sctp: sctp_sendmsg: Don't initialize default_sinfo
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
84
85 /* WARNING: Please do not remove the SCTP_STATIC attribute to
86 * any of the functions below as they are used to export functions
87 * used by a project regression testsuite.
88 */
89
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
117
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
121
122 static void sctp_enter_memory_pressure(struct sock *sk)
123 {
124 sctp_memory_pressure = 1;
125 }
126
127
128 /* Get the sndbuf space available at the time on the association. */
129 static inline int sctp_wspace(struct sctp_association *asoc)
130 {
131 int amt;
132
133 if (asoc->ep->sndbuf_policy)
134 amt = asoc->sndbuf_used;
135 else
136 amt = sk_wmem_alloc_get(asoc->base.sk);
137
138 if (amt >= asoc->base.sk->sk_sndbuf) {
139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 amt = 0;
141 else {
142 amt = sk_stream_wspace(asoc->base.sk);
143 if (amt < 0)
144 amt = 0;
145 }
146 } else {
147 amt = asoc->base.sk->sk_sndbuf - amt;
148 }
149 return amt;
150 }
151
152 /* Increment the used sndbuf space count of the corresponding association by
153 * the size of the outgoing data chunk.
154 * Also, set the skb destructor for sndbuf accounting later.
155 *
156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158 * destructor in the data chunk skb for the purpose of the sndbuf space
159 * tracking.
160 */
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162 {
163 struct sctp_association *asoc = chunk->asoc;
164 struct sock *sk = asoc->base.sk;
165
166 /* The sndbuf space is tracked per association. */
167 sctp_association_hold(asoc);
168
169 skb_set_owner_w(chunk->skb, sk);
170
171 chunk->skb->destructor = sctp_wfree;
172 /* Save the chunk pointer in skb for sctp_wfree to use later. */
173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174
175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 sizeof(struct sk_buff) +
177 sizeof(struct sctp_chunk);
178
179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 sk->sk_wmem_queued += chunk->skb->truesize;
181 sk_mem_charge(sk, chunk->skb->truesize);
182 }
183
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 int len)
187 {
188 struct sctp_af *af;
189
190 /* Verify basic sockaddr. */
191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 if (!af)
193 return -EINVAL;
194
195 /* Is this a valid SCTP address? */
196 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 return -EINVAL;
198
199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 return -EINVAL;
201
202 return 0;
203 }
204
205 /* Look up the association by its id. If this is not a UDP-style
206 * socket, the ID field is always ignored.
207 */
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209 {
210 struct sctp_association *asoc = NULL;
211
212 /* If this is not a UDP-style socket, assoc id should be ignored. */
213 if (!sctp_style(sk, UDP)) {
214 /* Return NULL if the socket state is not ESTABLISHED. It
215 * could be a TCP-style listening socket or a socket which
216 * hasn't yet called connect() to establish an association.
217 */
218 if (!sctp_sstate(sk, ESTABLISHED))
219 return NULL;
220
221 /* Get the first and the only association from the list. */
222 if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 struct sctp_association, asocs);
225 return asoc;
226 }
227
228 /* Otherwise this is a UDP-style socket. */
229 if (!id || (id == (sctp_assoc_t)-1))
230 return NULL;
231
232 spin_lock_bh(&sctp_assocs_id_lock);
233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 spin_unlock_bh(&sctp_assocs_id_lock);
235
236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 return NULL;
238
239 return asoc;
240 }
241
242 /* Look up the transport from an address and an assoc id. If both address and
243 * id are specified, the associations matching the address and the id should be
244 * the same.
245 */
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 struct sockaddr_storage *addr,
248 sctp_assoc_t id)
249 {
250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 struct sctp_transport *transport;
252 union sctp_addr *laddr = (union sctp_addr *)addr;
253
254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 laddr,
256 &transport);
257
258 if (!addr_asoc)
259 return NULL;
260
261 id_asoc = sctp_id2assoc(sk, id);
262 if (id_asoc && (id_asoc != addr_asoc))
263 return NULL;
264
265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 (union sctp_addr *)addr);
267
268 return transport;
269 }
270
271 /* API 3.1.2 bind() - UDP Style Syntax
272 * The syntax of bind() is,
273 *
274 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
275 *
276 * sd - the socket descriptor returned by socket().
277 * addr - the address structure (struct sockaddr_in or struct
278 * sockaddr_in6 [RFC 2553]),
279 * addr_len - the size of the address structure.
280 */
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282 {
283 int retval = 0;
284
285 sctp_lock_sock(sk);
286
287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 sk, addr, addr_len);
289
290 /* Disallow binding twice. */
291 if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 addr_len);
294 else
295 retval = -EINVAL;
296
297 sctp_release_sock(sk);
298
299 return retval;
300 }
301
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
303
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 union sctp_addr *addr, int len)
307 {
308 struct sctp_af *af;
309
310 /* Check minimum size. */
311 if (len < sizeof (struct sockaddr))
312 return NULL;
313
314 /* V4 mapped address are really of AF_INET family */
315 if (addr->sa.sa_family == AF_INET6 &&
316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 if (!opt->pf->af_supported(AF_INET, opt))
318 return NULL;
319 } else {
320 /* Does this PF support this AF? */
321 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 return NULL;
323 }
324
325 /* If we get this far, af is valid. */
326 af = sctp_get_af_specific(addr->sa.sa_family);
327
328 if (len < af->sockaddr_len)
329 return NULL;
330
331 return af;
332 }
333
334 /* Bind a local address either to an endpoint or to an association. */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336 {
337 struct sctp_sock *sp = sctp_sk(sk);
338 struct sctp_endpoint *ep = sp->ep;
339 struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 struct sctp_af *af;
341 unsigned short snum;
342 int ret = 0;
343
344 /* Common sockaddr verification. */
345 af = sctp_sockaddr_af(sp, addr, len);
346 if (!af) {
347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 sk, addr, len);
349 return -EINVAL;
350 }
351
352 snum = ntohs(addr->v4.sin_port);
353
354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 ", port: %d, new port: %d, len: %d)\n",
356 sk,
357 addr,
358 bp->port, snum,
359 len);
360
361 /* PF specific bind() address verification. */
362 if (!sp->pf->bind_verify(sp, addr))
363 return -EADDRNOTAVAIL;
364
365 /* We must either be unbound, or bind to the same port.
366 * It's OK to allow 0 ports if we are already bound.
367 * We'll just inhert an already bound port in this case
368 */
369 if (bp->port) {
370 if (!snum)
371 snum = bp->port;
372 else if (snum != bp->port) {
373 SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 " New port %d does not match existing port "
375 "%d.\n", snum, bp->port);
376 return -EINVAL;
377 }
378 }
379
380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 return -EACCES;
382
383 /* See if the address matches any of the addresses we may have
384 * already bound before checking against other endpoints.
385 */
386 if (sctp_bind_addr_match(bp, addr, sp))
387 return -EINVAL;
388
389 /* Make sure we are allowed to bind here.
390 * The function sctp_get_port_local() does duplicate address
391 * detection.
392 */
393 addr->v4.sin_port = htons(snum);
394 if ((ret = sctp_get_port_local(sk, addr))) {
395 return -EADDRINUSE;
396 }
397
398 /* Refresh ephemeral port. */
399 if (!bp->port)
400 bp->port = inet_sk(sk)->inet_num;
401
402 /* Add the address to the bind address list.
403 * Use GFP_ATOMIC since BHs will be disabled.
404 */
405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406
407 /* Copy back into socket for getsockname() use. */
408 if (!ret) {
409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 af->to_sk_saddr(addr, sk);
411 }
412
413 return ret;
414 }
415
416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417 *
418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419 * at any one time. If a sender, after sending an ASCONF chunk, decides
420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422 * subsequent ASCONF. Note this restriction binds each side, so at any
423 * time two ASCONF may be in-transit on any given association (one sent
424 * from each endpoint).
425 */
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 struct sctp_chunk *chunk)
428 {
429 int retval = 0;
430
431 /* If there is an outstanding ASCONF chunk, queue it for later
432 * transmission.
433 */
434 if (asoc->addip_last_asconf) {
435 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 goto out;
437 }
438
439 /* Hold the chunk until an ASCONF_ACK is received. */
440 sctp_chunk_hold(chunk);
441 retval = sctp_primitive_ASCONF(asoc, chunk);
442 if (retval)
443 sctp_chunk_free(chunk);
444 else
445 asoc->addip_last_asconf = chunk;
446
447 out:
448 return retval;
449 }
450
451 /* Add a list of addresses as bind addresses to local endpoint or
452 * association.
453 *
454 * Basically run through each address specified in the addrs/addrcnt
455 * array/length pair, determine if it is IPv6 or IPv4 and call
456 * sctp_do_bind() on it.
457 *
458 * If any of them fails, then the operation will be reversed and the
459 * ones that were added will be removed.
460 *
461 * Only sctp_setsockopt_bindx() is supposed to call this function.
462 */
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464 {
465 int cnt;
466 int retval = 0;
467 void *addr_buf;
468 struct sockaddr *sa_addr;
469 struct sctp_af *af;
470
471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 sk, addrs, addrcnt);
473
474 addr_buf = addrs;
475 for (cnt = 0; cnt < addrcnt; cnt++) {
476 /* The list may contain either IPv4 or IPv6 address;
477 * determine the address length for walking thru the list.
478 */
479 sa_addr = (struct sockaddr *)addr_buf;
480 af = sctp_get_af_specific(sa_addr->sa_family);
481 if (!af) {
482 retval = -EINVAL;
483 goto err_bindx_add;
484 }
485
486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 af->sockaddr_len);
488
489 addr_buf += af->sockaddr_len;
490
491 err_bindx_add:
492 if (retval < 0) {
493 /* Failed. Cleanup the ones that have been added */
494 if (cnt > 0)
495 sctp_bindx_rem(sk, addrs, cnt);
496 return retval;
497 }
498 }
499
500 return retval;
501 }
502
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504 * associations that are part of the endpoint indicating that a list of local
505 * addresses are added to the endpoint.
506 *
507 * If any of the addresses is already in the bind address list of the
508 * association, we do not send the chunk for that association. But it will not
509 * affect other associations.
510 *
511 * Only sctp_setsockopt_bindx() is supposed to call this function.
512 */
513 static int sctp_send_asconf_add_ip(struct sock *sk,
514 struct sockaddr *addrs,
515 int addrcnt)
516 {
517 struct sctp_sock *sp;
518 struct sctp_endpoint *ep;
519 struct sctp_association *asoc;
520 struct sctp_bind_addr *bp;
521 struct sctp_chunk *chunk;
522 struct sctp_sockaddr_entry *laddr;
523 union sctp_addr *addr;
524 union sctp_addr saveaddr;
525 void *addr_buf;
526 struct sctp_af *af;
527 struct list_head *p;
528 int i;
529 int retval = 0;
530
531 if (!sctp_addip_enable)
532 return retval;
533
534 sp = sctp_sk(sk);
535 ep = sp->ep;
536
537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 __func__, sk, addrs, addrcnt);
539
540 list_for_each_entry(asoc, &ep->asocs, asocs) {
541
542 if (!asoc->peer.asconf_capable)
543 continue;
544
545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 continue;
547
548 if (!sctp_state(asoc, ESTABLISHED))
549 continue;
550
551 /* Check if any address in the packed array of addresses is
552 * in the bind address list of the association. If so,
553 * do not send the asconf chunk to its peer, but continue with
554 * other associations.
555 */
556 addr_buf = addrs;
557 for (i = 0; i < addrcnt; i++) {
558 addr = (union sctp_addr *)addr_buf;
559 af = sctp_get_af_specific(addr->v4.sin_family);
560 if (!af) {
561 retval = -EINVAL;
562 goto out;
563 }
564
565 if (sctp_assoc_lookup_laddr(asoc, addr))
566 break;
567
568 addr_buf += af->sockaddr_len;
569 }
570 if (i < addrcnt)
571 continue;
572
573 /* Use the first valid address in bind addr list of
574 * association as Address Parameter of ASCONF CHUNK.
575 */
576 bp = &asoc->base.bind_addr;
577 p = bp->address_list.next;
578 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 addrcnt, SCTP_PARAM_ADD_IP);
581 if (!chunk) {
582 retval = -ENOMEM;
583 goto out;
584 }
585
586 retval = sctp_send_asconf(asoc, chunk);
587 if (retval)
588 goto out;
589
590 /* Add the new addresses to the bind address list with
591 * use_as_src set to 0.
592 */
593 addr_buf = addrs;
594 for (i = 0; i < addrcnt; i++) {
595 addr = (union sctp_addr *)addr_buf;
596 af = sctp_get_af_specific(addr->v4.sin_family);
597 memcpy(&saveaddr, addr, af->sockaddr_len);
598 retval = sctp_add_bind_addr(bp, &saveaddr,
599 SCTP_ADDR_NEW, GFP_ATOMIC);
600 addr_buf += af->sockaddr_len;
601 }
602 }
603
604 out:
605 return retval;
606 }
607
608 /* Remove a list of addresses from bind addresses list. Do not remove the
609 * last address.
610 *
611 * Basically run through each address specified in the addrs/addrcnt
612 * array/length pair, determine if it is IPv6 or IPv4 and call
613 * sctp_del_bind() on it.
614 *
615 * If any of them fails, then the operation will be reversed and the
616 * ones that were removed will be added back.
617 *
618 * At least one address has to be left; if only one address is
619 * available, the operation will return -EBUSY.
620 *
621 * Only sctp_setsockopt_bindx() is supposed to call this function.
622 */
623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
624 {
625 struct sctp_sock *sp = sctp_sk(sk);
626 struct sctp_endpoint *ep = sp->ep;
627 int cnt;
628 struct sctp_bind_addr *bp = &ep->base.bind_addr;
629 int retval = 0;
630 void *addr_buf;
631 union sctp_addr *sa_addr;
632 struct sctp_af *af;
633
634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635 sk, addrs, addrcnt);
636
637 addr_buf = addrs;
638 for (cnt = 0; cnt < addrcnt; cnt++) {
639 /* If the bind address list is empty or if there is only one
640 * bind address, there is nothing more to be removed (we need
641 * at least one address here).
642 */
643 if (list_empty(&bp->address_list) ||
644 (sctp_list_single_entry(&bp->address_list))) {
645 retval = -EBUSY;
646 goto err_bindx_rem;
647 }
648
649 sa_addr = (union sctp_addr *)addr_buf;
650 af = sctp_get_af_specific(sa_addr->sa.sa_family);
651 if (!af) {
652 retval = -EINVAL;
653 goto err_bindx_rem;
654 }
655
656 if (!af->addr_valid(sa_addr, sp, NULL)) {
657 retval = -EADDRNOTAVAIL;
658 goto err_bindx_rem;
659 }
660
661 if (sa_addr->v4.sin_port &&
662 sa_addr->v4.sin_port != htons(bp->port)) {
663 retval = -EINVAL;
664 goto err_bindx_rem;
665 }
666
667 if (!sa_addr->v4.sin_port)
668 sa_addr->v4.sin_port = htons(bp->port);
669
670 /* FIXME - There is probably a need to check if sk->sk_saddr and
671 * sk->sk_rcv_addr are currently set to one of the addresses to
672 * be removed. This is something which needs to be looked into
673 * when we are fixing the outstanding issues with multi-homing
674 * socket routing and failover schemes. Refer to comments in
675 * sctp_do_bind(). -daisy
676 */
677 retval = sctp_del_bind_addr(bp, sa_addr);
678
679 addr_buf += af->sockaddr_len;
680 err_bindx_rem:
681 if (retval < 0) {
682 /* Failed. Add the ones that has been removed back */
683 if (cnt > 0)
684 sctp_bindx_add(sk, addrs, cnt);
685 return retval;
686 }
687 }
688
689 return retval;
690 }
691
692 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
693 * the associations that are part of the endpoint indicating that a list of
694 * local addresses are removed from the endpoint.
695 *
696 * If any of the addresses is already in the bind address list of the
697 * association, we do not send the chunk for that association. But it will not
698 * affect other associations.
699 *
700 * Only sctp_setsockopt_bindx() is supposed to call this function.
701 */
702 static int sctp_send_asconf_del_ip(struct sock *sk,
703 struct sockaddr *addrs,
704 int addrcnt)
705 {
706 struct sctp_sock *sp;
707 struct sctp_endpoint *ep;
708 struct sctp_association *asoc;
709 struct sctp_transport *transport;
710 struct sctp_bind_addr *bp;
711 struct sctp_chunk *chunk;
712 union sctp_addr *laddr;
713 void *addr_buf;
714 struct sctp_af *af;
715 struct sctp_sockaddr_entry *saddr;
716 int i;
717 int retval = 0;
718
719 if (!sctp_addip_enable)
720 return retval;
721
722 sp = sctp_sk(sk);
723 ep = sp->ep;
724
725 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
726 __func__, sk, addrs, addrcnt);
727
728 list_for_each_entry(asoc, &ep->asocs, asocs) {
729
730 if (!asoc->peer.asconf_capable)
731 continue;
732
733 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
734 continue;
735
736 if (!sctp_state(asoc, ESTABLISHED))
737 continue;
738
739 /* Check if any address in the packed array of addresses is
740 * not present in the bind address list of the association.
741 * If so, do not send the asconf chunk to its peer, but
742 * continue with other associations.
743 */
744 addr_buf = addrs;
745 for (i = 0; i < addrcnt; i++) {
746 laddr = (union sctp_addr *)addr_buf;
747 af = sctp_get_af_specific(laddr->v4.sin_family);
748 if (!af) {
749 retval = -EINVAL;
750 goto out;
751 }
752
753 if (!sctp_assoc_lookup_laddr(asoc, laddr))
754 break;
755
756 addr_buf += af->sockaddr_len;
757 }
758 if (i < addrcnt)
759 continue;
760
761 /* Find one address in the association's bind address list
762 * that is not in the packed array of addresses. This is to
763 * make sure that we do not delete all the addresses in the
764 * association.
765 */
766 bp = &asoc->base.bind_addr;
767 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
768 addrcnt, sp);
769 if (!laddr)
770 continue;
771
772 /* We do not need RCU protection throughout this loop
773 * because this is done under a socket lock from the
774 * setsockopt call.
775 */
776 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
777 SCTP_PARAM_DEL_IP);
778 if (!chunk) {
779 retval = -ENOMEM;
780 goto out;
781 }
782
783 /* Reset use_as_src flag for the addresses in the bind address
784 * list that are to be deleted.
785 */
786 addr_buf = addrs;
787 for (i = 0; i < addrcnt; i++) {
788 laddr = (union sctp_addr *)addr_buf;
789 af = sctp_get_af_specific(laddr->v4.sin_family);
790 list_for_each_entry(saddr, &bp->address_list, list) {
791 if (sctp_cmp_addr_exact(&saddr->a, laddr))
792 saddr->state = SCTP_ADDR_DEL;
793 }
794 addr_buf += af->sockaddr_len;
795 }
796
797 /* Update the route and saddr entries for all the transports
798 * as some of the addresses in the bind address list are
799 * about to be deleted and cannot be used as source addresses.
800 */
801 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
802 transports) {
803 dst_release(transport->dst);
804 sctp_transport_route(transport, NULL,
805 sctp_sk(asoc->base.sk));
806 }
807
808 retval = sctp_send_asconf(asoc, chunk);
809 }
810 out:
811 return retval;
812 }
813
814 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
815 *
816 * API 8.1
817 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
818 * int flags);
819 *
820 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
821 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
822 * or IPv6 addresses.
823 *
824 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
825 * Section 3.1.2 for this usage.
826 *
827 * addrs is a pointer to an array of one or more socket addresses. Each
828 * address is contained in its appropriate structure (i.e. struct
829 * sockaddr_in or struct sockaddr_in6) the family of the address type
830 * must be used to distinguish the address length (note that this
831 * representation is termed a "packed array" of addresses). The caller
832 * specifies the number of addresses in the array with addrcnt.
833 *
834 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
835 * -1, and sets errno to the appropriate error code.
836 *
837 * For SCTP, the port given in each socket address must be the same, or
838 * sctp_bindx() will fail, setting errno to EINVAL.
839 *
840 * The flags parameter is formed from the bitwise OR of zero or more of
841 * the following currently defined flags:
842 *
843 * SCTP_BINDX_ADD_ADDR
844 *
845 * SCTP_BINDX_REM_ADDR
846 *
847 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
848 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
849 * addresses from the association. The two flags are mutually exclusive;
850 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
851 * not remove all addresses from an association; sctp_bindx() will
852 * reject such an attempt with EINVAL.
853 *
854 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
855 * additional addresses with an endpoint after calling bind(). Or use
856 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
857 * socket is associated with so that no new association accepted will be
858 * associated with those addresses. If the endpoint supports dynamic
859 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
860 * endpoint to send the appropriate message to the peer to change the
861 * peers address lists.
862 *
863 * Adding and removing addresses from a connected association is
864 * optional functionality. Implementations that do not support this
865 * functionality should return EOPNOTSUPP.
866 *
867 * Basically do nothing but copying the addresses from user to kernel
868 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
869 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
870 * from userspace.
871 *
872 * We don't use copy_from_user() for optimization: we first do the
873 * sanity checks (buffer size -fast- and access check-healthy
874 * pointer); if all of those succeed, then we can alloc the memory
875 * (expensive operation) needed to copy the data to kernel. Then we do
876 * the copying without checking the user space area
877 * (__copy_from_user()).
878 *
879 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
880 * it.
881 *
882 * sk The sk of the socket
883 * addrs The pointer to the addresses in user land
884 * addrssize Size of the addrs buffer
885 * op Operation to perform (add or remove, see the flags of
886 * sctp_bindx)
887 *
888 * Returns 0 if ok, <0 errno code on error.
889 */
890 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
891 struct sockaddr __user *addrs,
892 int addrs_size, int op)
893 {
894 struct sockaddr *kaddrs;
895 int err;
896 int addrcnt = 0;
897 int walk_size = 0;
898 struct sockaddr *sa_addr;
899 void *addr_buf;
900 struct sctp_af *af;
901
902 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
903 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
904
905 if (unlikely(addrs_size <= 0))
906 return -EINVAL;
907
908 /* Check the user passed a healthy pointer. */
909 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
910 return -EFAULT;
911
912 /* Alloc space for the address array in kernel memory. */
913 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
914 if (unlikely(!kaddrs))
915 return -ENOMEM;
916
917 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
918 kfree(kaddrs);
919 return -EFAULT;
920 }
921
922 /* Walk through the addrs buffer and count the number of addresses. */
923 addr_buf = kaddrs;
924 while (walk_size < addrs_size) {
925 if (walk_size + sizeof(sa_family_t) > addrs_size) {
926 kfree(kaddrs);
927 return -EINVAL;
928 }
929
930 sa_addr = (struct sockaddr *)addr_buf;
931 af = sctp_get_af_specific(sa_addr->sa_family);
932
933 /* If the address family is not supported or if this address
934 * causes the address buffer to overflow return EINVAL.
935 */
936 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
937 kfree(kaddrs);
938 return -EINVAL;
939 }
940 addrcnt++;
941 addr_buf += af->sockaddr_len;
942 walk_size += af->sockaddr_len;
943 }
944
945 /* Do the work. */
946 switch (op) {
947 case SCTP_BINDX_ADD_ADDR:
948 err = sctp_bindx_add(sk, kaddrs, addrcnt);
949 if (err)
950 goto out;
951 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
952 break;
953
954 case SCTP_BINDX_REM_ADDR:
955 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
956 if (err)
957 goto out;
958 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
959 break;
960
961 default:
962 err = -EINVAL;
963 break;
964 }
965
966 out:
967 kfree(kaddrs);
968
969 return err;
970 }
971
972 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
973 *
974 * Common routine for handling connect() and sctp_connectx().
975 * Connect will come in with just a single address.
976 */
977 static int __sctp_connect(struct sock* sk,
978 struct sockaddr *kaddrs,
979 int addrs_size,
980 sctp_assoc_t *assoc_id)
981 {
982 struct sctp_sock *sp;
983 struct sctp_endpoint *ep;
984 struct sctp_association *asoc = NULL;
985 struct sctp_association *asoc2;
986 struct sctp_transport *transport;
987 union sctp_addr to;
988 struct sctp_af *af;
989 sctp_scope_t scope;
990 long timeo;
991 int err = 0;
992 int addrcnt = 0;
993 int walk_size = 0;
994 union sctp_addr *sa_addr = NULL;
995 void *addr_buf;
996 unsigned short port;
997 unsigned int f_flags = 0;
998
999 sp = sctp_sk(sk);
1000 ep = sp->ep;
1001
1002 /* connect() cannot be done on a socket that is already in ESTABLISHED
1003 * state - UDP-style peeled off socket or a TCP-style socket that
1004 * is already connected.
