net: annotate struct sock bitfield
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 struct pipe_inode_info *pipe, size_t len,
119 unsigned int flags);
120
121 /*
122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123 * in the operation structures but are done directly via the socketcall() multiplexor.
124 */
125
126 static const struct file_operations socket_file_ops = {
127 .owner = THIS_MODULE,
128 .llseek = no_llseek,
129 .aio_read = sock_aio_read,
130 .aio_write = sock_aio_write,
131 .poll = sock_poll,
132 .unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 .compat_ioctl = compat_sock_ioctl,
135 #endif
136 .mmap = sock_mmap,
137 .open = sock_no_open, /* special open code to disallow open via /proc */
138 .release = sock_close,
139 .fasync = sock_fasync,
140 .sendpage = sock_sendpage,
141 .splice_write = generic_splice_sendpage,
142 .splice_read = sock_splice_read,
143 };
144
145 /*
146 * The protocol list. Each protocol is registered in here.
147 */
148
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151
152 /*
153 * Statistics counters of the socket lists
154 */
155
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157
158 /*
159 * Support routines.
160 * Move socket addresses back and forth across the kernel/user
161 * divide and look after the messy bits.
162 */
163
164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
165 16 for IP, 16 for IPX,
166 24 for IPv6,
167 about 80 for AX.25
168 must be at least one bigger than
169 the AF_UNIX size (see net/unix/af_unix.c
170 :unix_mkname()).
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 #define SOCKFS_MAGIC 0x534F434B
239
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 struct socket_alloc *ei;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 init_waitqueue_head(&ei->socket.wait);
250
251 ei->socket.fasync_list = NULL;
252 ei->socket.state = SS_UNCONNECTED;
253 ei->socket.flags = 0;
254 ei->socket.ops = NULL;
255 ei->socket.sk = NULL;
256 ei->socket.file = NULL;
257
258 return &ei->vfs_inode;
259 }
260
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 kmem_cache_free(sock_inode_cachep,
264 container_of(inode, struct socket_alloc, vfs_inode));
265 }
266
267 static void init_once(void *foo)
268 {
269 struct socket_alloc *ei = (struct socket_alloc *)foo;
270
271 inode_init_once(&ei->vfs_inode);
272 }
273
274 static int init_inodecache(void)
275 {
276 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 sizeof(struct socket_alloc),
278 0,
279 (SLAB_HWCACHE_ALIGN |
280 SLAB_RECLAIM_ACCOUNT |
281 SLAB_MEM_SPREAD),
282 init_once);
283 if (sock_inode_cachep == NULL)
284 return -ENOMEM;
285 return 0;
286 }
287
288 static struct super_operations sockfs_ops = {
289 .alloc_inode = sock_alloc_inode,
290 .destroy_inode =sock_destroy_inode,
291 .statfs = simple_statfs,
292 };
293
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 int flags, const char *dev_name, void *data,
296 struct vfsmount *mnt)
297 {
298 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 mnt);
300 }
301
302 static struct vfsmount *sock_mnt __read_mostly;
303
304 static struct file_system_type sock_fs_type = {
305 .name = "sockfs",
306 .get_sb = sockfs_get_sb,
307 .kill_sb = kill_anon_super,
308 };
309
310 static int sockfs_delete_dentry(struct dentry *dentry)
311 {
312 /*
313 * At creation time, we pretended this dentry was hashed
314 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 * At delete time, we restore the truth : not hashed.
316 * (so that dput() can proceed correctly)
317 */
318 dentry->d_flags |= DCACHE_UNHASHED;
319 return 0;
320 }
321
322 /*
323 * sockfs_dname() is called from d_path().
324 */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 dentry->d_inode->i_ino);
329 }
330
331 static const struct dentry_operations sockfs_dentry_operations = {
332 .d_delete = sockfs_delete_dentry,
333 .d_dname = sockfs_dname,
334 };
335
336 /*
337 * Obtains the first available file descriptor and sets it up for use.
338 *
339 * These functions create file structures and maps them to fd space
340 * of the current process. On success it returns file descriptor
341 * and file struct implicitly stored in sock->file.
342 * Note that another thread may close file descriptor before we return
343 * from this function. We use the fact that now we do not refer
344 * to socket after mapping. If one day we will need it, this
345 * function will increment ref. count on file by 1.
346 *
347 * In any case returned fd MAY BE not valid!
348 * This race condition is unavoidable
349 * with shared fd spaces, we cannot solve it inside kernel,
350 * but we take care of internal coherence yet.
351 */
352
353 static int sock_alloc_fd(struct file **filep, int flags)
354 {
355 int fd;
356
357 fd = get_unused_fd_flags(flags);
358 if (likely(fd >= 0)) {
359 struct file *file = get_empty_filp();
360
361 *filep = file;
362 if (unlikely(!file)) {
363 put_unused_fd(fd);
364 return -ENFILE;
365 }
366 } else
367 *filep = NULL;
368 return fd;
369 }
370
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 {
373 struct dentry *dentry;
374 struct qstr name = { .name = "" };
375
376 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 if (unlikely(!dentry))
378 return -ENOMEM;
379
380 dentry->d_op = &sockfs_dentry_operations;
381 /*
382 * We dont want to push this dentry into global dentry hash table.
383 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 * This permits a working /proc/$pid/fd/XXX on sockets
385 */
386 dentry->d_flags &= ~DCACHE_UNHASHED;
387 d_instantiate(dentry, SOCK_INODE(sock));
388
389 sock->file = file;
390 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 &socket_file_ops);
392 SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 file->f_pos = 0;
395 file->private_data = sock;
396
397 return 0;
398 }
399
400 int sock_map_fd(struct socket *sock, int flags)
401 {
402 struct file *newfile;
403 int fd = sock_alloc_fd(&newfile, flags);
404
405 if (likely(fd >= 0)) {
406 int err = sock_attach_fd(sock, newfile, flags);
407
408 if (unlikely(err < 0)) {
409 put_filp(newfile);
410 put_unused_fd(fd);
411 return err;
412 }
413 fd_install(fd, newfile);
414 }
415 return fd;
416 }
417
418 static struct socket *sock_from_file(struct file *file, int *err)
419 {
420 if (file->f_op == &socket_file_ops)
421 return file->private_data; /* set in sock_map_fd */
422
423 *err = -ENOTSOCK;
424 return NULL;
425 }
426
427 /**
428 * sockfd_lookup - Go from a file number to its socket slot
429 * @fd: file handle
430 * @err: pointer to an error code return
431 *
432 * The file handle passed in is locked and the socket it is bound
433 * too is returned. If an error occurs the err pointer is overwritten
434 * with a negative errno code and NULL is returned. The function checks
435 * for both invalid handles and passing a handle which is not a socket.
436 *
437 * On a success the socket object pointer is returned.
438 */
439
440 struct socket *sockfd_lookup(int fd, int *err)
441 {
442 struct file *file;
443 struct socket *sock;
444
445 file = fget(fd);
446 if (!file) {
447 *err = -EBADF;
448 return NULL;
449 }
450
451 sock = sock_from_file(file, err);
452 if (!sock)
453 fput(file);
454 return sock;
455 }
456
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 {
459 struct file *file;
460 struct socket *sock;
461
462 *err = -EBADF;
463 file = fget_light(fd, fput_needed);
464 if (file) {
465 sock = sock_from_file(file, err);
466 if (sock)
467 return sock;
468 fput_light(file, *fput_needed);
469 }
470 return NULL;
471 }
472
473 /**
474 * sock_alloc - allocate a socket
475 *
476 * Allocate a new inode and socket object. The two are bound together
477 * and initialised. The socket is then returned. If we are out of inodes
478 * NULL is returned.
