net: pass kern to net_proto_family create function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 struct pipe_inode_info *pipe, size_t len,
120 unsigned int flags);
121
122 /*
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
125 */
126
127 static const struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 .splice_read = sock_splice_read,
144 };
145
146 /*
147 * The protocol list. Each protocol is registered in here.
148 */
149
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152
153 /*
154 * Statistics counters of the socket lists
155 */
156
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158
159 /*
160 * Support routines.
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
163 */
164
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
167 24 for IPv6,
168 about 80 for AX.25
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
171 :unix_mkname()).
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 init_waitqueue_head(&ei->socket.wait);
249
250 ei->socket.fasync_list = NULL;
251 ei->socket.state = SS_UNCONNECTED;
252 ei->socket.flags = 0;
253 ei->socket.ops = NULL;
254 ei->socket.sk = NULL;
255 ei->socket.file = NULL;
256
257 return &ei->vfs_inode;
258 }
259
260 static void sock_destroy_inode(struct inode *inode)
261 {
262 kmem_cache_free(sock_inode_cachep,
263 container_of(inode, struct socket_alloc, vfs_inode));
264 }
265
266 static void init_once(void *foo)
267 {
268 struct socket_alloc *ei = (struct socket_alloc *)foo;
269
270 inode_init_once(&ei->vfs_inode);
271 }
272
273 static int init_inodecache(void)
274 {
275 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc),
277 0,
278 (SLAB_HWCACHE_ALIGN |
279 SLAB_RECLAIM_ACCOUNT |
280 SLAB_MEM_SPREAD),
281 init_once);
282 if (sock_inode_cachep == NULL)
283 return -ENOMEM;
284 return 0;
285 }
286
287 static const struct super_operations sockfs_ops = {
288 .alloc_inode = sock_alloc_inode,
289 .destroy_inode =sock_destroy_inode,
290 .statfs = simple_statfs,
291 };
292
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 int flags, const char *dev_name, void *data,
295 struct vfsmount *mnt)
296 {
297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 mnt);
299 }
300
301 static struct vfsmount *sock_mnt __read_mostly;
302
303 static struct file_system_type sock_fs_type = {
304 .name = "sockfs",
305 .get_sb = sockfs_get_sb,
306 .kill_sb = kill_anon_super,
307 };
308
309 static int sockfs_delete_dentry(struct dentry *dentry)
310 {
311 /*
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
316 */
317 dentry->d_flags |= DCACHE_UNHASHED;
318 return 0;
319 }
320
321 /*
322 * sockfs_dname() is called from d_path().
323 */
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 {
326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 dentry->d_inode->i_ino);
328 }
329
330 static const struct dentry_operations sockfs_dentry_operations = {
331 .d_delete = sockfs_delete_dentry,
332 .d_dname = sockfs_dname,
333 };
334
335 /*
336 * Obtains the first available file descriptor and sets it up for use.
337 *
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
345 *
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
350 */
351
352 static int sock_alloc_fd(struct file **filep, int flags)
353 {
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (likely(fd >= 0)) {
358 struct file *file = get_empty_filp();
359
360 *filep = file;
361 if (unlikely(!file)) {
362 put_unused_fd(fd);
363 return -ENFILE;
364 }
365 } else
366 *filep = NULL;
367 return fd;
368 }
369
370 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
371 {
372 struct dentry *dentry;
373 struct qstr name = { .name = "" };
374
375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 if (unlikely(!dentry))
377 return -ENOMEM;
378
379 dentry->d_op = &sockfs_dentry_operations;
380 /*
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
384 */
385 dentry->d_flags &= ~DCACHE_UNHASHED;
386 d_instantiate(dentry, SOCK_INODE(sock));
387
388 sock->file = file;
389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 &socket_file_ops);
391 SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
393 file->f_pos = 0;
394 file->private_data = sock;
395
396 return 0;
397 }
398
399 int sock_map_fd(struct socket *sock, int flags)
400 {
401 struct file *newfile;
402 int fd = sock_alloc_fd(&newfile, flags);
403
404 if (likely(fd >= 0)) {
405 int err = sock_attach_fd(sock, newfile, flags);
406
407 if (unlikely(err < 0)) {
408 put_filp(newfile);
409 put_unused_fd(fd);
410 return err;
411 }
412 fd_install(fd, newfile);
413 }
414 return fd;
415 }
416
417 static struct socket *sock_from_file(struct file *file, int *err)
418 {
419 if (file->f_op == &socket_file_ops)
420 return file->private_data; /* set in sock_map_fd */
421
422 *err = -ENOTSOCK;
423 return NULL;
424 }
425
426 /**
427 * sockfd_lookup - Go from a file number to its socket slot
428 * @fd: file handle
429 * @err: pointer to an error code return
430 *
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
435 *
436 * On a success the socket object pointer is returned.
437 */
438
439 struct socket *sockfd_lookup(int fd, int *err)
440 {
441 struct file *file;
442 struct socket *sock;
443
444 file = fget(fd);
445 if (!file) {
446 *err = -EBADF;
447 return NULL;
448 }
449
450 sock = sock_from_file(file, err);
451 if (!sock)
452 fput(file);
453 return sock;
454 }
455
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 {
458 struct file *file;
459 struct socket *sock;
460
461 *err = -EBADF;
462 file = fget_light(fd, fput_needed);
463 if (file) {
464 sock = sock_from_file(file, err);
465 if (sock)
466 return sock;
467 fput_light(file, *fput_needed);
468 }
469 return NULL;
470 }
471
472 /**
473 * sock_alloc - allocate a socket
474 *
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
477 * NULL is returned.