1005 * It cannot be done even on a TCP-style listening socket.
1006 */
1007 if (sctp_sstate(sk, ESTABLISHED) ||
1008 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1009 err = -EISCONN;
1010 goto out_free;
1011 }
1012
1013 /* Walk through the addrs buffer and count the number of addresses. */
1014 addr_buf = kaddrs;
1015 while (walk_size < addrs_size) {
1016 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1017 err = -EINVAL;
1018 goto out_free;
1019 }
1020
1021 sa_addr = (union sctp_addr *)addr_buf;
1022 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1023
1024 /* If the address family is not supported or if this address
1025 * causes the address buffer to overflow return EINVAL.
1026 */
1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1028 err = -EINVAL;
1029 goto out_free;
1030 }
1031
1032 port = ntohs(sa_addr->v4.sin_port);
1033
1034 /* Save current address so we can work with it */
1035 memcpy(&to, sa_addr, af->sockaddr_len);
1036
1037 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1038 if (err)
1039 goto out_free;
1040
1041 /* Make sure the destination port is correctly set
1042 * in all addresses.
1043 */
1044 if (asoc && asoc->peer.port && asoc->peer.port != port)
1045 goto out_free;
1046
1047
1048 /* Check if there already is a matching association on the
1049 * endpoint (other than the one created here).
1050 */
1051 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1052 if (asoc2 && asoc2 != asoc) {
1053 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1054 err = -EISCONN;
1055 else
1056 err = -EALREADY;
1057 goto out_free;
1058 }
1059
1060 /* If we could not find a matching association on the endpoint,
1061 * make sure that there is no peeled-off association matching
1062 * the peer address even on another socket.
1063 */
1064 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1065 err = -EADDRNOTAVAIL;
1066 goto out_free;
1067 }
1068
1069 if (!asoc) {
1070 /* If a bind() or sctp_bindx() is not called prior to
1071 * an sctp_connectx() call, the system picks an
1072 * ephemeral port and will choose an address set
1073 * equivalent to binding with a wildcard address.
1074 */
1075 if (!ep->base.bind_addr.port) {
1076 if (sctp_autobind(sk)) {
1077 err = -EAGAIN;
1078 goto out_free;
1079 }
1080 } else {
1081 /*
1082 * If an unprivileged user inherits a 1-many
1083 * style socket with open associations on a
1084 * privileged port, it MAY be permitted to
1085 * accept new associations, but it SHOULD NOT
1086 * be permitted to open new associations.
1087 */
1088 if (ep->base.bind_addr.port < PROT_SOCK &&
1089 !capable(CAP_NET_BIND_SERVICE)) {
1090 err = -EACCES;
1091 goto out_free;
1092 }
1093 }
1094
1095 scope = sctp_scope(&to);
1096 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1097 if (!asoc) {
1098 err = -ENOMEM;
1099 goto out_free;
1100 }
1101
1102 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1103 GFP_KERNEL);
1104 if (err < 0) {
1105 goto out_free;
1106 }
1107
1108 }
1109
1110 /* Prime the peer's transport structures. */
1111 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1112 SCTP_UNKNOWN);
1113 if (!transport) {
1114 err = -ENOMEM;
1115 goto out_free;
1116 }
1117
1118 addrcnt++;
1119 addr_buf += af->sockaddr_len;
1120 walk_size += af->sockaddr_len;
1121 }
1122
1123 /* In case the user of sctp_connectx() wants an association
1124 * id back, assign one now.
1125 */
1126 if (assoc_id) {
1127 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1128 if (err < 0)
1129 goto out_free;
1130 }
1131
1132 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1133 if (err < 0) {
1134 goto out_free;
1135 }
1136
1137 /* Initialize sk's dport and daddr for getpeername() */
1138 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1139 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1140 af->to_sk_daddr(sa_addr, sk);
1141 sk->sk_err = 0;
1142
1143 /* in-kernel sockets don't generally have a file allocated to them
1144 * if all they do is call sock_create_kern().
1145 */
1146 if (sk->sk_socket->file)
1147 f_flags = sk->sk_socket->file->f_flags;
1148
1149 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1150
1151 err = sctp_wait_for_connect(asoc, &timeo);
1152 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1153 *assoc_id = asoc->assoc_id;
1154
1155 /* Don't free association on exit. */
1156 asoc = NULL;
1157
1158 out_free:
1159
1160 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1161 " kaddrs: %p err: %d\n",
1162 asoc, kaddrs, err);
1163 if (asoc)
1164 sctp_association_free(asoc);
1165 return err;
1166 }
1167
1168 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1169 *
1170 * API 8.9
1171 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1172 * sctp_assoc_t *asoc);
1173 *
1174 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1175 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1176 * or IPv6 addresses.
1177 *
1178 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1179 * Section 3.1.2 for this usage.
1180 *
1181 * addrs is a pointer to an array of one or more socket addresses. Each
1182 * address is contained in its appropriate structure (i.e. struct
1183 * sockaddr_in or struct sockaddr_in6) the family of the address type
1184 * must be used to distengish the address length (note that this
1185 * representation is termed a "packed array" of addresses). The caller
1186 * specifies the number of addresses in the array with addrcnt.
1187 *
1188 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1189 * the association id of the new association. On failure, sctp_connectx()
1190 * returns -1, and sets errno to the appropriate error code. The assoc_id
1191 * is not touched by the kernel.
1192 *
1193 * For SCTP, the port given in each socket address must be the same, or
1194 * sctp_connectx() will fail, setting errno to EINVAL.
1195 *
1196 * An application can use sctp_connectx to initiate an association with
1197 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1198 * allows a caller to specify multiple addresses at which a peer can be
1199 * reached. The way the SCTP stack uses the list of addresses to set up
1200 * the association is implementation dependent. This function only
1201 * specifies that the stack will try to make use of all the addresses in
1202 * the list when needed.
1203 *
1204 * Note that the list of addresses passed in is only used for setting up
1205 * the association. It does not necessarily equal the set of addresses
1206 * the peer uses for the resulting association. If the caller wants to
1207 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1208 * retrieve them after the association has been set up.
1209 *
1210 * Basically do nothing but copying the addresses from user to kernel
1211 * land and invoking either sctp_connectx(). This is used for tunneling
1212 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1213 *
1214 * We don't use copy_from_user() for optimization: we first do the
1215 * sanity checks (buffer size -fast- and access check-healthy
1216 * pointer); if all of those succeed, then we can alloc the memory
1217 * (expensive operation) needed to copy the data to kernel. Then we do
1218 * the copying without checking the user space area
1219 * (__copy_from_user()).
1220 *
1221 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1222 * it.
1223 *
1224 * sk The sk of the socket
1225 * addrs The pointer to the addresses in user land
1226 * addrssize Size of the addrs buffer
1227 *
1228 * Returns >=0 if ok, <0 errno code on error.
1229 */
1230 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1231 struct sockaddr __user *addrs,
1232 int addrs_size,
1233 sctp_assoc_t *assoc_id)
1234 {
1235 int err = 0;
1236 struct sockaddr *kaddrs;
1237
1238 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1239 __func__, sk, addrs, addrs_size);
1240
1241 if (unlikely(addrs_size <= 0))
1242 return -EINVAL;
1243
1244 /* Check the user passed a healthy pointer. */
1245 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1246 return -EFAULT;
1247
1248 /* Alloc space for the address array in kernel memory. */
1249 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1250 if (unlikely(!kaddrs))
1251 return -ENOMEM;
1252
1253 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1254 err = -EFAULT;
1255 } else {
1256 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1257 }
1258
1259 kfree(kaddrs);
1260
1261 return err;
1262 }
1263
1264 /*
1265 * This is an older interface. It's kept for backward compatibility
1266 * to the option that doesn't provide association id.
1267 */
1268 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1269 struct sockaddr __user *addrs,
1270 int addrs_size)
1271 {
1272 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1273 }
1274
1275 /*
1276 * New interface for the API. The since the API is done with a socket
1277 * option, to make it simple we feed back the association id is as a return
1278 * indication to the call. Error is always negative and association id is
1279 * always positive.
1280 */
1281 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1282 struct sockaddr __user *addrs,
1283 int addrs_size)
1284 {
1285 sctp_assoc_t assoc_id = 0;
1286 int err = 0;
1287
1288 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1289
1290 if (err)
1291 return err;
1292 else
1293 return assoc_id;
1294 }
1295
1296 /*
1297 * New (hopefully final) interface for the API.
1298 * We use the sctp_getaddrs_old structure so that use-space library
1299 * can avoid any unnecessary allocations. The only defferent part
1300 * is that we store the actual length of the address buffer into the
1301 * addrs_num structure member. That way we can re-use the existing
1302 * code.
1303 */
1304 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1305 char __user *optval,
1306 int __user *optlen)
1307 {
1308 struct sctp_getaddrs_old param;
1309 sctp_assoc_t assoc_id = 0;
1310 int err = 0;
1311
1312 if (len < sizeof(param))
1313 return -EINVAL;
1314
1315 if (copy_from_user(&param, optval, sizeof(param)))
1316 return -EFAULT;
1317
1318 err = __sctp_setsockopt_connectx(sk,
1319 (struct sockaddr __user *)param.addrs,
1320 param.addr_num, &assoc_id);
1321
1322 if (err == 0 || err == -EINPROGRESS) {
1323 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1324 return -EFAULT;
1325 if (put_user(sizeof(assoc_id), optlen))
1326 return -EFAULT;
1327 }
1328
1329 return err;
1330 }
1331
1332 /* API 3.1.4 close() - UDP Style Syntax
1333 * Applications use close() to perform graceful shutdown (as described in
1334 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1335 * by a UDP-style socket.
1336 *
1337 * The syntax is
1338 *
1339 * ret = close(int sd);
1340 *
1341 * sd - the socket descriptor of the associations to be closed.
1342 *
1343 * To gracefully shutdown a specific association represented by the
1344 * UDP-style socket, an application should use the sendmsg() call,
1345 * passing no user data, but including the appropriate flag in the
1346 * ancillary data (see Section xxxx).
1347 *
1348 * If sd in the close() call is a branched-off socket representing only
1349 * one association, the shutdown is performed on that association only.
1350 *
1351 * 4.1.6 close() - TCP Style Syntax
1352 *
1353 * Applications use close() to gracefully close down an association.
1354 *
1355 * The syntax is:
1356 *
1357 * int close(int sd);
1358 *
1359 * sd - the socket descriptor of the association to be closed.
1360 *
1361 * After an application calls close() on a socket descriptor, no further
1362 * socket operations will succeed on that descriptor.
1363 *
1364 * API 7.1.4 SO_LINGER
1365 *
1366 * An application using the TCP-style socket can use this option to
1367 * perform the SCTP ABORT primitive. The linger option structure is:
1368 *
1369 * struct linger {
1370 * int l_onoff; // option on/off
1371 * int l_linger; // linger time
1372 * };
1373 *
1374 * To enable the option, set l_onoff to 1. If the l_linger value is set
1375 * to 0, calling close() is the same as the ABORT primitive. If the
1376 * value is set to a negative value, the setsockopt() call will return
1377 * an error. If the value is set to a positive value linger_time, the
1378 * close() can be blocked for at most linger_time ms. If the graceful
1379 * shutdown phase does not finish during this period, close() will
1380 * return but the graceful shutdown phase continues in the system.
1381 */
1382 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1383 {
1384 struct sctp_endpoint *ep;
1385 struct sctp_association *asoc;
1386 struct list_head *pos, *temp;
1387
1388 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1389
1390 sctp_lock_sock(sk);
1391 sk->sk_shutdown = SHUTDOWN_MASK;
1392 sk->sk_state = SCTP_SS_CLOSING;
1393
1394 ep = sctp_sk(sk)->ep;
1395
1396 /* Walk all associations on an endpoint. */
1397 list_for_each_safe(pos, temp, &ep->asocs) {
1398 asoc = list_entry(pos, struct sctp_association, asocs);
1399
1400 if (sctp_style(sk, TCP)) {
1401 /* A closed association can still be in the list if
1402 * it belongs to a TCP-style listening socket that is
1403 * not yet accepted. If so, free it. If not, send an
1404 * ABORT or SHUTDOWN based on the linger options.
1405 */
1406 if (sctp_state(asoc, CLOSED)) {
1407 sctp_unhash_established(asoc);
1408 sctp_association_free(asoc);
1409 continue;
1410 }
1411 }
1412
1413 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1414 struct sctp_chunk *chunk;
1415
1416 chunk = sctp_make_abort_user(asoc, NULL, 0);
1417 if (chunk)
1418 sctp_primitive_ABORT(asoc, chunk);
1419 } else
1420 sctp_primitive_SHUTDOWN(asoc, NULL);
1421 }
1422
1423 /* Clean up any skbs sitting on the receive queue. */
1424 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1425 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1426
1427 /* On a TCP-style socket, block for at most linger_time if set. */
1428 if (sctp_style(sk, TCP) && timeout)
1429 sctp_wait_for_close(sk, timeout);
1430
1431 /* This will run the backlog queue. */
1432 sctp_release_sock(sk);
1433
1434 /* Supposedly, no process has access to the socket, but
1435 * the net layers still may.
1436 */
1437 sctp_local_bh_disable();
1438 sctp_bh_lock_sock(sk);
1439
1440 /* Hold the sock, since sk_common_release() will put sock_put()
1441 * and we have just a little more cleanup.
1442 */
1443 sock_hold(sk);
1444 sk_common_release(sk);
1445
1446 sctp_bh_unlock_sock(sk);
1447 sctp_local_bh_enable();
1448
1449 sock_put(sk);
1450
1451 SCTP_DBG_OBJCNT_DEC(sock);
1452 }
1453
1454 /* Handle EPIPE error. */
1455 static int sctp_error(struct sock *sk, int flags, int err)
1456 {
1457 if (err == -EPIPE)
1458 err = sock_error(sk) ? : -EPIPE;
1459 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1460 send_sig(SIGPIPE, current, 0);
1461 return err;
1462 }
1463
1464 /* API 3.1.3 sendmsg() - UDP Style Syntax
1465 *
1466 * An application uses sendmsg() and recvmsg() calls to transmit data to
1467 * and receive data from its peer.
1468 *
1469 * ssize_t sendmsg(int socket, const struct msghdr *message,
1470 * int flags);
1471 *
1472 * socket - the socket descriptor of the endpoint.
1473 * message - pointer to the msghdr structure which contains a single
1474 * user message and possibly some ancillary data.
1475 *
1476 * See Section 5 for complete description of the data
1477 * structures.
1478 *
1479 * flags - flags sent or received with the user message, see Section
1480 * 5 for complete description of the flags.
1481 *
1482 * Note: This function could use a rewrite especially when explicit
1483 * connect support comes in.
1484 */
1485 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1486
1487 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1488
1489 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1490 struct msghdr *msg, size_t msg_len)
1491 {
1492 struct sctp_sock *sp;
1493 struct sctp_endpoint *ep;
1494 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1495 struct sctp_transport *transport, *chunk_tp;
1496 struct sctp_chunk *chunk;
1497 union sctp_addr to;
1498 struct sockaddr *msg_name = NULL;
1499 struct sctp_sndrcvinfo default_sinfo;
1500 struct sctp_sndrcvinfo *sinfo;
1501 struct sctp_initmsg *sinit;
1502 sctp_assoc_t associd = 0;
1503 sctp_cmsgs_t cmsgs = { NULL };
1504 int err;
1505 sctp_scope_t scope;
1506 long timeo;
1507 __u16 sinfo_flags = 0;
1508 struct sctp_datamsg *datamsg;
1509 int msg_flags = msg->msg_flags;
1510
1511 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1512 sk, msg, msg_len);
1513
1514 err = 0;
1515 sp = sctp_sk(sk);
1516 ep = sp->ep;
1517
1518 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1519
1520 /* We cannot send a message over a TCP-style listening socket. */
1521 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1522 err = -EPIPE;
1523 goto out_nounlock;
1524 }
1525
1526 /* Parse out the SCTP CMSGs. */
1527 err = sctp_msghdr_parse(msg, &cmsgs);
1528
1529 if (err) {
1530 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1531 goto out_nounlock;
1532 }
1533
1534 /* Fetch the destination address for this packet. This
1535 * address only selects the association--it is not necessarily
1536 * the address we will send to.
1537 * For a peeled-off socket, msg_name is ignored.
1538 */
1539 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1540 int msg_namelen = msg->msg_namelen;
1541
1542 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1543 msg_namelen);
1544 if (err)
1545 return err;
1546
1547 if (msg_namelen > sizeof(to))
1548 msg_namelen = sizeof(to);
1549 memcpy(&to, msg->msg_name, msg_namelen);
1550 msg_name = msg->msg_name;
1551 }
1552
1553 sinfo = cmsgs.info;
1554 sinit = cmsgs.init;
1555
1556 /* Did the user specify SNDRCVINFO? */
1557 if (sinfo) {
1558 sinfo_flags = sinfo->sinfo_flags;
1559 associd = sinfo->sinfo_assoc_id;
1560 }
1561
1562 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1563 msg_len, sinfo_flags);
1564
1565 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1566 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1567 err = -EINVAL;
1568 goto out_nounlock;
1569 }
1570
1571 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1572 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1573 * If SCTP_ABORT is set, the message length could be non zero with
1574 * the msg_iov set to the user abort reason.
1575 */
1576 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1577 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1578 err = -EINVAL;
1579 goto out_nounlock;
1580 }
1581
1582 /* If SCTP_ADDR_OVER is set, there must be an address
1583 * specified in msg_name.
1584 */
1585 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1586 err = -EINVAL;
1587 goto out_nounlock;
1588 }
1589
1590 transport = NULL;
1591
1592 SCTP_DEBUG_PRINTK("About to look up association.\n");
1593
1594 sctp_lock_sock(sk);
1595
1596 /* If a msg_name has been specified, assume this is to be used. */
1597 if (msg_name) {
1598 /* Look for a matching association on the endpoint. */
1599 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1600 if (!asoc) {
1601 /* If we could not find a matching association on the
1602 * endpoint, make sure that it is not a TCP-style
1603 * socket that already has an association or there is
1604 * no peeled-off association on another socket.
1605 */
1606 if ((sctp_style(sk, TCP) &&
1607 sctp_sstate(sk, ESTABLISHED)) ||
1608 sctp_endpoint_is_peeled_off(ep, &to)) {
1609 err = -EADDRNOTAVAIL;
1610 goto out_unlock;
1611 }
1612 }
1613 } else {
1614 asoc = sctp_id2assoc(sk, associd);
1615 if (!asoc) {
1616 err = -EPIPE;
1617 goto out_unlock;
1618 }
1619 }
1620
1621 if (asoc) {
1622 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1623
1624 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1625 * socket that has an association in CLOSED state. This can
1626 * happen when an accepted socket has an association that is
1627 * already CLOSED.
1628 */
1629 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1630 err = -EPIPE;
1631 goto out_unlock;
1632 }
1633
1634 if (sinfo_flags & SCTP_EOF) {
1635 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1636 asoc);
1637 sctp_primitive_SHUTDOWN(asoc, NULL);
1638 err = 0;
1639 goto out_unlock;
1640 }
1641 if (sinfo_flags & SCTP_ABORT) {
1642
1643 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1644 if (!chunk) {
1645 err = -ENOMEM;
1646 goto out_unlock;
1647 }
1648
1649 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1650 sctp_primitive_ABORT(asoc, chunk);
1651 err = 0;
1652 goto out_unlock;
1653 }
1654 }
1655
1656 /* Do we need to create the association? */
1657 if (!asoc) {
1658 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1659
1660 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1661 err = -EINVAL;
1662 goto out_unlock;
1663 }
1664
1665 /* Check for invalid stream against the stream counts,
1666 * either the default or the user specified stream counts.
1667 */
1668 if (sinfo) {
1669 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1670 /* Check against the defaults. */
1671 if (sinfo->sinfo_stream >=
1672 sp->initmsg.sinit_num_ostreams) {
1673 err = -EINVAL;
1674 goto out_unlock;
1675 }
1676 } else {
1677 /* Check against the requested. */
1678 if (sinfo->sinfo_stream >=
1679 sinit->sinit_num_ostreams) {
1680 err = -EINVAL;
1681 goto out_unlock;
1682 }
1683 }
1684 }
1685
1686 /*
1687 * API 3.1.2 bind() - UDP Style Syntax
1688 * If a bind() or sctp_bindx() is not called prior to a
1689 * sendmsg() call that initiates a new association, the
1690 * system picks an ephemeral port and will choose an address
1691 * set equivalent to binding with a wildcard address.
1692 */
1693 if (!ep->base.bind_addr.port) {
1694 if (sctp_autobind(sk)) {
1695 err = -EAGAIN;
1696 goto out_unlock;
1697 }
1698 } else {
1699 /*
1700 * If an unprivileged user inherits a one-to-many
1701 * style socket with open associations on a privileged
1702 * port, it MAY be permitted to accept new associations,
1703 * but it SHOULD NOT be permitted to open new
1704 * associations.
1705 */
1706 if (ep->base.bind_addr.port < PROT_SOCK &&
1707 !capable(CAP_NET_BIND_SERVICE)) {
1708 err = -EACCES;
1709 goto out_unlock;
1710 }
1711 }
1712
1713 scope = sctp_scope(&to);
1714 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1715 if (!new_asoc) {
1716 err = -ENOMEM;
1717 goto out_unlock;
1718 }
1719 asoc = new_asoc;
1720 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1721 if (err < 0) {
1722 err = -ENOMEM;
1723 goto out_free;
1724 }
1725
1726 /* If the SCTP_INIT ancillary data is specified, set all
1727 * the association init values accordingly.
1728 */
1729 if (sinit) {
1730 if (sinit->sinit_num_ostreams) {
1731 asoc->c.sinit_num_ostreams =
1732 sinit->sinit_num_ostreams;
1733 }
1734 if (sinit->sinit_max_instreams) {
1735 asoc->c.sinit_max_instreams =
1736 sinit->sinit_max_instreams;
1737 }
1738 if (sinit->sinit_max_attempts) {
1739 asoc->max_init_attempts
1740 = sinit->sinit_max_attempts;
1741 }
1742 if (sinit->sinit_max_init_timeo) {
1743 asoc->max_init_timeo =
1744 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1745 }
1746 }
1747
1748 /* Prime the peer's transport structures. */
1749 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1750 if (!transport) {
1751 err = -ENOMEM;
1752 goto out_free;
1753 }
1754 }
1755
1756 /* ASSERT: we have a valid association at this point. */
1757 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1758
1759 if (!sinfo) {
1760 /* If the user didn't specify SNDRCVINFO, make up one with
1761 * some defaults.
1762 */
1763 memset(&default_sinfo, 0, sizeof(default_sinfo));
1764 default_sinfo.sinfo_stream = asoc->default_stream;
1765 default_sinfo.sinfo_flags = asoc->default_flags;
1766 default_sinfo.sinfo_ppid = asoc->default_ppid;
1767 default_sinfo.sinfo_context = asoc->default_context;
1768 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1769 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1770 sinfo = &default_sinfo;
1771 }
1772
1773 /* API 7.1.7, the sndbuf size per association bounds the
1774 * maximum size of data that can be sent in a single send call.
1775 */
1776 if (msg_len > sk->sk_sndbuf) {
1777 err = -EMSGSIZE;
1778 goto out_free;
1779 }
1780
1781 if (asoc->pmtu_pending)
1782 sctp_assoc_pending_pmtu(asoc);
1783
1784 /* If fragmentation is disabled and the message length exceeds the
1785 * association fragmentation point, return EMSGSIZE. The I-D
1786 * does not specify what this error is, but this looks like
1787 * a great fit.
1788 */
1789 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1790 err = -EMSGSIZE;
1791 goto out_free;
1792 }
1793
1794 if (sinfo) {
1795 /* Check for invalid stream. */
1796 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1797 err = -EINVAL;
1798 goto out_free;
1799 }
1800 }
1801
1802 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1803 if (!sctp_wspace(asoc)) {
1804 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1805 if (err)
1806 goto out_free;
1807 }
1808
1809 /* If an address is passed with the sendto/sendmsg call, it is used
1810 * to override the primary destination address in the TCP model, or
1811 * when SCTP_ADDR_OVER flag is set in the UDP model.