479 */
480
481 static struct socket *sock_alloc(void)
482 {
483 struct inode *inode;
484 struct socket *sock;
485
486 inode = new_inode(sock_mnt->mnt_sb);
487 if (!inode)
488 return NULL;
489
490 sock = SOCKET_I(inode);
491
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
495
496 percpu_add(sockets_in_use, 1);
497 return sock;
498 }
499
500 /*
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
504 */
505
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 return -ENXIO;
509 }
510
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
514 };
515
516 /**
517 * sock_release - close a socket
518 * @sock: socket to close
519 *
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
523 */
524
525 void sock_release(struct socket *sock)
526 {
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
529
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
533 }
534
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
537
538 percpu_sub(sockets_in_use, 1);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
542 }
543 sock->file = NULL;
544 }
545
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 union skb_shared_tx *shtx)
548 {
549 shtx->flags = 0;
550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 shtx->hardware = 1;
552 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 shtx->software = 1;
554 return 0;
555 }
556 EXPORT_SYMBOL(sock_tx_timestamp);
557
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 struct msghdr *msg, size_t size)
560 {
561 struct sock_iocb *si = kiocb_to_siocb(iocb);
562 int err;
563
564 si->sock = sock;
565 si->scm = NULL;
566 si->msg = msg;
567 si->size = size;
568
569 err = security_socket_sendmsg(sock, msg, size);
570 if (err)
571 return err;
572
573 return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
581
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
588 }
589
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 struct kvec *vec, size_t num, size_t size)
592 {
593 mm_segment_t oldfs = get_fs();
594 int result;
595
596 set_fs(KERNEL_DS);
597 /*
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
600 */
601 msg->msg_iov = (struct iovec *)vec;
602 msg->msg_iovlen = num;
603 result = sock_sendmsg(sock, msg, size);
604 set_fs(oldfs);
605 return result;
606 }
607
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
615 }
616 }
617
618 /*
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620 */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
623 {
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
629
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
634
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 struct timespec ts;
643 skb_get_timestampns(skb, &ts);
644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 sizeof(ts), &ts);
646 }
647 }
648
649
650 memset(ts, 0, sizeof(ts));
651 if (skb->tstamp.tv64 &&
652 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 skb_get_timestampns(skb, ts + 0);
654 empty = 0;
655 }
656 if (shhwtstamps) {
657 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 ktime2ts(shhwtstamps->syststamp, ts + 1))
659 empty = 0;
660 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 empty = 0;
663 }
664 if (!empty)
665 put_cmsg(msg, SOL_SOCKET,
666 SCM_TIMESTAMPING, sizeof(ts), &ts);
667 }
668
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
670
671 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
672 struct msghdr *msg, size_t size, int flags)
673 {
674 int err;
675 struct sock_iocb *si = kiocb_to_siocb(iocb);
676
677 si->sock = sock;
678 si->scm = NULL;
679 si->msg = msg;
680 si->size = size;
681 si->flags = flags;
682
683 err = security_socket_recvmsg(sock, msg, size, flags);
684 if (err)
685 return err;
686
687 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
688 }
689
690 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
691 size_t size, int flags)
692 {
693 struct kiocb iocb;
694 struct sock_iocb siocb;
695 int ret;
696
697 init_sync_kiocb(&iocb, NULL);
698 iocb.private = &siocb;
699 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
700 if (-EIOCBQUEUED == ret)
701 ret = wait_on_sync_kiocb(&iocb);
702 return ret;
703 }
704
705 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
706 struct kvec *vec, size_t num, size_t size, int flags)
707 {
708 mm_segment_t oldfs = get_fs();
709 int result;
710
711 set_fs(KERNEL_DS);
712 /*
713 * the following is safe, since for compiler definitions of kvec and
714 * iovec are identical, yielding the same in-core layout and alignment
715 */
716 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
717 result = sock_recvmsg(sock, msg, size, flags);
718 set_fs(oldfs);
719 return result;
720 }
721
722 static void sock_aio_dtor(struct kiocb *iocb)
723 {
724 kfree(iocb->private);
725 }
726
727 static ssize_t sock_sendpage(struct file *file, struct page *page,
728 int offset, size_t size, loff_t *ppos, int more)
729 {
730 struct socket *sock;
731 int flags;
732
733 sock = file->private_data;
734
735 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 if (more)
737 flags |= MSG_MORE;
738
739 return sock->ops->sendpage(sock, page, offset, size, flags);
740 }
741
742 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
743 struct pipe_inode_info *pipe, size_t len,
744 unsigned int flags)
745 {
746 struct socket *sock = file->private_data;
747
748 if (unlikely(!sock->ops->splice_read))
749 return -EINVAL;
750
751 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
752 }
753
754 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
755 struct sock_iocb *siocb)
756 {
757 if (!is_sync_kiocb(iocb)) {
758 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
759 if (!siocb)
760 return NULL;
761 iocb->ki_dtor = sock_aio_dtor;
762 }
763
764 siocb->kiocb = iocb;
765 iocb->private = siocb;
766 return siocb;
767 }
768
769 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
770 struct file *file, const struct iovec *iov,
771 unsigned long nr_segs)
772 {
773 struct socket *sock = file->private_data;
774 size_t size = 0;
775 int i;
776
777 for (i = 0; i < nr_segs; i++)
778 size += iov[i].iov_len;
779
780 msg->msg_name = NULL;
781 msg->msg_namelen = 0;
782 msg->msg_control = NULL;
783 msg->msg_controllen = 0;
784 msg->msg_iov = (struct iovec *)iov;
785 msg->msg_iovlen = nr_segs;
786 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
787
788 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
789 }
790
791 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
792 unsigned long nr_segs, loff_t pos)
793 {
794 struct sock_iocb siocb, *x;
795
796 if (pos != 0)
797 return -ESPIPE;
798
799 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
800 return 0;
801
802
803 x = alloc_sock_iocb(iocb, &siocb);
804 if (!x)
805 return -ENOMEM;
806 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
807 }
808
809 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
810 struct file *file, const struct iovec *iov,
811 unsigned long nr_segs)
812 {
813 struct socket *sock = file->private_data;
814 size_t size = 0;
815 int i;
816
817 for (i = 0; i < nr_segs; i++)
818 size += iov[i].iov_len;
819
820 msg->msg_name = NULL;
821 msg->msg_namelen = 0;
822 msg->msg_control = NULL;
823 msg->msg_controllen = 0;
824 msg->msg_iov = (struct iovec *)iov;
825 msg->msg_iovlen = nr_segs;
826 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
827 if (sock->type == SOCK_SEQPACKET)
828 msg->msg_flags |= MSG_EOR;
829
830 return __sock_sendmsg(iocb, sock, msg, size);
831 }
832
833 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
834 unsigned long nr_segs, loff_t pos)
835 {
836 struct sock_iocb siocb, *x;
837
838 if (pos != 0)
839 return -ESPIPE;
840
841 x = alloc_sock_iocb(iocb, &siocb);
842 if (!x)
843 return -ENOMEM;
844
845 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
846 }
847
848 /*
849 * Atomic setting of ioctl hooks to avoid race
850 * with module unload.