478 */
479
480 static struct socket *sock_alloc(void)
481 {
482 struct inode *inode;
483 struct socket *sock;
484
485 inode = new_inode(sock_mnt->mnt_sb);
486 if (!inode)
487 return NULL;
488
489 sock = SOCKET_I(inode);
490
491 kmemcheck_annotate_bitfield(sock, type);
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
495
496 percpu_add(sockets_in_use, 1);
497 return sock;
498 }
499
500 /*
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
504 */
505
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 return -ENXIO;
509 }
510
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
514 };
515
516 /**
517 * sock_release - close a socket
518 * @sock: socket to close
519 *
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
523 */
524
525 void sock_release(struct socket *sock)
526 {
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
529
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
533 }
534
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
537
538 percpu_sub(sockets_in_use, 1);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
542 }
543 sock->file = NULL;
544 }
545
546 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
547 union skb_shared_tx *shtx)
548 {
549 shtx->flags = 0;
550 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
551 shtx->hardware = 1;
552 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
553 shtx->software = 1;
554 return 0;
555 }
556 EXPORT_SYMBOL(sock_tx_timestamp);
557
558 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 struct msghdr *msg, size_t size)
560 {
561 struct sock_iocb *si = kiocb_to_siocb(iocb);
562 int err;
563
564 si->sock = sock;
565 si->scm = NULL;
566 si->msg = msg;
567 si->size = size;
568
569 err = security_socket_sendmsg(sock, msg, size);
570 if (err)
571 return err;
572
573 return sock->ops->sendmsg(iocb, sock, msg, size);
574 }
575
576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
581
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
588 }
589
590 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
591 struct kvec *vec, size_t num, size_t size)
592 {
593 mm_segment_t oldfs = get_fs();
594 int result;
595
596 set_fs(KERNEL_DS);
597 /*
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
600 */
601 msg->msg_iov = (struct iovec *)vec;
602 msg->msg_iovlen = num;
603 result = sock_sendmsg(sock, msg, size);
604 set_fs(oldfs);
605 return result;
606 }
607
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
615 }
616 }
617
618 /*
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620 */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
623 {
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
629
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
634
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 struct timespec ts;
643 skb_get_timestampns(skb, &ts);
644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
645 sizeof(ts), &ts);
646 }
647 }
648
649
650 memset(ts, 0, sizeof(ts));
651 if (skb->tstamp.tv64 &&
652 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
653 skb_get_timestampns(skb, ts + 0);
654 empty = 0;
655 }
656 if (shhwtstamps) {
657 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
658 ktime2ts(shhwtstamps->syststamp, ts + 1))
659 empty = 0;
660 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
661 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
662 empty = 0;
663 }
664 if (!empty)
665 put_cmsg(msg, SOL_SOCKET,
666 SCM_TIMESTAMPING, sizeof(ts), &ts);
667 }
668
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
670
671 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
672 {
673 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
674 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
675 sizeof(__u32), &skb->dropcount);
676 }
677
678 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
680 {
681 sock_recv_timestamp(msg, sk, skb);
682 sock_recv_drops(msg, sk, skb);
683 }
684 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
685
686 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
687 struct msghdr *msg, size_t size, int flags)
688 {
689 struct sock_iocb *si = kiocb_to_siocb(iocb);
690
691 si->sock = sock;
692 si->scm = NULL;
693 si->msg = msg;
694 si->size = size;
695 si->flags = flags;
696
697 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
698 }
699
700 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
701 struct msghdr *msg, size_t size, int flags)
702 {
703 int err = security_socket_recvmsg(sock, msg, size, flags);
704
705 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
706 }
707
708 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
709 size_t size, int flags)
710 {
711 struct kiocb iocb;
712 struct sock_iocb siocb;
713 int ret;
714
715 init_sync_kiocb(&iocb, NULL);
716 iocb.private = &siocb;
717 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
718 if (-EIOCBQUEUED == ret)
719 ret = wait_on_sync_kiocb(&iocb);
720 return ret;
721 }
722
723 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
724 size_t size, int flags)
725 {
726 struct kiocb iocb;
727 struct sock_iocb siocb;
728 int ret;
729
730 init_sync_kiocb(&iocb, NULL);
731 iocb.private = &siocb;
732 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
733 if (-EIOCBQUEUED == ret)
734 ret = wait_on_sync_kiocb(&iocb);
735 return ret;
736 }
737
738 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
739 struct kvec *vec, size_t num, size_t size, int flags)
740 {
741 mm_segment_t oldfs = get_fs();
742 int result;
743
744 set_fs(KERNEL_DS);
745 /*
746 * the following is safe, since for compiler definitions of kvec and
747 * iovec are identical, yielding the same in-core layout and alignment
748 */
749 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
750 result = sock_recvmsg(sock, msg, size, flags);
751 set_fs(oldfs);
752 return result;
753 }
754
755 static void sock_aio_dtor(struct kiocb *iocb)
756 {
757 kfree(iocb->private);
758 }
759
760 static ssize_t sock_sendpage(struct file *file, struct page *page,
761 int offset, size_t size, loff_t *ppos, int more)
762 {
763 struct socket *sock;
764 int flags;
765
766 sock = file->private_data;
767
768 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
769 if (more)
770 flags |= MSG_MORE;
771
772 return kernel_sendpage(sock, page, offset, size, flags);
773 }
774
775 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
776 struct pipe_inode_info *pipe, size_t len,
777 unsigned int flags)
778 {
779 struct socket *sock = file->private_data;
780
781 if (unlikely(!sock->ops->splice_read))
782 return -EINVAL;
783
784 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
785 }
786
787 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
788 struct sock_iocb *siocb)
789 {
790 if (!is_sync_kiocb(iocb)) {
791 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
792 if (!siocb)
793 return NULL;
794 iocb->ki_dtor = sock_aio_dtor;
795 }
796
797 siocb->kiocb = iocb;
798 iocb->private = siocb;
799 return siocb;
800 }
801
802 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
803 struct file *file, const struct iovec *iov,
804 unsigned long nr_segs)
805 {
806 struct socket *sock = file->private_data;
807 size_t size = 0;
808 int i;
809
810 for (i = 0; i < nr_segs; i++)
811 size += iov[i].iov_len;
812
813 msg->msg_name = NULL;
814 msg->msg_namelen = 0;
815 msg->msg_control = NULL;
816 msg->msg_controllen = 0;
817 msg->msg_iov = (struct iovec *)iov;
818 msg->msg_iovlen = nr_segs;
819 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
820
821 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
822 }
823
824 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
825 unsigned long nr_segs, loff_t pos)
826 {
827 struct sock_iocb siocb, *x;
828
829 if (pos != 0)
830 return -ESPIPE;
831
832 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
833 return 0;
834
835
836 x = alloc_sock_iocb(iocb, &siocb);
837 if (!x)
838 return -ENOMEM;
839 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
840 }
841
842 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
843 struct file *file, const struct iovec *iov,
844 unsigned long nr_segs)
845 {
846 struct socket *sock = file->private_data;
847 size_t size = 0;
848 int i;
849
850 for (i = 0; i < nr_segs; i++)
851 size += iov[i].iov_len;
852
853 msg->msg_name = NULL;
854 msg->msg_namelen = 0;
855 msg->msg_control = NULL;
856 msg->msg_controllen = 0;
857 msg->msg_iov = (struct iovec *)iov;
858 msg->msg_iovlen = nr_segs;
859 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860 if (sock->type == SOCK_SEQPACKET)
861 msg->msg_flags |= MSG_EOR;
862
863 return __sock_sendmsg(iocb, sock, msg, size);
864 }
865
866 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
867 unsigned long nr_segs, loff_t pos)
868 {
869 struct sock_iocb siocb, *x;
870
871 if (pos != 0)
872 return -ESPIPE;
873
874 x = alloc_sock_iocb(iocb, &siocb);
875 if (!x)
876 return -ENOMEM;
877
878 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
879 }
880
881 /*
882 * Atomic setting of ioctl hooks to avoid race
883 * with module unload.
884 */
885
886 static DEFINE_MUTEX(br_ioctl_mutex);
887 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
888
889 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
890 {
891 mutex_lock(&br_ioctl_mutex);
892 br_ioctl_hook = hook;
893 mutex_unlock(&br_ioctl_mutex);
894 }
895
896 EXPORT_SYMBOL(brioctl_set);
897
898 static DEFINE_MUTEX(vlan_ioctl_mutex);
899 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
900
901 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
902 {
903 mutex_lock(&vlan_ioctl_mutex);
904 vlan_ioctl_hook = hook;
905 mutex_unlock(&vlan_ioctl_mutex);
906 }
907
908 EXPORT_SYMBOL(vlan_ioctl_set);
909
910 static DEFINE_MUTEX(dlci_ioctl_mutex);
911 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
912
913 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
914 {
915 mutex_lock(&dlci_ioctl_mutex);
916 dlci_ioctl_hook = hook;
917 mutex_unlock(&dlci_ioctl_mutex);
918 }
919
920 EXPORT_SYMBOL(dlci_ioctl_set);
921
922 /*
923 * With an ioctl, arg may well be a user mode pointer, but we don't know
924 * what to do with it - that's up to the protocol still.