1812 */
1813 if ((sctp_style(sk, TCP) && msg_name) ||
1814 (sinfo_flags & SCTP_ADDR_OVER)) {
1815 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1816 if (!chunk_tp) {
1817 err = -EINVAL;
1818 goto out_free;
1819 }
1820 } else
1821 chunk_tp = NULL;
1822
1823 /* Auto-connect, if we aren't connected already. */
1824 if (sctp_state(asoc, CLOSED)) {
1825 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1826 if (err < 0)
1827 goto out_free;
1828 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1829 }
1830
1831 /* Break the message into multiple chunks of maximum size. */
1832 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1833 if (!datamsg) {
1834 err = -ENOMEM;
1835 goto out_free;
1836 }
1837
1838 /* Now send the (possibly) fragmented message. */
1839 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1840 sctp_chunk_hold(chunk);
1841
1842 /* Do accounting for the write space. */
1843 sctp_set_owner_w(chunk);
1844
1845 chunk->transport = chunk_tp;
1846 }
1847
1848 /* Send it to the lower layers. Note: all chunks
1849 * must either fail or succeed. The lower layer
1850 * works that way today. Keep it that way or this
1851 * breaks.
1852 */
1853 err = sctp_primitive_SEND(asoc, datamsg);
1854 /* Did the lower layer accept the chunk? */
1855 if (err)
1856 sctp_datamsg_free(datamsg);
1857 else
1858 sctp_datamsg_put(datamsg);
1859
1860 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1861
1862 if (err)
1863 goto out_free;
1864 else
1865 err = msg_len;
1866
1867 /* If we are already past ASSOCIATE, the lower
1868 * layers are responsible for association cleanup.
1869 */
1870 goto out_unlock;
1871
1872 out_free:
1873 if (new_asoc)
1874 sctp_association_free(asoc);
1875 out_unlock:
1876 sctp_release_sock(sk);
1877
1878 out_nounlock:
1879 return sctp_error(sk, msg_flags, err);
1880
1881 #if 0
1882 do_sock_err:
1883 if (msg_len)
1884 err = msg_len;
1885 else
1886 err = sock_error(sk);
1887 goto out;
1888
1889 do_interrupted:
1890 if (msg_len)
1891 err = msg_len;
1892 goto out;
1893 #endif /* 0 */
1894 }
1895
1896 /* This is an extended version of skb_pull() that removes the data from the
1897 * start of a skb even when data is spread across the list of skb's in the
1898 * frag_list. len specifies the total amount of data that needs to be removed.
1899 * when 'len' bytes could be removed from the skb, it returns 0.
1900 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1901 * could not be removed.
1902 */
1903 static int sctp_skb_pull(struct sk_buff *skb, int len)
1904 {
1905 struct sk_buff *list;
1906 int skb_len = skb_headlen(skb);
1907 int rlen;
1908
1909 if (len <= skb_len) {
1910 __skb_pull(skb, len);
1911 return 0;
1912 }
1913 len -= skb_len;
1914 __skb_pull(skb, skb_len);
1915
1916 skb_walk_frags(skb, list) {
1917 rlen = sctp_skb_pull(list, len);
1918 skb->len -= (len-rlen);
1919 skb->data_len -= (len-rlen);
1920
1921 if (!rlen)
1922 return 0;
1923
1924 len = rlen;
1925 }
1926
1927 return len;
1928 }
1929
1930 /* API 3.1.3 recvmsg() - UDP Style Syntax
1931 *
1932 * ssize_t recvmsg(int socket, struct msghdr *message,
1933 * int flags);
1934 *
1935 * socket - the socket descriptor of the endpoint.
1936 * message - pointer to the msghdr structure which contains a single
1937 * user message and possibly some ancillary data.
1938 *
1939 * See Section 5 for complete description of the data
1940 * structures.
1941 *
1942 * flags - flags sent or received with the user message, see Section
1943 * 5 for complete description of the flags.
1944 */
1945 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1946
1947 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1948 struct msghdr *msg, size_t len, int noblock,
1949 int flags, int *addr_len)
1950 {
1951 struct sctp_ulpevent *event = NULL;
1952 struct sctp_sock *sp = sctp_sk(sk);
1953 struct sk_buff *skb;
1954 int copied;
1955 int err = 0;
1956 int skb_len;
1957
1958 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1959 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1960 "len", len, "knoblauch", noblock,
1961 "flags", flags, "addr_len", addr_len);
1962
1963 sctp_lock_sock(sk);
1964
1965 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1966 err = -ENOTCONN;
1967 goto out;
1968 }
1969
1970 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1971 if (!skb)
1972 goto out;
1973
1974 /* Get the total length of the skb including any skb's in the
1975 * frag_list.
1976 */
1977 skb_len = skb->len;
1978
1979 copied = skb_len;
1980 if (copied > len)
1981 copied = len;
1982
1983 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1984
1985 event = sctp_skb2event(skb);
1986
1987 if (err)
1988 goto out_free;
1989
1990 sock_recv_ts_and_drops(msg, sk, skb);
1991 if (sctp_ulpevent_is_notification(event)) {
1992 msg->msg_flags |= MSG_NOTIFICATION;
1993 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1994 } else {
1995 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1996 }
1997
1998 /* Check if we allow SCTP_SNDRCVINFO. */
1999 if (sp->subscribe.sctp_data_io_event)
2000 sctp_ulpevent_read_sndrcvinfo(event, msg);
2001 #if 0
2002 /* FIXME: we should be calling IP/IPv6 layers. */
2003 if (sk->sk_protinfo.af_inet.cmsg_flags)
2004 ip_cmsg_recv(msg, skb);
2005 #endif
2006
2007 err = copied;
2008
2009 /* If skb's length exceeds the user's buffer, update the skb and
2010 * push it back to the receive_queue so that the next call to
2011 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2012 */
2013 if (skb_len > copied) {
2014 msg->msg_flags &= ~MSG_EOR;
2015 if (flags & MSG_PEEK)
2016 goto out_free;
2017 sctp_skb_pull(skb, copied);
2018 skb_queue_head(&sk->sk_receive_queue, skb);
2019
2020 /* When only partial message is copied to the user, increase
2021 * rwnd by that amount. If all the data in the skb is read,
2022 * rwnd is updated when the event is freed.
2023 */
2024 if (!sctp_ulpevent_is_notification(event))
2025 sctp_assoc_rwnd_increase(event->asoc, copied);
2026 goto out;
2027 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2028 (event->msg_flags & MSG_EOR))
2029 msg->msg_flags |= MSG_EOR;
2030 else
2031 msg->msg_flags &= ~MSG_EOR;
2032
2033 out_free:
2034 if (flags & MSG_PEEK) {
2035 /* Release the skb reference acquired after peeking the skb in
2036 * sctp_skb_recv_datagram().
2037 */
2038 kfree_skb(skb);
2039 } else {
2040 /* Free the event which includes releasing the reference to
2041 * the owner of the skb, freeing the skb and updating the
2042 * rwnd.
2043 */
2044 sctp_ulpevent_free(event);
2045 }
2046 out:
2047 sctp_release_sock(sk);
2048 return err;
2049 }
2050
2051 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2052 *
2053 * This option is a on/off flag. If enabled no SCTP message
2054 * fragmentation will be performed. Instead if a message being sent
2055 * exceeds the current PMTU size, the message will NOT be sent and
2056 * instead a error will be indicated to the user.
2057 */
2058 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2059 char __user *optval,
2060 unsigned int optlen)
2061 {
2062 int val;
2063
2064 if (optlen < sizeof(int))
2065 return -EINVAL;
2066
2067 if (get_user(val, (int __user *)optval))
2068 return -EFAULT;
2069
2070 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2071
2072 return 0;
2073 }
2074
2075 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2076 unsigned int optlen)
2077 {
2078 if (optlen > sizeof(struct sctp_event_subscribe))
2079 return -EINVAL;
2080 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2081 return -EFAULT;
2082 return 0;
2083 }
2084
2085 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2086 *
2087 * This socket option is applicable to the UDP-style socket only. When
2088 * set it will cause associations that are idle for more than the
2089 * specified number of seconds to automatically close. An association
2090 * being idle is defined an association that has NOT sent or received
2091 * user data. The special value of '0' indicates that no automatic
2092 * close of any associations should be performed. The option expects an
2093 * integer defining the number of seconds of idle time before an
2094 * association is closed.
2095 */
2096 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2097 unsigned int optlen)
2098 {
2099 struct sctp_sock *sp = sctp_sk(sk);
2100
2101 /* Applicable to UDP-style socket only */
2102 if (sctp_style(sk, TCP))
2103 return -EOPNOTSUPP;
2104 if (optlen != sizeof(int))
2105 return -EINVAL;
2106 if (copy_from_user(&sp->autoclose, optval, optlen))
2107 return -EFAULT;
2108 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2109 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2110
2111 return 0;
2112 }
2113
2114 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2115 *
2116 * Applications can enable or disable heartbeats for any peer address of
2117 * an association, modify an address's heartbeat interval, force a
2118 * heartbeat to be sent immediately, and adjust the address's maximum
2119 * number of retransmissions sent before an address is considered
2120 * unreachable. The following structure is used to access and modify an
2121 * address's parameters:
2122 *
2123 * struct sctp_paddrparams {
2124 * sctp_assoc_t spp_assoc_id;
2125 * struct sockaddr_storage spp_address;
2126 * uint32_t spp_hbinterval;
2127 * uint16_t spp_pathmaxrxt;
2128 * uint32_t spp_pathmtu;
2129 * uint32_t spp_sackdelay;
2130 * uint32_t spp_flags;
2131 * };
2132 *
2133 * spp_assoc_id - (one-to-many style socket) This is filled in the
2134 * application, and identifies the association for
2135 * this query.
2136 * spp_address - This specifies which address is of interest.
2137 * spp_hbinterval - This contains the value of the heartbeat interval,
2138 * in milliseconds. If a value of zero
2139 * is present in this field then no changes are to
2140 * be made to this parameter.
2141 * spp_pathmaxrxt - This contains the maximum number of
2142 * retransmissions before this address shall be
2143 * considered unreachable. If a value of zero
2144 * is present in this field then no changes are to
2145 * be made to this parameter.
2146 * spp_pathmtu - When Path MTU discovery is disabled the value
2147 * specified here will be the "fixed" path mtu.
2148 * Note that if the spp_address field is empty
2149 * then all associations on this address will
2150 * have this fixed path mtu set upon them.
2151 *
2152 * spp_sackdelay - When delayed sack is enabled, this value specifies
2153 * the number of milliseconds that sacks will be delayed
2154 * for. This value will apply to all addresses of an
2155 * association if the spp_address field is empty. Note
2156 * also, that if delayed sack is enabled and this
2157 * value is set to 0, no change is made to the last
2158 * recorded delayed sack timer value.
2159 *
2160 * spp_flags - These flags are used to control various features
2161 * on an association. The flag field may contain
2162 * zero or more of the following options.
2163 *
2164 * SPP_HB_ENABLE - Enable heartbeats on the
2165 * specified address. Note that if the address
2166 * field is empty all addresses for the association
2167 * have heartbeats enabled upon them.
2168 *
2169 * SPP_HB_DISABLE - Disable heartbeats on the
2170 * speicifed address. Note that if the address
2171 * field is empty all addresses for the association
2172 * will have their heartbeats disabled. Note also
2173 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2174 * mutually exclusive, only one of these two should
2175 * be specified. Enabling both fields will have
2176 * undetermined results.
2177 *
2178 * SPP_HB_DEMAND - Request a user initiated heartbeat
2179 * to be made immediately.
2180 *
2181 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2182 * heartbeat delayis to be set to the value of 0
2183 * milliseconds.
2184 *
2185 * SPP_PMTUD_ENABLE - This field will enable PMTU
2186 * discovery upon the specified address. Note that
2187 * if the address feild is empty then all addresses
2188 * on the association are effected.
2189 *
2190 * SPP_PMTUD_DISABLE - This field will disable PMTU
2191 * discovery upon the specified address. Note that
2192 * if the address feild is empty then all addresses
2193 * on the association are effected. Not also that
2194 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2195 * exclusive. Enabling both will have undetermined
2196 * results.
2197 *
2198 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2199 * on delayed sack. The time specified in spp_sackdelay
2200 * is used to specify the sack delay for this address. Note
2201 * that if spp_address is empty then all addresses will
2202 * enable delayed sack and take on the sack delay
2203 * value specified in spp_sackdelay.
2204 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2205 * off delayed sack. If the spp_address field is blank then
2206 * delayed sack is disabled for the entire association. Note
2207 * also that this field is mutually exclusive to
2208 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2209 * results.
2210 */
2211 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2212 struct sctp_transport *trans,
2213 struct sctp_association *asoc,
2214 struct sctp_sock *sp,
2215 int hb_change,
2216 int pmtud_change,
2217 int sackdelay_change)
2218 {
2219 int error;
2220
2221 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2222 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2223 if (error)
2224 return error;
2225 }
2226
2227 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2228 * this field is ignored. Note also that a value of zero indicates
2229 * the current setting should be left unchanged.
2230 */
2231 if (params->spp_flags & SPP_HB_ENABLE) {
2232
2233 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2234 * set. This lets us use 0 value when this flag
2235 * is set.
2236 */
2237 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2238 params->spp_hbinterval = 0;
2239
2240 if (params->spp_hbinterval ||
2241 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2242 if (trans) {
2243 trans->hbinterval =
2244 msecs_to_jiffies(params->spp_hbinterval);
2245 } else if (asoc) {
2246 asoc->hbinterval =
2247 msecs_to_jiffies(params->spp_hbinterval);
2248 } else {
2249 sp->hbinterval = params->spp_hbinterval;
2250 }
2251 }
2252 }
2253
2254 if (hb_change) {
2255 if (trans) {
2256 trans->param_flags =
2257 (trans->param_flags & ~SPP_HB) | hb_change;
2258 } else if (asoc) {
2259 asoc->param_flags =
2260 (asoc->param_flags & ~SPP_HB) | hb_change;
2261 } else {
2262 sp->param_flags =
2263 (sp->param_flags & ~SPP_HB) | hb_change;
2264 }
2265 }
2266
2267 /* When Path MTU discovery is disabled the value specified here will
2268 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2269 * include the flag SPP_PMTUD_DISABLE for this field to have any
2270 * effect).
2271 */
2272 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2273 if (trans) {
2274 trans->pathmtu = params->spp_pathmtu;
2275 sctp_assoc_sync_pmtu(asoc);
2276 } else if (asoc) {
2277 asoc->pathmtu = params->spp_pathmtu;
2278 sctp_frag_point(asoc, params->spp_pathmtu);
2279 } else {
2280 sp->pathmtu = params->spp_pathmtu;
2281 }
2282 }
2283
2284 if (pmtud_change) {
2285 if (trans) {
2286 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2287 (params->spp_flags & SPP_PMTUD_ENABLE);
2288 trans->param_flags =
2289 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2290 if (update) {
2291 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2292 sctp_assoc_sync_pmtu(asoc);
2293 }
2294 } else if (asoc) {
2295 asoc->param_flags =
2296 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2297 } else {
2298 sp->param_flags =
2299 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2300 }
2301 }
2302
2303 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2304 * value of this field is ignored. Note also that a value of zero
2305 * indicates the current setting should be left unchanged.
2306 */
2307 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2308 if (trans) {
2309 trans->sackdelay =
2310 msecs_to_jiffies(params->spp_sackdelay);
2311 } else if (asoc) {
2312 asoc->sackdelay =
2313 msecs_to_jiffies(params->spp_sackdelay);
2314 } else {
2315 sp->sackdelay = params->spp_sackdelay;
2316 }
2317 }
2318
2319 if (sackdelay_change) {
2320 if (trans) {
2321 trans->param_flags =
2322 (trans->param_flags & ~SPP_SACKDELAY) |
2323 sackdelay_change;
2324 } else if (asoc) {
2325 asoc->param_flags =
2326 (asoc->param_flags & ~SPP_SACKDELAY) |
2327 sackdelay_change;
2328 } else {
2329 sp->param_flags =
2330 (sp->param_flags & ~SPP_SACKDELAY) |
2331 sackdelay_change;
2332 }
2333 }
2334
2335 /* Note that a value of zero indicates the current setting should be
2336 left unchanged.
2337 */
2338 if (params->spp_pathmaxrxt) {
2339 if (trans) {
2340 trans->pathmaxrxt = params->spp_pathmaxrxt;
2341 } else if (asoc) {
2342 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2343 } else {
2344 sp->pathmaxrxt = params->spp_pathmaxrxt;
2345 }
2346 }
2347
2348 return 0;
2349 }
2350
2351 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2352 char __user *optval,
2353 unsigned int optlen)
2354 {
2355 struct sctp_paddrparams params;
2356 struct sctp_transport *trans = NULL;
2357 struct sctp_association *asoc = NULL;
2358 struct sctp_sock *sp = sctp_sk(sk);
2359 int error;
2360 int hb_change, pmtud_change, sackdelay_change;
2361
2362 if (optlen != sizeof(struct sctp_paddrparams))
2363 return - EINVAL;
2364
2365 if (copy_from_user(&params, optval, optlen))
2366 return -EFAULT;
2367
2368 /* Validate flags and value parameters. */
2369 hb_change = params.spp_flags & SPP_HB;
2370 pmtud_change = params.spp_flags & SPP_PMTUD;
2371 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2372
2373 if (hb_change == SPP_HB ||
2374 pmtud_change == SPP_PMTUD ||
2375 sackdelay_change == SPP_SACKDELAY ||
2376 params.spp_sackdelay > 500 ||
2377 (params.spp_pathmtu &&
2378 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2379 return -EINVAL;
2380
2381 /* If an address other than INADDR_ANY is specified, and
2382 * no transport is found, then the request is invalid.
2383 */
2384 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2385 trans = sctp_addr_id2transport(sk, &params.spp_address,
2386 params.spp_assoc_id);
2387 if (!trans)
2388 return -EINVAL;
2389 }
2390
2391 /* Get association, if assoc_id != 0 and the socket is a one
2392 * to many style socket, and an association was not found, then
2393 * the id was invalid.
2394 */
2395 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2396 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2397 return -EINVAL;
2398
2399 /* Heartbeat demand can only be sent on a transport or
2400 * association, but not a socket.
2401 */
2402 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2403 return -EINVAL;
2404
2405 /* Process parameters. */
2406 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2407 hb_change, pmtud_change,
2408 sackdelay_change);
2409
2410 if (error)
2411 return error;
2412
2413 /* If changes are for association, also apply parameters to each
2414 * transport.
2415 */
2416 if (!trans && asoc) {
2417 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2418 transports) {
2419 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2420 hb_change, pmtud_change,
2421 sackdelay_change);
2422 }
2423 }
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2430 *
2431 * This option will effect the way delayed acks are performed. This
2432 * option allows you to get or set the delayed ack time, in
2433 * milliseconds. It also allows changing the delayed ack frequency.
2434 * Changing the frequency to 1 disables the delayed sack algorithm. If
2435 * the assoc_id is 0, then this sets or gets the endpoints default
2436 * values. If the assoc_id field is non-zero, then the set or get
2437 * effects the specified association for the one to many model (the
2438 * assoc_id field is ignored by the one to one model). Note that if
2439 * sack_delay or sack_freq are 0 when setting this option, then the
2440 * current values will remain unchanged.
2441 *
2442 * struct sctp_sack_info {
2443 * sctp_assoc_t sack_assoc_id;
2444 * uint32_t sack_delay;
2445 * uint32_t sack_freq;
2446 * };
2447 *
2448 * sack_assoc_id - This parameter, indicates which association the user
2449 * is performing an action upon. Note that if this field's value is
2450 * zero then the endpoints default value is changed (effecting future
2451 * associations only).
2452 *
2453 * sack_delay - This parameter contains the number of milliseconds that
2454 * the user is requesting the delayed ACK timer be set to. Note that
2455 * this value is defined in the standard to be between 200 and 500
2456 * milliseconds.
2457 *
2458 * sack_freq - This parameter contains the number of packets that must
2459 * be received before a sack is sent without waiting for the delay
2460 * timer to expire. The default value for this is 2, setting this
2461 * value to 1 will disable the delayed sack algorithm.
2462 */
2463
2464 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2465 char __user *optval, unsigned int optlen)
2466 {
2467 struct sctp_sack_info params;
2468 struct sctp_transport *trans = NULL;
2469 struct sctp_association *asoc = NULL;
2470 struct sctp_sock *sp = sctp_sk(sk);
2471
2472 if (optlen == sizeof(struct sctp_sack_info)) {
2473 if (copy_from_user(&params, optval, optlen))
2474 return -EFAULT;
2475
2476 if (params.sack_delay == 0 && params.sack_freq == 0)
2477 return 0;
2478 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2479 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2480 pr_warn("Use struct sctp_sack_info instead\n");
2481 if (copy_from_user(&params, optval, optlen))
2482 return -EFAULT;
2483
2484 if (params.sack_delay == 0)
2485 params.sack_freq = 1;
2486 else
2487 params.sack_freq = 0;
2488 } else
2489 return - EINVAL;
2490
2491 /* Validate value parameter. */
2492 if (params.sack_delay > 500)
2493 return -EINVAL;
2494
2495 /* Get association, if sack_assoc_id != 0 and the socket is a one
2496 * to many style socket, and an association was not found, then
2497 * the id was invalid.
2498 */
2499 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2500 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2501 return -EINVAL;
2502
2503 if (params.sack_delay) {
2504 if (asoc) {
2505 asoc->sackdelay =
2506 msecs_to_jiffies(params.sack_delay);
2507 asoc->param_flags =
2508 (asoc->param_flags & ~SPP_SACKDELAY) |
2509 SPP_SACKDELAY_ENABLE;
2510 } else {
2511 sp->sackdelay = params.sack_delay;
2512 sp->param_flags =
2513 (sp->param_flags & ~SPP_SACKDELAY) |
2514 SPP_SACKDELAY_ENABLE;
2515 }
2516 }
2517
2518 if (params.sack_freq == 1) {
2519 if (asoc) {
2520 asoc->param_flags =
2521 (asoc->param_flags & ~SPP_SACKDELAY) |
2522 SPP_SACKDELAY_DISABLE;
2523 } else {
2524 sp->param_flags =
2525 (sp->param_flags & ~SPP_SACKDELAY) |
2526 SPP_SACKDELAY_DISABLE;
2527 }
2528 } else if (params.sack_freq > 1) {
2529 if (asoc) {
2530 asoc->sackfreq = params.sack_freq;
2531 asoc->param_flags =
2532 (asoc->param_flags & ~SPP_SACKDELAY) |
2533 SPP_SACKDELAY_ENABLE;
2534 } else {
2535 sp->sackfreq = params.sack_freq;
2536 sp->param_flags =
2537 (sp->param_flags & ~SPP_SACKDELAY) |
2538 SPP_SACKDELAY_ENABLE;
2539 }
2540 }
2541
2542 /* If change is for association, also apply to each transport. */
2543 if (asoc) {
2544 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2545 transports) {
2546 if (params.sack_delay) {
2547 trans->sackdelay =
2548 msecs_to_jiffies(params.sack_delay);
2549 trans->param_flags =
2550 (trans->param_flags & ~SPP_SACKDELAY) |
2551 SPP_SACKDELAY_ENABLE;
2552 }
2553 if (params.sack_freq == 1) {
2554 trans->param_flags =
2555 (trans->param_flags & ~SPP_SACKDELAY) |
2556 SPP_SACKDELAY_DISABLE;
2557 } else if (params.sack_freq > 1) {
2558 trans->sackfreq = params.sack_freq;
2559 trans->param_flags =
2560 (trans->param_flags & ~SPP_SACKDELAY) |
2561 SPP_SACKDELAY_ENABLE;
2562 }
2563 }
2564 }
2565
2566 return 0;
2567 }
2568
2569 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2570 *
2571 * Applications can specify protocol parameters for the default association
2572 * initialization. The option name argument to setsockopt() and getsockopt()
2573 * is SCTP_INITMSG.
2574 *
2575 * Setting initialization parameters is effective only on an unconnected
2576 * socket (for UDP-style sockets only future associations are effected
2577 * by the change). With TCP-style sockets, this option is inherited by
2578 * sockets derived from a listener socket.
2579 */
2580 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2581 {
2582 struct sctp_initmsg sinit;
2583 struct sctp_sock *sp = sctp_sk(sk);
2584
2585 if (optlen != sizeof(struct sctp_initmsg))
2586 return -EINVAL;
2587 if (copy_from_user(&sinit, optval, optlen))
2588 return -EFAULT;
2589
2590 if (sinit.sinit_num_ostreams)
2591 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2592 if (sinit.sinit_max_instreams)
2593 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2594 if (sinit.sinit_max_attempts)
2595 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2596 if (sinit.sinit_max_init_timeo)
2597 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2604 *
2605 * Applications that wish to use the sendto() system call may wish to
2606 * specify a default set of parameters that would normally be supplied
2607 * through the inclusion of ancillary data. This socket option allows
2608 * such an application to set the default sctp_sndrcvinfo structure.