851 */
852
853 static DEFINE_MUTEX(br_ioctl_mutex);
854 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
855
856 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
857 {
858 mutex_lock(&br_ioctl_mutex);
859 br_ioctl_hook = hook;
860 mutex_unlock(&br_ioctl_mutex);
861 }
862
863 EXPORT_SYMBOL(brioctl_set);
864
865 static DEFINE_MUTEX(vlan_ioctl_mutex);
866 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
867
868 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
869 {
870 mutex_lock(&vlan_ioctl_mutex);
871 vlan_ioctl_hook = hook;
872 mutex_unlock(&vlan_ioctl_mutex);
873 }
874
875 EXPORT_SYMBOL(vlan_ioctl_set);
876
877 static DEFINE_MUTEX(dlci_ioctl_mutex);
878 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
879
880 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
881 {
882 mutex_lock(&dlci_ioctl_mutex);
883 dlci_ioctl_hook = hook;
884 mutex_unlock(&dlci_ioctl_mutex);
885 }
886
887 EXPORT_SYMBOL(dlci_ioctl_set);
888
889 /*
890 * With an ioctl, arg may well be a user mode pointer, but we don't know
891 * what to do with it - that's up to the protocol still.
892 */
893
894 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
895 {
896 struct socket *sock;
897 struct sock *sk;
898 void __user *argp = (void __user *)arg;
899 int pid, err;
900 struct net *net;
901
902 sock = file->private_data;
903 sk = sock->sk;
904 net = sock_net(sk);
905 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
906 err = dev_ioctl(net, cmd, argp);
907 } else
908 #ifdef CONFIG_WIRELESS_EXT
909 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
910 err = dev_ioctl(net, cmd, argp);
911 } else
912 #endif /* CONFIG_WIRELESS_EXT */
913 switch (cmd) {
914 case FIOSETOWN:
915 case SIOCSPGRP:
916 err = -EFAULT;
917 if (get_user(pid, (int __user *)argp))
918 break;
919 err = f_setown(sock->file, pid, 1);
920 break;
921 case FIOGETOWN:
922 case SIOCGPGRP:
923 err = put_user(f_getown(sock->file),
924 (int __user *)argp);
925 break;
926 case SIOCGIFBR:
927 case SIOCSIFBR:
928 case SIOCBRADDBR:
929 case SIOCBRDELBR:
930 err = -ENOPKG;
931 if (!br_ioctl_hook)
932 request_module("bridge");
933
934 mutex_lock(&br_ioctl_mutex);
935 if (br_ioctl_hook)
936 err = br_ioctl_hook(net, cmd, argp);
937 mutex_unlock(&br_ioctl_mutex);
938 break;
939 case SIOCGIFVLAN:
940 case SIOCSIFVLAN:
941 err = -ENOPKG;
942 if (!vlan_ioctl_hook)
943 request_module("8021q");
944
945 mutex_lock(&vlan_ioctl_mutex);
946 if (vlan_ioctl_hook)
947 err = vlan_ioctl_hook(net, argp);
948 mutex_unlock(&vlan_ioctl_mutex);
949 break;
950 case SIOCADDDLCI:
951 case SIOCDELDLCI:
952 err = -ENOPKG;
953 if (!dlci_ioctl_hook)
954 request_module("dlci");
955
956 mutex_lock(&dlci_ioctl_mutex);
957 if (dlci_ioctl_hook)
958 err = dlci_ioctl_hook(cmd, argp);
959 mutex_unlock(&dlci_ioctl_mutex);
960 break;
961 default:
962 err = sock->ops->ioctl(sock, cmd, arg);
963
964 /*
965 * If this ioctl is unknown try to hand it down
966 * to the NIC driver.
967 */
968 if (err == -ENOIOCTLCMD)
969 err = dev_ioctl(net, cmd, argp);
970 break;
971 }
972 return err;
973 }
974
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 int err;
978 struct socket *sock = NULL;
979
980 err = security_socket_create(family, type, protocol, 1);
981 if (err)
982 goto out;
983
984 sock = sock_alloc();
985 if (!sock) {
986 err = -ENOMEM;
987 goto out;
988 }
989
990 sock->type = type;
991 err = security_socket_post_create(sock, family, type, protocol, 1);
992 if (err)
993 goto out_release;
994
995 out:
996 *res = sock;
997 return err;
998 out_release:
999 sock_release(sock);
1000 sock = NULL;
1001 goto out;
1002 }
1003
1004 /* No kernel lock held - perfect */
1005 static unsigned int sock_poll(struct file *file, poll_table *wait)
1006 {
1007 struct socket *sock;
1008
1009 /*
1010 * We can't return errors to poll, so it's either yes or no.
1011 */
1012 sock = file->private_data;
1013 return sock->ops->poll(file, sock, wait);
1014 }
1015
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 struct socket *sock = file->private_data;
1019
1020 return sock->ops->mmap(file, sock, vma);
1021 }
1022
1023 static int sock_close(struct inode *inode, struct file *filp)
1024 {
1025 /*
1026 * It was possible the inode is NULL we were
1027 * closing an unfinished socket.
1028 */
1029
1030 if (!inode) {
1031 printk(KERN_DEBUG "sock_close: NULL inode\n");
1032 return 0;
1033 }
1034 sock_release(SOCKET_I(inode));
1035 return 0;
1036 }
1037
1038 /*
1039 * Update the socket async list
1040 *
1041 * Fasync_list locking strategy.
1042 *
1043 * 1. fasync_list is modified only under process context socket lock
1044 * i.e. under semaphore.
1045 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1046 * or under socket lock.
1047 * 3. fasync_list can be used from softirq context, so that
1048 * modification under socket lock have to be enhanced with
1049 * write_lock_bh(&sk->sk_callback_lock).
1050 * --ANK (990710)
1051 */
1052
1053 static int sock_fasync(int fd, struct file *filp, int on)
1054 {
1055 struct fasync_struct *fa, *fna = NULL, **prev;
1056 struct socket *sock;
1057 struct sock *sk;
1058
1059 if (on) {
1060 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1061 if (fna == NULL)
1062 return -ENOMEM;
1063 }
1064
1065 sock = filp->private_data;
1066
1067 sk = sock->sk;
1068 if (sk == NULL) {
1069 kfree(fna);
1070 return -EINVAL;
1071 }
1072
1073 lock_sock(sk);
1074
1075 spin_lock(&filp->f_lock);
1076 if (on)
1077 filp->f_flags |= FASYNC;
1078 else
1079 filp->f_flags &= ~FASYNC;
1080 spin_unlock(&filp->f_lock);
1081
1082 prev = &(sock->fasync_list);
1083
1084 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1085 if (fa->fa_file == filp)
1086 break;
1087
1088 if (on) {
1089 if (fa != NULL) {
1090 write_lock_bh(&sk->sk_callback_lock);
1091 fa->fa_fd = fd;
1092 write_unlock_bh(&sk->sk_callback_lock);
1093
1094 kfree(fna);
1095 goto out;
1096 }
1097 fna->fa_file = filp;
1098 fna->fa_fd = fd;
1099 fna->magic = FASYNC_MAGIC;
1100 fna->fa_next = sock->fasync_list;
1101 write_lock_bh(&sk->sk_callback_lock);
1102 sock->fasync_list = fna;
1103 write_unlock_bh(&sk->sk_callback_lock);
1104 } else {
1105 if (fa != NULL) {
1106 write_lock_bh(&sk->sk_callback_lock);
1107 *prev = fa->fa_next;
1108 write_unlock_bh(&sk->sk_callback_lock);
1109 kfree(fa);
1110 }
1111 }
1112
1113 out:
1114 release_sock(sock->sk);
1115 return 0;
1116 }
1117
1118 /* This function may be called only under socket lock or callback_lock */
1119
1120 int sock_wake_async(struct socket *sock, int how, int band)
1121 {
1122 if (!sock || !sock->fasync_list)
1123 return -1;
1124 switch (how) {
1125 case SOCK_WAKE_WAITD:
1126 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1127 break;
1128 goto call_kill;
1129 case SOCK_WAKE_SPACE:
1130 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1131 break;
1132 /* fall through */
1133 case SOCK_WAKE_IO:
1134 call_kill:
1135 __kill_fasync(sock->fasync_list, SIGIO, band);
1136 break;
1137 case SOCK_WAKE_URG:
1138 __kill_fasync(sock->fasync_list, SIGURG, band);
1139 }
1140 return 0;
1141 }
1142
1143 static int __sock_create(struct net *net, int family, int type, int protocol,
1144 struct socket **res, int kern)
1145 {
1146 int err;
1147 struct socket *sock;
1148 const struct net_proto_family *pf;
1149
1150 /*
1151 * Check protocol is in range
1152 */
1153 if (family < 0 || family >= NPROTO)
1154 return -EAFNOSUPPORT;
1155 if (type < 0 || type >= SOCK_MAX)
1156 return -EINVAL;
1157
1158 /* Compatibility.
