time, *timeout);
2126 if (timeout->tv_sec < 0) {
2127 timeout->tv_sec = timeout->tv_nsec = 0;
2128 break;
2129 }
2130
2131 /* Timeout, return less than vlen datagrams */
2132 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2133 break;
2134 }
2135
2136 /* Out of band data, return right away */
2137 if (msg_sys.msg_flags & MSG_OOB)
2138 break;
2139 }
2140
2141 out_put:
2142 fput_light(sock->file, fput_needed);
2143
2144 if (err == 0)
2145 return datagrams;
2146
2147 if (datagrams != 0) {
2148 /*
2149 * We may return less entries than requested (vlen) if the
2150 * sock is non block and there aren't enough datagrams...
2151 */
2152 if (err != -EAGAIN) {
2153 /*
2154 * ... or if recvmsg returns an error after we
2155 * received some datagrams, where we record the
2156 * error to return on the next call or if the
2157 * app asks about it using getsockopt(SO_ERROR).
2158 */
2159 sock->sk->sk_err = -err;
2160 }
2161
2162 return datagrams;
2163 }
2164
2165 return err;
2166 }
2167
2168 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2169 unsigned int, vlen, unsigned int, flags,
2170 struct timespec __user *, timeout)
2171 {
2172 int datagrams;
2173 struct timespec timeout_sys;
2174
2175 if (!timeout)
2176 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2177
2178 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2179 return -EFAULT;
2180
2181 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2182
2183 if (datagrams > 0 &&
2184 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2185 datagrams = -EFAULT;
2186
2187 return datagrams;
2188 }
2189
2190 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2191 /* Argument list sizes for sys_socketcall */
2192 #define AL(x) ((x) * sizeof(unsigned long))
2193 static const unsigned char nargs[20] = {
2194 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2195 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2196 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2197 AL(4), AL(5)
2198 };
2199
2200 #undef AL
2201
2202 /*
2203 * System call vectors.
2204 *
2205 * Argument checking cleaned up. Saved 20% in size.
2206 * This function doesn't need to set the kernel lock because
2207 * it is set by the callees.
2208 */
2209
2210 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2211 {
2212 unsigned long a[6];
2213 unsigned long a0, a1;
2214 int err;
2215 unsigned int len;
2216
2217 if (call < 1 || call > SYS_RECVMMSG)
2218 return -EINVAL;
2219
2220 len = nargs[call];
2221 if (len > sizeof(a))
2222 return -EINVAL;
2223
2224 /* copy_from_user should be SMP safe. */
2225 if (copy_from_user(a, args, len))
2226 return -EFAULT;
2227
2228 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2229
2230 a0 = a[0];
2231 a1 = a[1];
2232
2233 switch (call) {
2234 case SYS_SOCKET:
2235 err = sys_socket(a0, a1, a[2]);
2236 break;
2237 case SYS_BIND:
2238 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2239 break;
2240 case SYS_CONNECT:
2241 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2242 break;
2243 case SYS_LISTEN:
2244 err = sys_listen(a0, a1);
2245 break;
2246 case SYS_ACCEPT:
2247 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2248 (int __user *)a[2], 0);
2249 break;
2250 case SYS_GETSOCKNAME:
2251 err =
2252 sys_getsockname(a0, (struct sockaddr __user *)a1,
2253 (int __user *)a[2]);
2254 break;
2255 case SYS_GETPEERNAME:
2256 err =
2257 sys_getpeername(a0, (struct sockaddr __user *)a1,
2258 (int __user *)a[2]);
2259 break;
2260 case SYS_SOCKETPAIR:
2261 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2262 break;
2263 case SYS_SEND:
2264 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2265 break;
2266 case SYS_SENDTO:
2267 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2268 (struct sockaddr __user *)a[4], a[5]);
2269 break;
2270 case SYS_RECV:
2271 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2272 break;
2273 case SYS_RECVFROM:
2274 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2275 (struct sockaddr __user *)a[4],
2276 (int __user *)a[5]);
2277 break;
2278 case SYS_SHUTDOWN:
2279 err = sys_shutdown(a0, a1);
2280 break;
2281 case SYS_SETSOCKOPT:
2282 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2283 break;
2284 case SYS_GETSOCKOPT:
2285 err =
2286 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2287 (int __user *)a[4]);
2288 break;
2289 case SYS_SENDMSG:
2290 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 break;
2292 case SYS_RECVMSG:
2293 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2294 break;
2295 case SYS_RECVMMSG:
2296 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2297 (struct timespec __user *)a[4]);
2298 break;
2299 case SYS_ACCEPT4:
2300 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2301 (int __user *)a[2], a[3]);
2302 break;
2303 default:
2304 err = -EINVAL;
2305 break;
2306 }
2307 return err;
2308 }
2309
2310 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2311
2312 /**
2313 * sock_register - add a socket protocol handler
2314 * @ops: description of protocol
2315 *
2316 * This function is called by a protocol handler that wants to
2317 * advertise its address family, and have it linked into the
2318 * socket interface. The value ops->family coresponds to the
2319 * socket system call protocol family.
2320 */
2321 int sock_register(const struct net_proto_family *ops)
2322 {
2323 int err;
2324
2325 if (ops->family >= NPROTO) {
2326 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2327 NPROTO);
2328 return -ENOBUFS;
2329 }
2330
2331 spin_lock(&net_family_lock);
2332 if (net_families[ops->family])
2333 err = -EEXIST;
2334 else {
2335 net_families[ops->family] = ops;
2336 err = 0;
2337 }
2338 spin_unlock(&net_family_lock);
2339
2340 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2341 return err;
2342 }
2343 EXPORT_SYMBOL(sock_register);
2344
2345 /**
2346 * sock_unregister - remove a protocol handler
2347 * @family: protocol family to remove
2348 *
2349 * This function is called by a protocol handler that wants to
2350 * remove its address family, and have it unlinked from the
2351 * new socket creation.
2352 *
2353 * If protocol handler is a module, then it can use module reference
2354 * counts to protect against new references. If protocol handler is not
2355 * a module then it needs to provide its own protection in
2356 * the ops->create routine.
2357 */
2358 void sock_unregister(int family)
2359 {
2360 BUG_ON(family < 0 || family >= NPROTO);
2361
2362 spin_lock(&net_family_lock);
2363 net_families[family] = NULL;
2364 spin_unlock(&net_family_lock);
2365
2366 synchronize_rcu();
2367
2368 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2369 }
2370 EXPORT_SYMBOL(sock_unregister);
2371
2372 static int __init sock_init(void)
2373 {
2374 /*
2375 * Initialize sock SLAB cache.
2376 */
2377
2378 sk_init();
2379
2380 /*
2381 * Initialize skbuff SLAB cache
2382 */
2383 skb_init();
2384
2385 /*
2386 * Initialize the protocols module.
2387 */
2388
2389 init_inodecache();
2390 register_filesystem(&sock_fs_type);
2391 sock_mnt = kern_mount(&sock_fs_type);
2392
2393 /* The real protocol initialization is performed in later initcalls.
2394 */
2395
2396 #ifdef CONFIG_NETFILTER
2397 netfilter_init();
2398 #endif
2399
2400 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2401 skb_timestamping_init();
2402 #endif
2403
2404 return 0;
2405 }
2406
2407 core_initcall(sock_init); /* early initcall */
2408
2409 #ifdef CONFIG_PROC_FS
2410 void socket_seq_show(struct seq_file *seq)
2411 {
2412 int cpu;
2413 int counter = 0;
2414
2415 for_each_possible_cpu(cpu)
2416 counter += per_cpu(sockets_in_use, cpu);
2417
2418 /* It can be negative, by the way. 8) */
2419 if (counter < 0)
2420 counter = 0;
2421
2422 seq_printf(seq, "sockets: used %d\n", counter);
2423 }
2424 #endif /* CONFIG_PROC_FS */
2425
2426 #ifdef CONFIG_COMPAT
2427 static int do_siocgstamp(struct net *net, struct socket *sock,
2428 unsigned int cmd, struct compat_timeval __user *up)
2429 {
2430 mm_segment_t old_fs = get_fs();
2431 struct timeval ktv;
2432 int err;
2433
2434 set_fs(KERNEL_DS);
2435 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2436 set_fs(old_fs);
2437 if (!err) {
2438 err = put_user(ktv.tv_sec, &up->tv_sec);
2439 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2440 }
2441 return err;
2442 }
2443
2444 static int do_siocgstampns(struct net *net, struct socket *sock,
2445 unsigned int cmd, struct compat_timespec __user *up)
2446 {
2447 mm_segment_t old_fs = get_fs();
2448 struct timespec kts;
2449 int err;
2450
2451 set_fs(KERNEL_DS);
2452 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2453 set_fs(old_fs);
2454 if (!err) {
2455 err = put_user(kts.tv_sec, &up->tv_sec);
2456 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2457 }
2458 return err;
2459 }
2460
2461 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2462 {
2463 struct ifreq __user *uifr;
2464 int err;
2465
2466 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2467 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2468 return -EFAULT;
2469
2470 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2471 if (err)
2472 return err;
2473
2474 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2475 return -EFAULT;
2476
2477 return 0;
2478 }
2479
2480 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2481 {
2482 struct compat_ifconf ifc32;
2483 struct ifconf ifc;
2484 struct ifconf __user *uifc;
2485 struct compat_ifreq __user *ifr32;
2486 struct ifreq __user *ifr;
2487 unsigned int i, j;
2488 int err;
2489
2490 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2491 return -EFAULT;
2492
2493 if (ifc32.ifcbuf == 0) {
2494 ifc32.ifc_len = 0;
2495 ifc.ifc_len = 0;
2496 ifc.ifc_req = NULL;
2497 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2498 } else {
2499 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2500 sizeof(struct ifreq);
2501 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2502 ifc.ifc_len = len;
2503 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2504 ifr32 = compat_ptr(ifc32.ifcbuf);
2505 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2506 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2507 return -EFAULT;
2508 ifr++;
2509 ifr32++;
2510 }
2511 }
2512 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2513 return -EFAULT;
2514
2515 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2516 if (err)
2517 return err;
2518
2519 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2520 return -EFAULT;
2521
2522 ifr = ifc.ifc_req;
2523 ifr32 = compat_ptr(ifc32.ifcbuf);
2524 for (i = 0, j = 0;
2525 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2526 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2527 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2528 return -EFAULT;
2529 ifr32++;
2530 ifr++;
2531 }
2532
2533 if (ifc32.ifcbuf == 0) {
2534 /* Translate from 64-bit structure multiple to
2535 * a 32-bit one.
2536 */
2537 i = ifc.ifc_len;
2538 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2539 ifc32.ifc_len = i;
2540 } else {
2541 ifc32.ifc_len = i;
2542 }
2543 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2544 return -EFAULT;
2545
2546 return 0;
2547 }
2548
2549 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2550 {
2551 struct ifreq __user *ifr;
2552 u32 data;
2553 void __user *datap;
2554
2555 ifr = compat_alloc_user_space(sizeof(*ifr));
2556
2557 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2558 return -EFAULT;
2559
2560 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2561 return -EFAULT;
2562
2563 datap = compat_ptr(data);
2564 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2565 return -EFAULT;
2566
2567 return dev_ioctl(net, SIOCETHTOOL, ifr);
2568 }
2569
2570 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2571 {
2572 void __user *uptr;
2573 compat_uptr_t uptr32;
2574 struct ifreq __user *uifr;
2575
2576 uifr = compat_alloc_user_space(sizeof(*uifr));
2577 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2578 return -EFAULT;
2579
2580 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2581 return -EFAULT;
2582
2583 uptr = compat_ptr(uptr32);
2584
2585 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2586 return -EFAULT;
2587
2588 return dev_ioctl(net, SIOCWANDEV, uifr);
2589 }
2590
2591 static int bond_ioctl(struct net *net, unsigned int cmd,
2592 struct compat_ifreq __user *ifr32)
2593 {
2594 struct ifreq kifr;
2595 struct ifreq __user *uifr;
2596 mm_segment_t old_fs;
2597 int err;
2598 u32 data;
2599 void __user *datap;
2600
2601 switch (cmd) {
2602 case SIOCBONDENSLAVE:
2603 case SIOCBONDRELEASE:
2604 case SIOCBONDSETHWADDR:
2605 case SIOCBONDCHANGEACTIVE:
2606 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2607 return -EFAULT;
2608
2609 old_fs = get_fs();
2610 set_fs(KERNEL_DS);
2611 err = dev_ioctl(net, cmd, &kifr);
2612 set_fs(old_fs);
2613
2614 return err;
2615 case SIOCBONDSLAVEINFOQUERY:
2616 case SIOCBONDINFOQUERY:
2617 uifr = compat_alloc_user_space(sizeof(*uifr));
2618 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2619 return -EFAULT;
2620
2621 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2622 return -EFAULT;
2623
2624 datap = compat_ptr(data);
2625 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2626 return -EFAULT;
2627
2628 return dev_ioctl(net, cmd, uifr);
2629 default:
2630 return -EINVAL;
2631 }
2632 }
2633
2634 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2635 struct compat_ifreq __user *u_ifreq32)
2636 {
2637 struct ifreq __user *u_ifreq64;
2638 char tmp_buf[IFNAMSIZ];
2639 void __user *data64;
2640 u32 data32;
2641
2642 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2643 IFNAMSIZ))
2644 return -EFAULT;
2645 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2646 return -EFAULT;
2647 data64 = compat_ptr(data32);
2648
2649 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2650
2651 /* Don't check these user accesses, just let that get trapped
2652 * in the ioctl handler instead.
2653 */
2654 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2655 IFNAMSIZ))
2656 return -EFAULT;
2657 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2658 return -EFAULT;
2659
2660 return dev_ioctl(net, cmd, u_ifreq64);
2661 }
2662
2663 static int dev_ifsioc(struct net *net, struct socket *sock,
2664 unsigned int cmd, struct compat_ifreq __user *uifr32)
2665 {
2666 struct ifreq __user *uifr;
2667 int err;
2668
2669 uifr = compat_alloc_user_space(sizeof(*uifr));
2670 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2671 return -EFAULT;
2672
2673 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2674
2675 if (!err) {
2676 switch (cmd) {
2677 case SIOCGIFFLAGS:
2678 case SIOCGIFMETRIC:
2679 case SIOCGIFMTU:
2680 case SIOCGIFMEM:
2681 case SIOCGIFHWADDR:
2682 case SIOCGIFINDEX:
2683 case SIOCGIFADDR:
2684 case SIOCGIFBRDADDR:
2685 case SIOCGIFDSTADDR:
2686 case SIOCGIFNETMASK:
2687 case SIOCGIFPFLAGS:
2688 case SIOCGIFTXQLEN:
2689 case SIOCGMIIPHY:
2690 case SIOCGMIIREG:
2691 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2692 err = -EFAULT;
2693 break;
2694 }
2695 }
2696 return err;
2697 }
2698
2699 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2700 struct compat_ifreq __user *uifr32)
2701 {
2702 struct ifreq ifr;
2703 struct compat_ifmap __user *uifmap32;
2704 mm_segment_t old_fs;
2705 int err;
2706
2707 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2708 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2709 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2710 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2711 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2712 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2713 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2714 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2715 if (err)
2716 return -EFAULT;
2717
2718 old_fs = get_fs();
2719 set_fs(KERNEL_DS);
2720 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2721 set_fs(old_fs);
2722
2723 if (cmd == SIOCGIFMAP && !err) {
2724 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2725 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2726 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2727 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2728 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2729 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2730 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2731 if (err)
2732 err = -EFAULT;
2733 }
2734 return err;
2735 }
2736
2737 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2738 {
2739 void __user *uptr;
2740 compat_uptr_t uptr32;
2741 struct ifreq __user *uifr;
2742
2743 uifr = compat_alloc_user_space(sizeof(*uifr));
2744 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2745 return -EFAULT;
2746
2747 if (get_user(uptr32, &uifr32->ifr_data))
2748 return -EFAULT;
2749
2750 uptr = compat_ptr(uptr32);
2751
2752 if (put_user(uptr, &uifr->ifr_data))
2753 return -EFAULT;
2754
2755 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2756 }
2757
2758 struct rtentry32 {
2759 u32 rt_pad1;
2760 struct sockaddr rt_dst; /* target address */
2761 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2762 struct sockaddr rt_genmask; /* target network mask (IP) */
2763 unsigned short rt_flags;
2764 short rt_pad2;
2765 u32 rt_pad3;
2766 unsigned char rt_tos;
2767 unsigned char rt_class;
2768 short rt_pad4;
2769 short rt_metric; /* +1 for binary compatibility! */
2770 /* char * */ u32 rt_dev; /* forcing the device at add */
2771 u32 rt_mtu; /* per route MTU/Window */
2772 u32 rt_window; /* Window clamping */
2773 unsigned short rt_irtt; /* Initial RTT */
2774 };
2775
2776 struct in6_rtmsg32 {
2777 struct in6_addr rtmsg_dst;
2778 struct in6_addr rtmsg_src;
2779 struct in6_addr rtmsg_gateway;
2780 u32 rtmsg_type;
2781 u16 rtmsg_dst_len;
2782 u16 rtmsg_src_len;
2783 u32 rtmsg_metric;
2784 u32 rtmsg_info;
2785 u32 rtmsg_flags;
2786 s32 rtmsg_ifindex;
2787 };
2788
2789 static int routing_ioctl(struct net *net, struct socket *sock,
2790 unsigned int cmd, void __user *argp)
2791 {
2792 int ret;
2793 void *r = NULL;
2794 struct in6_rtmsg r6;
2795 struct rtentry r4;
2796 char devname[16];
2797 u32 rtdev;
2798 mm_segment_t old_fs = get_fs();
2799
2800 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2801 struct in6_rtmsg32 __user *ur6 = argp;
2802 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2803 3 * sizeof(struct in6_addr));
2804 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2805 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2806 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2807 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2808 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2809 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2810 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2811
2812 r = (void *) &r6;
2813 } else { /* ipv4 */
2814 struct rtentry32 __user *ur4 = argp;
2815 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2816 3 * sizeof(struct sockaddr));