2609 * The application that wishes to use this socket option simply passes
2610 * in to this call the sctp_sndrcvinfo structure defined in Section
2611 * 5.2.2) The input parameters accepted by this call include
2612 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2613 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2614 * to this call if the caller is using the UDP model.
2615 */
2616 static int sctp_setsockopt_default_send_param(struct sock *sk,
2617 char __user *optval,
2618 unsigned int optlen)
2619 {
2620 struct sctp_sndrcvinfo info;
2621 struct sctp_association *asoc;
2622 struct sctp_sock *sp = sctp_sk(sk);
2623
2624 if (optlen != sizeof(struct sctp_sndrcvinfo))
2625 return -EINVAL;
2626 if (copy_from_user(&info, optval, optlen))
2627 return -EFAULT;
2628
2629 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2630 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2631 return -EINVAL;
2632
2633 if (asoc) {
2634 asoc->default_stream = info.sinfo_stream;
2635 asoc->default_flags = info.sinfo_flags;
2636 asoc->default_ppid = info.sinfo_ppid;
2637 asoc->default_context = info.sinfo_context;
2638 asoc->default_timetolive = info.sinfo_timetolive;
2639 } else {
2640 sp->default_stream = info.sinfo_stream;
2641 sp->default_flags = info.sinfo_flags;
2642 sp->default_ppid = info.sinfo_ppid;
2643 sp->default_context = info.sinfo_context;
2644 sp->default_timetolive = info.sinfo_timetolive;
2645 }
2646
2647 return 0;
2648 }
2649
2650 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2651 *
2652 * Requests that the local SCTP stack use the enclosed peer address as
2653 * the association primary. The enclosed address must be one of the
2654 * association peer's addresses.
2655 */
2656 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2657 unsigned int optlen)
2658 {
2659 struct sctp_prim prim;
2660 struct sctp_transport *trans;
2661
2662 if (optlen != sizeof(struct sctp_prim))
2663 return -EINVAL;
2664
2665 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2666 return -EFAULT;
2667
2668 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2669 if (!trans)
2670 return -EINVAL;
2671
2672 sctp_assoc_set_primary(trans->asoc, trans);
2673
2674 return 0;
2675 }
2676
2677 /*
2678 * 7.1.5 SCTP_NODELAY
2679 *
2680 * Turn on/off any Nagle-like algorithm. This means that packets are
2681 * generally sent as soon as possible and no unnecessary delays are
2682 * introduced, at the cost of more packets in the network. Expects an
2683 * integer boolean flag.
2684 */
2685 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2686 unsigned int optlen)
2687 {
2688 int val;
2689
2690 if (optlen < sizeof(int))
2691 return -EINVAL;
2692 if (get_user(val, (int __user *)optval))
2693 return -EFAULT;
2694
2695 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2696 return 0;
2697 }
2698
2699 /*
2700 *
2701 * 7.1.1 SCTP_RTOINFO
2702 *
2703 * The protocol parameters used to initialize and bound retransmission
2704 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2705 * and modify these parameters.
2706 * All parameters are time values, in milliseconds. A value of 0, when
2707 * modifying the parameters, indicates that the current value should not
2708 * be changed.
2709 *
2710 */
2711 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2712 {
2713 struct sctp_rtoinfo rtoinfo;
2714 struct sctp_association *asoc;
2715
2716 if (optlen != sizeof (struct sctp_rtoinfo))
2717 return -EINVAL;
2718
2719 if (copy_from_user(&rtoinfo, optval, optlen))
2720 return -EFAULT;
2721
2722 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2723
2724 /* Set the values to the specific association */
2725 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2726 return -EINVAL;
2727
2728 if (asoc) {
2729 if (rtoinfo.srto_initial != 0)
2730 asoc->rto_initial =
2731 msecs_to_jiffies(rtoinfo.srto_initial);
2732 if (rtoinfo.srto_max != 0)
2733 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2734 if (rtoinfo.srto_min != 0)
2735 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2736 } else {
2737 /* If there is no association or the association-id = 0
2738 * set the values to the endpoint.
2739 */
2740 struct sctp_sock *sp = sctp_sk(sk);
2741
2742 if (rtoinfo.srto_initial != 0)
2743 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2744 if (rtoinfo.srto_max != 0)
2745 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2746 if (rtoinfo.srto_min != 0)
2747 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2748 }
2749
2750 return 0;
2751 }
2752
2753 /*
2754 *
2755 * 7.1.2 SCTP_ASSOCINFO
2756 *
2757 * This option is used to tune the maximum retransmission attempts
2758 * of the association.
2759 * Returns an error if the new association retransmission value is
2760 * greater than the sum of the retransmission value of the peer.
2761 * See [SCTP] for more information.
2762 *
2763 */
2764 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2765 {
2766
2767 struct sctp_assocparams assocparams;
2768 struct sctp_association *asoc;
2769
2770 if (optlen != sizeof(struct sctp_assocparams))
2771 return -EINVAL;
2772 if (copy_from_user(&assocparams, optval, optlen))
2773 return -EFAULT;
2774
2775 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2776
2777 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2778 return -EINVAL;
2779
2780 /* Set the values to the specific association */
2781 if (asoc) {
2782 if (assocparams.sasoc_asocmaxrxt != 0) {
2783 __u32 path_sum = 0;
2784 int paths = 0;
2785 struct sctp_transport *peer_addr;
2786
2787 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2788 transports) {
2789 path_sum += peer_addr->pathmaxrxt;
2790 paths++;
2791 }
2792
2793 /* Only validate asocmaxrxt if we have more than
2794 * one path/transport. We do this because path
2795 * retransmissions are only counted when we have more
2796 * then one path.
2797 */
2798 if (paths > 1 &&
2799 assocparams.sasoc_asocmaxrxt > path_sum)
2800 return -EINVAL;
2801
2802 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2803 }
2804
2805 if (assocparams.sasoc_cookie_life != 0) {
2806 asoc->cookie_life.tv_sec =
2807 assocparams.sasoc_cookie_life / 1000;
2808 asoc->cookie_life.tv_usec =
2809 (assocparams.sasoc_cookie_life % 1000)
2810 * 1000;
2811 }
2812 } else {
2813 /* Set the values to the endpoint */
2814 struct sctp_sock *sp = sctp_sk(sk);
2815
2816 if (assocparams.sasoc_asocmaxrxt != 0)
2817 sp->assocparams.sasoc_asocmaxrxt =
2818 assocparams.sasoc_asocmaxrxt;
2819 if (assocparams.sasoc_cookie_life != 0)
2820 sp->assocparams.sasoc_cookie_life =
2821 assocparams.sasoc_cookie_life;
2822 }
2823 return 0;
2824 }
2825
2826 /*
2827 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2828 *
2829 * This socket option is a boolean flag which turns on or off mapped V4
2830 * addresses. If this option is turned on and the socket is type
2831 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2832 * If this option is turned off, then no mapping will be done of V4
2833 * addresses and a user will receive both PF_INET6 and PF_INET type
2834 * addresses on the socket.
2835 */
2836 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2837 {
2838 int val;
2839 struct sctp_sock *sp = sctp_sk(sk);
2840
2841 if (optlen < sizeof(int))
2842 return -EINVAL;
2843 if (get_user(val, (int __user *)optval))
2844 return -EFAULT;
2845 if (val)
2846 sp->v4mapped = 1;
2847 else
2848 sp->v4mapped = 0;
2849
2850 return 0;
2851 }
2852
2853 /*
2854 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2855 * This option will get or set the maximum size to put in any outgoing
2856 * SCTP DATA chunk. If a message is larger than this size it will be
2857 * fragmented by SCTP into the specified size. Note that the underlying
2858 * SCTP implementation may fragment into smaller sized chunks when the
2859 * PMTU of the underlying association is smaller than the value set by
2860 * the user. The default value for this option is '0' which indicates
2861 * the user is NOT limiting fragmentation and only the PMTU will effect
2862 * SCTP's choice of DATA chunk size. Note also that values set larger
2863 * than the maximum size of an IP datagram will effectively let SCTP
2864 * control fragmentation (i.e. the same as setting this option to 0).
2865 *
2866 * The following structure is used to access and modify this parameter:
2867 *
2868 * struct sctp_assoc_value {
2869 * sctp_assoc_t assoc_id;
2870 * uint32_t assoc_value;
2871 * };
2872 *
2873 * assoc_id: This parameter is ignored for one-to-one style sockets.
2874 * For one-to-many style sockets this parameter indicates which
2875 * association the user is performing an action upon. Note that if
2876 * this field's value is zero then the endpoints default value is
2877 * changed (effecting future associations only).
2878 * assoc_value: This parameter specifies the maximum size in bytes.
2879 */
2880 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2881 {
2882 struct sctp_assoc_value params;
2883 struct sctp_association *asoc;
2884 struct sctp_sock *sp = sctp_sk(sk);
2885 int val;
2886
2887 if (optlen == sizeof(int)) {
2888 pr_warn("Use of int in maxseg socket option deprecated\n");
2889 pr_warn("Use struct sctp_assoc_value instead\n");
2890 if (copy_from_user(&val, optval, optlen))
2891 return -EFAULT;
2892 params.assoc_id = 0;
2893 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2894 if (copy_from_user(&params, optval, optlen))
2895 return -EFAULT;
2896 val = params.assoc_value;
2897 } else
2898 return -EINVAL;
2899
2900 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2901 return -EINVAL;
2902
2903 asoc = sctp_id2assoc(sk, params.assoc_id);
2904 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2905 return -EINVAL;
2906
2907 if (asoc) {
2908 if (val == 0) {
2909 val = asoc->pathmtu;
2910 val -= sp->pf->af->net_header_len;
2911 val -= sizeof(struct sctphdr) +
2912 sizeof(struct sctp_data_chunk);
2913 }
2914 asoc->user_frag = val;
2915 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2916 } else {
2917 sp->user_frag = val;
2918 }
2919
2920 return 0;
2921 }
2922
2923
2924 /*
2925 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2926 *
2927 * Requests that the peer mark the enclosed address as the association
2928 * primary. The enclosed address must be one of the association's
2929 * locally bound addresses. The following structure is used to make a
2930 * set primary request:
2931 */
2932 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2933 unsigned int optlen)
2934 {
2935 struct sctp_sock *sp;
2936 struct sctp_association *asoc = NULL;
2937 struct sctp_setpeerprim prim;
2938 struct sctp_chunk *chunk;
2939 struct sctp_af *af;
2940 int err;
2941
2942 sp = sctp_sk(sk);
2943
2944 if (!sctp_addip_enable)
2945 return -EPERM;
2946
2947 if (optlen != sizeof(struct sctp_setpeerprim))
2948 return -EINVAL;
2949
2950 if (copy_from_user(&prim, optval, optlen))
2951 return -EFAULT;
2952
2953 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2954 if (!asoc)
2955 return -EINVAL;
2956
2957 if (!asoc->peer.asconf_capable)
2958 return -EPERM;
2959
2960 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2961 return -EPERM;
2962
2963 if (!sctp_state(asoc, ESTABLISHED))
2964 return -ENOTCONN;
2965
2966 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
2967 if (!af)
2968 return -EINVAL;
2969
2970 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
2971 return -EADDRNOTAVAIL;
2972
2973 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2974 return -EADDRNOTAVAIL;
2975
2976 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2977 chunk = sctp_make_asconf_set_prim(asoc,
2978 (union sctp_addr *)&prim.sspp_addr);
2979 if (!chunk)
2980 return -ENOMEM;
2981
2982 err = sctp_send_asconf(asoc, chunk);
2983
2984 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2985
2986 return err;
2987 }
2988
2989 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2990 unsigned int optlen)
2991 {
2992 struct sctp_setadaptation adaptation;
2993
2994 if (optlen != sizeof(struct sctp_setadaptation))
2995 return -EINVAL;
2996 if (copy_from_user(&adaptation, optval, optlen))
2997 return -EFAULT;
2998
2999 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3000
3001 return 0;
3002 }
3003
3004 /*
3005 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3006 *
3007 * The context field in the sctp_sndrcvinfo structure is normally only
3008 * used when a failed message is retrieved holding the value that was
3009 * sent down on the actual send call. This option allows the setting of
3010 * a default context on an association basis that will be received on
3011 * reading messages from the peer. This is especially helpful in the
3012 * one-2-many model for an application to keep some reference to an
3013 * internal state machine that is processing messages on the
3014 * association. Note that the setting of this value only effects
3015 * received messages from the peer and does not effect the value that is
3016 * saved with outbound messages.
3017 */
3018 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3019 unsigned int optlen)
3020 {
3021 struct sctp_assoc_value params;
3022 struct sctp_sock *sp;
3023 struct sctp_association *asoc;
3024
3025 if (optlen != sizeof(struct sctp_assoc_value))
3026 return -EINVAL;
3027 if (copy_from_user(&params, optval, optlen))
3028 return -EFAULT;
3029
3030 sp = sctp_sk(sk);
3031
3032 if (params.assoc_id != 0) {
3033 asoc = sctp_id2assoc(sk, params.assoc_id);
3034 if (!asoc)
3035 return -EINVAL;
3036 asoc->default_rcv_context = params.assoc_value;
3037 } else {
3038 sp->default_rcv_context = params.assoc_value;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3046 *
3047 * This options will at a minimum specify if the implementation is doing
3048 * fragmented interleave. Fragmented interleave, for a one to many
3049 * socket, is when subsequent calls to receive a message may return
3050 * parts of messages from different associations. Some implementations
3051 * may allow you to turn this value on or off. If so, when turned off,
3052 * no fragment interleave will occur (which will cause a head of line
3053 * blocking amongst multiple associations sharing the same one to many
3054 * socket). When this option is turned on, then each receive call may
3055 * come from a different association (thus the user must receive data
3056 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3057 * association each receive belongs to.
3058 *
3059 * This option takes a boolean value. A non-zero value indicates that
3060 * fragmented interleave is on. A value of zero indicates that
3061 * fragmented interleave is off.
3062 *
3063 * Note that it is important that an implementation that allows this
3064 * option to be turned on, have it off by default. Otherwise an unaware
3065 * application using the one to many model may become confused and act
3066 * incorrectly.
3067 */
3068 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3069 char __user *optval,
3070 unsigned int optlen)
3071 {
3072 int val;
3073
3074 if (optlen != sizeof(int))
3075 return -EINVAL;
3076 if (get_user(val, (int __user *)optval))
3077 return -EFAULT;
3078
3079 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3080
3081 return 0;
3082 }
3083
3084 /*
3085 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3086 * (SCTP_PARTIAL_DELIVERY_POINT)
3087 *
3088 * This option will set or get the SCTP partial delivery point. This
3089 * point is the size of a message where the partial delivery API will be
3090 * invoked to help free up rwnd space for the peer. Setting this to a
3091 * lower value will cause partial deliveries to happen more often. The
3092 * calls argument is an integer that sets or gets the partial delivery
3093 * point. Note also that the call will fail if the user attempts to set
3094 * this value larger than the socket receive buffer size.
3095 *
3096 * Note that any single message having a length smaller than or equal to
3097 * the SCTP partial delivery point will be delivered in one single read
3098 * call as long as the user provided buffer is large enough to hold the
3099 * message.
3100 */
3101 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3102 char __user *optval,
3103 unsigned int optlen)
3104 {
3105 u32 val;
3106
3107 if (optlen != sizeof(u32))
3108 return -EINVAL;
3109 if (get_user(val, (int __user *)optval))
3110 return -EFAULT;
3111
3112 /* Note: We double the receive buffer from what the user sets
3113 * it to be, also initial rwnd is based on rcvbuf/2.
3114 */
3115 if (val > (sk->sk_rcvbuf >> 1))
3116 return -EINVAL;
3117
3118 sctp_sk(sk)->pd_point = val;
3119
3120 return 0; /* is this the right error code? */
3121 }
3122
3123 /*
3124 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3125 *
3126 * This option will allow a user to change the maximum burst of packets
3127 * that can be emitted by this association. Note that the default value
3128 * is 4, and some implementations may restrict this setting so that it
3129 * can only be lowered.
3130 *
3131 * NOTE: This text doesn't seem right. Do this on a socket basis with
3132 * future associations inheriting the socket value.
3133 */
3134 static int sctp_setsockopt_maxburst(struct sock *sk,
3135 char __user *optval,
3136 unsigned int optlen)
3137 {
3138 struct sctp_assoc_value params;
3139 struct sctp_sock *sp;
3140 struct sctp_association *asoc;
3141 int val;
3142 int assoc_id = 0;
3143
3144 if (optlen == sizeof(int)) {
3145 pr_warn("Use of int in max_burst socket option deprecated\n");
3146 pr_warn("Use struct sctp_assoc_value instead\n");
3147 if (copy_from_user(&val, optval, optlen))
3148 return -EFAULT;
3149 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3150 if (copy_from_user(&params, optval, optlen))
3151 return -EFAULT;
3152 val = params.assoc_value;
3153 assoc_id = params.assoc_id;
3154 } else
3155 return -EINVAL;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (assoc_id != 0) {
3160 asoc = sctp_id2assoc(sk, assoc_id);
3161 if (!asoc)
3162 return -EINVAL;
3163 asoc->max_burst = val;
3164 } else
3165 sp->max_burst = val;
3166
3167 return 0;
3168 }
3169
3170 /*
3171 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3172 *
3173 * This set option adds a chunk type that the user is requesting to be
3174 * received only in an authenticated way. Changes to the list of chunks
3175 * will only effect future associations on the socket.
3176 */
3177 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3178 char __user *optval,
3179 unsigned int optlen)
3180 {
3181 struct sctp_authchunk val;
3182
3183 if (!sctp_auth_enable)
3184 return -EACCES;
3185
3186 if (optlen != sizeof(struct sctp_authchunk))
3187 return -EINVAL;
3188 if (copy_from_user(&val, optval, optlen))
3189 return -EFAULT;
3190
3191 switch (val.sauth_chunk) {
3192 case SCTP_CID_INIT:
3193 case SCTP_CID_INIT_ACK:
3194 case SCTP_CID_SHUTDOWN_COMPLETE:
3195 case SCTP_CID_AUTH:
3196 return -EINVAL;
3197 }
3198
3199 /* add this chunk id to the endpoint */
3200 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3201 }
3202
3203 /*
3204 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3205 *
3206 * This option gets or sets the list of HMAC algorithms that the local
3207 * endpoint requires the peer to use.
3208 */
3209 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3210 char __user *optval,
3211 unsigned int optlen)
3212 {
3213 struct sctp_hmacalgo *hmacs;
3214 u32 idents;
3215 int err;
3216
3217 if (!sctp_auth_enable)
3218 return -EACCES;
3219
3220 if (optlen < sizeof(struct sctp_hmacalgo))
3221 return -EINVAL;
3222
3223 hmacs= memdup_user(optval, optlen);
3224 if (IS_ERR(hmacs))
3225 return PTR_ERR(hmacs);
3226
3227 idents = hmacs->shmac_num_idents;
3228 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3229 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3230 err = -EINVAL;
3231 goto out;
3232 }
3233
3234 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3235 out:
3236 kfree(hmacs);
3237 return err;
3238 }
3239
3240 /*
3241 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3242 *
3243 * This option will set a shared secret key which is used to build an
3244 * association shared key.
3245 */
3246 static int sctp_setsockopt_auth_key(struct sock *sk,
3247 char __user *optval,
3248 unsigned int optlen)
3249 {
3250 struct sctp_authkey *authkey;
3251 struct sctp_association *asoc;
3252 int ret;
3253
3254 if (!sctp_auth_enable)
3255 return -EACCES;
3256
3257 if (optlen <= sizeof(struct sctp_authkey))
3258 return -EINVAL;
3259
3260 authkey= memdup_user(optval, optlen);
3261 if (IS_ERR(authkey))
3262 return PTR_ERR(authkey);
3263
3264 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3265 ret = -EINVAL;
3266 goto out;
3267 }
3268
3269 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3270 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3271 ret = -EINVAL;
3272 goto out;
3273 }
3274
3275 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3276 out:
3277 kfree(authkey);
3278 return ret;
3279 }
3280
3281 /*
3282 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3283 *
3284 * This option will get or set the active shared key to be used to build
3285 * the association shared key.
3286 */
3287 static int sctp_setsockopt_active_key(struct sock *sk,
3288 char __user *optval,
3289 unsigned int optlen)
3290 {
3291 struct sctp_authkeyid val;
3292 struct sctp_association *asoc;
3293
3294 if (!sctp_auth_enable)
3295 return -EACCES;
3296
3297 if (optlen != sizeof(struct sctp_authkeyid))
3298 return -EINVAL;
3299 if (copy_from_user(&val, optval, optlen))
3300 return -EFAULT;
3301
3302 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3303 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3304 return -EINVAL;
3305
3306 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3307 val.scact_keynumber);
3308 }
3309
3310 /*
3311 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3312 *
3313 * This set option will delete a shared secret key from use.
3314 */
3315 static int sctp_setsockopt_del_key(struct sock *sk,
3316 char __user *optval,
3317 unsigned int optlen)
3318 {
3319 struct sctp_authkeyid val;
3320 struct sctp_association *asoc;
3321
3322 if (!sctp_auth_enable)
3323 return -EACCES;
3324
3325 if (optlen != sizeof(struct sctp_authkeyid))
3326 return -EINVAL;
3327 if (copy_from_user(&val, optval, optlen))
3328 return -EFAULT;
3329
3330 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3331 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3332 return -EINVAL;
3333
3334 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3335 val.scact_keynumber);
3336
3337 }
3338
3339
3340 /* API 6.2 setsockopt(), getsockopt()
3341 *
3342 * Applications use setsockopt() and getsockopt() to set or retrieve
3343 * socket options. Socket options are used to change the default
3344 * behavior of sockets calls. They are described in Section 7.
3345 *
3346 * The syntax is:
3347 *
3348 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3349 * int __user *optlen);
3350 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3351 * int optlen);
3352 *
3353 * sd - the socket descript.
3354 * level - set to IPPROTO_SCTP for all SCTP options.
3355 * optname - the option name.
3356 * optval - the buffer to store the value of the option.
3357 * optlen - the size of the buffer.
3358 */
3359 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3360 char __user *optval, unsigned int optlen)
3361 {
3362 int retval = 0;
3363
3364 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3365 sk, optname);
3366
3367 /* I can hardly begin to describe how wrong this is. This is
3368 * so broken as to be worse than useless. The API draft
3369 * REALLY is NOT helpful here... I am not convinced that the
3370 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3371 * are at all well-founded.
3372 */
3373 if (level != SOL_SCTP) {
3374 struct sctp_af *af = sctp_sk(sk)->pf->af;
3375 retval = af->setsockopt(sk, level, optname, optval, optlen);
3376 goto out_nounlock;
3377 }
3378
3379 sctp_lock_sock(sk);
3380
3381 switch (optname) {
3382 case SCTP_SOCKOPT_BINDX_ADD:
3383 /* 'optlen' is the size of the addresses buffer. */
3384 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3385 optlen, SCTP_BINDX_ADD_ADDR);
3386 break;
3387
3388 case SCTP_SOCKOPT_BINDX_REM:
3389 /* 'optlen' is the size of the addresses buffer. */
3390 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3391 optlen, SCTP_BINDX_REM_ADDR);
3392 break;
3393
3394 case SCTP_SOCKOPT_CONNECTX_OLD:
3395 /* 'optlen' is the size of the addresses buffer. */
3396 retval = sctp_setsockopt_connectx_old(sk,
3397 (struct sockaddr __user *)optval,
3398 optlen);
3399 break;
3400
3401 case SCTP_SOCKOPT_CONNECTX:
3402 /* 'optlen' is the size of the addresses buffer. */
3403 retval = sctp_setsockopt_connectx(sk,
3404 (struct sockaddr __user *)optval,
3405 optlen);
3406 break;
3407
3408 case SCTP_DISABLE_FRAGMENTS:
3409 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3410 break;
3411
3412 case SCTP_EVENTS:
3413 retval = sctp_setsockopt_events(sk, optval, optlen);
3414 break;
3415
3416 case SCTP_AUTOCLOSE:
3417 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3418 break;
3419
3420 case SCTP_PEER_ADDR_PARAMS:
3421 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3422 break;
3423
3424 case SCTP_DELAYED_SACK:
3425 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3426 break;
3427 case SCTP_PARTIAL_DELIVERY_POINT:
3428 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3429 break;
3430
3431 case SCTP_INITMSG:
3432 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3433 break;
3434 case SCTP_DEFAULT_SEND_PARAM:
3435 retval = sctp_setsockopt_default_send_param(sk, optval,
3436 optlen);
3437 break;
3438 case SCTP_PRIMARY_ADDR:
3439 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3440 break;
3441 case SCTP_SET_PEER_PRIMARY_ADDR:
3442 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3443 break;
3444 case SCTP_NODELAY:
3445 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3446 break;
3447 case SCTP_RTOINFO:
3448 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3449 break;
3450 case SCTP_ASSOCINFO:
3451 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3452 break;
3453 case SCTP_I_WANT_MAPPED_V4_ADDR:
3454 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3455 break;
3456 case SCTP_MAXSEG:
3457 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3458 break;
3459 case SCTP_ADAPTATION_LAYER:
3460 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3461 break;
3462 case SCTP_CONTEXT:
3463 retval = sctp_setsockopt_context(sk, optval, optlen);
3464 break;
3465 case SCTP_FRAGMENT_INTERLEAVE:
3466 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3467 break;
3468 case SCTP_MAX_BURST:
3469 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3470 break;
3471 case SCTP_AUTH_CHUNK:
3472 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3473 break;
3474 case SCTP_HMAC_IDENT:
3475 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3476 break;
3477 case SCTP_AUTH_KEY:
3478 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3479 break;
3480 case SCTP_AUTH_ACTIVE_KEY:
3481 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3482 break;
3483 case SCTP_AUTH_DELETE_KEY:
3484 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3485 break;
3486 default:
3487 retval = -ENOPROTOOPT;
3488 break;
3489 }
3490
3491 sctp_release_sock(sk);
3492
3493 out_nounlock:
3494 return retval;
3495 }
3496
3497 /* API 3.1.6 connect() - UDP Style Syntax
3498 *
3499 * An application may use the connect() call in the UDP model to initiate an
3500 * association without sending data.