1159
1160 This uglymoron is moved from INET layer to here to avoid
1161 deadlock in module load.
1162 */
1163 if (family == PF_INET && type == SOCK_PACKET) {
1164 static int warned;
1165 if (!warned) {
1166 warned = 1;
1167 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1168 current->comm);
1169 }
1170 family = PF_PACKET;
1171 }
1172
1173 err = security_socket_create(family, type, protocol, kern);
1174 if (err)
1175 return err;
1176
1177 /*
1178 * Allocate the socket and allow the family to set things up. if
1179 * the protocol is 0, the family is instructed to select an appropriate
1180 * default.
1181 */
1182 sock = sock_alloc();
1183 if (!sock) {
1184 if (net_ratelimit())
1185 printk(KERN_WARNING "socket: no more sockets\n");
1186 return -ENFILE; /* Not exactly a match, but its the
1187 closest posix thing */
1188 }
1189
1190 sock->type = type;
1191
1192 #ifdef CONFIG_MODULES
1193 /* Attempt to load a protocol module if the find failed.
1194 *
1195 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1196 * requested real, full-featured networking support upon configuration.
1197 * Otherwise module support will break!
1198 */
1199 if (net_families[family] == NULL)
1200 request_module("net-pf-%d", family);
1201 #endif
1202
1203 rcu_read_lock();
1204 pf = rcu_dereference(net_families[family]);
1205 err = -EAFNOSUPPORT;
1206 if (!pf)
1207 goto out_release;
1208
1209 /*
1210 * We will call the ->create function, that possibly is in a loadable
1211 * module, so we have to bump that loadable module refcnt first.
1212 */
1213 if (!try_module_get(pf->owner))
1214 goto out_release;
1215
1216 /* Now protected by module ref count */
1217 rcu_read_unlock();
1218
1219 err = pf->create(net, sock, protocol);
1220 if (err < 0)
1221 goto out_module_put;
1222
1223 /*
1224 * Now to bump the refcnt of the [loadable] module that owns this
1225 * socket at sock_release time we decrement its refcnt.
1226 */
1227 if (!try_module_get(sock->ops->owner))
1228 goto out_module_busy;
1229
1230 /*
1231 * Now that we're done with the ->create function, the [loadable]
1232 * module can have its refcnt decremented
1233 */
1234 module_put(pf->owner);
1235 err = security_socket_post_create(sock, family, type, protocol, kern);
1236 if (err)
1237 goto out_sock_release;
1238 *res = sock;
1239
1240 return 0;
1241
1242 out_module_busy:
1243 err = -EAFNOSUPPORT;
1244 out_module_put:
1245 sock->ops = NULL;
1246 module_put(pf->owner);
1247 out_sock_release:
1248 sock_release(sock);
1249 return err;
1250
1251 out_release:
1252 rcu_read_unlock();
1253 goto out_sock_release;
1254 }
1255
1256 int sock_create(int family, int type, int protocol, struct socket **res)
1257 {
1258 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1259 }
1260
1261 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1262 {
1263 return __sock_create(&init_net, family, type, protocol, res, 1);
1264 }
1265
1266 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1267 {
1268 int retval;
1269 struct socket *sock;
1270 int flags;
1271
1272 /* Check the SOCK_* constants for consistency. */
1273 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1274 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1275 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1276 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1277
1278 flags = type & ~SOCK_TYPE_MASK;
1279 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1280 return -EINVAL;
1281 type &= SOCK_TYPE_MASK;
1282
1283 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1284 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1285
1286 retval = sock_create(family, type, protocol, &sock);
1287 if (retval < 0)
1288 goto out;
1289
1290 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1291 if (retval < 0)
1292 goto out_release;
1293
1294 out:
1295 /* It may be already another descriptor 8) Not kernel problem. */
1296 return retval;
1297
1298 out_release:
1299 sock_release(sock);
1300 return retval;
1301 }
1302
1303 /*
1304 * Create a pair of connected sockets.
1305 */
1306
1307 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1308 int __user *, usockvec)
1309 {
1310 struct socket *sock1, *sock2;
1311 int fd1, fd2, err;
1312 struct file *newfile1, *newfile2;
1313 int flags;
1314
1315 flags = type & ~SOCK_TYPE_MASK;
1316 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1317 return -EINVAL;
1318 type &= SOCK_TYPE_MASK;
1319
1320 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1321 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1322
1323 /*
1324 * Obtain the first socket and check if the underlying protocol
1325 * supports the socketpair call.
1326 */
1327
1328 err = sock_create(family, type, protocol, &sock1);
1329 if (err < 0)
1330 goto out;
1331
1332 err = sock_create(family, type, protocol, &sock2);
1333 if (err < 0)
1334 goto out_release_1;
1335
1336 err = sock1->ops->socketpair(sock1, sock2);
1337 if (err < 0)
1338 goto out_release_both;
1339
1340 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1341 if (unlikely(fd1 < 0)) {
1342 err = fd1;
1343 goto out_release_both;
1344 }
1345
1346 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1347 if (unlikely(fd2 < 0)) {
1348 err = fd2;
1349 put_filp(newfile1);
1350 put_unused_fd(fd1);
1351 goto out_release_both;
1352 }
1353
1354 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1355 if (unlikely(err < 0)) {
1356 goto out_fd2;
1357 }
1358
1359 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1360 if (unlikely(err < 0)) {
1361 fput(newfile1);
1362 goto out_fd1;
1363 }
1364
1365 audit_fd_pair(fd1, fd2);
1366 fd_install(fd1, newfile1);
1367 fd_install(fd2, newfile2);
1368 /* fd1 and fd2 may be already another descriptors.
1369 * Not kernel problem.