2817 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2818 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2819 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2820 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2821 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2822 ret |= __get_user(rtdev, &(ur4->rt_dev));
2823 if (rtdev) {
2824 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2825 r4.rt_dev = devname; devname[15] = 0;
2826 } else
2827 r4.rt_dev = NULL;
2828
2829 r = (void *) &r4;
2830 }
2831
2832 if (ret) {
2833 ret = -EFAULT;
2834 goto out;
2835 }
2836
2837 set_fs(KERNEL_DS);
2838 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2839 set_fs(old_fs);
2840
2841 out:
2842 return ret;
2843 }
2844
2845 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2846 * for some operations; this forces use of the newer bridge-utils that
2847 * use compatiable ioctls
2848 */
2849 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2850 {
2851 compat_ulong_t tmp;
2852
2853 if (get_user(tmp, argp))
2854 return -EFAULT;
2855 if (tmp == BRCTL_GET_VERSION)
2856 return BRCTL_VERSION + 1;
2857 return -EINVAL;
2858 }
2859
2860 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2861 unsigned int cmd, unsigned long arg)
2862 {
2863 void __user *argp = compat_ptr(arg);
2864 struct sock *sk = sock->sk;
2865 struct net *net = sock_net(sk);
2866
2867 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2868 return siocdevprivate_ioctl(net, cmd, argp);
2869
2870 switch (cmd) {
2871 case SIOCSIFBR:
2872 case SIOCGIFBR:
2873 return old_bridge_ioctl(argp);
2874 case SIOCGIFNAME:
2875 return dev_ifname32(net, argp);
2876 case SIOCGIFCONF:
2877 return dev_ifconf(net, argp);
2878 case SIOCETHTOOL:
2879 return ethtool_ioctl(net, argp);
2880 case SIOCWANDEV:
2881 return compat_siocwandev(net, argp);
2882 case SIOCGIFMAP:
2883 case SIOCSIFMAP:
2884 return compat_sioc_ifmap(net, cmd, argp);
2885 case SIOCBONDENSLAVE:
2886 case SIOCBONDRELEASE:
2887 case SIOCBONDSETHWADDR:
2888 case SIOCBONDSLAVEINFOQUERY:
2889 case SIOCBONDINFOQUERY:
2890 case SIOCBONDCHANGEACTIVE:
2891 return bond_ioctl(net, cmd, argp);
2892 case SIOCADDRT:
2893 case SIOCDELRT:
2894 return routing_ioctl(net, sock, cmd, argp);
2895 case SIOCGSTAMP:
2896 return do_siocgstamp(net, sock, cmd, argp);
2897 case SIOCGSTAMPNS:
2898 return do_siocgstampns(net, sock, cmd, argp);
2899 case SIOCSHWTSTAMP:
2900 return compat_siocshwtstamp(net, argp);
2901
2902 case FIOSETOWN:
2903 case SIOCSPGRP:
2904 case FIOGETOWN:
2905 case SIOCGPGRP:
2906 case SIOCBRADDBR:
2907 case SIOCBRDELBR:
2908 case SIOCGIFVLAN:
2909 case SIOCSIFVLAN:
2910 case SIOCADDDLCI:
2911 case SIOCDELDLCI:
2912 return sock_ioctl(file, cmd, arg);
2913
2914 case SIOCGIFFLAGS:
2915 case SIOCSIFFLAGS:
2916 case SIOCGIFMETRIC:
2917 case SIOCSIFMETRIC:
2918 case SIOCGIFMTU:
2919 case SIOCSIFMTU:
2920 case SIOCGIFMEM:
2921 case SIOCSIFMEM:
2922 case SIOCGIFHWADDR:
2923 case SIOCSIFHWADDR:
2924 case SIOCADDMULTI:
2925 case SIOCDELMULTI:
2926 case SIOCGIFINDEX:
2927 case SIOCGIFADDR:
2928 case SIOCSIFADDR:
2929 case SIOCSIFHWBROADCAST:
2930 case SIOCDIFADDR:
2931 case SIOCGIFBRDADDR:
2932 case SIOCSIFBRDADDR:
2933 case SIOCGIFDSTADDR:
2934 case SIOCSIFDSTADDR:
2935 case SIOCGIFNETMASK:
2936 case SIOCSIFNETMASK:
2937 case SIOCSIFPFLAGS:
2938 case SIOCGIFPFLAGS:
2939 case SIOCGIFTXQLEN:
2940 case SIOCSIFTXQLEN:
2941 case SIOCBRADDIF:
2942 case SIOCBRDELIF:
2943 case SIOCSIFNAME:
2944 case SIOCGMIIPHY:
2945 case SIOCGMIIREG:
2946 case SIOCSMIIREG:
2947 return dev_ifsioc(net, sock, cmd, argp);
2948
2949 case SIOCSARP:
2950 case SIOCGARP:
2951 case SIOCDARP:
2952 case SIOCATMARK:
2953 return sock_do_ioctl(net, sock, cmd, arg);
2954 }
2955
2956 /* Prevent warning from compat_sys_ioctl, these always
2957 * result in -EINVAL in the native case anyway. */
2958 switch (cmd) {
2959 case SIOCRTMSG:
2960 case SIOCGIFCOUNT:
2961 case SIOCSRARP:
2962 case SIOCGRARP:
2963 case SIOCDRARP:
2964 case SIOCSIFLINK:
2965 case SIOCGIFSLAVE:
2966 case SIOCSIFSLAVE:
2967 return -EINVAL;
2968 }
2969
2970 return -ENOIOCTLCMD;
2971 }
2972
2973 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2974 unsigned long arg)
2975 {
2976 struct socket *sock = file->private_data;
2977 int ret = -ENOIOCTLCMD;
2978 struct sock *sk;
2979 struct net *net;
2980
2981 sk = sock->sk;
2982 net = sock_net(sk);
2983
2984 if (sock->ops->compat_ioctl)
2985 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2986
2987 if (ret == -ENOIOCTLCMD &&
2988 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2989 ret = compat_wext_handle_ioctl(net, cmd, arg);
2990
2991 if (ret == -ENOIOCTLCMD)
2992 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2993
2994 return ret;
2995 }
2996 #endif
2997
2998 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2999 {
3000 return sock->ops->bind(sock, addr, addrlen);
3001 }
3002 EXPORT_SYMBOL(kernel_bind);
3003
3004 int kernel_listen(struct socket *sock, int backlog)
3005 {
3006 return sock->ops->listen(sock, backlog);
3007 }
3008 EXPORT_SYMBOL(kernel_listen);
3009
3010 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3011 {
3012 struct sock *sk = sock->sk;
3013 int err;
3014
3015 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3016 newsock);
3017 if (err < 0)
3018 goto done;
3019
3020 err = sock->ops->accept(sock, *newsock, flags);
3021 if (err < 0) {
3022 sock_release(*newsock);
3023 *newsock = NULL;
3024 goto done;
3025 }
3026
3027 (*newsock)->ops = sock->ops;
3028 __module_get((*newsock)->ops->owner);
3029
3030 done:
3031 return err;
3032 }
3033 EXPORT_SYMBOL(kernel_accept);
3034
3035 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3036 int flags)
3037 {
3038 return sock->ops->connect(sock, addr, addrlen, flags);
3039 }
3040 EXPORT_SYMBOL(kernel_connect);
3041
3042 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3043 int *addrlen)
3044 {
3045 return sock->ops->getname(sock, addr, addrlen, 0);
3046 }
3047 EXPORT_SYMBOL(kernel_getsockname);
3048
3049 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3050 int *addrlen)
3051 {
3052 return sock->ops->getname(sock, addr, addrlen, 1);
3053 }
3054 EXPORT_SYMBOL(kernel_getpeername);
3055
3056 int kernel_getsockopt(struct socket *sock, int level, int optname,
3057 char *optval, int *optlen)
3058 {
3059 mm_segment_t oldfs = get_fs();
3060 char __user *uoptval;
3061 int __user *uoptlen;
3062 int err;
3063
3064 uoptval = (char __user __force *) optval;
3065 uoptlen = (int __user __force *) optlen;
3066
3067 set_fs(KERNEL_DS);
3068 if (level == SOL_SOCKET)
3069 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3070 else
3071 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3072 uoptlen);
3073 set_fs(oldfs);
3074 return err;
3075 }
3076 EXPORT_SYMBOL(kernel_getsockopt);
3077
3078 int kernel_setsockopt(struct socket *sock, int level, int optname,
3079 char *optval, unsigned int optlen)
3080 {
3081 mm_segment_t oldfs = get_fs();
3082 char __user *uoptval;
3083 int err;
3084
3085 uoptval = (char __user __force *) optval;
3086
3087 set_fs(KERNEL_DS);
3088 if (level == SOL_SOCKET)
3089 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3090 else
3091 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3092 optlen);
3093 set_fs(oldfs);
3094 return err;
3095 }
3096 EXPORT_SYMBOL(kernel_setsockopt);
3097
3098 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3099 size_t size, int flags)
3100 {
3101 sock_update_classid(sock->sk);
3102
3103 if (sock->ops->sendpage)
3104 return sock->ops->sendpage(sock, page, offset, size, flags);
3105
3106 return sock_no_sendpage(sock, page, offset, size, flags);
3107 }
3108 EXPORT_SYMBOL(kernel_sendpage);
3109
3110 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3111 {
3112 mm_segment_t oldfs = get_fs();
3113 int err;
3114
3115 set_fs(KERNEL_DS);
3116 err = sock->ops->ioctl(sock, cmd, arg);
3117 set_fs(oldfs);
3118
3119 return err;
3120 }
3121 EXPORT_SYMBOL(kernel_sock_ioctl);
3122
3123 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3124 {
3125 return sock->ops->shutdown(sock, how);
3126 }
3127 EXPORT_SYMBOL(kernel_sock_shutdown);