3501 *
3502 * The syntax is:
3503 *
3504 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3505 *
3506 * sd: the socket descriptor to have a new association added to.
3507 *
3508 * nam: the address structure (either struct sockaddr_in or struct
3509 * sockaddr_in6 defined in RFC2553 [7]).
3510 *
3511 * len: the size of the address.
3512 */
3513 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3514 int addr_len)
3515 {
3516 int err = 0;
3517 struct sctp_af *af;
3518
3519 sctp_lock_sock(sk);
3520
3521 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3522 __func__, sk, addr, addr_len);
3523
3524 /* Validate addr_len before calling common connect/connectx routine. */
3525 af = sctp_get_af_specific(addr->sa_family);
3526 if (!af || addr_len < af->sockaddr_len) {
3527 err = -EINVAL;
3528 } else {
3529 /* Pass correct addr len to common routine (so it knows there
3530 * is only one address being passed.
3531 */
3532 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3533 }
3534
3535 sctp_release_sock(sk);
3536 return err;
3537 }
3538
3539 /* FIXME: Write comments. */
3540 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3541 {
3542 return -EOPNOTSUPP; /* STUB */
3543 }
3544
3545 /* 4.1.4 accept() - TCP Style Syntax
3546 *
3547 * Applications use accept() call to remove an established SCTP
3548 * association from the accept queue of the endpoint. A new socket
3549 * descriptor will be returned from accept() to represent the newly
3550 * formed association.
3551 */
3552 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3553 {
3554 struct sctp_sock *sp;
3555 struct sctp_endpoint *ep;
3556 struct sock *newsk = NULL;
3557 struct sctp_association *asoc;
3558 long timeo;
3559 int error = 0;
3560
3561 sctp_lock_sock(sk);
3562
3563 sp = sctp_sk(sk);
3564 ep = sp->ep;
3565
3566 if (!sctp_style(sk, TCP)) {
3567 error = -EOPNOTSUPP;
3568 goto out;
3569 }
3570
3571 if (!sctp_sstate(sk, LISTENING)) {
3572 error = -EINVAL;
3573 goto out;
3574 }
3575
3576 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3577
3578 error = sctp_wait_for_accept(sk, timeo);
3579 if (error)
3580 goto out;
3581
3582 /* We treat the list of associations on the endpoint as the accept
3583 * queue and pick the first association on the list.
3584 */
3585 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3586
3587 newsk = sp->pf->create_accept_sk(sk, asoc);
3588 if (!newsk) {
3589 error = -ENOMEM;
3590 goto out;
3591 }
3592
3593 /* Populate the fields of the newsk from the oldsk and migrate the
3594 * asoc to the newsk.
3595 */
3596 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3597
3598 out:
3599 sctp_release_sock(sk);
3600 *err = error;
3601 return newsk;
3602 }
3603
3604 /* The SCTP ioctl handler. */
3605 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3606 {
3607 int rc = -ENOTCONN;
3608
3609 sctp_lock_sock(sk);
3610
3611 /*
3612 * SEQPACKET-style sockets in LISTENING state are valid, for
3613 * SCTP, so only discard TCP-style sockets in LISTENING state.
3614 */
3615 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3616 goto out;
3617
3618 switch (cmd) {
3619 case SIOCINQ: {
3620 struct sk_buff *skb;
3621 unsigned int amount = 0;
3622
3623 skb = skb_peek(&sk->sk_receive_queue);
3624 if (skb != NULL) {
3625 /*
3626 * We will only return the amount of this packet since
3627 * that is all that will be read.
3628 */
3629 amount = skb->len;
3630 }
3631 rc = put_user(amount, (int __user *)arg);
3632 break;
3633 }
3634 default:
3635 rc = -ENOIOCTLCMD;
3636 break;
3637 }
3638 out:
3639 sctp_release_sock(sk);
3640 return rc;
3641 }
3642
3643 /* This is the function which gets called during socket creation to
3644 * initialized the SCTP-specific portion of the sock.
3645 * The sock structure should already be zero-filled memory.
3646 */
3647 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3648 {
3649 struct sctp_endpoint *ep;
3650 struct sctp_sock *sp;
3651
3652 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3653
3654 sp = sctp_sk(sk);
3655
3656 /* Initialize the SCTP per socket area. */
3657 switch (sk->sk_type) {
3658 case SOCK_SEQPACKET:
3659 sp->type = SCTP_SOCKET_UDP;
3660 break;
3661 case SOCK_STREAM:
3662 sp->type = SCTP_SOCKET_TCP;
3663 break;
3664 default:
3665 return -ESOCKTNOSUPPORT;
3666 }
3667
3668 /* Initialize default send parameters. These parameters can be
3669 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3670 */
3671 sp->default_stream = 0;
3672 sp->default_ppid = 0;
3673 sp->default_flags = 0;
3674 sp->default_context = 0;
3675 sp->default_timetolive = 0;
3676
3677 sp->default_rcv_context = 0;
3678 sp->max_burst = sctp_max_burst;
3679
3680 /* Initialize default setup parameters. These parameters
3681 * can be modified with the SCTP_INITMSG socket option or
3682 * overridden by the SCTP_INIT CMSG.
3683 */
3684 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3685 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3686 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3687 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3688
3689 /* Initialize default RTO related parameters. These parameters can
3690 * be modified for with the SCTP_RTOINFO socket option.
3691 */
3692 sp->rtoinfo.srto_initial = sctp_rto_initial;
3693 sp->rtoinfo.srto_max = sctp_rto_max;
3694 sp->rtoinfo.srto_min = sctp_rto_min;
3695
3696 /* Initialize default association related parameters. These parameters
3697 * can be modified with the SCTP_ASSOCINFO socket option.
3698 */
3699 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3700 sp->assocparams.sasoc_number_peer_destinations = 0;
3701 sp->assocparams.sasoc_peer_rwnd = 0;
3702 sp->assocparams.sasoc_local_rwnd = 0;
3703 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3704
3705 /* Initialize default event subscriptions. By default, all the
3706 * options are off.
3707 */
3708 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3709
3710 /* Default Peer Address Parameters. These defaults can
3711 * be modified via SCTP_PEER_ADDR_PARAMS
3712 */
3713 sp->hbinterval = sctp_hb_interval;
3714 sp->pathmaxrxt = sctp_max_retrans_path;
3715 sp->pathmtu = 0; // allow default discovery
3716 sp->sackdelay = sctp_sack_timeout;
3717 sp->sackfreq = 2;
3718 sp->param_flags = SPP_HB_ENABLE |
3719 SPP_PMTUD_ENABLE |
3720 SPP_SACKDELAY_ENABLE;
3721
3722 /* If enabled no SCTP message fragmentation will be performed.
3723 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3724 */
3725 sp->disable_fragments = 0;
3726
3727 /* Enable Nagle algorithm by default. */
3728 sp->nodelay = 0;
3729
3730 /* Enable by default. */
3731 sp->v4mapped = 1;
3732
3733 /* Auto-close idle associations after the configured
3734 * number of seconds. A value of 0 disables this
3735 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3736 * for UDP-style sockets only.
3737 */
3738 sp->autoclose = 0;
3739
3740 /* User specified fragmentation limit. */
3741 sp->user_frag = 0;
3742
3743 sp->adaptation_ind = 0;
3744
3745 sp->pf = sctp_get_pf_specific(sk->sk_family);
3746
3747 /* Control variables for partial data delivery. */
3748 atomic_set(&sp->pd_mode, 0);
3749 skb_queue_head_init(&sp->pd_lobby);
3750 sp->frag_interleave = 0;
3751
3752 /* Create a per socket endpoint structure. Even if we
3753 * change the data structure relationships, this may still
3754 * be useful for storing pre-connect address information.
3755 */
3756 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3757 if (!ep)
3758 return -ENOMEM;
3759
3760 sp->ep = ep;
3761 sp->hmac = NULL;
3762
3763 SCTP_DBG_OBJCNT_INC(sock);
3764
3765 local_bh_disable();
3766 percpu_counter_inc(&sctp_sockets_allocated);
3767 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3768 local_bh_enable();
3769
3770 return 0;
3771 }
3772
3773 /* Cleanup any SCTP per socket resources. */
3774 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3775 {
3776 struct sctp_endpoint *ep;
3777
3778 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3779
3780 /* Release our hold on the endpoint. */
3781 ep = sctp_sk(sk)->ep;
3782 sctp_endpoint_free(ep);
3783 local_bh_disable();
3784 percpu_counter_dec(&sctp_sockets_allocated);
3785 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3786 local_bh_enable();
3787 }
3788
3789 /* API 4.1.7 shutdown() - TCP Style Syntax
3790 * int shutdown(int socket, int how);
3791 *
3792 * sd - the socket descriptor of the association to be closed.
3793 * how - Specifies the type of shutdown. The values are
3794 * as follows:
3795 * SHUT_RD
3796 * Disables further receive operations. No SCTP
3797 * protocol action is taken.
3798 * SHUT_WR
3799 * Disables further send operations, and initiates
3800 * the SCTP shutdown sequence.
3801 * SHUT_RDWR
3802 * Disables further send and receive operations
3803 * and initiates the SCTP shutdown sequence.
3804 */
3805 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3806 {
3807 struct sctp_endpoint *ep;
3808 struct sctp_association *asoc;
3809
3810 if (!sctp_style(sk, TCP))
3811 return;
3812
3813 if (how & SEND_SHUTDOWN) {
3814 ep = sctp_sk(sk)->ep;
3815 if (!list_empty(&ep->asocs)) {
3816 asoc = list_entry(ep->asocs.next,
3817 struct sctp_association, asocs);
3818 sctp_primitive_SHUTDOWN(asoc, NULL);
3819 }
3820 }
3821 }
3822
3823 /* 7.2.1 Association Status (SCTP_STATUS)
3824
3825 * Applications can retrieve current status information about an
3826 * association, including association state, peer receiver window size,
3827 * number of unacked data chunks, and number of data chunks pending
3828 * receipt. This information is read-only.
3829 */
3830 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3831 char __user *optval,
3832 int __user *optlen)
3833 {
3834 struct sctp_status status;
3835 struct sctp_association *asoc = NULL;
3836 struct sctp_transport *transport;
3837 sctp_assoc_t associd;
3838 int retval = 0;
3839
3840 if (len < sizeof(status)) {
3841 retval = -EINVAL;
3842 goto out;
3843 }
3844
3845 len = sizeof(status);
3846 if (copy_from_user(&status, optval, len)) {
3847 retval = -EFAULT;
3848 goto out;
3849 }
3850
3851 associd = status.sstat_assoc_id;
3852 asoc = sctp_id2assoc(sk, associd);
3853 if (!asoc) {
3854 retval = -EINVAL;
3855 goto out;
3856 }
3857
3858 transport = asoc->peer.primary_path;
3859
3860 status.sstat_assoc_id = sctp_assoc2id(asoc);
3861 status.sstat_state = asoc->state;
3862 status.sstat_rwnd = asoc->peer.rwnd;
3863 status.sstat_unackdata = asoc->unack_data;
3864
3865 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3866 status.sstat_instrms = asoc->c.sinit_max_instreams;
3867 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3868 status.sstat_fragmentation_point = asoc->frag_point;
3869 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3870 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3871 transport->af_specific->sockaddr_len);
3872 /* Map ipv4 address into v4-mapped-on-v6 address. */
3873 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3874 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3875 status.sstat_primary.spinfo_state = transport->state;
3876 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3877 status.sstat_primary.spinfo_srtt = transport->srtt;
3878 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3879 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3880
3881 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3882 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3883
3884 if (put_user(len, optlen)) {
3885 retval = -EFAULT;
3886 goto out;
3887 }
3888
3889 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3890 len, status.sstat_state, status.sstat_rwnd,
3891 status.sstat_assoc_id);
3892
3893 if (copy_to_user(optval, &status, len)) {
3894 retval = -EFAULT;
3895 goto out;
3896 }
3897
3898 out:
3899 return retval;
3900 }
3901
3902
3903 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3904 *
3905 * Applications can retrieve information about a specific peer address
3906 * of an association, including its reachability state, congestion
3907 * window, and retransmission timer values. This information is
3908 * read-only.
3909 */
3910 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3911 char __user *optval,
3912 int __user *optlen)
3913 {
3914 struct sctp_paddrinfo pinfo;
3915 struct sctp_transport *transport;
3916 int retval = 0;
3917
3918 if (len < sizeof(pinfo)) {
3919 retval = -EINVAL;
3920 goto out;
3921 }
3922
3923 len = sizeof(pinfo);
3924 if (copy_from_user(&pinfo, optval, len)) {
3925 retval = -EFAULT;
3926 goto out;
3927 }
3928
3929 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3930 pinfo.spinfo_assoc_id);
3931 if (!transport)
3932 return -EINVAL;
3933
3934 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3935 pinfo.spinfo_state = transport->state;
3936 pinfo.spinfo_cwnd = transport->cwnd;
3937 pinfo.spinfo_srtt = transport->srtt;
3938 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3939 pinfo.spinfo_mtu = transport->pathmtu;
3940
3941 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3942 pinfo.spinfo_state = SCTP_ACTIVE;
3943
3944 if (put_user(len, optlen)) {
3945 retval = -EFAULT;
3946 goto out;
3947 }
3948
3949 if (copy_to_user(optval, &pinfo, len)) {
3950 retval = -EFAULT;
3951 goto out;
3952 }
3953
3954 out:
3955 return retval;
3956 }
3957
3958 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3959 *
3960 * This option is a on/off flag. If enabled no SCTP message
3961 * fragmentation will be performed. Instead if a message being sent
3962 * exceeds the current PMTU size, the message will NOT be sent and
3963 * instead a error will be indicated to the user.
3964 */
3965 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3966 char __user *optval, int __user *optlen)
3967 {
3968 int val;
3969
3970 if (len < sizeof(int))
3971 return -EINVAL;
3972
3973 len = sizeof(int);
3974 val = (sctp_sk(sk)->disable_fragments == 1);
3975 if (put_user(len, optlen))
3976 return -EFAULT;
3977 if (copy_to_user(optval, &val, len))
3978 return -EFAULT;
3979 return 0;
3980 }
3981
3982 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3983 *
3984 * This socket option is used to specify various notifications and
3985 * ancillary data the user wishes to receive.
3986 */
3987 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3988 int __user *optlen)
3989 {
3990 if (len < sizeof(struct sctp_event_subscribe))
3991 return -EINVAL;
3992 len = sizeof(struct sctp_event_subscribe);
3993 if (put_user(len, optlen))
3994 return -EFAULT;
3995 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3996 return -EFAULT;
3997 return 0;
3998 }
3999
4000 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4001 *
4002 * This socket option is applicable to the UDP-style socket only. When
4003 * set it will cause associations that are idle for more than the
4004 * specified number of seconds to automatically close. An association
4005 * being idle is defined an association that has NOT sent or received
4006 * user data. The special value of '0' indicates that no automatic
4007 * close of any associations should be performed. The option expects an
4008 * integer defining the number of seconds of idle time before an
4009 * association is closed.
4010 */
4011 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4012 {
4013 /* Applicable to UDP-style socket only */
4014 if (sctp_style(sk, TCP))
4015 return -EOPNOTSUPP;
4016 if (len < sizeof(int))
4017 return -EINVAL;
4018 len = sizeof(int);
4019 if (put_user(len, optlen))
4020 return -EFAULT;
4021 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4022 return -EFAULT;
4023 return 0;
4024 }
4025
4026 /* Helper routine to branch off an association to a new socket. */
4027 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4028 struct socket **sockp)
4029 {
4030 struct sock *sk = asoc->base.sk;
4031 struct socket *sock;
4032 struct sctp_af *af;
4033 int err = 0;
4034
4035 /* An association cannot be branched off from an already peeled-off
4036 * socket, nor is this supported for tcp style sockets.
4037 */
4038 if (!sctp_style(sk, UDP))
4039 return -EINVAL;
4040
4041 /* Create a new socket. */
4042 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4043 if (err < 0)
4044 return err;
4045
4046 sctp_copy_sock(sock->sk, sk, asoc);
4047
4048 /* Make peeled-off sockets more like 1-1 accepted sockets.
4049 * Set the daddr and initialize id to something more random
4050 */
4051 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4052 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4053
4054 /* Populate the fields of the newsk from the oldsk and migrate the
4055 * asoc to the newsk.
4056 */
4057 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4058
4059 *sockp = sock;
4060
4061 return err;
4062 }
4063
4064 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4065 {
4066 sctp_peeloff_arg_t peeloff;
4067 struct socket *newsock;
4068 int retval = 0;
4069 struct sctp_association *asoc;
4070
4071 if (len < sizeof(sctp_peeloff_arg_t))
4072 return -EINVAL;
4073 len = sizeof(sctp_peeloff_arg_t);
4074 if (copy_from_user(&peeloff, optval, len))
4075 return -EFAULT;
4076
4077 asoc = sctp_id2assoc(sk, peeloff.associd);
4078 if (!asoc) {
4079 retval = -EINVAL;
4080 goto out;
4081 }
4082
4083 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4084
4085 retval = sctp_do_peeloff(asoc, &newsock);
4086 if (retval < 0)
4087 goto out;
4088
4089 /* Map the socket to an unused fd that can be returned to the user. */
4090 retval = sock_map_fd(newsock, 0);
4091 if (retval < 0) {
4092 sock_release(newsock);
4093 goto out;
4094 }
4095
4096 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4097 __func__, sk, asoc, newsock->sk, retval);
4098
4099 /* Return the fd mapped to the new socket. */
4100 peeloff.sd = retval;
4101 if (put_user(len, optlen))
4102 return -EFAULT;
4103 if (copy_to_user(optval, &peeloff, len))
4104 retval = -EFAULT;
4105
4106 out:
4107 return retval;
4108 }
4109
4110 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4111 *
4112 * Applications can enable or disable heartbeats for any peer address of
4113 * an association, modify an address's heartbeat interval, force a
4114 * heartbeat to be sent immediately, and adjust the address's maximum
4115 * number of retransmissions sent before an address is considered
4116 * unreachable. The following structure is used to access and modify an
4117 * address's parameters:
4118 *
4119 * struct sctp_paddrparams {
4120 * sctp_assoc_t spp_assoc_id;
4121 * struct sockaddr_storage spp_address;
4122 * uint32_t spp_hbinterval;
4123 * uint16_t spp_pathmaxrxt;
4124 * uint32_t spp_pathmtu;
4125 * uint32_t spp_sackdelay;
4126 * uint32_t spp_flags;
4127 * };
4128 *
4129 * spp_assoc_id - (one-to-many style socket) This is filled in the
4130 * application, and identifies the association for
4131 * this query.
4132 * spp_address - This specifies which address is of interest.
4133 * spp_hbinterval - This contains the value of the heartbeat interval,
4134 * in milliseconds. If a value of zero
4135 * is present in this field then no changes are to
4136 * be made to this parameter.
4137 * spp_pathmaxrxt - This contains the maximum number of
4138 * retransmissions before this address shall be
4139 * considered unreachable. If a value of zero
4140 * is present in this field then no changes are to
4141 * be made to this parameter.
4142 * spp_pathmtu - When Path MTU discovery is disabled the value
4143 * specified here will be the "fixed" path mtu.
4144 * Note that if the spp_address field is empty
4145 * then all associations on this address will
4146 * have this fixed path mtu set upon them.
4147 *
4148 * spp_sackdelay - When delayed sack is enabled, this value specifies
4149 * the number of milliseconds that sacks will be delayed
4150 * for. This value will apply to all addresses of an
4151 * association if the spp_address field is empty. Note
4152 * also, that if delayed sack is enabled and this
4153 * value is set to 0, no change is made to the last
4154 * recorded delayed sack timer value.
4155 *
4156 * spp_flags - These flags are used to control various features
4157 * on an association. The flag field may contain
4158 * zero or more of the following options.
4159 *
4160 * SPP_HB_ENABLE - Enable heartbeats on the
4161 * specified address. Note that if the address
4162 * field is empty all addresses for the association
4163 * have heartbeats enabled upon them.
4164 *
4165 * SPP_HB_DISABLE - Disable heartbeats on the
4166 * speicifed address. Note that if the address
4167 * field is empty all addresses for the association
4168 * will have their heartbeats disabled. Note also
4169 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4170 * mutually exclusive, only one of these two should
4171 * be specified. Enabling both fields will have
4172 * undetermined results.
4173 *
4174 * SPP_HB_DEMAND - Request a user initiated heartbeat
4175 * to be made immediately.
4176 *
4177 * SPP_PMTUD_ENABLE - This field will enable PMTU
4178 * discovery upon the specified address. Note that
4179 * if the address feild is empty then all addresses
4180 * on the association are effected.
4181 *
4182 * SPP_PMTUD_DISABLE - This field will disable PMTU
4183 * discovery upon the specified address. Note that
4184 * if the address feild is empty then all addresses
4185 * on the association are effected. Not also that
4186 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4187 * exclusive. Enabling both will have undetermined
4188 * results.
4189 *
4190 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4191 * on delayed sack. The time specified in spp_sackdelay
4192 * is used to specify the sack delay for this address. Note
4193 * that if spp_address is empty then all addresses will
4194 * enable delayed sack and take on the sack delay
4195 * value specified in spp_sackdelay.
4196 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4197 * off delayed sack. If the spp_address field is blank then
4198 * delayed sack is disabled for the entire association. Note
4199 * also that this field is mutually exclusive to
4200 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4201 * results.
4202 */
4203 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4204 char __user *optval, int __user *optlen)
4205 {
4206 struct sctp_paddrparams params;
4207 struct sctp_transport *trans = NULL;
4208 struct sctp_association *asoc = NULL;
4209 struct sctp_sock *sp = sctp_sk(sk);
4210
4211 if (len < sizeof(struct sctp_paddrparams))
4212 return -EINVAL;
4213 len = sizeof(struct sctp_paddrparams);
4214 if (copy_from_user(&params, optval, len))
4215 return -EFAULT;
4216
4217 /* If an address other than INADDR_ANY is specified, and
4218 * no transport is found, then the request is invalid.
4219 */
4220 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4221 trans = sctp_addr_id2transport(sk, &params.spp_address,
4222 params.spp_assoc_id);
4223 if (!trans) {
4224 SCTP_DEBUG_PRINTK("Failed no transport\n");
4225 return -EINVAL;
4226 }
4227 }
4228
4229 /* Get association, if assoc_id != 0 and the socket is a one
4230 * to many style socket, and an association was not found, then
4231 * the id was invalid.