1370 */
1371
1372 err = put_user(fd1, &usockvec[0]);
1373 if (!err)
1374 err = put_user(fd2, &usockvec[1]);
1375 if (!err)
1376 return 0;
1377
1378 sys_close(fd2);
1379 sys_close(fd1);
1380 return err;
1381
1382 out_release_both:
1383 sock_release(sock2);
1384 out_release_1:
1385 sock_release(sock1);
1386 out:
1387 return err;
1388
1389 out_fd2:
1390 put_filp(newfile1);
1391 sock_release(sock1);
1392 out_fd1:
1393 put_filp(newfile2);
1394 sock_release(sock2);
1395 put_unused_fd(fd1);
1396 put_unused_fd(fd2);
1397 goto out;
1398 }
1399
1400 /*
1401 * Bind a name to a socket. Nothing much to do here since it's
1402 * the protocol's responsibility to handle the local address.
1403 *
1404 * We move the socket address to kernel space before we call
1405 * the protocol layer (having also checked the address is ok).
1406 */
1407
1408 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1409 {
1410 struct socket *sock;
1411 struct sockaddr_storage address;
1412 int err, fput_needed;
1413
1414 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1415 if (sock) {
1416 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1417 if (err >= 0) {
1418 err = security_socket_bind(sock,
1419 (struct sockaddr *)&address,
1420 addrlen);
1421 if (!err)
1422 err = sock->ops->bind(sock,
1423 (struct sockaddr *)
1424 &address, addrlen);
1425 }
1426 fput_light(sock->file, fput_needed);
1427 }
1428 return err;
1429 }
1430
1431 /*
1432 * Perform a listen. Basically, we allow the protocol to do anything
1433 * necessary for a listen, and if that works, we mark the socket as
1434 * ready for listening.
1435 */
1436
1437 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1438 {
1439 struct socket *sock;
1440 int err, fput_needed;
1441 int somaxconn;
1442
1443 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 if (sock) {
1445 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1446 if ((unsigned)backlog > somaxconn)
1447 backlog = somaxconn;
1448
1449 err = security_socket_listen(sock, backlog);
1450 if (!err)
1451 err = sock->ops->listen(sock, backlog);
1452
1453 fput_light(sock->file, fput_needed);
1454 }
1455 return err;
1456 }
1457
1458 /*
1459 * For accept, we attempt to create a new socket, set up the link
1460 * with the client, wake up the client, then return the new
1461 * connected fd. We collect the address of the connector in kernel
1462 * space and move it to user at the very end. This is unclean because
1463 * we open the socket then return an error.
1464 *
1465 * 1003.1g adds the ability to recvmsg() to query connection pending
1466 * status to recvmsg. We need to add that support in a way thats
1467 * clean when we restucture accept also.
1468 */
1469
1470 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1471 int __user *, upeer_addrlen, int, flags)
1472 {
1473 struct socket *sock, *newsock;
1474 struct file *newfile;
1475 int err, len, newfd, fput_needed;
1476 struct sockaddr_storage address;
1477
1478 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1479 return -EINVAL;
1480
1481 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1482 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1483
1484 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 if (!sock)
1486 goto out;
1487
1488 err = -ENFILE;
1489 if (!(newsock = sock_alloc()))
1490 goto out_put;
1491
1492 newsock->type = sock->type;
1493 newsock->ops = sock->ops;
1494
1495 /*
1496 * We don't need try_module_get here, as the listening socket (sock)
1497 * has the protocol module (sock->ops->owner) held.
1498 */
1499 __module_get(newsock->ops->owner);
1500
1501 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1502 if (unlikely(newfd < 0)) {
1503 err = newfd;
1504 sock_release(newsock);
1505 goto out_put;
1506 }
1507
1508 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1509 if (err < 0)
1510 goto out_fd_simple;
1511
1512 err = security_socket_accept(sock, newsock);
1513 if (err)
1514 goto out_fd;
1515
1516 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1517 if (err < 0)
1518 goto out_fd;
1519
1520 if (upeer_sockaddr) {
1521 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1522 &len, 2) < 0) {
1523 err = -ECONNABORTED;
1524 goto out_fd;
1525 }
1526 err = move_addr_to_user((struct sockaddr *)&address,
1527 len, upeer_sockaddr, upeer_addrlen);
1528 if (err < 0)
1529 goto out_fd;
1530 }
1531
1532 /* File flags are not inherited via accept() unlike another OSes. */
1533
1534 fd_install(newfd, newfile);
1535 err = newfd;
1536
1537 out_put:
1538 fput_light(sock->file, fput_needed);
1539 out:
1540 return err;
1541 out_fd_simple:
1542 sock_release(newsock);
1543 put_filp(newfile);
1544 put_unused_fd(newfd);
1545 goto out_put;
1546 out_fd:
1547 fput(newfile);
1548 put_unused_fd(newfd);
1549 goto out_put;
1550 }
1551
1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1553 int __user *, upeer_addrlen)
1554 {
1555 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1556 }
1557
1558 /*
1559 * Attempt to connect to a socket with the server address. The address
1560 * is in user space so we verify it is OK and move it to kernel space.
1561 *
1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1563 * break bindings
1564 *
1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566 * other SEQPACKET protocols that take time to connect() as it doesn't
1567 * include the -EINPROGRESS status for such sockets.
1568 */
1569
1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1571 int, addrlen)
1572 {
1573 struct socket *sock;
1574 struct sockaddr_storage address;
1575 int err, fput_needed;
1576
1577 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 if (!sock)
1579 goto out;
1580 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1581 if (err < 0)
1582 goto out_put;
1583
1584 err =
1585 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1586 if (err)
1587 goto out_put;
1588
1589 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1590 sock->file->f_flags);
1591 out_put:
1592 fput_light(sock->file, fput_needed);
1593 out:
1594 return err;
1595 }
1596
1597 /*
1598 * Get the local address ('name') of a socket object. Move the obtained
1599 * name to user space.
1600 */
1601
1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1603 int __user *, usockaddr_len)
1604 {
1605 struct socket *sock;
1606 struct sockaddr_storage address;
1607 int len, err, fput_needed;
1608
1609 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 if (!sock)
1611 goto out;
1612
1613 err = security_socket_getsockname(sock);
1614 if (err)
1615 goto out_put;
1616
1617 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1618 if (err)
1619 goto out_put;
1620 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1621
1622 out_put:
1623 fput_light(sock->file, fput_needed);
1624 out:
1625 return err;
1626 }
1627
1628 /*
1629 * Get the remote address ('name') of a socket object. Move the obtained
1630 * name to user space.
1631 */
1632
1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1634 int __user *, usockaddr_len)
1635 {
1636 struct socket *sock;
1637 struct sockaddr_storage address;
1638 int len, err, fput_needed;
1639
1640 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 if (sock != NULL) {
1642 err = security_socket_getpeername(sock);
1643 if (err) {
1644 fput_light(sock->file, fput_needed);
1645 return err;
1646 }
1647
1648 err =
1649 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1650 1);
1651 if (!err)
1652 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1653 usockaddr_len);
1654 fput_light(sock->file, fput_needed);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * Send a datagram to a given address. We move the address into kernel
1661 * space and check the user space data area is readable before invoking
1662 * the protocol.
1663 */
1664
1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1666 unsigned, flags, struct sockaddr __user *, addr,
1667 int, addr_len)
1668 {
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err;
1672 struct msghdr msg;
1673 struct iovec iov;
1674 int fput_needed;
1675
1676 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1677 if (!sock)
1678 goto out;
1679
1680 iov.iov_base = buff;
1681 iov.iov_len = len;
1682 msg.msg_name = NULL;
1683 msg.msg_iov = &iov;
1684 msg.msg_iovlen = 1;
1685 msg.msg_control = NULL;
1686 msg.msg_controllen = 0;
1687 msg.msg_namelen = 0;
1688 if (addr) {
1689 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1690 if (err < 0)
1691 goto out_put;
1692 msg.msg_name = (struct sockaddr *)&address;
1693 msg.msg_namelen = addr_len;
1694 }
1695 if (sock->file->f_flags & O_NONBLOCK)
1696 flags |= MSG_DONTWAIT;
1697 msg.msg_flags = flags;
1698 err = sock_sendmsg(sock, &msg, len);
1699
1700 out_put:
1701 fput_light(sock->file, fput_needed);
1702 out:
1703 return err;
1704 }
1705
1706 /*
1707 * Send a datagram down a socket.
1708 */
1709
1710 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1711 unsigned, flags)
1712 {
1713 return sys_sendto(fd, buff, len, flags, NULL, 0);
1714 }
1715
1716 /*
1717 * Receive a frame from the socket and optionally record the address of the
1718 * sender. We verify the buffers are writable and if needed move the
1719 * sender address from kernel to user space.
1720 */
1721
1722 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1723 unsigned, flags, struct sockaddr __user *, addr,
1724 int __user *, addr_len)
1725 {
1726 struct socket *sock;
1727 struct iovec iov;
1728 struct msghdr msg;
1729 struct sockaddr_storage address;
1730 int err, err2;
1731 int fput_needed;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (!sock)
1735 goto out;
1736
1737 msg.msg_control = NULL;
1738 msg.msg_controllen = 0;
1739 msg.msg_iovlen = 1;
1740 msg.msg_iov = &iov;
1741 iov.iov_len = size;
1742 iov.iov_base = ubuf;
1743 msg.msg_name = (struct sockaddr *)&address;
1744 msg.msg_namelen = sizeof(address);
1745 if (sock->file->f_flags & O_NONBLOCK)
1746 flags |= MSG_DONTWAIT;
1747 err = sock_recvmsg(sock, &msg, size, flags);
1748
1749 if (err >= 0 && addr != NULL) {
1750 err2 = move_addr_to_user((struct sockaddr *)&address,
1751 msg.msg_namelen, addr, addr_len);
1752 if (err2 < 0)
1753 err = err2;
1754 }
1755
1756 fput_light(sock->file, fput_needed);
1757 out:
1758 return err;
1759 }
1760
1761 /*
1762 * Receive a datagram from a socket.
1763 */
1764
1765 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1766 unsigned flags)
1767 {
1768 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1769 }
1770
1771 /*
1772 * Set a socket option. Because we don't know the option lengths we have
1773 * to pass the user mode parameter for the protocols to sort out.
1774 */
1775
1776 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1777 char __user *, optval, int, optlen)
1778 {
1779 int err, fput_needed;
1780 struct socket *sock;
1781
1782 if (optlen < 0)
1783 return -EINVAL;
1784
1785 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1786 if (sock != NULL) {
1787 err = security_socket_setsockopt(sock, level, optname);
1788 if (err)
1789 goto out_put;
1790
1791 if (level == SOL_SOCKET)
1792 err =
1793 sock_setsockopt(sock, level, optname, optval,
1794 optlen);
1795 else
1796 err =
1797 sock->ops->setsockopt(sock, level, optname, optval,
1798 optlen);
1799 out_put:
1800 fput_light(sock->file, fput_needed);
1801 }
1802 return err;
1803 }
1804
1805 /*
1806 * Get a socket option. Because we don't know the option lengths we have
1807 * to pass a user mode parameter for the protocols to sort out.
1808 */
1809
1810 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1811 char __user *, optval, int __user *, optlen)
1812 {
1813 int err, fput_needed;
1814 struct socket *sock;
1815
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 if (sock != NULL) {
1818 err = security_socket_getsockopt(sock, level, optname);
1819 if (err)
1820 goto out_put;
1821
1822 if (level == SOL_SOCKET)
1823 err =
1824 sock_getsockopt(sock, level, optname, optval,
1825 optlen);
1826 else
1827 err =
1828 sock->ops->getsockopt(sock, level, optname, optval,
1829 optlen);
1830 out_put:
1831 fput_light(sock->file, fput_needed);
1832 }
1833 return err;
1834 }
1835
1836 /*
1837 * Shutdown a socket.
1838 */
1839
1840 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1841 {
1842 int err, fput_needed;
1843 struct socket *sock;
1844
1845 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1846 if (sock != NULL) {
1847 err = security_socket_shutdown(sock, how);
1848 if (!err)
1849 err = sock->ops->shutdown(sock, how);
1850 fput_light(sock->file, fput_needed);
1851 }
1852 return err;
1853 }
1854
1855 /* A couple of helpful macros for getting the address of the 32/64 bit
1856 * fields which are the same type (int / unsigned) on our platforms.
1857 */
1858 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1859 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1860 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1861
1862 /*
1863 * BSD sendmsg interface
1864 */
1865
1866 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1867 {
1868 struct compat_msghdr __user *msg_compat =
1869 (struct compat_msghdr __user *)msg;
1870 struct socket *sock;
1871 struct sockaddr_storage address;
1872 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1873 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1874 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1875 /* 20 is size of ipv6_pktinfo */
1876 unsigned char *ctl_buf = ctl;
1877 struct msghdr msg_sys;
1878 int err, ctl_len, iov_size, total_len;
1879 int fput_needed;
1880
1881 err = -EFAULT;
1882 if (MSG_CMSG_COMPAT & flags) {
1883 if (get_compat_msghdr(&msg_sys, msg_compat))
1884 return -EFAULT;
1885 }
1886 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1887 return -EFAULT;
1888
1889 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 if (!sock)
1891 goto out;
1892
1893 /* do not move before msg_sys is valid */
1894 err = -EMSGSIZE;
1895 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1896 goto out_put;
1897
1898 /* Check whether to allocate the iovec area */
1899 err = -ENOMEM;
1900 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1901 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1902 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1903 if (!iov)
1904 goto out_put;
1905 }
1906
1907 /* This will also move the address data into kernel space */
1908 if (MSG_CMSG_COMPAT & flags) {
1909 err = verify_compat_iovec(&msg_sys, iov,
1910 (struct sockaddr *)&address,
1911 VERIFY_READ);
1912 } else
1913 err = verify_iovec(&msg_sys, iov,
1914 (struct sockaddr *)&address,
1915 VERIFY_READ);
1916 if (err < 0)
1917 goto out_freeiov;
1918 total_len = err;
1919
1920 err = -ENOBUFS;
1921
1922 if (msg_sys.msg_controllen > INT_MAX)
1923 goto out_freeiov;
1924 ctl_len = msg_sys.msg_controllen;
1925 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1926 err =
1927 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1928 sizeof(ctl));
1929 if (err)
1930 goto out_freeiov;
1931 ctl_buf = msg_sys.msg_control;
1932 ctl_len = msg_sys.msg_controllen;
1933 } else if (ctl_len) {
1934 if (ctl_len > sizeof(ctl)) {
1935 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1936 if (ctl_buf == NULL)
1937 goto out_freeiov;
1938 }
1939 err = -EFAULT;
1940 /*
1941 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1942 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1943 * checking falls down on this.
1944 */
1945 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1946 ctl_len))
1947 goto out_freectl;
1948 msg_sys.msg_control = ctl_buf;
1949 }
1950 msg_sys.msg_flags = flags;
1951
1952 if (sock->file->f_flags & O_NONBLOCK)
1953 msg_sys.msg_flags |= MSG_DONTWAIT;
1954 err = sock_sendmsg(sock, &msg_sys, total_len);
1955
1956 out_freectl:
1957 if (ctl_buf != ctl)
1958 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1959 out_freeiov:
1960 if (iov != iovstack)
1961 sock_kfree_s(sock->sk, iov, iov_size);
1962 out_put:
1963 fput_light(sock->file, fput_needed);
1964 out:
1965 return err;
1966 }
1967
1968 /*
1969 * BSD recvmsg interface
1970 */
1971
1972 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1973 unsigned int, flags)
1974 {
1975 struct compat_msghdr __user *msg_compat =
1976 (struct compat_msghdr __user *)msg;
1977 struct socket *sock;
1978 struct iovec iovstack[UIO_FASTIOV];
1979 struct iovec *iov = iovstack;
1980 struct msghdr msg_sys;
1981 unsigned long cmsg_ptr;
1982 int err, iov_size, total_len, len;
1983 int fput_needed;
1984
1985 /* kernel mode address */
1986 struct sockaddr_storage addr;
1987
1988 /* user mode address pointers */
1989 struct sockaddr __user *uaddr;
1990 int __user *uaddr_len;
1991
1992 if (MSG_CMSG_COMPAT & flags) {
1993 if (get_compat_msghdr(&msg_sys, msg_compat))
1994 return -EFAULT;
1995 }
1996 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1997 return -EFAULT;
1998
1999 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2000 if (!sock)
2001 goto out;
2002
2003 err = -EMSGSIZE;
2004 if (msg_sys.msg_iovlen > UIO_MAXIOV)
2005 goto out_put;
2006
2007 /* Check whether to allocate the iovec area */
2008 err = -ENOMEM;
2009 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2010 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2011 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2012 if (!iov)
2013 goto out_put;
2014 }
2015
2016 /*
2017 * Save the user-mode address (verify_iovec will change the
2018 * kernel msghdr to use the kernel address space)
2019 */
2020
2021 uaddr = (__force void __user *)msg_sys.msg_name;
2022 uaddr_len = COMPAT_NAMELEN(msg);
2023 if (MSG_CMSG_COMPAT & flags) {
2024 err = verify_compat_iovec(&msg_sys, iov,
2025 (struct sockaddr *)&addr,
2026 VERIFY_WRITE);
2027 } else
2028 err = verify_iovec(&msg_sys, iov,
2029 (struct sockaddr *)&addr,
2030 VERIFY_WRITE);
2031 if (err < 0)
2032 goto out_freeiov;
2033 total_len = err;
2034
2035 cmsg_ptr = (unsigned long)msg_sys.msg_control;
2036 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2037
2038 if (sock->file->f_flags & O_NONBLOCK)
2039 flags |= MSG_DONTWAIT;
2040 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2041 if (err < 0)
2042 goto out_freeiov;
2043 len = err;
2044
2045 if (uaddr != NULL) {
2046 err = move_addr_to_user((struct sockaddr *)&addr,
2047 msg_sys.msg_namelen, uaddr,
2048 uaddr_len);
2049 if (err < 0)
2050 goto out_freeiov;
2051 }
2052 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2053 COMPAT_FLAGS(msg));
2054 if (err)
2055 goto out_freeiov;
2056 if (MSG_CMSG_COMPAT & flags)
2057 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2058 &msg_compat->msg_controllen);
2059 else
2060 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2061 &msg->msg_controllen);
2062 if (err)
2063 goto out_freeiov;
2064 err = len;
2065
2066 out_freeiov:
2067 if (iov != iovstack)
2068 sock_kfree_s(sock->sk, iov, iov_size);
2069 out_put:
2070 fput_light(sock->file, fput_needed);
2071 out:
2072 return err;
2073 }
2074
2075 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2076
2077 /* Argument list sizes for sys_socketcall */
2078 #define AL(x) ((x) * sizeof(unsigned long))
2079 static const unsigned char nargs[19]={
2080 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2081 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2082 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2083 AL(4)
2084 };
2085
2086 #undef AL
2087
2088 /*
2089 * System call vectors.
2090 *
2091 * Argument checking cleaned up. Saved 20% in size.
2092 * This function doesn't need to set the kernel lock because
2093 * it is set by the callees.
2094 */
2095
2096 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2097 {
2098 unsigned long a[6];
2099 unsigned long a0, a1;
2100 int err;
2101
2102 if (call < 1 || call > SYS_ACCEPT4)
2103 return -EINVAL;
2104
2105 /* copy_from_user should be SMP safe. */
2106 if (copy_from_user(a, args, nargs[call]))
2107 return -EFAULT;
2108
2109 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2110
2111 a0 = a[0];
2112 a1 = a[1];
2113
2114 switch (call) {
2115 case SYS_SOCKET:
2116 err = sys_socket(a0, a1, a[2]);
2117 break;
2118 case SYS_BIND:
2119 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2120 break;
2121 case SYS_CONNECT:
2122 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2123 break;
2124 case SYS_LISTEN:
2125 err = sys_listen(a0, a1);
2126 break;
2127 case SYS_ACCEPT:
2128 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2129 (int __user *)a[2], 0);
2130 break;
2131 case SYS_GETSOCKNAME:
2132 err =
2133 sys_getsockname(a0, (struct sockaddr __user *)a1,
2134 (int __user *)a[2]);
2135 break;
2136 case SYS_GETPEERNAME:
2137 err =
2138 sys_getpeername(a0, (struct sockaddr __user *)a1,
2139 (int __user *)a[2]);
2140 break;
2141 case SYS_SOCKETPAIR:
2142 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2143 break;
2144 case SYS_SEND:
2145 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2146 break;
2147 case SYS_SENDTO:
2148 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2149 (struct sockaddr __user *)a[4], a[5]);
2150 break;
2151 case SYS_RECV:
2152 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2153 break;
2154 case SYS_RECVFROM:
2155 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2156 (struct sockaddr __user *)a[4],
2157 (int __user *)a[5]);
2158 break;
2159 case SYS_SHUTDOWN:
2160 err = sys_shutdown(a0, a1);
2161 break;
2162 case SYS_SETSOCKOPT:
2163 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2164 break;
2165 case SYS_GETSOCKOPT:
2166 err =
2167 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2168 (int __user *)a[4]);
2169 break;
2170 case SYS_SENDMSG:
2171 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2172 break;
2173 case SYS_RECVMSG:
2174 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2175 break;
2176 case SYS_ACCEPT4:
2177 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2178 (int __user *)a[2], a[3]);
2179 break;
2180 default:
2181 err = -EINVAL;
2182 break;
2183 }
2184 return err;
2185 }
2186
2187 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2188
2189 /**
2190 * sock_register - add a socket protocol handler
2191 * @ops: description of protocol
2192 *
2193 * This function is called by a protocol handler that wants to
2194 * advertise its address family, and have it linked into the
2195 * socket interface. The value ops->family coresponds to the
2196 * socket system call protocol family.
2197 */
2198 int sock_register(const struct net_proto_family *ops)
2199 {
2200 int err;
2201
2202 if (ops->family >= NPROTO) {
2203 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2204 NPROTO);
2205 return -ENOBUFS;
2206 }
2207
2208 spin_lock(&net_family_lock);
2209 if (net_families[ops->family])
2210 err = -EEXIST;
2211 else {
2212 net_families[ops->family] = ops;
2213 err = 0;
2214 }
2215 spin_unlock(&net_family_lock);
2216
2217 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2218 return err;
2219 }
2220
2221 /**
2222 * sock_unregister - remove a protocol handler
2223 * @family: protocol family to remove
2224 *
2225 * This function is called by a protocol handler that wants to
2226 * remove its address family, and have it unlinked from the
2227 * new socket creation.
2228 *
2229 * If protocol handler is a module, then it can use module reference
2230 * counts to protect against new references. If protocol handler is not
2231 * a module then it needs to provide its own protection in
2232 * the ops->create routine.
2233 */
2234 void sock_unregister(int family)
2235 {
2236 BUG_ON(family < 0 || family >= NPROTO);
2237
2238 spin_lock(&net_family_lock);
2239 net_families[family] = NULL;
2240 spin_unlock(&net_family_lock);
2241
2242 synchronize_rcu();
2243
2244 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2245 }
2246
2247 static int __init sock_init(void)
2248 {
2249 /*
2250 * Initialize sock SLAB cache.
2251 */
2252
2253 sk_init();
2254
2255 /*
2256 * Initialize skbuff SLAB cache
2257 */
2258 skb_init();
2259
2260 /*
2261 * Initialize the protocols module.
2262 */
2263
2264 init_inodecache();
2265 register_filesystem(&sock_fs_type);
2266 sock_mnt = kern_mount(&sock_fs_type);
2267
2268 /* The real protocol initialization is performed in later initcalls.
2269 */
2270
2271 #ifdef CONFIG_NETFILTER
2272 netfilter_init();
2273 #endif
2274
2275 return 0;
2276 }
2277
2278 core_initcall(sock_init); /* early initcall */
2279
2280 #ifdef CONFIG_PROC_FS
2281 void socket_seq_show(struct seq_file *seq)
2282 {
2283 int cpu;
2284 int counter = 0;
2285
2286 for_each_possible_cpu(cpu)
2287 counter += per_cpu(sockets_in_use, cpu);
2288
2289 /* It can be negative, by the way. 8) */
2290 if (counter < 0)
2291 counter = 0;
2292
2293 seq_printf(seq, "sockets: used %d\n", counter);
2294 }
2295 #endif /* CONFIG_PROC_FS */
2296
2297 #ifdef CONFIG_COMPAT
2298 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2299 unsigned long arg)
2300 {
2301 struct socket *sock = file->private_data;
2302 int ret = -ENOIOCTLCMD;
2303 struct sock *sk;
2304 struct net *net;
2305
2306 sk = sock->sk;
2307 net = sock_net(sk);
2308
2309 if (sock->ops->compat_ioctl)
2310 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2311
2312 if (ret == -ENOIOCTLCMD &&
2313 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2314 ret = compat_wext_handle_ioctl(net, cmd, arg);
2315
2316 return ret;
2317 }
2318 #endif
2319
2320 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2321 {
2322 return sock->ops->bind(sock, addr, addrlen);
2323 }
2324
2325 int kernel_listen(struct socket *sock, int backlog)
2326 {
2327 return sock->ops->listen(sock, backlog);
2328 }
2329
2330 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2331 {
2332 struct sock *sk = sock->sk;
2333 int err;
2334
2335 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2336 newsock);
2337 if (err < 0)
2338 goto done;
2339
2340 err = sock->ops->accept(sock, *newsock, flags);
2341 if (err < 0) {
2342 sock_release(*newsock);
2343 *newsock = NULL;
2344 goto done;
2345 }
2346
2347 (*newsock)->ops = sock->ops;
2348 __module_get((*newsock)->ops->owner);
2349
2350 done:
2351 return err;
2352 }
2353
2354 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2355 int flags)
2356 {
2357 return sock->ops->connect(sock, addr, addrlen, flags);
2358 }
2359
2360 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2361 int *addrlen)
2362 {
2363 return sock->ops->getname(sock, addr, addrlen, 0);
2364 }
2365
2366 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2367 int *addrlen)
2368 {
2369 return sock->ops->getname(sock, addr, addrlen, 1);
2370 }
2371
2372 int kernel_getsockopt(struct socket *sock, int level, int optname,
2373 char *optval, int *optlen)
2374 {
2375 mm_segment_t oldfs = get_fs();
2376 int err;
2377
2378 set_fs(KERNEL_DS);
2379 if (level == SOL_SOCKET)
2380 err = sock_getsockopt(sock, level, optname, optval, optlen);
2381 else
2382 err = sock->ops->getsockopt(sock, level, optname, optval,
2383 optlen);
2384 set_fs(oldfs);
2385 return err;
2386 }
2387
2388 int kernel_setsockopt(struct socket *sock, int level, int optname,
2389 char *optval, int optlen)
2390 {
2391 mm_segment_t oldfs = get_fs();
2392 int err;
2393
2394 set_fs(KERNEL_DS);
2395 if (level == SOL_SOCKET)
2396 err = sock_setsockopt(sock, level, optname, optval, optlen);
2397 else
2398 err = sock->ops->setsockopt(sock, level, optname, optval,
2399 optlen);
2400 set_fs(oldfs);
2401 return err;
2402 }
2403
2404 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2405 size_t size, int flags)
2406 {
2407 if (sock->ops->sendpage)
2408 return sock->ops->sendpage(sock, page, offset, size, flags);
2409
2410 return sock_no_sendpage(sock, page, offset, size, flags);
2411 }
2412
2413 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2414 {
2415 mm_segment_t oldfs = get_fs();
2416 int err;
2417
2418 set_fs(KERNEL_DS);
2419 err = sock->ops->ioctl(sock, cmd, arg);
2420 set_fs(oldfs);
2421
2422 return err;
2423 }
2424
2425 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2426 {
2427 return sock->ops->shutdown(sock, how);
2428 }
2429
2430 EXPORT_SYMBOL(sock_create);
2431 EXPORT_SYMBOL(sock_create_kern);
2432 EXPORT_SYMBOL(sock_create_lite);
2433 EXPORT_SYMBOL(sock_map_fd);
2434 EXPORT_SYMBOL(sock_recvmsg);
2435 EXPORT_SYMBOL(sock_register);
2436 EXPORT_SYMBOL(sock_release);
2437 EXPORT_SYMBOL(sock_sendmsg);
2438 EXPORT_SYMBOL(sock_unregister);
2439 EXPORT_SYMBOL(sock_wake_async);
2440 EXPORT_SYMBOL(sockfd_lookup);
2441 EXPORT_SYMBOL(kernel_sendmsg);
2442 EXPORT_SYMBOL(kernel_recvmsg);
2443 EXPORT_SYMBOL(kernel_bind);
2444 EXPORT_SYMBOL(kernel_listen);
2445 EXPORT_SYMBOL(kernel_accept);
2446 EXPORT_SYMBOL(kernel_connect);
2447 EXPORT_SYMBOL(kernel_getsockname);
2448 EXPORT_SYMBOL(kernel_getpeername);
2449 EXPORT_SYMBOL(kernel_getsockopt);
2450 EXPORT_SYMBOL(kernel_setsockopt);
2451 EXPORT_SYMBOL(kernel_sendpage);
2452 EXPORT_SYMBOL(kernel_sock_ioctl);
2453 EXPORT_SYMBOL(kernel_sock_shutdown);