925 */
926
927 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
928 {
929 struct socket *sock;
930 struct sock *sk;
931 void __user *argp = (void __user *)arg;
932 int pid, err;
933 struct net *net;
934
935 sock = file->private_data;
936 sk = sock->sk;
937 net = sock_net(sk);
938 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
939 err = dev_ioctl(net, cmd, argp);
940 } else
941 #ifdef CONFIG_WEXT_CORE
942 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
943 err = dev_ioctl(net, cmd, argp);
944 } else
945 #endif
946 switch (cmd) {
947 case FIOSETOWN:
948 case SIOCSPGRP:
949 err = -EFAULT;
950 if (get_user(pid, (int __user *)argp))
951 break;
952 err = f_setown(sock->file, pid, 1);
953 break;
954 case FIOGETOWN:
955 case SIOCGPGRP:
956 err = put_user(f_getown(sock->file),
957 (int __user *)argp);
958 break;
959 case SIOCGIFBR:
960 case SIOCSIFBR:
961 case SIOCBRADDBR:
962 case SIOCBRDELBR:
963 err = -ENOPKG;
964 if (!br_ioctl_hook)
965 request_module("bridge");
966
967 mutex_lock(&br_ioctl_mutex);
968 if (br_ioctl_hook)
969 err = br_ioctl_hook(net, cmd, argp);
970 mutex_unlock(&br_ioctl_mutex);
971 break;
972 case SIOCGIFVLAN:
973 case SIOCSIFVLAN:
974 err = -ENOPKG;
975 if (!vlan_ioctl_hook)
976 request_module("8021q");
977
978 mutex_lock(&vlan_ioctl_mutex);
979 if (vlan_ioctl_hook)
980 err = vlan_ioctl_hook(net, argp);
981 mutex_unlock(&vlan_ioctl_mutex);
982 break;
983 case SIOCADDDLCI:
984 case SIOCDELDLCI:
985 err = -ENOPKG;
986 if (!dlci_ioctl_hook)
987 request_module("dlci");
988
989 mutex_lock(&dlci_ioctl_mutex);
990 if (dlci_ioctl_hook)
991 err = dlci_ioctl_hook(cmd, argp);
992 mutex_unlock(&dlci_ioctl_mutex);
993 break;
994 default:
995 err = sock->ops->ioctl(sock, cmd, arg);
996
997 /*
998 * If this ioctl is unknown try to hand it down
999 * to the NIC driver.
1000 */
1001 if (err == -ENOIOCTLCMD)
1002 err = dev_ioctl(net, cmd, argp);
1003 break;
1004 }
1005 return err;
1006 }
1007
1008 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1009 {
1010 int err;
1011 struct socket *sock = NULL;
1012
1013 err = security_socket_create(family, type, protocol, 1);
1014 if (err)
1015 goto out;
1016
1017 sock = sock_alloc();
1018 if (!sock) {
1019 err = -ENOMEM;
1020 goto out;
1021 }
1022
1023 sock->type = type;
1024 err = security_socket_post_create(sock, family, type, protocol, 1);
1025 if (err)
1026 goto out_release;
1027
1028 out:
1029 *res = sock;
1030 return err;
1031 out_release:
1032 sock_release(sock);
1033 sock = NULL;
1034 goto out;
1035 }
1036
1037 /* No kernel lock held - perfect */
1038 static unsigned int sock_poll(struct file *file, poll_table *wait)
1039 {
1040 struct socket *sock;
1041
1042 /*
1043 * We can't return errors to poll, so it's either yes or no.
1044 */
1045 sock = file->private_data;
1046 return sock->ops->poll(file, sock, wait);
1047 }
1048
1049 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1050 {
1051 struct socket *sock = file->private_data;
1052
1053 return sock->ops->mmap(file, sock, vma);
1054 }
1055
1056 static int sock_close(struct inode *inode, struct file *filp)
1057 {
1058 /*
1059 * It was possible the inode is NULL we were
1060 * closing an unfinished socket.
1061 */
1062
1063 if (!inode) {
1064 printk(KERN_DEBUG "sock_close: NULL inode\n");
1065 return 0;
1066 }
1067 sock_release(SOCKET_I(inode));
1068 return 0;
1069 }
1070
1071 /*
1072 * Update the socket async list
1073 *
1074 * Fasync_list locking strategy.
1075 *
1076 * 1. fasync_list is modified only under process context socket lock
1077 * i.e. under semaphore.
1078 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1079 * or under socket lock.
1080 * 3. fasync_list can be used from softirq context, so that
1081 * modification under socket lock have to be enhanced with
1082 * write_lock_bh(&sk->sk_callback_lock).
1083 * --ANK (990710)
1084 */
1085
1086 static int sock_fasync(int fd, struct file *filp, int on)
1087 {
1088 struct fasync_struct *fa, *fna = NULL, **prev;
1089 struct socket *sock;
1090 struct sock *sk;
1091
1092 if (on) {
1093 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1094 if (fna == NULL)
1095 return -ENOMEM;
1096 }
1097
1098 sock = filp->private_data;
1099
1100 sk = sock->sk;
1101 if (sk == NULL) {
1102 kfree(fna);
1103 return -EINVAL;
1104 }
1105
1106 lock_sock(sk);
1107
1108 spin_lock(&filp->f_lock);
1109 if (on)
1110 filp->f_flags |= FASYNC;
1111 else
1112 filp->f_flags &= ~FASYNC;
1113 spin_unlock(&filp->f_lock);
1114
1115 prev = &(sock->fasync_list);
1116
1117 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1118 if (fa->fa_file == filp)
1119 break;
1120
1121 if (on) {
1122 if (fa != NULL) {
1123 write_lock_bh(&sk->sk_callback_lock);
1124 fa->fa_fd = fd;
1125 write_unlock_bh(&sk->sk_callback_lock);
1126
1127 kfree(fna);
1128 goto out;
1129 }
1130 fna->fa_file = filp;
1131 fna->fa_fd = fd;
1132 fna->magic = FASYNC_MAGIC;
1133 fna->fa_next = sock->fasync_list;
1134 write_lock_bh(&sk->sk_callback_lock);
1135 sock->fasync_list = fna;
1136 sock_set_flag(sk, SOCK_FASYNC);
1137 write_unlock_bh(&sk->sk_callback_lock);
1138 } else {
1139 if (fa != NULL) {
1140 write_lock_bh(&sk->sk_callback_lock);
1141 *prev = fa->fa_next;
1142 if (!sock->fasync_list)
1143 sock_reset_flag(sk, SOCK_FASYNC);
1144 write_unlock_bh(&sk->sk_callback_lock);
1145 kfree(fa);
1146 }
1147 }
1148
1149 out:
1150 release_sock(sock->sk);
1151 return 0;
1152 }
1153
1154 /* This function may be called only under socket lock or callback_lock */
1155
1156 int sock_wake_async(struct socket *sock, int how, int band)
1157 {
1158 if (!sock || !sock->fasync_list)
1159 return -1;
1160 switch (how) {
1161 case SOCK_WAKE_WAITD:
1162 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1163 break;
1164 goto call_kill;
1165 case SOCK_WAKE_SPACE:
1166 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1167 break;
1168 /* fall through */
1169 case SOCK_WAKE_IO:
1170 call_kill:
1171 __kill_fasync(sock->fasync_list, SIGIO, band);
1172 break;
1173 case SOCK_WAKE_URG:
1174 __kill_fasync(sock->fasync_list, SIGURG, band);
1175 }
1176 return 0;
1177 }
1178
1179 static int __sock_create(struct net *net, int family, int type, int protocol,
1180 struct socket **res, int kern)
1181 {
1182 int err;
1183 struct socket *sock;
1184 const struct net_proto_family *pf;
1185
1186 /*
1187 * Check protocol is in range
1188 */
1189 if (family < 0 || family >= NPROTO)
1190 return -EAFNOSUPPORT;
1191 if (type < 0 || type >= SOCK_MAX)
1192 return -EINVAL;
1193
1194 /* Compatibility.
1195
1196 This uglymoron is moved from INET layer to here to avoid
1197 deadlock in module load.
1198 */
1199 if (family == PF_INET && type == SOCK_PACKET) {
1200 static int warned;
1201 if (!warned) {
1202 warned = 1;
1203 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1204 current->comm);
1205 }
1206 family = PF_PACKET;
1207 }
1208
1209 err = security_socket_create(family, type, protocol, kern);
1210 if (err)
1211 return err;
1212
1213 /*
1214 * Allocate the socket and allow the family to set things up. if
1215 * the protocol is 0, the family is instructed to select an appropriate
1216 * default.
1217 */
1218 sock = sock_alloc();
1219 if (!sock) {
1220 if (net_ratelimit())
1221 printk(KERN_WARNING "socket: no more sockets\n");
1222 return -ENFILE; /* Not exactly a match, but its the
1223 closest posix thing */
1224 }
1225
1226 sock->type = type;
1227
1228 #ifdef CONFIG_MODULES
1229 /* Attempt to load a protocol module if the find failed.
1230 *
1231 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1232 * requested real, full-featured networking support upon configuration.
1233 * Otherwise module support will break!
1234 */
1235 if (net_families[family] == NULL)
1236 request_module("net-pf-%d", family);
1237 #endif
1238
1239 rcu_read_lock();
1240 pf = rcu_dereference(net_families[family]);
1241 err = -EAFNOSUPPORT;
1242 if (!pf)
1243 goto out_release;
1244
1245 /*
1246 * We will call the ->create function, that possibly is in a loadable
1247 * module, so we have to bump that loadable module refcnt first.
1248 */
1249 if (!try_module_get(pf->owner))
1250 goto out_release;
1251
1252 /* Now protected by module ref count */
1253 rcu_read_unlock();
1254
1255 err = pf->create(net, sock, protocol, kern);
1256 if (err < 0)
1257 goto out_module_put;
1258
1259 /*
1260 * Now to bump the refcnt of the [loadable] module that owns this
1261 * socket at sock_release time we decrement its refcnt.
1262 */
1263 if (!try_module_get(sock->ops->owner))
1264 goto out_module_busy;
1265
1266 /*
1267 * Now that we're done with the ->create function, the [loadable]
1268 * module can have its refcnt decremented
1269 */
1270 module_put(pf->owner);
1271 err = security_socket_post_create(sock, family, type, protocol, kern);
1272 if (err)
1273 goto out_sock_release;
1274 *res = sock;
1275
1276 return 0;
1277
1278 out_module_busy:
1279 err = -EAFNOSUPPORT;
1280 out_module_put:
1281 sock->ops = NULL;
1282 module_put(pf->owner);
1283 out_sock_release:
1284 sock_release(sock);
1285 return err;
1286
1287 out_release:
1288 rcu_read_unlock();
1289 goto out_sock_release;
1290 }
1291
1292 int sock_create(int family, int type, int protocol, struct socket **res)
1293 {
1294 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1295 }
1296
1297 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1298 {
1299 return __sock_create(&init_net, family, type, protocol, res, 1);
1300 }
1301
1302 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1303 {
1304 int retval;
1305 struct socket *sock;
1306 int flags;
1307
1308 /* Check the SOCK_* constants for consistency. */
1309 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1310 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1311 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1312 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1313
1314 flags = type & ~SOCK_TYPE_MASK;
1315 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1316 return -EINVAL;
1317 type &= SOCK_TYPE_MASK;
1318
1319 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1320 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1321
1322 retval = sock_create(family, type, protocol, &sock);
1323 if (retval < 0)
1324 goto out;
1325
1326 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1327 if (retval < 0)
1328 goto out_release;
1329
1330 out:
1331 /* It may be already another descriptor 8) Not kernel problem. */
1332 return retval;
1333
1334 out_release:
1335 sock_release(sock);
1336 return retval;
1337 }
1338
1339 /*
1340 * Create a pair of connected sockets.
1341 */
1342
1343 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1344 int __user *, usockvec)
1345 {
1346 struct socket *sock1, *sock2;
1347 int fd1, fd2, err;
1348 struct file *newfile1, *newfile2;
1349 int flags;
1350
1351 flags = type & ~SOCK_TYPE_MASK;
1352 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1353 return -EINVAL;
1354 type &= SOCK_TYPE_MASK;
1355
1356 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1357 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1358
1359 /*
1360 * Obtain the first socket and check if the underlying protocol
1361 * supports the socketpair call.
1362 */
1363
1364 err = sock_create(family, type, protocol, &sock1);
1365 if (err < 0)
1366 goto out;
1367
1368 err = sock_create(family, type, protocol, &sock2);
1369 if (err < 0)
1370 goto out_release_1;
1371
1372 err = sock1->ops->socketpair(sock1, sock2);
1373 if (err < 0)
1374 goto out_release_both;
1375
1376 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1377 if (unlikely(fd1 < 0)) {
1378 err = fd1;
1379 goto out_release_both;
1380 }
1381
1382 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1383 if (unlikely(fd2 < 0)) {
1384 err = fd2;
1385 put_filp(newfile1);
1386 put_unused_fd(fd1);
1387 goto out_release_both;
1388 }
1389
1390 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1391 if (unlikely(err < 0)) {
1392 goto out_fd2;
1393 }
1394
1395 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1396 if (unlikely(err < 0)) {
1397 fput(newfile1);
1398 goto out_fd1;
1399 }
1400
1401 audit_fd_pair(fd1, fd2);
1402 fd_install(fd1, newfile1);
1403 fd_install(fd2, newfile2);
1404 /* fd1 and fd2 may be already another descriptors.
1405 * Not kernel problem.
1406 */
1407
1408 err = put_user(fd1, &usockvec[0]);
1409 if (!err)
1410 err = put_user(fd2, &usockvec[1]);
1411 if (!err)
1412 return 0;
1413
1414 sys_close(fd2);
1415 sys_close(fd1);
1416 return err;
1417
1418 out_release_both:
1419 sock_release(sock2);
1420 out_release_1:
1421 sock_release(sock1);
1422 out:
1423 return err;
1424
1425 out_fd2:
1426 put_filp(newfile1);
1427 sock_release(sock1);
1428 out_fd1:
1429 put_filp(newfile2);
1430 sock_release(sock2);
1431 put_unused_fd(fd1);
1432 put_unused_fd(fd2);
1433 goto out;
1434 }
1435
1436 /*
1437 * Bind a name to a socket. Nothing much to do here since it's
1438 * the protocol's responsibility to handle the local address.
1439 *
1440 * We move the socket address to kernel space before we call
1441 * the protocol layer (having also checked the address is ok).
1442 */
1443
1444 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1445 {
1446 struct socket *sock;
1447 struct sockaddr_storage address;
1448 int err, fput_needed;
1449
1450 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 if (sock) {
1452 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1453 if (err >= 0) {
1454 err = security_socket_bind(sock,
1455 (struct sockaddr *)&address,
1456 addrlen);
1457 if (!err)
1458 err = sock->ops->bind(sock,
1459 (struct sockaddr *)
1460 &address, addrlen);
1461 }
1462 fput_light(sock->file, fput_needed);
1463 }
1464 return err;
1465 }
1466
1467 /*
1468 * Perform a listen. Basically, we allow the protocol to do anything
1469 * necessary for a listen, and if that works, we mark the socket as
1470 * ready for listening.
1471 */
1472
1473 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1474 {
1475 struct socket *sock;
1476 int err, fput_needed;
1477 int somaxconn;
1478
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (sock) {
1481 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1482 if ((unsigned)backlog > somaxconn)
1483 backlog = somaxconn;
1484
1485 err = security_socket_listen(sock, backlog);
1486 if (!err)
1487 err = sock->ops->listen(sock, backlog);
1488
1489 fput_light(sock->file, fput_needed);
1490 }
1491 return err;
1492 }
1493
1494 /*
1495 * For accept, we attempt to create a new socket, set up the link
1496 * with the client, wake up the client, then return the new
1497 * connected fd. We collect the address of the connector in kernel
1498 * space and move it to user at the very end. This is unclean because
1499 * we open the socket then return an error.
1500 *
1501 * 1003.1g adds the ability to recvmsg() to query connection pending
1502 * status to recvmsg. We need to add that support in a way thats
1503 * clean when we restucture accept also.
1504 */
1505
1506 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 int __user *, upeer_addrlen, int, flags)
1508 {
1509 struct socket *sock, *newsock;
1510 struct file *newfile;
1511 int err, len, newfd, fput_needed;
1512 struct sockaddr_storage address;
1513
1514 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1515 return -EINVAL;
1516
1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 if (!sock)
1522 goto out;
1523
1524 err = -ENFILE;
1525 if (!(newsock = sock_alloc()))
1526 goto out_put;
1527
1528 newsock->type = sock->type;
1529 newsock->ops = sock->ops;
1530
1531 /*
1532 * We don't need try_module_get here, as the listening socket (sock)
1533 * has the protocol module (sock->ops->owner) held.
1534 */
1535 __module_get(newsock->ops->owner);
1536
1537 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1538 if (unlikely(newfd < 0)) {
1539 err = newfd;
1540 sock_release(newsock);
1541 goto out_put;
1542 }
1543
1544 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1545 if (err < 0)
1546 goto out_fd_simple;
1547
1548 err = security_socket_accept(sock, newsock);
1549 if (err)
1550 goto out_fd;
1551
1552 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1553 if (err < 0)
1554 goto out_fd;
1555
1556 if (upeer_sockaddr) {
1557 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1558 &len, 2) < 0) {
1559 err = -ECONNABORTED;
1560 goto out_fd;
1561 }
1562 err = move_addr_to_user((struct sockaddr *)&address,
1563 len, upeer_sockaddr, upeer_addrlen);
1564 if (err < 0)
1565 goto out_fd;
1566 }
1567
1568 /* File flags are not inherited via accept() unlike another OSes. */
1569
1570 fd_install(newfd, newfile);
1571 err = newfd;
1572
1573 out_put:
1574 fput_light(sock->file, fput_needed);
1575 out:
1576 return err;
1577 out_fd_simple:
1578 sock_release(newsock);
1579 put_filp(newfile);
1580 put_unused_fd(newfd);
1581 goto out_put;
1582 out_fd:
1583 fput(newfile);
1584 put_unused_fd(newfd);
1585 goto out_put;
1586 }
1587
1588 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1589 int __user *, upeer_addrlen)
1590 {
1591 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1592 }
1593
1594 /*
1595 * Attempt to connect to a socket with the server address. The address
1596 * is in user space so we verify it is OK and move it to kernel space.
1597 *
1598 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1599 * break bindings
1600 *
1601 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1602 * other SEQPACKET protocols that take time to connect() as it doesn't
1603 * include the -EINPROGRESS status for such sockets.
1604 */
1605
1606 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1607 int, addrlen)
1608 {
1609 struct socket *sock;
1610 struct sockaddr_storage address;
1611 int err, fput_needed;
1612
1613 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1614 if (!sock)
1615 goto out;
1616 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1617 if (err < 0)
1618 goto out_put;
1619
1620 err =
1621 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1622 if (err)
1623 goto out_put;
1624
1625 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1626 sock->file->f_flags);
1627 out_put:
1628 fput_light(sock->file, fput_needed);
1629 out:
1630 return err;
1631 }
1632
1633 /*
1634 * Get the local address ('name') of a socket object. Move the obtained
1635 * name to user space.
1636 */
1637
1638 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1639 int __user *, usockaddr_len)
1640 {
1641 struct socket *sock;
1642 struct sockaddr_storage address;
1643 int len, err, fput_needed;
1644
1645 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1646 if (!sock)
1647 goto out;
1648
1649 err = security_socket_getsockname(sock);
1650 if (err)
1651 goto out_put;
1652
1653 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1654 if (err)
1655 goto out_put;
1656 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1657
1658 out_put:
1659 fput_light(sock->file, fput_needed);
1660 out:
1661 return err;
1662 }
1663
1664 /*
1665 * Get the remote address ('name') of a socket object. Move the obtained
1666 * name to user space.
1667 */
1668
1669 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1670 int __user *, usockaddr_len)
1671 {
1672 struct socket *sock;
1673 struct sockaddr_storage address;
1674 int len, err, fput_needed;
1675
1676 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1677 if (sock != NULL) {
1678 err = security_socket_getpeername(sock);
1679 if (err) {
1680 fput_light(sock->file, fput_needed);
1681 return err;
1682 }
1683
1684 err =
1685 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1686 1);
1687 if (!err)
1688 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1689 usockaddr_len);
1690 fput_light(sock->file, fput_needed);
1691 }
1692 return err;
1693 }
1694
1695 /*
1696 * Send a datagram to a given address. We move the address into kernel
1697 * space and check the user space data area is readable before invoking
1698 * the protocol.
1699 */
1700
1701 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1702 unsigned, flags, struct sockaddr __user *, addr,
1703 int, addr_len)
1704 {
1705 struct socket *sock;
1706 struct sockaddr_storage address;
1707 int err;
1708 struct msghdr msg;
1709 struct iovec iov;
1710 int fput_needed;
1711
1712 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 if (!sock)
1714 goto out;
1715
1716 iov.iov_base = buff;
1717 iov.iov_len = len;
1718 msg.msg_name = NULL;
1719 msg.msg_iov = &iov;
1720 msg.msg_iovlen = 1;
1721 msg.msg_control = NULL;
1722 msg.msg_controllen = 0;
1723 msg.msg_namelen = 0;
1724 if (addr) {
1725 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1726 if (err < 0)
1727 goto out_put;
1728 msg.msg_name = (struct sockaddr *)&address;
1729 msg.msg_namelen = addr_len;
1730 }
1731 if (sock->file->f_flags & O_NONBLOCK)
1732 flags |= MSG_DONTWAIT;
1733 msg.msg_flags = flags;
1734 err = sock_sendmsg(sock, &msg, len);
1735
1736 out_put:
1737 fput_light(sock->file, fput_needed);
1738 out:
1739 return err;
1740 }
1741
1742 /*
1743 * Send a datagram down a socket.
1744 */
1745
1746 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1747 unsigned, flags)
1748 {
1749 return sys_sendto(fd, buff, len, flags, NULL, 0);
1750 }
1751
1752 /*
1753 * Receive a frame from the socket and optionally record the address of the
1754 * sender. We verify the buffers are writable and if needed move the
1755 * sender address from kernel to user space.
1756 */
1757
1758 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1759 unsigned, flags, struct sockaddr __user *, addr,
1760 int __user *, addr_len)
1761 {
1762 struct socket *sock;
1763 struct iovec iov;
1764 struct msghdr msg;
1765 struct sockaddr_storage address;
1766 int err, err2;
1767 int fput_needed;
1768
1769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 if (!sock)
1771 goto out;
1772
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_iovlen = 1;
1776 msg.msg_iov = &iov;
1777 iov.iov_len = size;
1778 iov.iov_base = ubuf;
1779 msg.msg_name = (struct sockaddr *)&address;
1780 msg.msg_namelen = sizeof(address);
1781 if (sock->file->f_flags & O_NONBLOCK)
1782 flags |= MSG_DONTWAIT;
1783 err = sock_recvmsg(sock, &msg, size, flags);
1784
1785 if (err >= 0 && addr != NULL) {
1786 err2 = move_addr_to_user((struct sockaddr *)&address,
1787 msg.msg_namelen, addr, addr_len);
1788 if (err2 < 0)
1789 err = err2;
1790 }
1791
1792 fput_light(sock->file, fput_needed);
1793 out:
1794 return err;
1795 }
1796
1797 /*
1798 * Receive a datagram from a socket.
1799 */
1800
1801 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1802 unsigned flags)
1803 {
1804 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1805 }
1806
1807 /*
1808 * Set a socket option. Because we don't know the option lengths we have
1809 * to pass the user mode parameter for the protocols to sort out.
1810 */
1811
1812 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1813 char __user *, optval, int, optlen)
1814 {
1815 int err, fput_needed;
1816 struct socket *sock;
1817
1818 if (optlen < 0)
1819 return -EINVAL;
1820
1821 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1822 if (sock != NULL) {
1823 err = security_socket_setsockopt(sock, level, optname);
1824 if (err)
1825 goto out_put;
1826
1827 if (level == SOL_SOCKET)
1828 err =
1829 sock_setsockopt(sock, level, optname, optval,
1830 optlen);
1831 else
1832 err =
1833 sock->ops->setsockopt(sock, level, optname, optval,
1834 optlen);
1835 out_put:
1836 fput_light(sock->file, fput_needed);
1837 }
1838 return err;
1839 }
1840
1841 /*
1842 * Get a socket option. Because we don't know the option lengths we have
1843 * to pass a user mode parameter for the protocols to sort out.
1844 */
1845
1846 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1847 char __user *, optval, int __user *, optlen)
1848 {
1849 int err, fput_needed;
1850 struct socket *sock;
1851
1852 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 if (sock != NULL) {
1854 err = security_socket_getsockopt(sock, level, optname);
1855 if (err)
1856 goto out_put;
1857
1858 if (level == SOL_SOCKET)
1859 err =
1860 sock_getsockopt(sock, level, optname, optval,
1861 optlen);
1862 else
1863 err =
1864 sock->ops->getsockopt(sock, level, optname, optval,
1865 optlen);
1866 out_put:
1867 fput_light(sock->file, fput_needed);
1868 }
1869 return err;
1870 }
1871
1872 /*
1873 * Shutdown a socket.
1874 */
1875
1876 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1877 {
1878 int err, fput_needed;
1879 struct socket *sock;
1880
1881 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1882 if (sock != NULL) {
1883 err = security_socket_shutdown(sock, how);
1884 if (!err)
1885 err = sock->ops->shutdown(sock, how);
1886 fput_light(sock->file, fput_needed);
1887 }
1888 return err;
1889 }
1890
1891 /* A couple of helpful macros for getting the address of the 32/64 bit
1892 * fields which are the same type (int / unsigned) on our platforms.
1893 */
1894 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1895 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1896 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1897
1898 /*
1899 * BSD sendmsg interface
1900 */
1901
1902 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1903 {
1904 struct compat_msghdr __user *msg_compat =
1905 (struct compat_msghdr __user *)msg;
1906 struct socket *sock;
1907 struct sockaddr_storage address;
1908 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911 /* 20 is size of ipv6_pktinfo */
1912 unsigned char *ctl_buf = ctl;
1913 struct msghdr msg_sys;
1914 int err, ctl_len, iov_size, total_len;
1915 int fput_needed;
1916
1917 err = -EFAULT;
1918 if (MSG_CMSG_COMPAT & flags) {
1919 if (get_compat_msghdr(&msg_sys, msg_compat))
1920 return -EFAULT;
1921 }
1922 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1923 return -EFAULT;
1924
1925 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926 if (!sock)
1927 goto out;
1928
1929 /* do not move before msg_sys is valid */
1930 err = -EMSGSIZE;
1931 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1932 goto out_put;
1933
1934 /* Check whether to allocate the iovec area */
1935 err = -ENOMEM;
1936 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1937 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1938 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1939 if (!iov)
1940 goto out_put;
1941 }
1942
1943 /* This will also move the address data into kernel space */
1944 if (MSG_CMSG_COMPAT & flags) {
1945 err = verify_compat_iovec(&msg_sys, iov,
1946 (struct sockaddr *)&address,
1947 VERIFY_READ);
1948 } else
1949 err = verify_iovec(&msg_sys, iov,
1950 (struct sockaddr *)&address,
1951 VERIFY_READ);
1952 if (err < 0)
1953 goto out_freeiov;
1954 total_len = err;
1955
1956 err = -ENOBUFS;
1957
1958 if (msg_sys.msg_controllen > INT_MAX)
1959 goto out_freeiov;
1960 ctl_len = msg_sys.msg_controllen;
1961 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1962 err =
1963 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1964 sizeof(ctl));
1965 if (err)
1966 goto out_freeiov;
1967 ctl_buf = msg_sys.msg_control;
1968 ctl_len = msg_sys.msg_controllen;
1969 } else if (ctl_len) {
1970 if (ctl_len > sizeof(ctl)) {
1971 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1972 if (ctl_buf == NULL)
1973 goto out_freeiov;
1974 }
1975 err = -EFAULT;
1976 /*
1977 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1978 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1979 * checking falls down on this.
1980 */
1981 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1982 ctl_len))
1983 goto out_freectl;
1984 msg_sys.msg_control = ctl_buf;
1985 }
1986 msg_sys.msg_flags = flags;
1987
1988 if (sock->file->f_flags & O_NONBLOCK)
1989 msg_sys.msg_flags |= MSG_DONTWAIT;
1990 err = sock_sendmsg(sock, &msg_sys, total_len);
1991
1992 out_freectl:
1993 if (ctl_buf != ctl)
1994 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1995 out_freeiov:
1996 if (iov != iovstack)
1997 sock_kfree_s(sock->sk, iov, iov_size);
1998 out_put:
1999 fput_light(sock->file, fput_needed);
2000 out:
2001 return err;
2002 }
2003
2004 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2005 struct msghdr *msg_sys, unsigned flags, int nosec)
2006 {
2007 struct compat_msghdr __user *msg_compat =
2008 (struct compat_msghdr __user *)msg;
2009 struct iovec iovstack[UIO_FASTIOV];
2010 struct iovec *iov = iovstack;
2011 unsigned long cmsg_ptr;
2012 int err, iov_size, total_len, len;
2013
2014 /* kernel mode address */
2015 struct sockaddr_storage addr;
2016
2017 /* user mode address pointers */
2018 struct sockaddr __user *uaddr;
2019 int __user *uaddr_len;
2020
2021 if (MSG_CMSG_COMPAT & flags) {
2022 if (get_compat_msghdr(msg_sys, msg_compat))
2023 return -EFAULT;
2024 }
2025 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2026 return -EFAULT;
2027
2028 err = -EMSGSIZE;
2029 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2030 goto out;
2031
2032 /* Check whether to allocate the iovec area */
2033 err = -ENOMEM;
2034 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2035 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2036 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2037 if (!iov)
2038 goto out;
2039 }
2040
2041 /*
2042 * Save the user-mode address (verify_iovec will change the
2043 * kernel msghdr to use the kernel address space)
2044 */
2045
2046 uaddr = (__force void __user *)msg_sys->msg_name;
2047 uaddr_len = COMPAT_NAMELEN(msg);
2048 if (MSG_CMSG_COMPAT & flags) {
2049 err = verify_compat_iovec(msg_sys, iov,
2050 (struct sockaddr *)&addr,
2051 VERIFY_WRITE);
2052 } else
2053 err = verify_iovec(msg_sys, iov,
2054 (struct sockaddr *)&addr,
2055 VERIFY_WRITE);
2056 if (err < 0)
2057 goto out_freeiov;
2058 total_len = err;
2059
2060 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2061 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2062
2063 if (sock->file->f_flags & O_NONBLOCK)
2064 flags |= MSG_DONTWAIT;
2065 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2066 total_len, flags);
2067 if (err < 0)
2068 goto out_freeiov;
2069 len = err;
2070
2071 if (uaddr != NULL) {
2072 err = move_addr_to_user((struct sockaddr *)&addr,
2073 msg_sys->msg_namelen, uaddr,
2074 uaddr_len);
2075 if (err < 0)
2076 goto out_freeiov;
2077 }
2078 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2079 COMPAT_FLAGS(msg));
2080 if (err)
2081 goto out_freeiov;
2082 if (MSG_CMSG_COMPAT & flags)
2083 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2084 &msg_compat->msg_controllen);
2085 else
2086 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2087 &msg->msg_controllen);
2088 if (err)
2089 goto out_freeiov;
2090 err = len;
2091
2092 out_freeiov:
2093 if (iov != iovstack)
2094 sock_kfree_s(sock->sk, iov, iov_size);
2095 out:
2096 return err;
2097 }
2098
2099 /*
2100 * BSD recvmsg interface
2101 */
2102
2103 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2104 unsigned int, flags)
2105 {
2106 int fput_needed, err;
2107 struct msghdr msg_sys;
2108 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109
2110 if (!sock)
2111 goto out;
2112
2113 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2114
2115 fput_light(sock->file, fput_needed);
2116 out:
2117 return err;
2118 }
2119
2120 /*
2121 * Linux recvmmsg interface
2122 */
2123
2124 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2125 unsigned int flags, struct timespec *timeout)
2126 {
2127 int fput_needed, err, datagrams;
2128 struct socket *sock;
2129 struct mmsghdr __user *entry;
2130 struct msghdr msg_sys;
2131 struct timespec end_time;
2132
2133 if (timeout &&
2134 poll_select_set_timeout(&end_time, timeout->tv_sec,
2135 timeout->tv_nsec))
2136 return -EINVAL;
2137
2138 datagrams = 0;
2139
2140 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 if (!sock)
2142 return err;
2143
2144 err = sock_error(sock->sk);
2145 if (err)
2146 goto out_put;
2147
2148 entry = mmsg;
2149
2150 while (datagrams < vlen) {
2151 /*
2152 * No need to ask LSM for more than the first datagram.
2153 */
2154 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2155 &msg_sys, flags, datagrams);
2156 if (err < 0)
2157 break;
2158 err = put_user(err, &entry->msg_len);
2159 if (err)
2160 break;
2161 ++entry;
2162 ++datagrams;
2163
2164 if (timeout) {
2165 ktime_get_ts(timeout);
2166 *timeout = timespec_sub(end_time, *timeout);
2167 if (timeout->tv_sec < 0) {
2168 timeout->tv_sec = timeout->tv_nsec = 0;
2169 break;
2170 }
2171
2172 /* Timeout, return less than vlen datagrams */
2173 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2174 break;
2175 }
2176
2177 /* Out of band data, return right away */
2178 if (msg_sys.msg_flags & MSG_OOB)
2179 break;
2180 }
2181
2182 out_put:
2183 fput_light(sock->file, fput_needed);
2184
2185 if (err == 0)
2186 return datagrams;
2187
2188 if (datagrams != 0) {
2189 /*
2190 * We may return less entries than requested (vlen) if the
2191 * sock is non block and there aren't enough datagrams...
2192 */
2193 if (err != -EAGAIN) {
2194 /*
2195 * ... or if recvmsg returns an error after we
2196 * received some datagrams, where we record the
2197 * error to return on the next call or if the
2198 * app asks about it using getsockopt(SO_ERROR).
2199 */
2200 sock->sk->sk_err = -err;
2201 }
2202
2203 return datagrams;
2204 }
2205
2206 return err;
2207 }
2208
2209 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2210 unsigned int, vlen, unsigned int, flags,
2211 struct timespec __user *, timeout)
2212 {
2213 int datagrams;
2214 struct timespec timeout_sys;
2215
2216 if (!timeout)
2217 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2218
2219 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2220 return -EFAULT;
2221
2222 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2223
2224 if (datagrams > 0 &&
2225 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2226 datagrams = -EFAULT;
2227
2228 return datagrams;
2229 }
2230
2231 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2232 /* Argument list sizes for sys_socketcall */
2233 #define AL(x) ((x) * sizeof(unsigned long))
2234 static const unsigned char nargs[20] = {
2235 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2236 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2237 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2238 AL(4),AL(5)
2239 };
2240
2241 #undef AL
2242
2243 /*
2244 * System call vectors.
2245 *
2246 * Argument checking cleaned up. Saved 20% in size.
2247 * This function doesn't need to set the kernel lock because
2248 * it is set by the callees.
2249 */
2250
2251 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2252 {
2253 unsigned long a[6];
2254 unsigned long a0, a1;
2255 int err;
2256 unsigned int len;
2257
2258 if (call < 1 || call > SYS_RECVMMSG)
2259 return -EINVAL;
2260
2261 len = nargs[call];
2262 if (len > sizeof(a))
2263 return -EINVAL;
2264
2265 /* copy_from_user should be SMP safe. */
2266 if (copy_from_user(a, args, len))
2267 return -EFAULT;
2268
2269 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2270
2271 a0 = a[0];
2272 a1 = a[1];
2273
2274 switch (call) {
2275 case SYS_SOCKET:
2276 err = sys_socket(a0, a1, a[2]);
2277 break;
2278 case SYS_BIND:
2279 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2280 break;
2281 case SYS_CONNECT:
2282 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2283 break;
2284 case SYS_LISTEN:
2285 err = sys_listen(a0, a1);
2286 break;
2287 case SYS_ACCEPT:
2288 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2289 (int __user *)a[2], 0);
2290 break;
2291 case SYS_GETSOCKNAME:
2292 err =
2293 sys_getsockname(a0, (struct sockaddr __user *)a1,
2294 (int __user *)a[2]);
2295 break;
2296 case SYS_GETPEERNAME:
2297 err =
2298 sys_getpeername(a0, (struct sockaddr __user *)a1,
2299 (int __user *)a[2]);
2300 break;
2301 case SYS_SOCKETPAIR:
2302 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2303 break;
2304 case SYS_SEND:
2305 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2306 break;
2307 case SYS_SENDTO:
2308 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2309 (struct sockaddr __user *)a[4], a[5]);
2310 break;
2311 case SYS_RECV:
2312 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2313 break;
2314 case SYS_RECVFROM:
2315 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2316 (struct sockaddr __user *)a[4],
2317 (int __user *)a[5]);
2318 break;
2319 case SYS_SHUTDOWN:
2320 err = sys_shutdown(a0, a1);
2321 break;
2322 case SYS_SETSOCKOPT:
2323 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2324 break;
2325 case SYS_GETSOCKOPT:
2326 err =
2327 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2328 (int __user *)a[4]);
2329 break;
2330 case SYS_SENDMSG:
2331 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2332 break;
2333 case SYS_RECVMSG:
2334 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2335 break;
2336 case SYS_RECVMMSG:
2337 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2338 (struct timespec __user *)a[4]);
2339 break;
2340 case SYS_ACCEPT4:
2341 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2342 (int __user *)a[2], a[3]);
2343 break;
2344 default:
2345 err = -EINVAL;
2346 break;
2347 }
2348 return err;
2349 }
2350
2351 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2352
2353 /**
2354 * sock_register - add a socket protocol handler
2355 * @ops: description of protocol
2356 *
2357 * This function is called by a protocol handler that wants to
2358 * advertise its address family, and have it linked into the
2359 * socket interface. The value ops->family coresponds to the
2360 * socket system call protocol family.
2361 */
2362 int sock_register(const struct net_proto_family *ops)
2363 {
2364 int err;
2365
2366 if (ops->family >= NPROTO) {
2367 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2368 NPROTO);
2369 return -ENOBUFS;
2370 }
2371
2372 spin_lock(&net_family_lock);
2373 if (net_families[ops->family])
2374 err = -EEXIST;
2375 else {
2376 net_families[ops->family] = ops;
2377 err = 0;
2378 }
2379 spin_unlock(&net_family_lock);
2380
2381 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2382 return err;
2383 }
2384
2385 /**
2386 * sock_unregister - remove a protocol handler
2387 * @family: protocol family to remove
2388 *
2389 * This function is called by a protocol handler that wants to
2390 * remove its address family, and have it unlinked from the
2391 * new socket creation.
2392 *
2393 * If protocol handler is a module, then it can use module reference
2394 * counts to protect against new references. If protocol handler is not
2395 * a module then it needs to provide its own protection in
2396 * the ops->create routine.
2397 */
2398 void sock_unregister(int family)
2399 {
2400 BUG_ON(family < 0 || family >= NPROTO);
2401
2402 spin_lock(&net_family_lock);
2403 net_families[family] = NULL;
2404 spin_unlock(&net_family_lock);
2405
2406 synchronize_rcu();
2407
2408 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2409 }
2410
2411 static int __init sock_init(void)
2412 {
2413 /*
2414 * Initialize sock SLAB cache.
2415 */
2416
2417 sk_init();
2418
2419 /*
2420 * Initialize skbuff SLAB cache
2421 */
2422 skb_init();
2423
2424 /*
2425 * Initialize the protocols module.
2426 */
2427
2428 init_inodecache();
2429 register_filesystem(&sock_fs_type);
2430 sock_mnt = kern_mount(&sock_fs_type);
2431
2432 /* The real protocol initialization is performed in later initcalls.
2433 */
2434
2435 #ifdef CONFIG_NETFILTER
2436 netfilter_init();
2437 #endif
2438
2439 return 0;
2440 }
2441
2442 core_initcall(sock_init); /* early initcall */
2443
2444 #ifdef CONFIG_PROC_FS
2445 void socket_seq_show(struct seq_file *seq)
2446 {
2447 int cpu;
2448 int counter = 0;
2449
2450 for_each_possible_cpu(cpu)
2451 counter += per_cpu(sockets_in_use, cpu);
2452
2453 /* It can be negative, by the way. 8) */
2454 if (counter < 0)
2455 counter = 0;
2456
2457 seq_printf(seq, "sockets: used %d\n", counter);
2458 }
2459 #endif /* CONFIG_PROC_FS */
2460
2461 #ifdef CONFIG_COMPAT
2462 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2463 unsigned long arg)
2464 {
2465 struct socket *sock = file->private_data;
2466 int ret = -ENOIOCTLCMD;
2467 struct sock *sk;
2468 struct net *net;
2469
2470 sk = sock->sk;
2471 net = sock_net(sk);
2472
2473 if (sock->ops->compat_ioctl)
2474 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2475
2476 if (ret == -ENOIOCTLCMD &&
2477 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2478 ret = compat_wext_handle_ioctl(net, cmd, arg);
2479
2480 return ret;
2481 }
2482 #endif
2483
2484 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2485 {
2486 return sock->ops->bind(sock, addr, addrlen);
2487 }
2488
2489 int kernel_listen(struct socket *sock, int backlog)
2490 {
2491 return sock->ops->listen(sock, backlog);
2492 }
2493
2494 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2495 {
2496 struct sock *sk = sock->sk;
2497 int err;
2498
2499 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2500 newsock);
2501 if (err < 0)
2502 goto done;
2503
2504 err = sock->ops->accept(sock, *newsock, flags);
2505 if (err < 0) {
2506 sock_release(*newsock);
2507 *newsock = NULL;
2508 goto done;
2509 }
2510
2511 (*newsock)->ops = sock->ops;
2512 __module_get((*newsock)->ops->owner);
2513
2514 done:
2515 return err;
2516 }
2517
2518 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2519 int flags)
2520 {
2521 return sock->ops->connect(sock, addr, addrlen, flags);
2522 }
2523
2524 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2525 int *addrlen)
2526 {
2527 return sock->ops->getname(sock, addr, addrlen, 0);
2528 }
2529
2530 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2531 int *addrlen)
2532 {
2533 return sock->ops->getname(sock, addr, addrlen, 1);
2534 }
2535
2536 int kernel_getsockopt(struct socket *sock, int level, int optname,
2537 char *optval, int *optlen)
2538 {
2539 mm_segment_t oldfs = get_fs();
2540 int err;
2541
2542 set_fs(KERNEL_DS);
2543 if (level == SOL_SOCKET)
2544 err = sock_getsockopt(sock, level, optname, optval, optlen);
2545 else
2546 err = sock->ops->getsockopt(sock, level, optname, optval,
2547 optlen);
2548 set_fs(oldfs);
2549 return err;
2550 }
2551
2552 int kernel_setsockopt(struct socket *sock, int level, int optname,
2553 char *optval, unsigned int optlen)
2554 {
2555 mm_segment_t oldfs = get_fs();
2556 int err;
2557
2558 set_fs(KERNEL_DS);
2559 if (level == SOL_SOCKET)
2560 err = sock_setsockopt(sock, level, optname, optval, optlen);
2561 else
2562 err = sock->ops->setsockopt(sock, level, optname, optval,
2563 optlen);
2564 set_fs(oldfs);
2565 return err;
2566 }
2567
2568 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2569 size_t size, int flags)
2570 {
2571 if (sock->ops->sendpage)
2572 return sock->ops->sendpage(sock, page, offset, size, flags);
2573
2574 return sock_no_sendpage(sock, page, offset, size, flags);
2575 }
2576
2577 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2578 {
2579 mm_segment_t oldfs = get_fs();
2580 int err;
2581
2582 set_fs(KERNEL_DS);
2583 err = sock->ops->ioctl(sock, cmd, arg);
2584 set_fs(oldfs);
2585
2586 return err;
2587 }
2588
2589 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2590 {
2591 return sock->ops->shutdown(sock, how);
2592 }
2593
2594 EXPORT_SYMBOL(sock_create);
2595 EXPORT_SYMBOL(sock_create_kern);
2596 EXPORT_SYMBOL(sock_create_lite);
2597 EXPORT_SYMBOL(sock_map_fd);
2598 EXPORT_SYMBOL(sock_recvmsg);
2599 EXPORT_SYMBOL(sock_register);
2600 EXPORT_SYMBOL(sock_release);
2601 EXPORT_SYMBOL(sock_sendmsg);
2602 EXPORT_SYMBOL(sock_unregister);
2603 EXPORT_SYMBOL(sock_wake_async);
2604 EXPORT_SYMBOL(sockfd_lookup);
2605 EXPORT_SYMBOL(kernel_sendmsg);
2606 EXPORT_SYMBOL(kernel_recvmsg);
2607 EXPORT_SYMBOL(kernel_bind);
2608 EXPORT_SYMBOL(kernel_listen);
2609 EXPORT_SYMBOL(kernel_accept);
2610 EXPORT_SYMBOL(kernel_connect);
2611 EXPORT_SYMBOL(kernel_getsockname);
2612 EXPORT_SYMBOL(kernel_getpeername);
2613 EXPORT_SYMBOL(kernel_getsockopt);
2614 EXPORT_SYMBOL(kernel_setsockopt);
2615 EXPORT_SYMBOL(kernel_sendpage);
2616 EXPORT_SYMBOL(kernel_sock_ioctl);
2617 EXPORT_SYMBOL(kernel_sock_shutdown);