4232 */
4233 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4234 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4235 SCTP_DEBUG_PRINTK("Failed no association\n");
4236 return -EINVAL;
4237 }
4238
4239 if (trans) {
4240 /* Fetch transport values. */
4241 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4242 params.spp_pathmtu = trans->pathmtu;
4243 params.spp_pathmaxrxt = trans->pathmaxrxt;
4244 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4245
4246 /*draft-11 doesn't say what to return in spp_flags*/
4247 params.spp_flags = trans->param_flags;
4248 } else if (asoc) {
4249 /* Fetch association values. */
4250 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4251 params.spp_pathmtu = asoc->pathmtu;
4252 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4253 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4254
4255 /*draft-11 doesn't say what to return in spp_flags*/
4256 params.spp_flags = asoc->param_flags;
4257 } else {
4258 /* Fetch socket values. */
4259 params.spp_hbinterval = sp->hbinterval;
4260 params.spp_pathmtu = sp->pathmtu;
4261 params.spp_sackdelay = sp->sackdelay;
4262 params.spp_pathmaxrxt = sp->pathmaxrxt;
4263
4264 /*draft-11 doesn't say what to return in spp_flags*/
4265 params.spp_flags = sp->param_flags;
4266 }
4267
4268 if (copy_to_user(optval, &params, len))
4269 return -EFAULT;
4270
4271 if (put_user(len, optlen))
4272 return -EFAULT;
4273
4274 return 0;
4275 }
4276
4277 /*
4278 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4279 *
4280 * This option will effect the way delayed acks are performed. This
4281 * option allows you to get or set the delayed ack time, in
4282 * milliseconds. It also allows changing the delayed ack frequency.
4283 * Changing the frequency to 1 disables the delayed sack algorithm. If
4284 * the assoc_id is 0, then this sets or gets the endpoints default
4285 * values. If the assoc_id field is non-zero, then the set or get
4286 * effects the specified association for the one to many model (the
4287 * assoc_id field is ignored by the one to one model). Note that if
4288 * sack_delay or sack_freq are 0 when setting this option, then the
4289 * current values will remain unchanged.
4290 *
4291 * struct sctp_sack_info {
4292 * sctp_assoc_t sack_assoc_id;
4293 * uint32_t sack_delay;
4294 * uint32_t sack_freq;
4295 * };
4296 *
4297 * sack_assoc_id - This parameter, indicates which association the user
4298 * is performing an action upon. Note that if this field's value is
4299 * zero then the endpoints default value is changed (effecting future
4300 * associations only).
4301 *
4302 * sack_delay - This parameter contains the number of milliseconds that
4303 * the user is requesting the delayed ACK timer be set to. Note that
4304 * this value is defined in the standard to be between 200 and 500
4305 * milliseconds.
4306 *
4307 * sack_freq - This parameter contains the number of packets that must
4308 * be received before a sack is sent without waiting for the delay
4309 * timer to expire. The default value for this is 2, setting this
4310 * value to 1 will disable the delayed sack algorithm.
4311 */
4312 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4313 char __user *optval,
4314 int __user *optlen)
4315 {
4316 struct sctp_sack_info params;
4317 struct sctp_association *asoc = NULL;
4318 struct sctp_sock *sp = sctp_sk(sk);
4319
4320 if (len >= sizeof(struct sctp_sack_info)) {
4321 len = sizeof(struct sctp_sack_info);
4322
4323 if (copy_from_user(&params, optval, len))
4324 return -EFAULT;
4325 } else if (len == sizeof(struct sctp_assoc_value)) {
4326 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4327 pr_warn("Use struct sctp_sack_info instead\n");
4328 if (copy_from_user(&params, optval, len))
4329 return -EFAULT;
4330 } else
4331 return - EINVAL;
4332
4333 /* Get association, if sack_assoc_id != 0 and the socket is a one
4334 * to many style socket, and an association was not found, then
4335 * the id was invalid.
4336 */
4337 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4338 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4339 return -EINVAL;
4340
4341 if (asoc) {
4342 /* Fetch association values. */
4343 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4344 params.sack_delay = jiffies_to_msecs(
4345 asoc->sackdelay);
4346 params.sack_freq = asoc->sackfreq;
4347
4348 } else {
4349 params.sack_delay = 0;
4350 params.sack_freq = 1;
4351 }
4352 } else {
4353 /* Fetch socket values. */
4354 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4355 params.sack_delay = sp->sackdelay;
4356 params.sack_freq = sp->sackfreq;
4357 } else {
4358 params.sack_delay = 0;
4359 params.sack_freq = 1;
4360 }
4361 }
4362
4363 if (copy_to_user(optval, &params, len))
4364 return -EFAULT;
4365
4366 if (put_user(len, optlen))
4367 return -EFAULT;
4368
4369 return 0;
4370 }
4371
4372 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4373 *
4374 * Applications can specify protocol parameters for the default association
4375 * initialization. The option name argument to setsockopt() and getsockopt()
4376 * is SCTP_INITMSG.
4377 *
4378 * Setting initialization parameters is effective only on an unconnected
4379 * socket (for UDP-style sockets only future associations are effected
4380 * by the change). With TCP-style sockets, this option is inherited by
4381 * sockets derived from a listener socket.
4382 */
4383 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4384 {
4385 if (len < sizeof(struct sctp_initmsg))
4386 return -EINVAL;
4387 len = sizeof(struct sctp_initmsg);
4388 if (put_user(len, optlen))
4389 return -EFAULT;
4390 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4391 return -EFAULT;
4392 return 0;
4393 }
4394
4395
4396 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4397 char __user *optval, int __user *optlen)
4398 {
4399 struct sctp_association *asoc;
4400 int cnt = 0;
4401 struct sctp_getaddrs getaddrs;
4402 struct sctp_transport *from;
4403 void __user *to;
4404 union sctp_addr temp;
4405 struct sctp_sock *sp = sctp_sk(sk);
4406 int addrlen;
4407 size_t space_left;
4408 int bytes_copied;
4409
4410 if (len < sizeof(struct sctp_getaddrs))
4411 return -EINVAL;
4412
4413 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4414 return -EFAULT;
4415
4416 /* For UDP-style sockets, id specifies the association to query. */
4417 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4418 if (!asoc)
4419 return -EINVAL;
4420
4421 to = optval + offsetof(struct sctp_getaddrs,addrs);
4422 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4423
4424 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4425 transports) {
4426 memcpy(&temp, &from->ipaddr, sizeof(temp));
4427 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4428 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4429 if (space_left < addrlen)
4430 return -ENOMEM;
4431 if (copy_to_user(to, &temp, addrlen))
4432 return -EFAULT;
4433 to += addrlen;
4434 cnt++;
4435 space_left -= addrlen;
4436 }
4437
4438 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4439 return -EFAULT;
4440 bytes_copied = ((char __user *)to) - optval;
4441 if (put_user(bytes_copied, optlen))
4442 return -EFAULT;
4443
4444 return 0;
4445 }
4446
4447 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4448 size_t space_left, int *bytes_copied)
4449 {
4450 struct sctp_sockaddr_entry *addr;
4451 union sctp_addr temp;
4452 int cnt = 0;
4453 int addrlen;
4454
4455 rcu_read_lock();
4456 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4457 if (!addr->valid)
4458 continue;
4459
4460 if ((PF_INET == sk->sk_family) &&
4461 (AF_INET6 == addr->a.sa.sa_family))
4462 continue;
4463 if ((PF_INET6 == sk->sk_family) &&
4464 inet_v6_ipv6only(sk) &&
4465 (AF_INET == addr->a.sa.sa_family))
4466 continue;
4467 memcpy(&temp, &addr->a, sizeof(temp));
4468 if (!temp.v4.sin_port)
4469 temp.v4.sin_port = htons(port);
4470
4471 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4472 &temp);
4473 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4474 if (space_left < addrlen) {
4475 cnt = -ENOMEM;
4476 break;
4477 }
4478 memcpy(to, &temp, addrlen);
4479
4480 to += addrlen;
4481 cnt ++;
4482 space_left -= addrlen;
4483 *bytes_copied += addrlen;
4484 }
4485 rcu_read_unlock();
4486
4487 return cnt;
4488 }
4489
4490
4491 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4492 char __user *optval, int __user *optlen)
4493 {
4494 struct sctp_bind_addr *bp;
4495 struct sctp_association *asoc;
4496 int cnt = 0;
4497 struct sctp_getaddrs getaddrs;
4498 struct sctp_sockaddr_entry *addr;
4499 void __user *to;
4500 union sctp_addr temp;
4501 struct sctp_sock *sp = sctp_sk(sk);
4502 int addrlen;
4503 int err = 0;
4504 size_t space_left;
4505 int bytes_copied = 0;
4506 void *addrs;
4507 void *buf;
4508
4509 if (len < sizeof(struct sctp_getaddrs))
4510 return -EINVAL;
4511
4512 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4513 return -EFAULT;
4514
4515 /*
4516 * For UDP-style sockets, id specifies the association to query.
4517 * If the id field is set to the value '0' then the locally bound
4518 * addresses are returned without regard to any particular
4519 * association.
4520 */
4521 if (0 == getaddrs.assoc_id) {
4522 bp = &sctp_sk(sk)->ep->base.bind_addr;
4523 } else {
4524 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4525 if (!asoc)
4526 return -EINVAL;
4527 bp = &asoc->base.bind_addr;
4528 }
4529
4530 to = optval + offsetof(struct sctp_getaddrs,addrs);
4531 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4532
4533 addrs = kmalloc(space_left, GFP_KERNEL);
4534 if (!addrs)
4535 return -ENOMEM;
4536
4537 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4538 * addresses from the global local address list.
4539 */
4540 if (sctp_list_single_entry(&bp->address_list)) {
4541 addr = list_entry(bp->address_list.next,
4542 struct sctp_sockaddr_entry, list);
4543 if (sctp_is_any(sk, &addr->a)) {
4544 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4545 space_left, &bytes_copied);
4546 if (cnt < 0) {
4547 err = cnt;
4548 goto out;
4549 }
4550 goto copy_getaddrs;
4551 }
4552 }
4553
4554 buf = addrs;
4555 /* Protection on the bound address list is not needed since
4556 * in the socket option context we hold a socket lock and
4557 * thus the bound address list can't change.
4558 */
4559 list_for_each_entry(addr, &bp->address_list, list) {
4560 memcpy(&temp, &addr->a, sizeof(temp));
4561 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4562 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4563 if (space_left < addrlen) {
4564 err = -ENOMEM; /*fixme: right error?*/
4565 goto out;
4566 }
4567 memcpy(buf, &temp, addrlen);
4568 buf += addrlen;
4569 bytes_copied += addrlen;
4570 cnt ++;
4571 space_left -= addrlen;
4572 }
4573
4574 copy_getaddrs:
4575 if (copy_to_user(to, addrs, bytes_copied)) {
4576 err = -EFAULT;
4577 goto out;
4578 }
4579 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4580 err = -EFAULT;
4581 goto out;
4582 }
4583 if (put_user(bytes_copied, optlen))
4584 err = -EFAULT;
4585 out:
4586 kfree(addrs);
4587 return err;
4588 }
4589
4590 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4591 *
4592 * Requests that the local SCTP stack use the enclosed peer address as
4593 * the association primary. The enclosed address must be one of the
4594 * association peer's addresses.
4595 */
4596 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4597 char __user *optval, int __user *optlen)
4598 {
4599 struct sctp_prim prim;
4600 struct sctp_association *asoc;
4601 struct sctp_sock *sp = sctp_sk(sk);
4602
4603 if (len < sizeof(struct sctp_prim))
4604 return -EINVAL;
4605
4606 len = sizeof(struct sctp_prim);
4607
4608 if (copy_from_user(&prim, optval, len))
4609 return -EFAULT;
4610
4611 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4612 if (!asoc)
4613 return -EINVAL;
4614
4615 if (!asoc->peer.primary_path)
4616 return -ENOTCONN;
4617
4618 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4619 asoc->peer.primary_path->af_specific->sockaddr_len);
4620
4621 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4622 (union sctp_addr *)&prim.ssp_addr);
4623
4624 if (put_user(len, optlen))
4625 return -EFAULT;
4626 if (copy_to_user(optval, &prim, len))
4627 return -EFAULT;
4628
4629 return 0;
4630 }
4631
4632 /*
4633 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4634 *
4635 * Requests that the local endpoint set the specified Adaptation Layer
4636 * Indication parameter for all future INIT and INIT-ACK exchanges.
4637 */
4638 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4639 char __user *optval, int __user *optlen)
4640 {
4641 struct sctp_setadaptation adaptation;
4642
4643 if (len < sizeof(struct sctp_setadaptation))
4644 return -EINVAL;
4645
4646 len = sizeof(struct sctp_setadaptation);
4647
4648 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4649
4650 if (put_user(len, optlen))
4651 return -EFAULT;
4652 if (copy_to_user(optval, &adaptation, len))
4653 return -EFAULT;
4654
4655 return 0;
4656 }
4657
4658 /*
4659 *
4660 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4661 *
4662 * Applications that wish to use the sendto() system call may wish to
4663 * specify a default set of parameters that would normally be supplied
4664 * through the inclusion of ancillary data. This socket option allows
4665 * such an application to set the default sctp_sndrcvinfo structure.
4666
4667
4668 * The application that wishes to use this socket option simply passes
4669 * in to this call the sctp_sndrcvinfo structure defined in Section
4670 * 5.2.2) The input parameters accepted by this call include
4671 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4672 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4673 * to this call if the caller is using the UDP model.
4674 *
4675 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4676 */
4677 static int sctp_getsockopt_default_send_param(struct sock *sk,
4678 int len, char __user *optval,
4679 int __user *optlen)
4680 {
4681 struct sctp_sndrcvinfo info;
4682 struct sctp_association *asoc;
4683 struct sctp_sock *sp = sctp_sk(sk);
4684
4685 if (len < sizeof(struct sctp_sndrcvinfo))
4686 return -EINVAL;
4687
4688 len = sizeof(struct sctp_sndrcvinfo);
4689
4690 if (copy_from_user(&info, optval, len))
4691 return -EFAULT;
4692
4693 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4694 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4695 return -EINVAL;
4696
4697 if (asoc) {
4698 info.sinfo_stream = asoc->default_stream;
4699 info.sinfo_flags = asoc->default_flags;
4700 info.sinfo_ppid = asoc->default_ppid;
4701 info.sinfo_context = asoc->default_context;
4702 info.sinfo_timetolive = asoc->default_timetolive;
4703 } else {
4704 info.sinfo_stream = sp->default_stream;
4705 info.sinfo_flags = sp->default_flags;
4706 info.sinfo_ppid = sp->default_ppid;
4707 info.sinfo_context = sp->default_context;
4708 info.sinfo_timetolive = sp->default_timetolive;
4709 }
4710
4711 if (put_user(len, optlen))
4712 return -EFAULT;
4713 if (copy_to_user(optval, &info, len))
4714 return -EFAULT;
4715
4716 return 0;
4717 }
4718
4719 /*
4720 *
4721 * 7.1.5 SCTP_NODELAY
4722 *
4723 * Turn on/off any Nagle-like algorithm. This means that packets are
4724 * generally sent as soon as possible and no unnecessary delays are
4725 * introduced, at the cost of more packets in the network. Expects an
4726 * integer boolean flag.
4727 */
4728
4729 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4730 char __user *optval, int __user *optlen)
4731 {
4732 int val;
4733
4734 if (len < sizeof(int))
4735 return -EINVAL;
4736
4737 len = sizeof(int);
4738 val = (sctp_sk(sk)->nodelay == 1);
4739 if (put_user(len, optlen))
4740 return -EFAULT;
4741 if (copy_to_user(optval, &val, len))
4742 return -EFAULT;
4743 return 0;
4744 }
4745
4746 /*
4747 *
4748 * 7.1.1 SCTP_RTOINFO
4749 *
4750 * The protocol parameters used to initialize and bound retransmission
4751 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4752 * and modify these parameters.
4753 * All parameters are time values, in milliseconds. A value of 0, when
4754 * modifying the parameters, indicates that the current value should not
4755 * be changed.
4756 *
4757 */
4758 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4759 char __user *optval,
4760 int __user *optlen) {
4761 struct sctp_rtoinfo rtoinfo;
4762 struct sctp_association *asoc;
4763
4764 if (len < sizeof (struct sctp_rtoinfo))
4765 return -EINVAL;
4766
4767 len = sizeof(struct sctp_rtoinfo);
4768
4769 if (copy_from_user(&rtoinfo, optval, len))
4770 return -EFAULT;
4771
4772 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4773
4774 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4775 return -EINVAL;
4776
4777 /* Values corresponding to the specific association. */
4778 if (asoc) {
4779 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4780 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4781 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4782 } else {
4783 /* Values corresponding to the endpoint. */
4784 struct sctp_sock *sp = sctp_sk(sk);
4785
4786 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4787 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4788 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4789 }
4790
4791 if (put_user(len, optlen))
4792 return -EFAULT;
4793
4794 if (copy_to_user(optval, &rtoinfo, len))
4795 return -EFAULT;
4796
4797 return 0;
4798 }
4799
4800 /*
4801 *
4802 * 7.1.2 SCTP_ASSOCINFO
4803 *
4804 * This option is used to tune the maximum retransmission attempts
4805 * of the association.
4806 * Returns an error if the new association retransmission value is
4807 * greater than the sum of the retransmission value of the peer.
4808 * See [SCTP] for more information.
4809 *
4810 */
4811 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4812 char __user *optval,
4813 int __user *optlen)
4814 {
4815
4816 struct sctp_assocparams assocparams;
4817 struct sctp_association *asoc;
4818 struct list_head *pos;
4819 int cnt = 0;
4820
4821 if (len < sizeof (struct sctp_assocparams))
4822 return -EINVAL;
4823
4824 len = sizeof(struct sctp_assocparams);
4825
4826 if (copy_from_user(&assocparams, optval, len))
4827 return -EFAULT;
4828
4829 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4830
4831 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4832 return -EINVAL;
4833
4834 /* Values correspoinding to the specific association */
4835 if (asoc) {
4836 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4837 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4838 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4839 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4840 * 1000) +
4841 (asoc->cookie_life.tv_usec
4842 / 1000);
4843
4844 list_for_each(pos, &asoc->peer.transport_addr_list) {
4845 cnt ++;
4846 }
4847
4848 assocparams.sasoc_number_peer_destinations = cnt;
4849 } else {
4850 /* Values corresponding to the endpoint */
4851 struct sctp_sock *sp = sctp_sk(sk);
4852
4853 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4854 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4855 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4856 assocparams.sasoc_cookie_life =
4857 sp->assocparams.sasoc_cookie_life;
4858 assocparams.sasoc_number_peer_destinations =
4859 sp->assocparams.
4860 sasoc_number_peer_destinations;
4861 }
4862
4863 if (put_user(len, optlen))
4864 return -EFAULT;
4865
4866 if (copy_to_user(optval, &assocparams, len))
4867 return -EFAULT;
4868
4869 return 0;
4870 }
4871
4872 /*
4873 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4874 *
4875 * This socket option is a boolean flag which turns on or off mapped V4
4876 * addresses. If this option is turned on and the socket is type
4877 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4878 * If this option is turned off, then no mapping will be done of V4
4879 * addresses and a user will receive both PF_INET6 and PF_INET type
4880 * addresses on the socket.
4881 */
4882 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4883 char __user *optval, int __user *optlen)
4884 {
4885 int val;
4886 struct sctp_sock *sp = sctp_sk(sk);
4887
4888 if (len < sizeof(int))
4889 return -EINVAL;
4890
4891 len = sizeof(int);
4892 val = sp->v4mapped;
4893 if (put_user(len, optlen))
4894 return -EFAULT;
4895 if (copy_to_user(optval, &val, len))
4896 return -EFAULT;
4897
4898 return 0;
4899 }
4900
4901 /*
4902 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4903 * (chapter and verse is quoted at sctp_setsockopt_context())
4904 */
4905 static int sctp_getsockopt_context(struct sock *sk, int len,
4906 char __user *optval, int __user *optlen)
4907 {
4908 struct sctp_assoc_value params;
4909 struct sctp_sock *sp;
4910 struct sctp_association *asoc;
4911
4912 if (len < sizeof(struct sctp_assoc_value))
4913 return -EINVAL;
4914
4915 len = sizeof(struct sctp_assoc_value);
4916
4917 if (copy_from_user(&params, optval, len))
4918 return -EFAULT;
4919
4920 sp = sctp_sk(sk);
4921
4922 if (params.assoc_id != 0) {
4923 asoc = sctp_id2assoc(sk, params.assoc_id);
4924 if (!asoc)
4925 return -EINVAL;
4926 params.assoc_value = asoc->default_rcv_context;
4927 } else {
4928 params.assoc_value = sp->default_rcv_context;
4929 }
4930
4931 if (put_user(len, optlen))
4932 return -EFAULT;
4933 if (copy_to_user(optval, &params, len))
4934 return -EFAULT;
4935
4936 return 0;
4937 }
4938
4939 /*
4940 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4941 * This option will get or set the maximum size to put in any outgoing
4942 * SCTP DATA chunk. If a message is larger than this size it will be
4943 * fragmented by SCTP into the specified size. Note that the underlying
4944 * SCTP implementation may fragment into smaller sized chunks when the
4945 * PMTU of the underlying association is smaller than the value set by
4946 * the user. The default value for this option is '0' which indicates
4947 * the user is NOT limiting fragmentation and only the PMTU will effect
4948 * SCTP's choice of DATA chunk size. Note also that values set larger
4949 * than the maximum size of an IP datagram will effectively let SCTP
4950 * control fragmentation (i.e. the same as setting this option to 0).
4951 *
4952 * The following structure is used to access and modify this parameter:
4953 *
4954 * struct sctp_assoc_value {
4955 * sctp_assoc_t assoc_id;
4956 * uint32_t assoc_value;
4957 * };
4958 *
4959 * assoc_id: This parameter is ignored for one-to-one style sockets.
4960 * For one-to-many style sockets this parameter indicates which
4961 * association the user is performing an action upon. Note that if
4962 * this field's value is zero then the endpoints default value is
4963 * changed (effecting future associations only).
4964 * assoc_value: This parameter specifies the maximum size in bytes.
4965 */
4966 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4967 char __user *optval, int __user *optlen)
4968 {
4969 struct sctp_assoc_value params;
4970 struct sctp_association *asoc;
4971
4972 if (len == sizeof(int)) {
4973 pr_warn("Use of int in maxseg socket option deprecated\n");
4974 pr_warn("Use struct sctp_assoc_value instead\n");
4975 params.assoc_id = 0;
4976 } else if (len >= sizeof(struct sctp_assoc_value)) {
4977 len = sizeof(struct sctp_assoc_value);
4978 if (copy_from_user(&params, optval, sizeof(params)))
4979 return -EFAULT;
4980 } else
4981 return -EINVAL;
4982
4983 asoc = sctp_id2assoc(sk, params.assoc_id);
4984 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4985 return -EINVAL;
4986
4987 if (asoc)
4988 params.assoc_value = asoc->frag_point;
4989 else
4990 params.assoc_value = sctp_sk(sk)->user_frag;
4991
4992 if (put_user(len, optlen))
4993 return -EFAULT;
4994 if (len == sizeof(int)) {
4995 if (copy_to_user(optval, &params.assoc_value, len))
4996 return -EFAULT;
4997 } else {
4998 if (copy_to_user(optval, &params, len))
4999 return -EFAULT;
5000 }
5001
5002 return 0;
5003 }
5004
5005 /*
5006 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5007 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5008 */
5009 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5010 char __user *optval, int __user *optlen)
5011 {
5012 int val;
5013
5014 if (len < sizeof(int))
5015 return -EINVAL;
5016
5017 len = sizeof(int);
5018
5019 val = sctp_sk(sk)->frag_interleave;
5020 if (put_user(len, optlen))
5021 return -EFAULT;
5022 if (copy_to_user(optval, &val, len))
5023 return -EFAULT;
5024
5025 return 0;
5026 }
5027
5028 /*
5029 * 7.1.25. Set or Get the sctp partial delivery point
5030 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5031 */
5032 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5033 char __user *optval,
5034 int __user *optlen)
5035 {
5036 u32 val;
5037
5038 if (len < sizeof(u32))
5039 return -EINVAL;
5040
5041 len = sizeof(u32);
5042
5043 val = sctp_sk(sk)->pd_point;
5044 if (put_user(len, optlen))
5045 return -EFAULT;
5046 if (copy_to_user(optval, &val, len))
5047 return -EFAULT;
5048
5049 return 0;
5050 }
5051
5052 /*
5053 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5054 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5055 */
5056 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5057 char __user *optval,
5058 int __user *optlen)
5059 {
5060 struct sctp_assoc_value params;
5061 struct sctp_sock *sp;
5062 struct sctp_association *asoc;
5063
5064 if (len == sizeof(int)) {
5065 pr_warn("Use of int in max_burst socket option deprecated\n");
5066 pr_warn("Use struct sctp_assoc_value instead\n");
5067 params.assoc_id = 0;
5068 } else if (len >= sizeof(struct sctp_assoc_value)) {
5069 len = sizeof(struct sctp_assoc_value);
5070 if (copy_from_user(&params, optval, len))
5071 return -EFAULT;
5072 } else
5073 return -EINVAL;
5074
5075 sp = sctp_sk(sk);
5076
5077 if (params.assoc_id != 0) {
5078 asoc = sctp_id2assoc(sk, params.assoc_id);
5079 if (!asoc)
5080 return -EINVAL;
5081 params.assoc_value = asoc->max_burst;
5082 } else
5083 params.assoc_value = sp->max_burst;
5084
5085 if (len == sizeof(int)) {
5086 if (copy_to_user(optval, &params.assoc_value, len))
5087 return -EFAULT;
5088 } else {
5089 if (copy_to_user(optval, &params, len))
5090 return -EFAULT;
5091 }
5092
5093 return 0;
5094
5095 }
5096
5097 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5098 char __user *optval, int __user *optlen)
5099 {
5100 struct sctp_hmacalgo __user *p = (void __user *)optval;
5101 struct sctp_hmac_algo_param *hmacs;
5102 __u16 data_len = 0;
5103 u32 num_idents;
5104
5105 if (!sctp_auth_enable)
5106 return -EACCES;
5107
5108 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5109 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5110
5111 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5112 return -EINVAL;
5113
5114 len = sizeof(struct sctp_hmacalgo) + data_len;
5115 num_idents = data_len / sizeof(u16);
5116
5117 if (put_user(len, optlen))
5118 return -EFAULT;
5119 if (put_user(num_idents, &p->shmac_num_idents))
5120 return -EFAULT;
5121 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5122 return -EFAULT;
5123 return 0;
5124 }
5125
5126 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5127 char __user *optval, int __user *optlen)
5128 {
5129 struct sctp_authkeyid val;
5130 struct sctp_association *asoc;
5131
5132 if (!sctp_auth_enable)
5133 return -EACCES;
5134
5135 if (len < sizeof(struct sctp_authkeyid))
5136 return -EINVAL;
5137 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5138 return -EFAULT;
5139
5140 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5141 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5142 return -EINVAL;
5143
5144 if (asoc)
5145 val.scact_keynumber = asoc->active_key_id;
5146 else
5147 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5148
5149 len = sizeof(struct sctp_authkeyid);
5150 if (put_user(len, optlen))
5151 return -EFAULT;
5152 if (copy_to_user(optval, &val, len))
5153 return -EFAULT;
5154
5155 return 0;
5156 }
5157
5158 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5159 char __user *optval, int __user *optlen)
5160 {
5161 struct sctp_authchunks __user *p = (void __user *)optval;
5162 struct sctp_authchunks val;
5163 struct sctp_association *asoc;
5164 struct sctp_chunks_param *ch;
5165 u32 num_chunks = 0;
5166 char __user *to;
5167
5168 if (!sctp_auth_enable)
5169 return -EACCES;
5170
5171 if (len < sizeof(struct sctp_authchunks))
5172 return -EINVAL;
5173
5174 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5175 return -EFAULT;
5176
5177 to = p->gauth_chunks;
5178 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5179 if (!asoc)
5180 return -EINVAL;
5181
5182 ch = asoc->peer.peer_chunks;
5183 if (!ch)
5184 goto num;
5185
5186 /* See if the user provided enough room for all the data */
5187 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5188 if (len < num_chunks)
5189 return -EINVAL;
5190
5191 if (copy_to_user(to, ch->chunks, num_chunks))
5192 return -EFAULT;
5193 num:
5194 len = sizeof(struct sctp_authchunks) + num_chunks;
5195 if (put_user(len, optlen)) return -EFAULT;
5196 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5197 return -EFAULT;
5198 return 0;
5199 }
5200
5201 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5202 char __user *optval, int __user *optlen)
5203 {
5204 struct sctp_authchunks __user *p = (void __user *)optval;
5205 struct sctp_authchunks val;
5206 struct sctp_association *asoc;
5207 struct sctp_chunks_param *ch;
5208 u32 num_chunks = 0;
5209 char __user *to;
5210
5211 if (!sctp_auth_enable)
5212 return -EACCES;
5213
5214 if (len < sizeof(struct sctp_authchunks))
5215 return -EINVAL;
5216
5217 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5218 return -EFAULT;
5219
5220 to = p->gauth_chunks;
5221 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5222 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5223 return -EINVAL;
5224
5225 if (asoc)
5226 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5227 else
5228 ch = sctp_sk(sk)->ep->auth_chunk_list;
5229
5230 if (!ch)
5231 goto num;
5232
5233 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5234 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5235 return -EINVAL;
5236
5237 if (copy_to_user(to, ch->chunks, num_chunks))
5238 return -EFAULT;
5239 num:
5240 len = sizeof(struct sctp_authchunks) + num_chunks;
5241 if (put_user(len, optlen))
5242 return -EFAULT;
5243 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5244 return -EFAULT;
5245
5246 return 0;
5247 }
5248
5249 /*
5250 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5251 * This option gets the current number of associations that are attached
5252 * to a one-to-many style socket. The option value is an uint32_t.
5253 */
5254 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5255 char __user *optval, int __user *optlen)
5256 {
5257 struct sctp_sock *sp = sctp_sk(sk);
5258 struct sctp_association *asoc;
5259 u32 val = 0;
5260
5261 if (sctp_style(sk, TCP))
5262 return -EOPNOTSUPP;
5263
5264 if (len < sizeof(u32))
5265 return -EINVAL;
5266
5267 len = sizeof(u32);
5268
5269 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5270 val++;
5271 }
5272
5273 if (put_user(len, optlen))
5274 return -EFAULT;
5275 if (copy_to_user(optval, &val, len))
5276 return -EFAULT;
5277
5278 return 0;
5279 }
5280
5281 /*
5282 * 8.2.6. Get the Current Identifiers of Associations
5283 * (SCTP_GET_ASSOC_ID_LIST)
5284 *
5285 * This option gets the current list of SCTP association identifiers of
5286 * the SCTP associations handled by a one-to-many style socket.
5287 */
5288 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5289 char __user *optval, int __user *optlen)
5290 {
5291 struct sctp_sock *sp = sctp_sk(sk);
5292 struct sctp_association *asoc;
5293 struct sctp_assoc_ids *ids;
5294 u32 num = 0;
5295
5296 if (sctp_style(sk, TCP))
5297 return -EOPNOTSUPP;
5298
5299 if (len < sizeof(struct sctp_assoc_ids))
5300 return -EINVAL;
5301
5302 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5303 num++;
5304 }
5305
5306 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5307 return -EINVAL;
5308
5309 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5310
5311 ids = kmalloc(len, GFP_KERNEL);
5312 if (unlikely(!ids))
5313 return -ENOMEM;
5314
5315 ids->gaids_number_of_ids = num;
5316 num = 0;
5317 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5318 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5319 }
5320
5321 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5322 kfree(ids);
5323 return -EFAULT;
5324 }
5325
5326 kfree(ids);
5327 return 0;
5328 }
5329
5330 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5331 char __user *optval, int __user *optlen)
5332 {
5333 int retval = 0;
5334 int len;
5335
5336 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5337 sk, optname);
5338
5339 /* I can hardly begin to describe how wrong this is. This is
5340 * so broken as to be worse than useless. The API draft
5341 * REALLY is NOT helpful here... I am not convinced that the
5342 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5343 * are at all well-founded.
5344 */
5345 if (level != SOL_SCTP) {
5346 struct sctp_af *af = sctp_sk(sk)->pf->af;
5347
5348 retval = af->getsockopt(sk, level, optname, optval, optlen);
5349 return retval;
5350 }
5351
5352 if (get_user(len, optlen))
5353 return -EFAULT;
5354
5355 sctp_lock_sock(sk);
5356
5357 switch (optname) {
5358 case SCTP_STATUS:
5359 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5360 break;
5361 case SCTP_DISABLE_FRAGMENTS:
5362 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5363 optlen);
5364 break;
5365 case SCTP_EVENTS:
5366 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5367 break;
5368 case SCTP_AUTOCLOSE:
5369 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5370 break;
5371 case SCTP_SOCKOPT_PEELOFF:
5372 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5373 break;
5374 case SCTP_PEER_ADDR_PARAMS:
5375 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5376 optlen);
5377 break;
5378 case SCTP_DELAYED_SACK:
5379 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5380 optlen);
5381 break;
5382 case SCTP_INITMSG:
5383 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5384 break;
5385 case SCTP_GET_PEER_ADDRS:
5386 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5387 optlen);
5388 break;
5389 case SCTP_GET_LOCAL_ADDRS:
5390 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5391 optlen);
5392 break;
5393 case SCTP_SOCKOPT_CONNECTX3:
5394 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5395 break;
5396 case SCTP_DEFAULT_SEND_PARAM:
5397 retval = sctp_getsockopt_default_send_param(sk, len,
5398 optval, optlen);
5399 break;
5400 case SCTP_PRIMARY_ADDR:
5401 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5402 break;
5403 case SCTP_NODELAY:
5404 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5405 break;
5406 case SCTP_RTOINFO:
5407 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5408 break;
5409 case SCTP_ASSOCINFO:
5410 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5411 break;
5412 case SCTP_I_WANT_MAPPED_V4_ADDR:
5413 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5414 break;
5415 case SCTP_MAXSEG:
5416 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5417 break;
5418 case SCTP_GET_PEER_ADDR_INFO:
5419 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5420 optlen);
5421 break;
5422 case SCTP_ADAPTATION_LAYER:
5423 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5424 optlen);
5425 break;
5426 case SCTP_CONTEXT:
5427 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5428 break;
5429 case SCTP_FRAGMENT_INTERLEAVE:
5430 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5431 optlen);
5432 break;
5433 case SCTP_PARTIAL_DELIVERY_POINT:
5434 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5435 optlen);
5436 break;
5437 case SCTP_MAX_BURST:
5438 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5439 break;
5440 case SCTP_AUTH_KEY:
5441 case SCTP_AUTH_CHUNK:
5442 case SCTP_AUTH_DELETE_KEY:
5443 retval = -EOPNOTSUPP;
5444 break;
5445 case SCTP_HMAC_IDENT:
5446 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5447 break;
5448 case SCTP_AUTH_ACTIVE_KEY:
5449 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5450 break;
5451 case SCTP_PEER_AUTH_CHUNKS:
5452 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5453 optlen);
5454 break;
5455 case SCTP_LOCAL_AUTH_CHUNKS:
5456 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5457 optlen);
5458 break;
5459 case SCTP_GET_ASSOC_NUMBER:
5460 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5461 break;
5462 case SCTP_GET_ASSOC_ID_LIST:
5463 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5464 break;
5465 default:
5466 retval = -ENOPROTOOPT;
5467 break;
5468 }
5469
5470 sctp_release_sock(sk);
5471 return retval;
5472 }
5473
5474 static void sctp_hash(struct sock *sk)
5475 {
5476 /* STUB */
5477 }
5478
5479 static void sctp_unhash(struct sock *sk)
5480 {
5481 /* STUB */
5482 }
5483
5484 /* Check if port is acceptable. Possibly find first available port.
5485 *
5486 * The port hash table (contained in the 'global' SCTP protocol storage
5487 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5488 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5489 * list (the list number is the port number hashed out, so as you
5490 * would expect from a hash function, all the ports in a given list have
5491 * such a number that hashes out to the same list number; you were
5492 * expecting that, right?); so each list has a set of ports, with a
5493 * link to the socket (struct sock) that uses it, the port number and
5494 * a fastreuse flag (FIXME: NPI ipg).
5495 */
5496 static struct sctp_bind_bucket *sctp_bucket_create(
5497 struct sctp_bind_hashbucket *head, unsigned short snum);
5498
5499 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5500 {
5501 struct sctp_bind_hashbucket *head; /* hash list */
5502 struct sctp_bind_bucket *pp; /* hash list port iterator */
5503 struct hlist_node *node;
5504 unsigned short snum;
5505 int ret;
5506
5507 snum = ntohs(addr->v4.sin_port);
5508
5509 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5510 sctp_local_bh_disable();
5511
5512 if (snum == 0) {
5513 /* Search for an available port. */
5514 int low, high, remaining, index;
5515 unsigned int rover;
5516
5517 inet_get_local_port_range(&low, &high);
5518 remaining = (high - low) + 1;
5519 rover = net_random() % remaining + low;
5520
5521 do {
5522 rover++;
5523 if ((rover < low) || (rover > high))
5524 rover = low;
5525 if (inet_is_reserved_local_port(rover))
5526 continue;
5527 index = sctp_phashfn(rover);
5528 head = &sctp_port_hashtable[index];
5529 sctp_spin_lock(&head->lock);
5530 sctp_for_each_hentry(pp, node, &head->chain)
5531 if (pp->port == rover)
5532 goto next;
5533 break;
5534 next:
5535 sctp_spin_unlock(&head->lock);
5536 } while (--remaining > 0);
5537
5538 /* Exhausted local port range during search? */
5539 ret = 1;
5540 if (remaining <= 0)
5541 goto fail;
5542
5543 /* OK, here is the one we will use. HEAD (the port
5544 * hash table list entry) is non-NULL and we hold it's
5545 * mutex.
5546 */
5547 snum = rover;
5548 } else {
5549 /* We are given an specific port number; we verify
5550 * that it is not being used. If it is used, we will
5551 * exahust the search in the hash list corresponding
5552 * to the port number (snum) - we detect that with the
5553 * port iterator, pp being NULL.
5554 */
5555 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5556 sctp_spin_lock(&head->lock);
5557 sctp_for_each_hentry(pp, node, &head->chain) {
5558 if (pp->port == snum)
5559 goto pp_found;
5560 }
5561 }
5562 pp = NULL;
5563 goto pp_not_found;
5564 pp_found:
5565 if (!hlist_empty(&pp->owner)) {
5566 /* We had a port hash table hit - there is an
5567 * available port (pp != NULL) and it is being
5568 * used by other socket (pp->owner not empty); that other
5569 * socket is going to be sk2.
5570 */
5571 int reuse = sk->sk_reuse;
5572 struct sock *sk2;
5573
5574 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5575 if (pp->fastreuse && sk->sk_reuse &&
5576 sk->sk_state != SCTP_SS_LISTENING)
5577 goto success;
5578
5579 /* Run through the list of sockets bound to the port
5580 * (pp->port) [via the pointers bind_next and
5581 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5582 * we get the endpoint they describe and run through
5583 * the endpoint's list of IP (v4 or v6) addresses,
5584 * comparing each of the addresses with the address of
5585 * the socket sk. If we find a match, then that means
5586 * that this port/socket (sk) combination are already
5587 * in an endpoint.
5588 */
5589 sk_for_each_bound(sk2, node, &pp->owner) {
5590 struct sctp_endpoint *ep2;
5591 ep2 = sctp_sk(sk2)->ep;
5592
5593 if (sk == sk2 ||
5594 (reuse && sk2->sk_reuse &&
5595 sk2->sk_state != SCTP_SS_LISTENING))
5596 continue;
5597
5598 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5599 sctp_sk(sk2), sctp_sk(sk))) {
5600 ret = (long)sk2;
5601 goto fail_unlock;
5602 }
5603 }
5604 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5605 }
5606 pp_not_found:
5607 /* If there was a hash table miss, create a new port. */
5608 ret = 1;
5609 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5610 goto fail_unlock;
5611
5612 /* In either case (hit or miss), make sure fastreuse is 1 only
5613 * if sk->sk_reuse is too (that is, if the caller requested
5614 * SO_REUSEADDR on this socket -sk-).
5615 */
5616 if (hlist_empty(&pp->owner)) {
5617 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5618 pp->fastreuse = 1;
5619 else
5620 pp->fastreuse = 0;
5621 } else if (pp->fastreuse &&
5622 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5623 pp->fastreuse = 0;
5624
5625 /* We are set, so fill up all the data in the hash table
5626 * entry, tie the socket list information with the rest of the
5627 * sockets FIXME: Blurry, NPI (ipg).
5628 */
5629 success:
5630 if (!sctp_sk(sk)->bind_hash) {
5631 inet_sk(sk)->inet_num = snum;
5632 sk_add_bind_node(sk, &pp->owner);
5633 sctp_sk(sk)->bind_hash = pp;
5634 }
5635 ret = 0;
5636
5637 fail_unlock:
5638 sctp_spin_unlock(&head->lock);
5639
5640 fail:
5641 sctp_local_bh_enable();
5642 return ret;
5643 }
5644
5645 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5646 * port is requested.
5647 */
5648 static int sctp_get_port(struct sock *sk, unsigned short snum)
5649 {
5650 long ret;
5651 union sctp_addr addr;
5652 struct sctp_af *af = sctp_sk(sk)->pf->af;
5653
5654 /* Set up a dummy address struct from the sk. */
5655 af->from_sk(&addr, sk);
5656 addr.v4.sin_port = htons(snum);
5657
5658 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5659 ret = sctp_get_port_local(sk, &addr);
5660
5661 return ret ? 1 : 0;
5662 }
5663
5664 /*
5665 * Move a socket to LISTENING state.
5666 */
5667 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5668 {
5669 struct sctp_sock *sp = sctp_sk(sk);
5670 struct sctp_endpoint *ep = sp->ep;
5671 struct crypto_hash *tfm = NULL;
5672
5673 /* Allocate HMAC for generating cookie. */
5674 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5675 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5676 if (IS_ERR(tfm)) {
5677 if (net_ratelimit()) {
5678 pr_info("failed to load transform for %s: %ld\n",
5679 sctp_hmac_alg, PTR_ERR(tfm));
5680 }
5681 return -ENOSYS;
5682 }
5683 sctp_sk(sk)->hmac = tfm;
5684 }
5685
5686 /*
5687 * If a bind() or sctp_bindx() is not called prior to a listen()
5688 * call that allows new associations to be accepted, the system
5689 * picks an ephemeral port and will choose an address set equivalent
5690 * to binding with a wildcard address.
5691 *
5692 * This is not currently spelled out in the SCTP sockets
5693 * extensions draft, but follows the practice as seen in TCP
5694 * sockets.
5695 *
5696 */
5697 sk->sk_state = SCTP_SS_LISTENING;
5698 if (!ep->base.bind_addr.port) {
5699 if (sctp_autobind(sk))
5700 return -EAGAIN;
5701 } else {
5702 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5703 sk->sk_state = SCTP_SS_CLOSED;
5704 return -EADDRINUSE;
5705 }
5706 }
5707
5708 sk->sk_max_ack_backlog = backlog;
5709 sctp_hash_endpoint(ep);
5710 return 0;
5711 }
5712
5713 /*
5714 * 4.1.3 / 5.1.3 listen()
5715 *
5716 * By default, new associations are not accepted for UDP style sockets.
5717 * An application uses listen() to mark a socket as being able to
5718 * accept new associations.
5719 *
5720 * On TCP style sockets, applications use listen() to ready the SCTP
5721 * endpoint for accepting inbound associations.
5722 *
5723 * On both types of endpoints a backlog of '0' disables listening.
5724 *
5725 * Move a socket to LISTENING state.
5726 */
5727 int sctp_inet_listen(struct socket *sock, int backlog)
5728 {
5729 struct sock *sk = sock->sk;
5730 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5731 int err = -EINVAL;
5732
5733 if (unlikely(backlog < 0))
5734 return err;
5735
5736 sctp_lock_sock(sk);
5737
5738 /* Peeled-off sockets are not allowed to listen(). */
5739 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5740 goto out;
5741
5742 if (sock->state != SS_UNCONNECTED)
5743 goto out;
5744
5745 /* If backlog is zero, disable listening. */
5746 if (!backlog) {
5747 if (sctp_sstate(sk, CLOSED))
5748 goto out;
5749
5750 err = 0;
5751 sctp_unhash_endpoint(ep);
5752 sk->sk_state = SCTP_SS_CLOSED;
5753 if (sk->sk_reuse)
5754 sctp_sk(sk)->bind_hash->fastreuse = 1;
5755 goto out;
5756 }
5757
5758 /* If we are already listening, just update the backlog */
5759 if (sctp_sstate(sk, LISTENING))
5760 sk->sk_max_ack_backlog = backlog;
5761 else {
5762 err = sctp_listen_start(sk, backlog);
5763 if (err)
5764 goto out;
5765 }
5766
5767 err = 0;
5768 out:
5769 sctp_release_sock(sk);
5770 return err;
5771 }
5772
5773 /*
5774 * This function is done by modeling the current datagram_poll() and the
5775 * tcp_poll(). Note that, based on these implementations, we don't
5776 * lock the socket in this function, even though it seems that,
5777 * ideally, locking or some other mechanisms can be used to ensure
5778 * the integrity of the counters (sndbuf and wmem_alloc) used
5779 * in this place. We assume that we don't need locks either until proven
5780 * otherwise.
5781 *
5782 * Another thing to note is that we include the Async I/O support
5783 * here, again, by modeling the current TCP/UDP code. We don't have
5784 * a good way to test with it yet.
5785 */
5786 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5787 {
5788 struct sock *sk = sock->sk;
5789 struct sctp_sock *sp = sctp_sk(sk);
5790 unsigned int mask;
5791
5792 poll_wait(file, sk_sleep(sk), wait);
5793
5794 /* A TCP-style listening socket becomes readable when the accept queue
5795 * is not empty.
5796 */
5797 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5798 return (!list_empty(&sp->ep->asocs)) ?
5799 (POLLIN | POLLRDNORM) : 0;
5800
5801 mask = 0;
5802
5803 /* Is there any exceptional events? */
5804 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5805 mask |= POLLERR;
5806 if (sk->sk_shutdown & RCV_SHUTDOWN)
5807 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5808 if (sk->sk_shutdown == SHUTDOWN_MASK)
5809 mask |= POLLHUP;
5810
5811 /* Is it readable? Reconsider this code with TCP-style support. */
5812 if (!skb_queue_empty(&sk->sk_receive_queue))
5813 mask |= POLLIN | POLLRDNORM;
5814
5815 /* The association is either gone or not ready. */
5816 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5817 return mask;
5818
5819 /* Is it writable? */
5820 if (sctp_writeable(sk)) {
5821 mask |= POLLOUT | POLLWRNORM;
5822 } else {
5823 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5824 /*
5825 * Since the socket is not locked, the buffer
5826 * might be made available after the writeable check and
5827 * before the bit is set. This could cause a lost I/O
5828 * signal. tcp_poll() has a race breaker for this race
5829 * condition. Based on their implementation, we put
5830 * in the following code to cover it as well.
5831 */
5832 if (sctp_writeable(sk))
5833 mask |= POLLOUT | POLLWRNORM;
5834 }
5835 return mask;
5836 }
5837
5838 /********************************************************************
5839 * 2nd Level Abstractions
5840 ********************************************************************/
5841
5842 static struct sctp_bind_bucket *sctp_bucket_create(
5843 struct sctp_bind_hashbucket *head, unsigned short snum)
5844 {
5845 struct sctp_bind_bucket *pp;
5846
5847 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5848 if (pp) {
5849 SCTP_DBG_OBJCNT_INC(bind_bucket);
5850 pp->port = snum;
5851 pp->fastreuse = 0;
5852 INIT_HLIST_HEAD(&pp->owner);
5853 hlist_add_head(&pp->node, &head->chain);
5854 }
5855 return pp;
5856 }
5857
5858 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5859 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5860 {
5861 if (pp && hlist_empty(&pp->owner)) {
5862 __hlist_del(&pp->node);
5863 kmem_cache_free(sctp_bucket_cachep, pp);
5864 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5865 }
5866 }
5867
5868 /* Release this socket's reference to a local port. */
5869 static inline void __sctp_put_port(struct sock *sk)
5870 {
5871 struct sctp_bind_hashbucket *head =
5872 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5873 struct sctp_bind_bucket *pp;
5874
5875 sctp_spin_lock(&head->lock);
5876 pp = sctp_sk(sk)->bind_hash;
5877 __sk_del_bind_node(sk);
5878 sctp_sk(sk)->bind_hash = NULL;
5879 inet_sk(sk)->inet_num = 0;
5880 sctp_bucket_destroy(pp);
5881 sctp_spin_unlock(&head->lock);
5882 }
5883
5884 void sctp_put_port(struct sock *sk)
5885 {
5886 sctp_local_bh_disable();
5887 __sctp_put_port(sk);
5888 sctp_local_bh_enable();
5889 }
5890
5891 /*
5892 * The system picks an ephemeral port and choose an address set equivalent
5893 * to binding with a wildcard address.
5894 * One of those addresses will be the primary address for the association.
5895 * This automatically enables the multihoming capability of SCTP.
5896 */
5897 static int sctp_autobind(struct sock *sk)
5898 {
5899 union sctp_addr autoaddr;
5900 struct sctp_af *af;
5901 __be16 port;
5902
5903 /* Initialize a local sockaddr structure to INADDR_ANY. */
5904 af = sctp_sk(sk)->pf->af;
5905
5906 port = htons(inet_sk(sk)->inet_num);
5907 af->inaddr_any(&autoaddr, port);
5908
5909 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5910 }
5911
5912 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5913 *
5914 * From RFC 2292
5915 * 4.2 The cmsghdr Structure *
5916 *
5917 * When ancillary data is sent or received, any number of ancillary data
5918 * objects can be specified by the msg_control and msg_controllen members of
5919 * the msghdr structure, because each object is preceded by
5920 * a cmsghdr structure defining the object's length (the cmsg_len member).
5921 * Historically Berkeley-derived implementations have passed only one object
5922 * at a time, but this API allows multiple objects to be
5923 * passed in a single call to sendmsg() or recvmsg(). The following example
5924 * shows two ancillary data objects in a control buffer.
5925 *
5926 * |<--------------------------- msg_controllen -------------------------->|
5927 * | |
5928 *
5929 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5930 *
5931 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5932 * | | |
5933 *
5934 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5935 *
5936 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5937 * | | | | |
5938 *
5939 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5940 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5941 *
5942 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5943 *
5944 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5945 * ^
5946 * |
5947 *
5948 * msg_control
5949 * points here
5950 */
5951 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5952 sctp_cmsgs_t *cmsgs)
5953 {
5954 struct cmsghdr *cmsg;
5955 struct msghdr *my_msg = (struct msghdr *)msg;
5956
5957 for (cmsg = CMSG_FIRSTHDR(msg);
5958 cmsg != NULL;
5959 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5960 if (!CMSG_OK(my_msg, cmsg))
5961 return -EINVAL;
5962
5963 /* Should we parse this header or ignore? */
5964 if (cmsg->cmsg_level != IPPROTO_SCTP)
5965 continue;
5966
5967 /* Strictly check lengths following example in SCM code. */
5968 switch (cmsg->cmsg_type) {
5969 case SCTP_INIT:
5970 /* SCTP Socket API Extension
5971 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5972 *
5973 * This cmsghdr structure provides information for
5974 * initializing new SCTP associations with sendmsg().
5975 * The SCTP_INITMSG socket option uses this same data
5976 * structure. This structure is not used for
5977 * recvmsg().
5978 *
5979 * cmsg_level cmsg_type cmsg_data[]
5980 * ------------ ------------ ----------------------
5981 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5982 */
5983 if (cmsg->cmsg_len !=
5984 CMSG_LEN(sizeof(struct sctp_initmsg)))
5985 return -EINVAL;
5986 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5987 break;
5988
5989 case SCTP_SNDRCV:
5990 /* SCTP Socket API Extension
5991 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5992 *
5993 * This cmsghdr structure specifies SCTP options for
5994 * sendmsg() and describes SCTP header information
5995 * about a received message through recvmsg().
5996 *
5997 * cmsg_level cmsg_type cmsg_data[]
5998 * ------------ ------------ ----------------------
5999 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6000 */
6001 if (cmsg->cmsg_len !=
6002 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6003 return -EINVAL;
6004
6005 cmsgs->info =
6006 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6007
6008 /* Minimally, validate the sinfo_flags. */
6009 if (cmsgs->info->sinfo_flags &
6010 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6011 SCTP_ABORT | SCTP_EOF))
6012 return -EINVAL;
6013 break;
6014
6015 default:
6016 return -EINVAL;
6017 }
6018 }
6019 return 0;
6020 }
6021
6022 /*
6023 * Wait for a packet..
6024 * Note: This function is the same function as in core/datagram.c
6025 * with a few modifications to make lksctp work.
6026 */
6027 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6028 {
6029 int error;
6030 DEFINE_WAIT(wait);
6031
6032 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6033
6034 /* Socket errors? */
6035 error = sock_error(sk);
6036 if (error)
6037 goto out;
6038
6039 if (!skb_queue_empty(&sk->sk_receive_queue))
6040 goto ready;
6041
6042 /* Socket shut down? */
6043 if (sk->sk_shutdown & RCV_SHUTDOWN)
6044 goto out;
6045
6046 /* Sequenced packets can come disconnected. If so we report the
6047 * problem.
6048 */
6049 error = -ENOTCONN;
6050
6051 /* Is there a good reason to think that we may receive some data? */
6052 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6053 goto out;
6054
6055 /* Handle signals. */
6056 if (signal_pending(current))
6057 goto interrupted;
6058
6059 /* Let another process have a go. Since we are going to sleep
6060 * anyway. Note: This may cause odd behaviors if the message
6061 * does not fit in the user's buffer, but this seems to be the
6062 * only way to honor MSG_DONTWAIT realistically.
6063 */
6064 sctp_release_sock(sk);
6065 *timeo_p = schedule_timeout(*timeo_p);
6066 sctp_lock_sock(sk);
6067
6068 ready:
6069 finish_wait(sk_sleep(sk), &wait);
6070 return 0;
6071
6072 interrupted:
6073 error = sock_intr_errno(*timeo_p);
6074
6075 out:
6076 finish_wait(sk_sleep(sk), &wait);
6077 *err = error;
6078 return error;
6079 }
6080
6081 /* Receive a datagram.
6082 * Note: This is pretty much the same routine as in core/datagram.c
6083 * with a few changes to make lksctp work.
6084 */
6085 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6086 int noblock, int *err)
6087 {
6088 int error;
6089 struct sk_buff *skb;
6090 long timeo;
6091
6092 timeo = sock_rcvtimeo(sk, noblock);
6093
6094 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6095 timeo, MAX_SCHEDULE_TIMEOUT);
6096
6097 do {
6098 /* Again only user level code calls this function,
6099 * so nothing interrupt level
6100 * will suddenly eat the receive_queue.
6101 *
6102 * Look at current nfs client by the way...
6103 * However, this function was correct in any case. 8)
6104 */
6105 if (flags & MSG_PEEK) {
6106 spin_lock_bh(&sk->sk_receive_queue.lock);
6107 skb = skb_peek(&sk->sk_receive_queue);
6108 if (skb)
6109 atomic_inc(&skb->users);
6110 spin_unlock_bh(&sk->sk_receive_queue.lock);
6111 } else {
6112 skb = skb_dequeue(&sk->sk_receive_queue);
6113 }
6114
6115 if (skb)
6116 return skb;
6117
6118 /* Caller is allowed not to check sk->sk_err before calling. */
6119 error = sock_error(sk);
6120 if (error)
6121 goto no_packet;
6122
6123 if (sk->sk_shutdown & RCV_SHUTDOWN)
6124 break;
6125
6126 /* User doesn't want to wait. */
6127 error = -EAGAIN;
6128 if (!timeo)
6129 goto no_packet;
6130 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6131
6132 return NULL;
6133
6134 no_packet:
6135 *err = error;
6136 return NULL;
6137 }
6138
6139 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6140 static void __sctp_write_space(struct sctp_association *asoc)
6141 {
6142 struct sock *sk = asoc->base.sk;
6143 struct socket *sock = sk->sk_socket;
6144
6145 if ((sctp_wspace(asoc) > 0) && sock) {
6146 if (waitqueue_active(&asoc->wait))
6147 wake_up_interruptible(&asoc->wait);
6148
6149 if (sctp_writeable(sk)) {
6150 wait_queue_head_t *wq = sk_sleep(sk);
6151
6152 if (wq && waitqueue_active(wq))
6153 wake_up_interruptible(wq);
6154
6155 /* Note that we try to include the Async I/O support
6156 * here by modeling from the current TCP/UDP code.
6157 * We have not tested with it yet.
6158 */
6159 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6160 sock_wake_async(sock,
6161 SOCK_WAKE_SPACE, POLL_OUT);
6162 }
6163 }
6164 }
6165
6166 /* Do accounting for the sndbuf space.
6167 * Decrement the used sndbuf space of the corresponding association by the
6168 * data size which was just transmitted(freed).
6169 */
6170 static void sctp_wfree(struct sk_buff *skb)
6171 {
6172 struct sctp_association *asoc;
6173 struct sctp_chunk *chunk;
6174 struct sock *sk;
6175
6176 /* Get the saved chunk pointer. */
6177 chunk = *((struct sctp_chunk **)(skb->cb));
6178 asoc = chunk->asoc;
6179 sk = asoc->base.sk;
6180 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6181 sizeof(struct sk_buff) +
6182 sizeof(struct sctp_chunk);
6183
6184 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6185
6186 /*
6187 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6188 */
6189 sk->sk_wmem_queued -= skb->truesize;
6190 sk_mem_uncharge(sk, skb->truesize);
6191
6192 sock_wfree(skb);
6193 __sctp_write_space(asoc);
6194
6195 sctp_association_put(asoc);
6196 }
6197
6198 /* Do accounting for the receive space on the socket.
6199 * Accounting for the association is done in ulpevent.c
6200 * We set this as a destructor for the cloned data skbs so that
6201 * accounting is done at the correct time.
6202 */
6203 void sctp_sock_rfree(struct sk_buff *skb)
6204 {
6205 struct sock *sk = skb->sk;
6206 struct sctp_ulpevent *event = sctp_skb2event(skb);
6207
6208 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6209
6210 /*
6211 * Mimic the behavior of sock_rfree
6212 */
6213 sk_mem_uncharge(sk, event->rmem_len);
6214 }
6215
6216
6217 /* Helper function to wait for space in the sndbuf. */
6218 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6219 size_t msg_len)
6220 {
6221 struct sock *sk = asoc->base.sk;
6222 int err = 0;
6223 long current_timeo = *timeo_p;
6224 DEFINE_WAIT(wait);
6225
6226 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6227 asoc, (long)(*timeo_p), msg_len);
6228
6229 /* Increment the association's refcnt. */
6230 sctp_association_hold(asoc);
6231
6232 /* Wait on the association specific sndbuf space. */
6233 for (;;) {
6234 prepare_to_wait_exclusive(&asoc->wait, &wait,
6235 TASK_INTERRUPTIBLE);
6236 if (!*timeo_p)
6237 goto do_nonblock;
6238 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6239 asoc->base.dead)
6240 goto do_error;
6241 if (signal_pending(current))
6242 goto do_interrupted;
6243 if (msg_len <= sctp_wspace(asoc))
6244 break;
6245
6246 /* Let another process have a go. Since we are going
6247 * to sleep anyway.
6248 */
6249 sctp_release_sock(sk);
6250 current_timeo = schedule_timeout(current_timeo);
6251 BUG_ON(sk != asoc->base.sk);
6252 sctp_lock_sock(sk);
6253
6254 *timeo_p = current_timeo;
6255 }
6256
6257 out:
6258 finish_wait(&asoc->wait, &wait);
6259
6260 /* Release the association's refcnt. */
6261 sctp_association_put(asoc);
6262
6263 return err;
6264
6265 do_error:
6266 err = -EPIPE;
6267 goto out;
6268
6269 do_interrupted:
6270 err = sock_intr_errno(*timeo_p);
6271 goto out;
6272
6273 do_nonblock:
6274 err = -EAGAIN;
6275 goto out;
6276 }
6277
6278 void sctp_data_ready(struct sock *sk, int len)
6279 {
6280 struct socket_wq *wq;
6281
6282 rcu_read_lock();
6283 wq = rcu_dereference(sk->sk_wq);
6284 if (wq_has_sleeper(wq))
6285 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6286 POLLRDNORM | POLLRDBAND);
6287 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6288 rcu_read_unlock();
6289 }
6290
6291 /* If socket sndbuf has changed, wake up all per association waiters. */
6292 void sctp_write_space(struct sock *sk)
6293 {
6294 struct sctp_association *asoc;
6295
6296 /* Wake up the tasks in each wait queue. */
6297 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6298 __sctp_write_space(asoc);
6299 }
6300 }
6301
6302 /* Is there any sndbuf space available on the socket?
6303 *
6304 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6305 * associations on the same socket. For a UDP-style socket with
6306 * multiple associations, it is possible for it to be "unwriteable"
6307 * prematurely. I assume that this is acceptable because
6308 * a premature "unwriteable" is better than an accidental "writeable" which
6309 * would cause an unwanted block under certain circumstances. For the 1-1
6310 * UDP-style sockets or TCP-style sockets, this code should work.
6311 * - Daisy
6312 */
6313 static int sctp_writeable(struct sock *sk)
6314 {
6315 int amt = 0;
6316
6317 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6318 if (amt < 0)
6319 amt = 0;
6320 return amt;
6321 }
6322
6323 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6324 * returns immediately with EINPROGRESS.
6325 */
6326 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6327 {
6328 struct sock *sk = asoc->base.sk;
6329 int err = 0;
6330 long current_timeo = *timeo_p;
6331 DEFINE_WAIT(wait);
6332
6333 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6334 (long)(*timeo_p));
6335
6336 /* Increment the association's refcnt. */
6337 sctp_association_hold(asoc);
6338
6339 for (;;) {
6340 prepare_to_wait_exclusive(&asoc->wait, &wait,
6341 TASK_INTERRUPTIBLE);
6342 if (!*timeo_p)
6343 goto do_nonblock;
6344 if (sk->sk_shutdown & RCV_SHUTDOWN)
6345 break;
6346 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6347 asoc->base.dead)
6348 goto do_error;
6349 if (signal_pending(current))
6350 goto do_interrupted;
6351
6352 if (sctp_state(asoc, ESTABLISHED))
6353 break;
6354
6355 /* Let another process have a go. Since we are going
6356 * to sleep anyway.
6357 */
6358 sctp_release_sock(sk);
6359 current_timeo = schedule_timeout(current_timeo);
6360 sctp_lock_sock(sk);
6361
6362 *timeo_p = current_timeo;
6363 }
6364
6365 out:
6366 finish_wait(&asoc->wait, &wait);
6367
6368 /* Release the association's refcnt. */
6369 sctp_association_put(asoc);
6370
6371 return err;
6372
6373 do_error:
6374 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6375 err = -ETIMEDOUT;
6376 else
6377 err = -ECONNREFUSED;
6378 goto out;
6379
6380 do_interrupted:
6381 err = sock_intr_errno(*timeo_p);
6382 goto out;
6383
6384 do_nonblock:
6385 err = -EINPROGRESS;
6386 goto out;
6387 }
6388
6389 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6390 {
6391 struct sctp_endpoint *ep;
6392 int err = 0;
6393 DEFINE_WAIT(wait);
6394
6395 ep = sctp_sk(sk)->ep;
6396
6397
6398 for (;;) {
6399 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6400 TASK_INTERRUPTIBLE);
6401
6402 if (list_empty(&ep->asocs)) {
6403 sctp_release_sock(sk);
6404 timeo = schedule_timeout(timeo);
6405 sctp_lock_sock(sk);
6406 }
6407
6408 err = -EINVAL;
6409 if (!sctp_sstate(sk, LISTENING))
6410 break;
6411
6412 err = 0;
6413 if (!list_empty(&ep->asocs))
6414 break;
6415
6416 err = sock_intr_errno(timeo);
6417 if (signal_pending(current))
6418 break;
6419
6420 err = -EAGAIN;
6421 if (!timeo)
6422 break;
6423 }
6424
6425 finish_wait(sk_sleep(sk), &wait);
6426
6427 return err;
6428 }
6429
6430 static void sctp_wait_for_close(struct sock *sk, long timeout)
6431 {
6432 DEFINE_WAIT(wait);
6433
6434 do {
6435 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6436 if (list_empty(&sctp_sk(sk)->ep->asocs))
6437 break;
6438 sctp_release_sock(sk);
6439 timeout = schedule_timeout(timeout);
6440 sctp_lock_sock(sk);
6441 } while (!signal_pending(current) && timeout);
6442
6443 finish_wait(sk_sleep(sk), &wait);
6444 }
6445
6446 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6447 {
6448 struct sk_buff *frag;
6449
6450 if (!skb->data_len)
6451 goto done;
6452
6453 /* Don't forget the fragments. */
6454 skb_walk_frags(skb, frag)
6455 sctp_skb_set_owner_r_frag(frag, sk);
6456
6457 done:
6458 sctp_skb_set_owner_r(skb, sk);
6459 }
6460
6461 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6462 struct sctp_association *asoc)
6463 {
6464 struct inet_sock *inet = inet_sk(sk);
6465 struct inet_sock *newinet;
6466
6467 newsk->sk_type = sk->sk_type;
6468 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6469 newsk->sk_flags = sk->sk_flags;
6470 newsk->sk_no_check = sk->sk_no_check;
6471 newsk->sk_reuse = sk->sk_reuse;
6472
6473 newsk->sk_shutdown = sk->sk_shutdown;
6474 newsk->sk_destruct = inet_sock_destruct;
6475 newsk->sk_family = sk->sk_family;
6476 newsk->sk_protocol = IPPROTO_SCTP;
6477 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6478 newsk->sk_sndbuf = sk->sk_sndbuf;
6479 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6480 newsk->sk_lingertime = sk->sk_lingertime;
6481 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6482 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6483
6484 newinet = inet_sk(newsk);
6485
6486 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6487 * getsockname() and getpeername()
6488 */
6489 newinet->inet_sport = inet->inet_sport;
6490 newinet->inet_saddr = inet->inet_saddr;
6491 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6492 newinet->inet_dport = htons(asoc->peer.port);
6493 newinet->pmtudisc = inet->pmtudisc;
6494 newinet->inet_id = asoc->next_tsn ^ jiffies;
6495
6496 newinet->uc_ttl = inet->uc_ttl;
6497 newinet->mc_loop = 1;
6498 newinet->mc_ttl = 1;
6499 newinet->mc_index = 0;
6500 newinet->mc_list = NULL;
6501 }
6502
6503 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6504 * and its messages to the newsk.
6505 */
6506 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6507 struct sctp_association *assoc,
6508 sctp_socket_type_t type)
6509 {
6510 struct sctp_sock *oldsp = sctp_sk(oldsk);
6511 struct sctp_sock *newsp = sctp_sk(newsk);
6512 struct sctp_bind_bucket *pp; /* hash list port iterator */
6513 struct sctp_endpoint *newep = newsp->ep;
6514 struct sk_buff *skb, *tmp;
6515 struct sctp_ulpevent *event;
6516 struct sctp_bind_hashbucket *head;
6517
6518 /* Migrate socket buffer sizes and all the socket level options to the
6519 * new socket.
6520 */
6521 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6522 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6523 /* Brute force copy old sctp opt. */
6524 inet_sk_copy_descendant(newsk, oldsk);
6525
6526 /* Restore the ep value that was overwritten with the above structure
6527 * copy.
6528 */
6529 newsp->ep = newep;
6530 newsp->hmac = NULL;
6531
6532 /* Hook this new socket in to the bind_hash list. */
6533 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6534 sctp_local_bh_disable();
6535 sctp_spin_lock(&head->lock);
6536 pp = sctp_sk(oldsk)->bind_hash;
6537 sk_add_bind_node(newsk, &pp->owner);
6538 sctp_sk(newsk)->bind_hash = pp;
6539 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6540 sctp_spin_unlock(&head->lock);
6541 sctp_local_bh_enable();
6542
6543 /* Copy the bind_addr list from the original endpoint to the new
6544 * endpoint so that we can handle restarts properly
6545 */
6546 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6547 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6548
6549 /* Move any messages in the old socket's receive queue that are for the
6550 * peeled off association to the new socket's receive queue.
6551 */
6552 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6553 event = sctp_skb2event(skb);
6554 if (event->asoc == assoc) {
6555 __skb_unlink(skb, &oldsk->sk_receive_queue);
6556 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6557 sctp_skb_set_owner_r_frag(skb, newsk);
6558 }
6559 }
6560
6561 /* Clean up any messages pending delivery due to partial
6562 * delivery. Three cases:
6563 * 1) No partial deliver; no work.
6564 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6565 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6566 */
6567 skb_queue_head_init(&newsp->pd_lobby);
6568 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6569
6570 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6571 struct sk_buff_head *queue;
6572
6573 /* Decide which queue to move pd_lobby skbs to. */
6574 if (assoc->ulpq.pd_mode) {
6575 queue = &newsp->pd_lobby;
6576 } else
6577 queue = &newsk->sk_receive_queue;
6578
6579 /* Walk through the pd_lobby, looking for skbs that
6580 * need moved to the new socket.
6581 */
6582 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6583 event = sctp_skb2event(skb);
6584 if (event->asoc == assoc) {
6585 __skb_unlink(skb, &oldsp->pd_lobby);
6586 __skb_queue_tail(queue, skb);
6587 sctp_skb_set_owner_r_frag(skb, newsk);
6588 }
6589 }
6590
6591 /* Clear up any skbs waiting for the partial
6592 * delivery to finish.
6593 */
6594 if (assoc->ulpq.pd_mode)
6595 sctp_clear_pd(oldsk, NULL);
6596
6597 }
6598
6599 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6600 sctp_skb_set_owner_r_frag(skb, newsk);
6601
6602 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6603 sctp_skb_set_owner_r_frag(skb, newsk);
6604
6605 /* Set the type of socket to indicate that it is peeled off from the
6606 * original UDP-style socket or created with the accept() call on a
6607 * TCP-style socket..
6608 */
6609 newsp->type = type;
6610
6611 /* Mark the new socket "in-use" by the user so that any packets
6612 * that may arrive on the association after we've moved it are
6613 * queued to the backlog. This prevents a potential race between
6614 * backlog processing on the old socket and new-packet processing
6615 * on the new socket.
6616 *
6617 * The caller has just allocated newsk so we can guarantee that other
6618 * paths won't try to lock it and then oldsk.
6619 */
6620 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6621 sctp_assoc_migrate(assoc, newsk);
6622
6623 /* If the association on the newsk is already closed before accept()
6624 * is called, set RCV_SHUTDOWN flag.
6625 */
6626 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6627 newsk->sk_shutdown |= RCV_SHUTDOWN;
6628
6629 newsk->sk_state = SCTP_SS_ESTABLISHED;
6630 sctp_release_sock(newsk);
6631 }
6632
6633
6634 /* This proto struct describes the ULP interface for SCTP. */
6635 struct proto sctp_prot = {
6636 .name = "SCTP",
6637 .owner = THIS_MODULE,
6638 .close = sctp_close,
6639 .connect = sctp_connect,
6640 .disconnect = sctp_disconnect,
6641 .accept = sctp_accept,
6642 .ioctl = sctp_ioctl,
6643 .init = sctp_init_sock,
6644 .destroy = sctp_destroy_sock,
6645 .shutdown = sctp_shutdown,
6646 .setsockopt = sctp_setsockopt,
6647 .getsockopt = sctp_getsockopt,
6648 .sendmsg = sctp_sendmsg,
6649 .recvmsg = sctp_recvmsg,
6650 .bind = sctp_bind,
6651 .backlog_rcv = sctp_backlog_rcv,
6652 .hash = sctp_hash,
6653 .unhash = sctp_unhash,
6654 .get_port = sctp_get_port,
6655 .obj_size = sizeof(struct sctp_sock),
6656 .sysctl_mem = sysctl_sctp_mem,
6657 .sysctl_rmem = sysctl_sctp_rmem,
6658 .sysctl_wmem = sysctl_sctp_wmem,
6659 .memory_pressure = &sctp_memory_pressure,
6660 .enter_memory_pressure = sctp_enter_memory_pressure,
6661 .memory_allocated = &sctp_memory_allocated,
6662 .sockets_allocated = &sctp_sockets_allocated,
6663 };
6664
6665 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6666
6667 struct proto sctpv6_prot = {
6668 .name = "SCTPv6",
6669 .owner = THIS_MODULE,
6670 .close = sctp_close,
6671 .connect = sctp_connect,
6672 .disconnect = sctp_disconnect,
6673 .accept = sctp_accept,
6674 .ioctl = sctp_ioctl,
6675 .init = sctp_init_sock,
6676 .destroy = sctp_destroy_sock,
6677 .shutdown = sctp_shutdown,
6678 .setsockopt = sctp_setsockopt,
6679 .getsockopt = sctp_getsockopt,
6680 .sendmsg = sctp_sendmsg,
6681 .recvmsg = sctp_recvmsg,
6682 .bind = sctp_bind,
6683 .backlog_rcv = sctp_backlog_rcv,
6684 .hash = sctp_hash,
6685 .unhash = sctp_unhash,
6686 .get_port = sctp_get_port,
6687 .obj_size = sizeof(struct sctp6_sock),
6688 .sysctl_mem = sysctl_sctp_mem,
6689 .sysctl_rmem = sysctl_sctp_rmem,
6690 .sysctl_wmem = sysctl_sctp_wmem,
6691 .memory_pressure = &sctp_memory_pressure,
6692 .enter_memory_pressure = sctp_enter_memory_pressure,
6693 .memory_allocated = &sctp_memory_allocated,
6694 .sockets_allocated = &sctp_sockets_allocated,
6695 };
6696 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */