net: Use a percpu_counter for sockets_allocated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179 }
180
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184 {
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200 }
201
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237 }
238
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246 {
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266 }
267
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297 }
298
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304 {
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* V4 mapped address are really of AF_INET family */
312 if (addr->sa.sa_family == AF_INET6 &&
313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 if (!opt->pf->af_supported(AF_INET, opt))
315 return NULL;
316 } else {
317 /* Does this PF support this AF? */
318 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 return NULL;
320 }
321
322 /* If we get this far, af is valid. */
323 af = sctp_get_af_specific(addr->sa.sa_family);
324
325 if (len < af->sockaddr_len)
326 return NULL;
327
328 return af;
329 }
330
331 /* Bind a local address either to an endpoint or to an association. */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 struct sctp_sock *sp = sctp_sk(sk);
335 struct sctp_endpoint *ep = sp->ep;
336 struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 struct sctp_af *af;
338 unsigned short snum;
339 int ret = 0;
340
341 /* Common sockaddr verification. */
342 af = sctp_sockaddr_af(sp, addr, len);
343 if (!af) {
344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 sk, addr, len);
346 return -EINVAL;
347 }
348
349 snum = ntohs(addr->v4.sin_port);
350
351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 ", port: %d, new port: %d, len: %d)\n",
353 sk,
354 addr,
355 bp->port, snum,
356 len);
357
358 /* PF specific bind() address verification. */
359 if (!sp->pf->bind_verify(sp, addr))
360 return -EADDRNOTAVAIL;
361
362 /* We must either be unbound, or bind to the same port.
363 * It's OK to allow 0 ports if we are already bound.
364 * We'll just inhert an already bound port in this case
365 */
366 if (bp->port) {
367 if (!snum)
368 snum = bp->port;
369 else if (snum != bp->port) {
370 SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 " New port %d does not match existing port "
372 "%d.\n", snum, bp->port);
373 return -EINVAL;
374 }
375 }
376
377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 return -EACCES;
379
380 /* See if the address matches any of the addresses we may have
381 * already bound before checking against other endpoints.
382 */
383 if (sctp_bind_addr_match(bp, addr, sp))
384 return -EINVAL;
385
386 /* Make sure we are allowed to bind here.
387 * The function sctp_get_port_local() does duplicate address
388 * detection.
389 */
390 addr->v4.sin_port = htons(snum);
391 if ((ret = sctp_get_port_local(sk, addr))) {
392 return -EADDRINUSE;
393 }
394
395 /* Refresh ephemeral port. */
396 if (!bp->port)
397 bp->port = inet_sk(sk)->num;
398
399 /* Add the address to the bind address list.
400 * Use GFP_ATOMIC since BHs will be disabled.
401 */
402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403
404 /* Copy back into socket for getsockname() use. */
405 if (!ret) {
406 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 af->to_sk_saddr(addr, sk);
408 }
409
410 return ret;
411 }
412
413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414 *
415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416 * at any one time. If a sender, after sending an ASCONF chunk, decides
417 * it needs to transfer another ASCONF Chunk, it MUST wait until the
418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419 * subsequent ASCONF. Note this restriction binds each side, so at any
420 * time two ASCONF may be in-transit on any given association (one sent
421 * from each endpoint).
422 */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 struct sctp_chunk *chunk)
425 {
426 int retval = 0;
427
428 /* If there is an outstanding ASCONF chunk, queue it for later
429 * transmission.
430 */
431 if (asoc->addip_last_asconf) {
432 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 goto out;
434 }
435
436 /* Hold the chunk until an ASCONF_ACK is received. */
437 sctp_chunk_hold(chunk);
438 retval = sctp_primitive_ASCONF(asoc, chunk);
439 if (retval)
440 sctp_chunk_free(chunk);
441 else
442 asoc->addip_last_asconf = chunk;
443
444 out:
445 return retval;
446 }
447
448 /* Add a list of addresses as bind addresses to local endpoint or
449 * association.
450 *
451 * Basically run through each address specified in the addrs/addrcnt
452 * array/length pair, determine if it is IPv6 or IPv4 and call
453 * sctp_do_bind() on it.
454 *
455 * If any of them fails, then the operation will be reversed and the
456 * ones that were added will be removed.
457 *
458 * Only sctp_setsockopt_bindx() is supposed to call this function.
459 */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 int cnt;
463 int retval = 0;
464 void *addr_buf;
465 struct sockaddr *sa_addr;
466 struct sctp_af *af;
467
468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 sk, addrs, addrcnt);
470
471 addr_buf = addrs;
472 for (cnt = 0; cnt < addrcnt; cnt++) {
473 /* The list may contain either IPv4 or IPv6 address;
474 * determine the address length for walking thru the list.
475 */
476 sa_addr = (struct sockaddr *)addr_buf;
477 af = sctp_get_af_specific(sa_addr->sa_family);
478 if (!af) {
479 retval = -EINVAL;
480 goto err_bindx_add;
481 }
482
483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 af->sockaddr_len);
485
486 addr_buf += af->sockaddr_len;
487
488 err_bindx_add:
489 if (retval < 0) {
490 /* Failed. Cleanup the ones that have been added */
491 if (cnt > 0)
492 sctp_bindx_rem(sk, addrs, cnt);
493 return retval;
494 }
495 }
496
497 return retval;
498 }
499
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501 * associations that are part of the endpoint indicating that a list of local
502 * addresses are added to the endpoint.
503 *
504 * If any of the addresses is already in the bind address list of the
505 * association, we do not send the chunk for that association. But it will not
506 * affect other associations.
507 *
508 * Only sctp_setsockopt_bindx() is supposed to call this function.
509 */
510 static int sctp_send_asconf_add_ip(struct sock *sk,
511 struct sockaddr *addrs,
512 int addrcnt)
513 {
514 struct sctp_sock *sp;
515 struct sctp_endpoint *ep;
516 struct sctp_association *asoc;
517 struct sctp_bind_addr *bp;
518 struct sctp_chunk *chunk;
519 struct sctp_sockaddr_entry *laddr;
520 union sctp_addr *addr;
521 union sctp_addr saveaddr;
522 void *addr_buf;
523 struct sctp_af *af;
524 struct list_head *p;
525 int i;
526 int retval = 0;
527
528 if (!sctp_addip_enable)
529 return retval;
530
531 sp = sctp_sk(sk);
532 ep = sp->ep;
533
534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 __func__, sk, addrs, addrcnt);
536
537 list_for_each_entry(asoc, &ep->asocs, asocs) {
538
539 if (!asoc->peer.asconf_capable)
540 continue;
541
542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 continue;
544
545 if (!sctp_state(asoc, ESTABLISHED))
546 continue;
547
548 /* Check if any address in the packed array of addresses is
549 * in the bind address list of the association. If so,
550 * do not send the asconf chunk to its peer, but continue with
551 * other associations.
552 */
553 addr_buf = addrs;
554 for (i = 0; i < addrcnt; i++) {
555 addr = (union sctp_addr *)addr_buf;
556 af = sctp_get_af_specific(addr->v4.sin_family);
557 if (!af) {
558 retval = -EINVAL;
559 goto out;
560 }
561
562 if (sctp_assoc_lookup_laddr(asoc, addr))
563 break;
564
565 addr_buf += af->sockaddr_len;
566 }
567 if (i < addrcnt)
568 continue;
569
570 /* Use the first valid address in bind addr list of
571 * association as Address Parameter of ASCONF CHUNK.
572 */
573 bp = &asoc->base.bind_addr;
574 p = bp->address_list.next;
575 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 addrcnt, SCTP_PARAM_ADD_IP);
578 if (!chunk) {
579 retval = -ENOMEM;
580 goto out;
581 }
582
583 retval = sctp_send_asconf(asoc, chunk);
584 if (retval)
585 goto out;
586
587 /* Add the new addresses to the bind address list with
588 * use_as_src set to 0.
589 */
590 addr_buf = addrs;
591 for (i = 0; i < addrcnt; i++) {
592 addr = (union sctp_addr *)addr_buf;
593 af = sctp_get_af_specific(addr->v4.sin_family);
594 memcpy(&saveaddr, addr, af->sockaddr_len);
595 retval = sctp_add_bind_addr(bp, &saveaddr,
596 SCTP_ADDR_NEW, GFP_ATOMIC);
597 addr_buf += af->sockaddr_len;
598 }
599 }
600
601 out:
602 return retval;
603 }
604
605 /* Remove a list of addresses from bind addresses list. Do not remove the
606 * last address.
607 *
608 * Basically run through each address specified in the addrs/addrcnt
609 * array/length pair, determine if it is IPv6 or IPv4 and call
610 * sctp_del_bind() on it.
611 *
612 * If any of them fails, then the operation will be reversed and the
613 * ones that were removed will be added back.
614 *
615 * At least one address has to be left; if only one address is
616 * available, the operation will return -EBUSY.
617 *
618 * Only sctp_setsockopt_bindx() is supposed to call this function.
619 */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 struct sctp_sock *sp = sctp_sk(sk);
623 struct sctp_endpoint *ep = sp->ep;
624 int cnt;
625 struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 int retval = 0;
627 void *addr_buf;
628 union sctp_addr *sa_addr;
629 struct sctp_af *af;
630
631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 sk, addrs, addrcnt);
633
634 addr_buf = addrs;
635 for (cnt = 0; cnt < addrcnt; cnt++) {
636 /* If the bind address list is empty or if there is only one
637 * bind address, there is nothing more to be removed (we need
638 * at least one address here).
639 */
640 if (list_empty(&bp->address_list) ||
641 (sctp_list_single_entry(&bp->address_list))) {
642 retval = -EBUSY;
643 goto err_bindx_rem;
644 }
645
646 sa_addr = (union sctp_addr *)addr_buf;
647 af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 if (!af) {
649 retval = -EINVAL;
650 goto err_bindx_rem;
651 }
652
653 if (!af->addr_valid(sa_addr, sp, NULL)) {
654 retval = -EADDRNOTAVAIL;
655 goto err_bindx_rem;
656 }
657
658 if (sa_addr->v4.sin_port != htons(bp->port)) {
659 retval = -EINVAL;
660 goto err_bindx_rem;
661 }
662
663 /* FIXME - There is probably a need to check if sk->sk_saddr and
664 * sk->sk_rcv_addr are currently set to one of the addresses to
665 * be removed. This is something which needs to be looked into
666 * when we are fixing the outstanding issues with multi-homing
667 * socket routing and failover schemes. Refer to comments in
668 * sctp_do_bind(). -daisy
669 */
670 retval = sctp_del_bind_addr(bp, sa_addr);
671
672 addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 if (retval < 0) {
675 /* Failed. Add the ones that has been removed back */
676 if (cnt > 0)
677 sctp_bindx_add(sk, addrs, cnt);
678 return retval;
679 }
680 }
681
682 return retval;
683 }
684
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686 * the associations that are part of the endpoint indicating that a list of
687 * local addresses are removed from the endpoint.
688 *
689 * If any of the addresses is already in the bind address list of the
690 * association, we do not send the chunk for that association. But it will not
691 * affect other associations.
692 *
693 * Only sctp_setsockopt_bindx() is supposed to call this function.
694 */
695 static int sctp_send_asconf_del_ip(struct sock *sk,
696 struct sockaddr *addrs,
697 int addrcnt)
698 {
699 struct sctp_sock *sp;
700 struct sctp_endpoint *ep;
701 struct sctp_association *asoc;
702 struct sctp_transport *transport;
703 struct sctp_bind_addr *bp;
704 struct sctp_chunk *chunk;
705 union sctp_addr *laddr;
706 void *addr_buf;
707 struct sctp_af *af;
708 struct sctp_sockaddr_entry *saddr;
709 int i;
710 int retval = 0;
711
712 if (!sctp_addip_enable)
713 return retval;
714
715 sp = sctp_sk(sk);
716 ep = sp->ep;
717
718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 __func__, sk, addrs, addrcnt);
720
721 list_for_each_entry(asoc, &ep->asocs, asocs) {
722
723 if (!asoc->peer.asconf_capable)
724 continue;
725
726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 continue;
728
729 if (!sctp_state(asoc, ESTABLISHED))
730 continue;
731
732 /* Check if any address in the packed array of addresses is
733 * not present in the bind address list of the association.
734 * If so, do not send the asconf chunk to its peer, but
735 * continue with other associations.
736 */
737 addr_buf = addrs;
738 for (i = 0; i < addrcnt; i++) {
739 laddr = (union sctp_addr *)addr_buf;
740 af = sctp_get_af_specific(laddr->v4.sin_family);
741 if (!af) {
742 retval = -EINVAL;
743 goto out;
744 }
745
746 if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 break;
748
749 addr_buf += af->sockaddr_len;
750 }
751 if (i < addrcnt)
752 continue;
753
754 /* Find one address in the association's bind address list
755 * that is not in the packed array of addresses. This is to
756 * make sure that we do not delete all the addresses in the
757 * association.
758 */
759 bp = &asoc->base.bind_addr;
760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 addrcnt, sp);
762 if (!laddr)
763 continue;
764
765 /* We do not need RCU protection throughout this loop
766 * because this is done under a socket lock from the
767 * setsockopt call.
768 */
769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 SCTP_PARAM_DEL_IP);
771 if (!chunk) {
772 retval = -ENOMEM;
773 goto out;
774 }
775
776 /* Reset use_as_src flag for the addresses in the bind address
777 * list that are to be deleted.
778 */
779 addr_buf = addrs;
780 for (i = 0; i < addrcnt; i++) {
781 laddr = (union sctp_addr *)addr_buf;
782 af = sctp_get_af_specific(laddr->v4.sin_family);
783 list_for_each_entry(saddr, &bp->address_list, list) {
784 if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 saddr->state = SCTP_ADDR_DEL;
786 }
787 addr_buf += af->sockaddr_len;
788 }
789
790 /* Update the route and saddr entries for all the transports
791 * as some of the addresses in the bind address list are
792 * about to be deleted and cannot be used as source addresses.
793 */
794 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 transports) {
796 dst_release(transport->dst);
797 sctp_transport_route(transport, NULL,
798 sctp_sk(asoc->base.sk));
799 }
800
801 retval = sctp_send_asconf(asoc, chunk);
802 }
803 out:
804 return retval;
805 }
806
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808 *
809 * API 8.1
810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811 * int flags);
812 *
813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815 * or IPv6 addresses.
816 *
817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818 * Section 3.1.2 for this usage.
819 *
820 * addrs is a pointer to an array of one or more socket addresses. Each
821 * address is contained in its appropriate structure (i.e. struct
822 * sockaddr_in or struct sockaddr_in6) the family of the address type
823 * must be used to distinguish the address length (note that this
824 * representation is termed a "packed array" of addresses). The caller
825 * specifies the number of addresses in the array with addrcnt.
826 *
827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828 * -1, and sets errno to the appropriate error code.
829 *
830 * For SCTP, the port given in each socket address must be the same, or
831 * sctp_bindx() will fail, setting errno to EINVAL.
832 *
833 * The flags parameter is formed from the bitwise OR of zero or more of
834 * the following currently defined flags:
835 *
836 * SCTP_BINDX_ADD_ADDR
837 *
838 * SCTP_BINDX_REM_ADDR
839 *
840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842 * addresses from the association. The two flags are mutually exclusive;
843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844 * not remove all addresses from an association; sctp_bindx() will
845 * reject such an attempt with EINVAL.
846 *
847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848 * additional addresses with an endpoint after calling bind(). Or use
849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850 * socket is associated with so that no new association accepted will be
851 * associated with those addresses. If the endpoint supports dynamic
852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853 * endpoint to send the appropriate message to the peer to change the
854 * peers address lists.
855 *
856 * Adding and removing addresses from a connected association is
857 * optional functionality. Implementations that do not support this
858 * functionality should return EOPNOTSUPP.
859 *
860 * Basically do nothing but copying the addresses from user to kernel
861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863 * from userspace.
864 *
865 * We don't use copy_from_user() for optimization: we first do the
866 * sanity checks (buffer size -fast- and access check-healthy
867 * pointer); if all of those succeed, then we can alloc the memory
868 * (expensive operation) needed to copy the data to kernel. Then we do
869 * the copying without checking the user space area
870 * (__copy_from_user()).
871 *
872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873 * it.
874 *
875 * sk The sk of the socket
876 * addrs The pointer to the addresses in user land
877 * addrssize Size of the addrs buffer
878 * op Operation to perform (add or remove, see the flags of
879 * sctp_bindx)
880 *
881 * Returns 0 if ok, <0 errno code on error.
882 */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 struct sockaddr __user *addrs,
885 int addrs_size, int op)
886 {
887 struct sockaddr *kaddrs;
888 int err;
889 int addrcnt = 0;
890 int walk_size = 0;
891 struct sockaddr *sa_addr;
892 void *addr_buf;
893 struct sctp_af *af;
894
895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897
898 if (unlikely(addrs_size <= 0))
899 return -EINVAL;
900
901 /* Check the user passed a healthy pointer. */
902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 return -EFAULT;
904
905 /* Alloc space for the address array in kernel memory. */
906 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 if (unlikely(!kaddrs))
908 return -ENOMEM;
909
910 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 kfree(kaddrs);
912 return -EFAULT;
913 }
914
915 /* Walk through the addrs buffer and count the number of addresses. */
916 addr_buf = kaddrs;
917 while (walk_size < addrs_size) {
918 sa_addr = (struct sockaddr *)addr_buf;
919 af = sctp_get_af_specific(sa_addr->sa_family);
920
921 /* If the address family is not supported or if this address
922 * causes the address buffer to overflow return EINVAL.
923 */
924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 kfree(kaddrs);
926 return -EINVAL;
927 }
928 addrcnt++;
929 addr_buf += af->sockaddr_len;
930 walk_size += af->sockaddr_len;
931 }
932
933 /* Do the work. */
934 switch (op) {
935 case SCTP_BINDX_ADD_ADDR:
936 err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 if (err)
938 goto out;
939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 break;
941
942 case SCTP_BINDX_REM_ADDR:
943 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 if (err)
945 goto out;
946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 break;
948
949 default:
950 err = -EINVAL;
951 break;
952 }
953
954 out:
955 kfree(kaddrs);
956
957 return err;
958 }
959
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961 *
962 * Common routine for handling connect() and sctp_connectx().
963 * Connect will come in with just a single address.
964 */
965 static int __sctp_connect(struct sock* sk,
966 struct sockaddr *kaddrs,
967 int addrs_size,
968 sctp_assoc_t *assoc_id)
969 {
970 struct sctp_sock *sp;
971 struct sctp_endpoint *ep;
972 struct sctp_association *asoc = NULL;
973 struct sctp_association *asoc2;
974 struct sctp_transport *transport;
975 union sctp_addr to;
976 struct sctp_af *af;
977 sctp_scope_t scope;
978 long timeo;
979 int err = 0;
980 int addrcnt = 0;
981 int walk_size = 0;
982 union sctp_addr *sa_addr = NULL;
983 void *addr_buf;
984 unsigned short port;
985 unsigned int f_flags = 0;
986
987 sp = sctp_sk(sk);
988 ep = sp->ep;
989
990 /* connect() cannot be done on a socket that is already in ESTABLISHED
991 * state - UDP-style peeled off socket or a TCP-style socket that
992 * is already connected.
993 * It cannot be done even on a TCP-style listening socket.
994 */
995 if (sctp_sstate(sk, ESTABLISHED) ||
996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 err = -EISCONN;
998 goto out_free;
999 }
1000
1001 /* Walk through the addrs buffer and count the number of addresses. */
1002 addr_buf = kaddrs;
1003 while (walk_size < addrs_size) {
1004 sa_addr = (union sctp_addr *)addr_buf;
1005 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 port = ntohs(sa_addr->v4.sin_port);
1007
1008 /* If the address family is not supported or if this address
1009 * causes the address buffer to overflow return EINVAL.
1010 */
1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 err = -EINVAL;
1013 goto out_free;
1014 }
1015
1016 /* Save current address so we can work with it */
1017 memcpy(&to, sa_addr, af->sockaddr_len);
1018
1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 if (err)
1021 goto out_free;
1022
1023 /* Make sure the destination port is correctly set
1024 * in all addresses.
1025 */
1026 if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 goto out_free;
1028
1029
1030 /* Check if there already is a matching association on the
1031 * endpoint (other than the one created here).
1032 */
1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 if (asoc2 && asoc2 != asoc) {
1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 err = -EISCONN;
1037 else
1038 err = -EALREADY;
1039 goto out_free;
1040 }
1041
1042 /* If we could not find a matching association on the endpoint,
1043 * make sure that there is no peeled-off association matching
1044 * the peer address even on another socket.
1045 */
1046 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 err = -EADDRNOTAVAIL;
1048 goto out_free;
1049 }
1050
1051 if (!asoc) {
1052 /* If a bind() or sctp_bindx() is not called prior to
1053 * an sctp_connectx() call, the system picks an
1054 * ephemeral port and will choose an address set
1055 * equivalent to binding with a wildcard address.
1056 */
1057 if (!ep->base.bind_addr.port) {
1058 if (sctp_autobind(sk)) {
1059 err = -EAGAIN;
1060 goto out_free;
1061 }
1062 } else {
1063 /*
1064 * If an unprivileged user inherits a 1-many
1065 * style socket with open associations on a
1066 * privileged port, it MAY be permitted to
1067 * accept new associations, but it SHOULD NOT
1068 * be permitted to open new associations.
1069 */
1070 if (ep->base.bind_addr.port < PROT_SOCK &&
1071 !capable(CAP_NET_BIND_SERVICE)) {
1072 err = -EACCES;
1073 goto out_free;
1074 }
1075 }
1076
1077 scope = sctp_scope(&to);
1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 if (!asoc) {
1080 err = -ENOMEM;
1081 goto out_free;
1082 }
1083 }
1084
1085 /* Prime the peer's transport structures. */
1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 SCTP_UNKNOWN);
1088 if (!transport) {
1089 err = -ENOMEM;
1090 goto out_free;
1091 }
1092
1093 addrcnt++;
1094 addr_buf += af->sockaddr_len;
1095 walk_size += af->sockaddr_len;
1096 }
1097
1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 if (err < 0) {
1100 goto out_free;
1101 }
1102
1103 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 if (err < 0) {
1105 goto out_free;
1106 }
1107
1108 /* Initialize sk's dport and daddr for getpeername() */
1109 inet_sk(sk)->dport = htons(asoc->peer.port);
1110 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 af->to_sk_daddr(sa_addr, sk);
1112 sk->sk_err = 0;
1113
1114 /* in-kernel sockets don't generally have a file allocated to them
1115 * if all they do is call sock_create_kern().
1116 */
1117 if (sk->sk_socket->file)
1118 f_flags = sk->sk_socket->file->f_flags;
1119
1120 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1121
1122 err = sctp_wait_for_connect(asoc, &timeo);
1123 if (!err && assoc_id)
1124 *assoc_id = asoc->assoc_id;
1125
1126 /* Don't free association on exit. */
1127 asoc = NULL;
1128
1129 out_free:
1130
1131 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 " kaddrs: %p err: %d\n",
1133 asoc, kaddrs, err);
1134 if (asoc)
1135 sctp_association_free(asoc);
1136 return err;
1137 }
1138
1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1140 *
1141 * API 8.9
1142 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143 * sctp_assoc_t *asoc);
1144 *
1145 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147 * or IPv6 addresses.
1148 *
1149 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150 * Section 3.1.2 for this usage.
1151 *
1152 * addrs is a pointer to an array of one or more socket addresses. Each
1153 * address is contained in its appropriate structure (i.e. struct
1154 * sockaddr_in or struct sockaddr_in6) the family of the address type
1155 * must be used to distengish the address length (note that this
1156 * representation is termed a "packed array" of addresses). The caller
1157 * specifies the number of addresses in the array with addrcnt.
1158 *
1159 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160 * the association id of the new association. On failure, sctp_connectx()
1161 * returns -1, and sets errno to the appropriate error code. The assoc_id
1162 * is not touched by the kernel.
1163 *
1164 * For SCTP, the port given in each socket address must be the same, or
1165 * sctp_connectx() will fail, setting errno to EINVAL.
1166 *
1167 * An application can use sctp_connectx to initiate an association with
1168 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1169 * allows a caller to specify multiple addresses at which a peer can be
1170 * reached. The way the SCTP stack uses the list of addresses to set up
1171 * the association is implementation dependant. This function only
1172 * specifies that the stack will try to make use of all the addresses in
1173 * the list when needed.
1174 *
1175 * Note that the list of addresses passed in is only used for setting up
1176 * the association. It does not necessarily equal the set of addresses
1177 * the peer uses for the resulting association. If the caller wants to
1178 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179 * retrieve them after the association has been set up.
1180 *
1181 * Basically do nothing but copying the addresses from user to kernel
1182 * land and invoking either sctp_connectx(). This is used for tunneling
1183 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1184 *
1185 * We don't use copy_from_user() for optimization: we first do the
1186 * sanity checks (buffer size -fast- and access check-healthy
1187 * pointer); if all of those succeed, then we can alloc the memory
1188 * (expensive operation) needed to copy the data to kernel. Then we do
1189 * the copying without checking the user space area
1190 * (__copy_from_user()).
1191 *
1192 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193 * it.
1194 *
1195 * sk The sk of the socket
1196 * addrs The pointer to the addresses in user land
1197 * addrssize Size of the addrs buffer
1198 *
1199 * Returns >=0 if ok, <0 errno code on error.
1200 */
1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 struct sockaddr __user *addrs,
1203 int addrs_size,
1204 sctp_assoc_t *assoc_id)
1205 {
1206 int err = 0;
1207 struct sockaddr *kaddrs;
1208
1209 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 __func__, sk, addrs, addrs_size);
1211
1212 if (unlikely(addrs_size <= 0))
1213 return -EINVAL;
1214
1215 /* Check the user passed a healthy pointer. */
1216 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 return -EFAULT;
1218
1219 /* Alloc space for the address array in kernel memory. */
1220 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 if (unlikely(!kaddrs))
1222 return -ENOMEM;
1223
1224 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 err = -EFAULT;
1226 } else {
1227 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1228 }
1229
1230 kfree(kaddrs);
1231
1232 return err;
1233 }
1234
1235 /*
1236 * This is an older interface. It's kept for backward compatibility
1237 * to the option that doesn't provide association id.
1238 */
1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 struct sockaddr __user *addrs,
1241 int addrs_size)
1242 {
1243 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1244 }
1245
1246 /*
1247 * New interface for the API. The since the API is done with a socket
1248 * option, to make it simple we feed back the association id is as a return
1249 * indication to the call. Error is always negative and association id is
1250 * always positive.
1251 */
1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 struct sockaddr __user *addrs,
1254 int addrs_size)
1255 {
1256 sctp_assoc_t assoc_id = 0;
1257 int err = 0;
1258
1259 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1260
1261 if (err)
1262 return err;
1263 else
1264 return assoc_id;
1265 }
1266
1267 /* API 3.1.4 close() - UDP Style Syntax
1268 * Applications use close() to perform graceful shutdown (as described in
1269 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270 * by a UDP-style socket.
1271 *
1272 * The syntax is
1273 *
1274 * ret = close(int sd);
1275 *
1276 * sd - the socket descriptor of the associations to be closed.
1277 *
1278 * To gracefully shutdown a specific association represented by the
1279 * UDP-style socket, an application should use the sendmsg() call,
1280 * passing no user data, but including the appropriate flag in the
1281 * ancillary data (see Section xxxx).
1282 *
1283 * If sd in the close() call is a branched-off socket representing only
1284 * one association, the shutdown is performed on that association only.
1285 *
1286 * 4.1.6 close() - TCP Style Syntax
1287 *
1288 * Applications use close() to gracefully close down an association.
1289 *
1290 * The syntax is:
1291 *
1292 * int close(int sd);
1293 *
1294 * sd - the socket descriptor of the association to be closed.
1295 *
1296 * After an application calls close() on a socket descriptor, no further
1297 * socket operations will succeed on that descriptor.
1298 *
1299 * API 7.1.4 SO_LINGER
1300 *
1301 * An application using the TCP-style socket can use this option to
1302 * perform the SCTP ABORT primitive. The linger option structure is:
1303 *
1304 * struct linger {
1305 * int l_onoff; // option on/off
1306 * int l_linger; // linger time
1307 * };
1308 *
1309 * To enable the option, set l_onoff to 1. If the l_linger value is set
1310 * to 0, calling close() is the same as the ABORT primitive. If the
1311 * value is set to a negative value, the setsockopt() call will return
1312 * an error. If the value is set to a positive value linger_time, the
1313 * close() can be blocked for at most linger_time ms. If the graceful
1314 * shutdown phase does not finish during this period, close() will
1315 * return but the graceful shutdown phase continues in the system.
1316 */
1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1318 {
1319 struct sctp_endpoint *ep;
1320 struct sctp_association *asoc;
1321 struct list_head *pos, *temp;
1322
1323 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1324
1325 sctp_lock_sock(sk);
1326 sk->sk_shutdown = SHUTDOWN_MASK;
1327
1328 ep = sctp_sk(sk)->ep;
1329
1330 /* Walk all associations on an endpoint. */
1331 list_for_each_safe(pos, temp, &ep->asocs) {
1332 asoc = list_entry(pos, struct sctp_association, asocs);
1333
1334 if (sctp_style(sk, TCP)) {
1335 /* A closed association can still be in the list if
1336 * it belongs to a TCP-style listening socket that is
1337 * not yet accepted. If so, free it. If not, send an
1338 * ABORT or SHUTDOWN based on the linger options.
1339 */
1340 if (sctp_state(asoc, CLOSED)) {
1341 sctp_unhash_established(asoc);
1342 sctp_association_free(asoc);
1343 continue;
1344 }
1345 }
1346
1347 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 struct sctp_chunk *chunk;
1349
1350 chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 if (chunk)
1352 sctp_primitive_ABORT(asoc, chunk);
1353 } else
1354 sctp_primitive_SHUTDOWN(asoc, NULL);
1355 }
1356
1357 /* Clean up any skbs sitting on the receive queue. */
1358 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1360
1361 /* On a TCP-style socket, block for at most linger_time if set. */
1362 if (sctp_style(sk, TCP) && timeout)
1363 sctp_wait_for_close(sk, timeout);
1364
1365 /* This will run the backlog queue. */
1366 sctp_release_sock(sk);
1367
1368 /* Supposedly, no process has access to the socket, but
1369 * the net layers still may.
1370 */
1371 sctp_local_bh_disable();
1372 sctp_bh_lock_sock(sk);
1373
1374 /* Hold the sock, since sk_common_release() will put sock_put()
1375 * and we have just a little more cleanup.
1376 */
1377 sock_hold(sk);
1378 sk_common_release(sk);
1379
1380 sctp_bh_unlock_sock(sk);
1381 sctp_local_bh_enable();
1382
1383 sock_put(sk);
1384
1385 SCTP_DBG_OBJCNT_DEC(sock);
1386 }
1387
1388 /* Handle EPIPE error. */
1389 static int sctp_error(struct sock *sk, int flags, int err)
1390 {
1391 if (err == -EPIPE)
1392 err = sock_error(sk) ? : -EPIPE;
1393 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 send_sig(SIGPIPE, current, 0);
1395 return err;
1396 }
1397
1398 /* API 3.1.3 sendmsg() - UDP Style Syntax
1399 *
1400 * An application uses sendmsg() and recvmsg() calls to transmit data to
1401 * and receive data from its peer.
1402 *
1403 * ssize_t sendmsg(int socket, const struct msghdr *message,
1404 * int flags);
1405 *
1406 * socket - the socket descriptor of the endpoint.
1407 * message - pointer to the msghdr structure which contains a single
1408 * user message and possibly some ancillary data.
1409 *
1410 * See Section 5 for complete description of the data
1411 * structures.
1412 *
1413 * flags - flags sent or received with the user message, see Section
1414 * 5 for complete description of the flags.
1415 *
1416 * Note: This function could use a rewrite especially when explicit
1417 * connect support comes in.
1418 */
1419 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1420
1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1422
1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 struct msghdr *msg, size_t msg_len)
1425 {
1426 struct sctp_sock *sp;
1427 struct sctp_endpoint *ep;
1428 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 struct sctp_transport *transport, *chunk_tp;
1430 struct sctp_chunk *chunk;
1431 union sctp_addr to;
1432 struct sockaddr *msg_name = NULL;
1433 struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 struct sctp_sndrcvinfo *sinfo;
1435 struct sctp_initmsg *sinit;
1436 sctp_assoc_t associd = 0;
1437 sctp_cmsgs_t cmsgs = { NULL };
1438 int err;
1439 sctp_scope_t scope;
1440 long timeo;
1441 __u16 sinfo_flags = 0;
1442 struct sctp_datamsg *datamsg;
1443 int msg_flags = msg->msg_flags;
1444
1445 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 sk, msg, msg_len);
1447
1448 err = 0;
1449 sp = sctp_sk(sk);
1450 ep = sp->ep;
1451
1452 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1453
1454 /* We cannot send a message over a TCP-style listening socket. */
1455 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 err = -EPIPE;
1457 goto out_nounlock;
1458 }
1459
1460 /* Parse out the SCTP CMSGs. */
1461 err = sctp_msghdr_parse(msg, &cmsgs);
1462
1463 if (err) {
1464 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 goto out_nounlock;
1466 }
1467
1468 /* Fetch the destination address for this packet. This
1469 * address only selects the association--it is not necessarily
1470 * the address we will send to.
1471 * For a peeled-off socket, msg_name is ignored.
1472 */
1473 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 int msg_namelen = msg->msg_namelen;
1475
1476 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 msg_namelen);
1478 if (err)
1479 return err;
1480
1481 if (msg_namelen > sizeof(to))
1482 msg_namelen = sizeof(to);
1483 memcpy(&to, msg->msg_name, msg_namelen);
1484 msg_name = msg->msg_name;
1485 }
1486
1487 sinfo = cmsgs.info;
1488 sinit = cmsgs.init;
1489
1490 /* Did the user specify SNDRCVINFO? */
1491 if (sinfo) {
1492 sinfo_flags = sinfo->sinfo_flags;
1493 associd = sinfo->sinfo_assoc_id;
1494 }
1495
1496 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 msg_len, sinfo_flags);
1498
1499 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 err = -EINVAL;
1502 goto out_nounlock;
1503 }
1504
1505 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 * If SCTP_ABORT is set, the message length could be non zero with
1508 * the msg_iov set to the user abort reason.
1509 */
1510 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 err = -EINVAL;
1513 goto out_nounlock;
1514 }
1515
1516 /* If SCTP_ADDR_OVER is set, there must be an address
1517 * specified in msg_name.
1518 */
1519 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 err = -EINVAL;
1521 goto out_nounlock;
1522 }
1523
1524 transport = NULL;
1525
1526 SCTP_DEBUG_PRINTK("About to look up association.\n");
1527
1528 sctp_lock_sock(sk);
1529
1530 /* If a msg_name has been specified, assume this is to be used. */
1531 if (msg_name) {
1532 /* Look for a matching association on the endpoint. */
1533 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 if (!asoc) {
1535 /* If we could not find a matching association on the
1536 * endpoint, make sure that it is not a TCP-style
1537 * socket that already has an association or there is
1538 * no peeled-off association on another socket.
1539 */
1540 if ((sctp_style(sk, TCP) &&
1541 sctp_sstate(sk, ESTABLISHED)) ||
1542 sctp_endpoint_is_peeled_off(ep, &to)) {
1543 err = -EADDRNOTAVAIL;
1544 goto out_unlock;
1545 }
1546 }
1547 } else {
1548 asoc = sctp_id2assoc(sk, associd);
1549 if (!asoc) {
1550 err = -EPIPE;
1551 goto out_unlock;
1552 }
1553 }
1554
1555 if (asoc) {
1556 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1557
1558 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 * socket that has an association in CLOSED state. This can
1560 * happen when an accepted socket has an association that is
1561 * already CLOSED.
1562 */
1563 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 err = -EPIPE;
1565 goto out_unlock;
1566 }
1567
1568 if (sinfo_flags & SCTP_EOF) {
1569 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 asoc);
1571 sctp_primitive_SHUTDOWN(asoc, NULL);
1572 err = 0;
1573 goto out_unlock;
1574 }
1575 if (sinfo_flags & SCTP_ABORT) {
1576
1577 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 if (!chunk) {
1579 err = -ENOMEM;
1580 goto out_unlock;
1581 }
1582
1583 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 sctp_primitive_ABORT(asoc, chunk);
1585 err = 0;
1586 goto out_unlock;
1587 }
1588 }
1589
1590 /* Do we need to create the association? */
1591 if (!asoc) {
1592 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1593
1594 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 err = -EINVAL;
1596 goto out_unlock;
1597 }
1598
1599 /* Check for invalid stream against the stream counts,
1600 * either the default or the user specified stream counts.
1601 */
1602 if (sinfo) {
1603 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 /* Check against the defaults. */
1605 if (sinfo->sinfo_stream >=
1606 sp->initmsg.sinit_num_ostreams) {
1607 err = -EINVAL;
1608 goto out_unlock;
1609 }
1610 } else {
1611 /* Check against the requested. */
1612 if (sinfo->sinfo_stream >=
1613 sinit->sinit_num_ostreams) {
1614 err = -EINVAL;
1615 goto out_unlock;
1616 }
1617 }
1618 }
1619
1620 /*
1621 * API 3.1.2 bind() - UDP Style Syntax
1622 * If a bind() or sctp_bindx() is not called prior to a
1623 * sendmsg() call that initiates a new association, the
1624 * system picks an ephemeral port and will choose an address
1625 * set equivalent to binding with a wildcard address.
1626 */
1627 if (!ep->base.bind_addr.port) {
1628 if (sctp_autobind(sk)) {
1629 err = -EAGAIN;
1630 goto out_unlock;
1631 }
1632 } else {
1633 /*
1634 * If an unprivileged user inherits a one-to-many
1635 * style socket with open associations on a privileged
1636 * port, it MAY be permitted to accept new associations,
1637 * but it SHOULD NOT be permitted to open new
1638 * associations.
1639 */
1640 if (ep->base.bind_addr.port < PROT_SOCK &&
1641 !capable(CAP_NET_BIND_SERVICE)) {
1642 err = -EACCES;
1643 goto out_unlock;
1644 }
1645 }
1646
1647 scope = sctp_scope(&to);
1648 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 if (!new_asoc) {
1650 err = -ENOMEM;
1651 goto out_unlock;
1652 }
1653 asoc = new_asoc;
1654
1655 /* If the SCTP_INIT ancillary data is specified, set all
1656 * the association init values accordingly.
1657 */
1658 if (sinit) {
1659 if (sinit->sinit_num_ostreams) {
1660 asoc->c.sinit_num_ostreams =
1661 sinit->sinit_num_ostreams;
1662 }
1663 if (sinit->sinit_max_instreams) {
1664 asoc->c.sinit_max_instreams =
1665 sinit->sinit_max_instreams;
1666 }
1667 if (sinit->sinit_max_attempts) {
1668 asoc->max_init_attempts
1669 = sinit->sinit_max_attempts;
1670 }
1671 if (sinit->sinit_max_init_timeo) {
1672 asoc->max_init_timeo =
1673 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1674 }
1675 }
1676
1677 /* Prime the peer's transport structures. */
1678 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 if (!transport) {
1680 err = -ENOMEM;
1681 goto out_free;
1682 }
1683 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 if (err < 0) {
1685 err = -ENOMEM;
1686 goto out_free;
1687 }
1688 }
1689
1690 /* ASSERT: we have a valid association at this point. */
1691 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1692
1693 if (!sinfo) {
1694 /* If the user didn't specify SNDRCVINFO, make up one with
1695 * some defaults.
1696 */
1697 default_sinfo.sinfo_stream = asoc->default_stream;
1698 default_sinfo.sinfo_flags = asoc->default_flags;
1699 default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 default_sinfo.sinfo_context = asoc->default_context;
1701 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 sinfo = &default_sinfo;
1704 }
1705
1706 /* API 7.1.7, the sndbuf size per association bounds the
1707 * maximum size of data that can be sent in a single send call.
1708 */
1709 if (msg_len > sk->sk_sndbuf) {
1710 err = -EMSGSIZE;
1711 goto out_free;
1712 }
1713
1714 if (asoc->pmtu_pending)
1715 sctp_assoc_pending_pmtu(asoc);
1716
1717 /* If fragmentation is disabled and the message length exceeds the
1718 * association fragmentation point, return EMSGSIZE. The I-D
1719 * does not specify what this error is, but this looks like
1720 * a great fit.
1721 */
1722 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 err = -EMSGSIZE;
1724 goto out_free;
1725 }
1726
1727 if (sinfo) {
1728 /* Check for invalid stream. */
1729 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 err = -EINVAL;
1731 goto out_free;
1732 }
1733 }
1734
1735 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 if (!sctp_wspace(asoc)) {
1737 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 if (err)
1739 goto out_free;
1740 }
1741
1742 /* If an address is passed with the sendto/sendmsg call, it is used
1743 * to override the primary destination address in the TCP model, or
1744 * when SCTP_ADDR_OVER flag is set in the UDP model.
1745 */
1746 if ((sctp_style(sk, TCP) && msg_name) ||
1747 (sinfo_flags & SCTP_ADDR_OVER)) {
1748 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 if (!chunk_tp) {
1750 err = -EINVAL;
1751 goto out_free;
1752 }
1753 } else
1754 chunk_tp = NULL;
1755
1756 /* Auto-connect, if we aren't connected already. */
1757 if (sctp_state(asoc, CLOSED)) {
1758 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 if (err < 0)
1760 goto out_free;
1761 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1762 }
1763
1764 /* Break the message into multiple chunks of maximum size. */
1765 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 if (!datamsg) {
1767 err = -ENOMEM;
1768 goto out_free;
1769 }
1770
1771 /* Now send the (possibly) fragmented message. */
1772 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 sctp_chunk_hold(chunk);
1774
1775 /* Do accounting for the write space. */
1776 sctp_set_owner_w(chunk);
1777
1778 chunk->transport = chunk_tp;
1779
1780 /* Send it to the lower layers. Note: all chunks
1781 * must either fail or succeed. The lower layer
1782 * works that way today. Keep it that way or this
1783 * breaks.
1784 */
1785 err = sctp_primitive_SEND(asoc, chunk);
1786 /* Did the lower layer accept the chunk? */
1787 if (err)
1788 sctp_chunk_free(chunk);
1789 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1790 }
1791
1792 sctp_datamsg_put(datamsg);
1793 if (err)
1794 goto out_free;
1795 else
1796 err = msg_len;
1797
1798 /* If we are already past ASSOCIATE, the lower
1799 * layers are responsible for association cleanup.
1800 */
1801 goto out_unlock;
1802
1803 out_free:
1804 if (new_asoc)
1805 sctp_association_free(asoc);
1806 out_unlock:
1807 sctp_release_sock(sk);
1808
1809 out_nounlock:
1810 return sctp_error(sk, msg_flags, err);
1811
1812 #if 0
1813 do_sock_err:
1814 if (msg_len)
1815 err = msg_len;
1816 else
1817 err = sock_error(sk);
1818 goto out;
1819
1820 do_interrupted:
1821 if (msg_len)
1822 err = msg_len;
1823 goto out;
1824 #endif /* 0 */
1825 }
1826
1827 /* This is an extended version of skb_pull() that removes the data from the
1828 * start of a skb even when data is spread across the list of skb's in the
1829 * frag_list. len specifies the total amount of data that needs to be removed.
1830 * when 'len' bytes could be removed from the skb, it returns 0.
1831 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1832 * could not be removed.
1833 */
1834 static int sctp_skb_pull(struct sk_buff *skb, int len)
1835 {
1836 struct sk_buff *list;
1837 int skb_len = skb_headlen(skb);
1838 int rlen;
1839
1840 if (len <= skb_len) {
1841 __skb_pull(skb, len);
1842 return 0;
1843 }
1844 len -= skb_len;
1845 __skb_pull(skb, skb_len);
1846
1847 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 rlen = sctp_skb_pull(list, len);
1849 skb->len -= (len-rlen);
1850 skb->data_len -= (len-rlen);
1851
1852 if (!rlen)
1853 return 0;
1854
1855 len = rlen;
1856 }
1857
1858 return len;
1859 }
1860
1861 /* API 3.1.3 recvmsg() - UDP Style Syntax
1862 *
1863 * ssize_t recvmsg(int socket, struct msghdr *message,
1864 * int flags);
1865 *
1866 * socket - the socket descriptor of the endpoint.
1867 * message - pointer to the msghdr structure which contains a single
1868 * user message and possibly some ancillary data.
1869 *
1870 * See Section 5 for complete description of the data
1871 * structures.
1872 *
1873 * flags - flags sent or received with the user message, see Section
1874 * 5 for complete description of the flags.
1875 */
1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1877
1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 struct msghdr *msg, size_t len, int noblock,
1880 int flags, int *addr_len)
1881 {
1882 struct sctp_ulpevent *event = NULL;
1883 struct sctp_sock *sp = sctp_sk(sk);
1884 struct sk_buff *skb;
1885 int copied;
1886 int err = 0;
1887 int skb_len;
1888
1889 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 "len", len, "knoblauch", noblock,
1892 "flags", flags, "addr_len", addr_len);
1893
1894 sctp_lock_sock(sk);
1895
1896 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 err = -ENOTCONN;
1898 goto out;
1899 }
1900
1901 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 if (!skb)
1903 goto out;
1904
1905 /* Get the total length of the skb including any skb's in the
1906 * frag_list.
1907 */
1908 skb_len = skb->len;
1909
1910 copied = skb_len;
1911 if (copied > len)
1912 copied = len;
1913
1914 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1915
1916 event = sctp_skb2event(skb);
1917
1918 if (err)
1919 goto out_free;
1920
1921 sock_recv_timestamp(msg, sk, skb);
1922 if (sctp_ulpevent_is_notification(event)) {
1923 msg->msg_flags |= MSG_NOTIFICATION;
1924 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 } else {
1926 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1927 }
1928
1929 /* Check if we allow SCTP_SNDRCVINFO. */
1930 if (sp->subscribe.sctp_data_io_event)
1931 sctp_ulpevent_read_sndrcvinfo(event, msg);
1932 #if 0
1933 /* FIXME: we should be calling IP/IPv6 layers. */
1934 if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 ip_cmsg_recv(msg, skb);
1936 #endif
1937
1938 err = copied;
1939
1940 /* If skb's length exceeds the user's buffer, update the skb and
1941 * push it back to the receive_queue so that the next call to
1942 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1943 */
1944 if (skb_len > copied) {
1945 msg->msg_flags &= ~MSG_EOR;
1946 if (flags & MSG_PEEK)
1947 goto out_free;
1948 sctp_skb_pull(skb, copied);
1949 skb_queue_head(&sk->sk_receive_queue, skb);
1950
1951 /* When only partial message is copied to the user, increase
1952 * rwnd by that amount. If all the data in the skb is read,
1953 * rwnd is updated when the event is freed.
1954 */
1955 if (!sctp_ulpevent_is_notification(event))
1956 sctp_assoc_rwnd_increase(event->asoc, copied);
1957 goto out;
1958 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 (event->msg_flags & MSG_EOR))
1960 msg->msg_flags |= MSG_EOR;
1961 else
1962 msg->msg_flags &= ~MSG_EOR;
1963
1964 out_free:
1965 if (flags & MSG_PEEK) {
1966 /* Release the skb reference acquired after peeking the skb in
1967 * sctp_skb_recv_datagram().
1968 */
1969 kfree_skb(skb);
1970 } else {
1971 /* Free the event which includes releasing the reference to
1972 * the owner of the skb, freeing the skb and updating the
1973 * rwnd.
1974 */
1975 sctp_ulpevent_free(event);
1976 }
1977 out:
1978 sctp_release_sock(sk);
1979 return err;
1980 }
1981
1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1983 *
1984 * This option is a on/off flag. If enabled no SCTP message
1985 * fragmentation will be performed. Instead if a message being sent
1986 * exceeds the current PMTU size, the message will NOT be sent and
1987 * instead a error will be indicated to the user.
1988 */
1989 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 char __user *optval, int optlen)
1991 {
1992 int val;
1993
1994 if (optlen < sizeof(int))
1995 return -EINVAL;
1996
1997 if (get_user(val, (int __user *)optval))
1998 return -EFAULT;
1999
2000 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2001
2002 return 0;
2003 }
2004
2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 int optlen)
2007 {
2008 if (optlen > sizeof(struct sctp_event_subscribe))
2009 return -EINVAL;
2010 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 return -EFAULT;
2012 return 0;
2013 }
2014
2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2016 *
2017 * This socket option is applicable to the UDP-style socket only. When
2018 * set it will cause associations that are idle for more than the
2019 * specified number of seconds to automatically close. An association
2020 * being idle is defined an association that has NOT sent or received
2021 * user data. The special value of '0' indicates that no automatic
2022 * close of any associations should be performed. The option expects an
2023 * integer defining the number of seconds of idle time before an
2024 * association is closed.
2025 */
2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 int optlen)
2028 {
2029 struct sctp_sock *sp = sctp_sk(sk);
2030
2031 /* Applicable to UDP-style socket only */
2032 if (sctp_style(sk, TCP))
2033 return -EOPNOTSUPP;
2034 if (optlen != sizeof(int))
2035 return -EINVAL;
2036 if (copy_from_user(&sp->autoclose, optval, optlen))
2037 return -EFAULT;
2038
2039 return 0;
2040 }
2041
2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2043 *
2044 * Applications can enable or disable heartbeats for any peer address of
2045 * an association, modify an address's heartbeat interval, force a
2046 * heartbeat to be sent immediately, and adjust the address's maximum
2047 * number of retransmissions sent before an address is considered
2048 * unreachable. The following structure is used to access and modify an
2049 * address's parameters:
2050 *
2051 * struct sctp_paddrparams {
2052 * sctp_assoc_t spp_assoc_id;
2053 * struct sockaddr_storage spp_address;
2054 * uint32_t spp_hbinterval;
2055 * uint16_t spp_pathmaxrxt;
2056 * uint32_t spp_pathmtu;
2057 * uint32_t spp_sackdelay;
2058 * uint32_t spp_flags;
2059 * };
2060 *
2061 * spp_assoc_id - (one-to-many style socket) This is filled in the
2062 * application, and identifies the association for
2063 * this query.
2064 * spp_address - This specifies which address is of interest.
2065 * spp_hbinterval - This contains the value of the heartbeat interval,
2066 * in milliseconds. If a value of zero
2067 * is present in this field then no changes are to
2068 * be made to this parameter.
2069 * spp_pathmaxrxt - This contains the maximum number of
2070 * retransmissions before this address shall be
2071 * considered unreachable. If a value of zero
2072 * is present in this field then no changes are to
2073 * be made to this parameter.
2074 * spp_pathmtu - When Path MTU discovery is disabled the value
2075 * specified here will be the "fixed" path mtu.
2076 * Note that if the spp_address field is empty
2077 * then all associations on this address will
2078 * have this fixed path mtu set upon them.
2079 *
2080 * spp_sackdelay - When delayed sack is enabled, this value specifies
2081 * the number of milliseconds that sacks will be delayed
2082 * for. This value will apply to all addresses of an
2083 * association if the spp_address field is empty. Note
2084 * also, that if delayed sack is enabled and this
2085 * value is set to 0, no change is made to the last
2086 * recorded delayed sack timer value.
2087 *
2088 * spp_flags - These flags are used to control various features
2089 * on an association. The flag field may contain
2090 * zero or more of the following options.
2091 *
2092 * SPP_HB_ENABLE - Enable heartbeats on the
2093 * specified address. Note that if the address
2094 * field is empty all addresses for the association
2095 * have heartbeats enabled upon them.
2096 *
2097 * SPP_HB_DISABLE - Disable heartbeats on the
2098 * speicifed address. Note that if the address
2099 * field is empty all addresses for the association
2100 * will have their heartbeats disabled. Note also
2101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102 * mutually exclusive, only one of these two should
2103 * be specified. Enabling both fields will have
2104 * undetermined results.
2105 *
2106 * SPP_HB_DEMAND - Request a user initiated heartbeat
2107 * to be made immediately.
2108 *
2109 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110 * heartbeat delayis to be set to the value of 0
2111 * milliseconds.
2112 *
2113 * SPP_PMTUD_ENABLE - This field will enable PMTU
2114 * discovery upon the specified address. Note that
2115 * if the address feild is empty then all addresses
2116 * on the association are effected.
2117 *
2118 * SPP_PMTUD_DISABLE - This field will disable PMTU
2119 * discovery upon the specified address. Note that
2120 * if the address feild is empty then all addresses
2121 * on the association are effected. Not also that
2122 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123 * exclusive. Enabling both will have undetermined
2124 * results.
2125 *
2126 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2127 * on delayed sack. The time specified in spp_sackdelay
2128 * is used to specify the sack delay for this address. Note
2129 * that if spp_address is empty then all addresses will
2130 * enable delayed sack and take on the sack delay
2131 * value specified in spp_sackdelay.
2132 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2133 * off delayed sack. If the spp_address field is blank then
2134 * delayed sack is disabled for the entire association. Note
2135 * also that this field is mutually exclusive to
2136 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2137 * results.
2138 */
2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 struct sctp_transport *trans,
2141 struct sctp_association *asoc,
2142 struct sctp_sock *sp,
2143 int hb_change,
2144 int pmtud_change,
2145 int sackdelay_change)
2146 {
2147 int error;
2148
2149 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 if (error)
2152 return error;
2153 }
2154
2155 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 * this field is ignored. Note also that a value of zero indicates
2157 * the current setting should be left unchanged.
2158 */
2159 if (params->spp_flags & SPP_HB_ENABLE) {
2160
2161 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 * set. This lets us use 0 value when this flag
2163 * is set.
2164 */
2165 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 params->spp_hbinterval = 0;
2167
2168 if (params->spp_hbinterval ||
2169 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 if (trans) {
2171 trans->hbinterval =
2172 msecs_to_jiffies(params->spp_hbinterval);
2173 } else if (asoc) {
2174 asoc->hbinterval =
2175 msecs_to_jiffies(params->spp_hbinterval);
2176 } else {
2177 sp->hbinterval = params->spp_hbinterval;
2178 }
2179 }
2180 }
2181
2182 if (hb_change) {
2183 if (trans) {
2184 trans->param_flags =
2185 (trans->param_flags & ~SPP_HB) | hb_change;
2186 } else if (asoc) {
2187 asoc->param_flags =
2188 (asoc->param_flags & ~SPP_HB) | hb_change;
2189 } else {
2190 sp->param_flags =
2191 (sp->param_flags & ~SPP_HB) | hb_change;
2192 }
2193 }
2194
2195 /* When Path MTU discovery is disabled the value specified here will
2196 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 * effect).
2199 */
2200 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 if (trans) {
2202 trans->pathmtu = params->spp_pathmtu;
2203 sctp_assoc_sync_pmtu(asoc);
2204 } else if (asoc) {
2205 asoc->pathmtu = params->spp_pathmtu;
2206 sctp_frag_point(sp, params->spp_pathmtu);
2207 } else {
2208 sp->pathmtu = params->spp_pathmtu;
2209 }
2210 }
2211
2212 if (pmtud_change) {
2213 if (trans) {
2214 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 (params->spp_flags & SPP_PMTUD_ENABLE);
2216 trans->param_flags =
2217 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 if (update) {
2219 sctp_transport_pmtu(trans);
2220 sctp_assoc_sync_pmtu(asoc);
2221 }
2222 } else if (asoc) {
2223 asoc->param_flags =
2224 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 } else {
2226 sp->param_flags =
2227 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2228 }
2229 }
2230
2231 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 * value of this field is ignored. Note also that a value of zero
2233 * indicates the current setting should be left unchanged.
2234 */
2235 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 if (trans) {
2237 trans->sackdelay =
2238 msecs_to_jiffies(params->spp_sackdelay);
2239 } else if (asoc) {
2240 asoc->sackdelay =
2241 msecs_to_jiffies(params->spp_sackdelay);
2242 } else {
2243 sp->sackdelay = params->spp_sackdelay;
2244 }
2245 }
2246
2247 if (sackdelay_change) {
2248 if (trans) {
2249 trans->param_flags =
2250 (trans->param_flags & ~SPP_SACKDELAY) |
2251 sackdelay_change;
2252 } else if (asoc) {
2253 asoc->param_flags =
2254 (asoc->param_flags & ~SPP_SACKDELAY) |
2255 sackdelay_change;
2256 } else {
2257 sp->param_flags =
2258 (sp->param_flags & ~SPP_SACKDELAY) |
2259 sackdelay_change;
2260 }
2261 }
2262
2263 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 * of this field is ignored. Note also that a value of zero
2265 * indicates the current setting should be left unchanged.
2266 */
2267 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 if (trans) {
2269 trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 } else if (asoc) {
2271 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 } else {
2273 sp->pathmaxrxt = params->spp_pathmaxrxt;
2274 }
2275 }
2276
2277 return 0;
2278 }
2279
2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 char __user *optval, int optlen)
2282 {
2283 struct sctp_paddrparams params;
2284 struct sctp_transport *trans = NULL;
2285 struct sctp_association *asoc = NULL;
2286 struct sctp_sock *sp = sctp_sk(sk);
2287 int error;
2288 int hb_change, pmtud_change, sackdelay_change;
2289
2290 if (optlen != sizeof(struct sctp_paddrparams))
2291 return - EINVAL;
2292
2293 if (copy_from_user(&params, optval, optlen))
2294 return -EFAULT;
2295
2296 /* Validate flags and value parameters. */
2297 hb_change = params.spp_flags & SPP_HB;
2298 pmtud_change = params.spp_flags & SPP_PMTUD;
2299 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2300
2301 if (hb_change == SPP_HB ||
2302 pmtud_change == SPP_PMTUD ||
2303 sackdelay_change == SPP_SACKDELAY ||
2304 params.spp_sackdelay > 500 ||
2305 (params.spp_pathmtu
2306 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 return -EINVAL;
2308
2309 /* If an address other than INADDR_ANY is specified, and
2310 * no transport is found, then the request is invalid.
2311 */
2312 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2313 trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 params.spp_assoc_id);
2315 if (!trans)
2316 return -EINVAL;
2317 }
2318
2319 /* Get association, if assoc_id != 0 and the socket is a one
2320 * to many style socket, and an association was not found, then
2321 * the id was invalid.
2322 */
2323 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 return -EINVAL;
2326
2327 /* Heartbeat demand can only be sent on a transport or
2328 * association, but not a socket.
2329 */
2330 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 return -EINVAL;
2332
2333 /* Process parameters. */
2334 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 hb_change, pmtud_change,
2336 sackdelay_change);
2337
2338 if (error)
2339 return error;
2340
2341 /* If changes are for association, also apply parameters to each
2342 * transport.
2343 */
2344 if (!trans && asoc) {
2345 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 transports) {
2347 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 hb_change, pmtud_change,
2349 sackdelay_change);
2350 }
2351 }
2352
2353 return 0;
2354 }
2355
2356 /*
2357 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2358 *
2359 * This option will effect the way delayed acks are performed. This
2360 * option allows you to get or set the delayed ack time, in
2361 * milliseconds. It also allows changing the delayed ack frequency.
2362 * Changing the frequency to 1 disables the delayed sack algorithm. If
2363 * the assoc_id is 0, then this sets or gets the endpoints default
2364 * values. If the assoc_id field is non-zero, then the set or get
2365 * effects the specified association for the one to many model (the
2366 * assoc_id field is ignored by the one to one model). Note that if
2367 * sack_delay or sack_freq are 0 when setting this option, then the
2368 * current values will remain unchanged.
2369 *
2370 * struct sctp_sack_info {
2371 * sctp_assoc_t sack_assoc_id;
2372 * uint32_t sack_delay;
2373 * uint32_t sack_freq;
2374 * };
2375 *
2376 * sack_assoc_id - This parameter, indicates which association the user
2377 * is performing an action upon. Note that if this field's value is
2378 * zero then the endpoints default value is changed (effecting future
2379 * associations only).
2380 *
2381 * sack_delay - This parameter contains the number of milliseconds that
2382 * the user is requesting the delayed ACK timer be set to. Note that
2383 * this value is defined in the standard to be between 200 and 500
2384 * milliseconds.
2385 *
2386 * sack_freq - This parameter contains the number of packets that must
2387 * be received before a sack is sent without waiting for the delay
2388 * timer to expire. The default value for this is 2, setting this
2389 * value to 1 will disable the delayed sack algorithm.
2390 */
2391
2392 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 char __user *optval, int optlen)
2394 {
2395 struct sctp_sack_info params;
2396 struct sctp_transport *trans = NULL;
2397 struct sctp_association *asoc = NULL;
2398 struct sctp_sock *sp = sctp_sk(sk);
2399
2400 if (optlen == sizeof(struct sctp_sack_info)) {
2401 if (copy_from_user(&params, optval, optlen))
2402 return -EFAULT;
2403
2404 if (params.sack_delay == 0 && params.sack_freq == 0)
2405 return 0;
2406 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2408 "in delayed_ack socket option deprecated\n");
2409 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2410 if (copy_from_user(&params, optval, optlen))
2411 return -EFAULT;
2412
2413 if (params.sack_delay == 0)
2414 params.sack_freq = 1;
2415 else
2416 params.sack_freq = 0;
2417 } else
2418 return - EINVAL;
2419
2420 /* Validate value parameter. */
2421 if (params.sack_delay > 500)
2422 return -EINVAL;
2423
2424 /* Get association, if sack_assoc_id != 0 and the socket is a one
2425 * to many style socket, and an association was not found, then
2426 * the id was invalid.
2427 */
2428 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 return -EINVAL;
2431
2432 if (params.sack_delay) {
2433 if (asoc) {
2434 asoc->sackdelay =
2435 msecs_to_jiffies(params.sack_delay);
2436 asoc->param_flags =
2437 (asoc->param_flags & ~SPP_SACKDELAY) |
2438 SPP_SACKDELAY_ENABLE;
2439 } else {
2440 sp->sackdelay = params.sack_delay;
2441 sp->param_flags =
2442 (sp->param_flags & ~SPP_SACKDELAY) |
2443 SPP_SACKDELAY_ENABLE;
2444 }
2445 }
2446
2447 if (params.sack_freq == 1) {
2448 if (asoc) {
2449 asoc->param_flags =
2450 (asoc->param_flags & ~SPP_SACKDELAY) |
2451 SPP_SACKDELAY_DISABLE;
2452 } else {
2453 sp->param_flags =
2454 (sp->param_flags & ~SPP_SACKDELAY) |
2455 SPP_SACKDELAY_DISABLE;
2456 }
2457 } else if (params.sack_freq > 1) {
2458 if (asoc) {
2459 asoc->sackfreq = params.sack_freq;
2460 asoc->param_flags =
2461 (asoc->param_flags & ~SPP_SACKDELAY) |
2462 SPP_SACKDELAY_ENABLE;
2463 } else {
2464 sp->sackfreq = params.sack_freq;
2465 sp->param_flags =
2466 (sp->param_flags & ~SPP_SACKDELAY) |
2467 SPP_SACKDELAY_ENABLE;
2468 }
2469 }
2470
2471 /* If change is for association, also apply to each transport. */
2472 if (asoc) {
2473 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 transports) {
2475 if (params.sack_delay) {
2476 trans->sackdelay =
2477 msecs_to_jiffies(params.sack_delay);
2478 trans->param_flags =
2479 (trans->param_flags & ~SPP_SACKDELAY) |
2480 SPP_SACKDELAY_ENABLE;
2481 }
2482 if (params.sack_freq == 1) {
2483 trans->param_flags =
2484 (trans->param_flags & ~SPP_SACKDELAY) |
2485 SPP_SACKDELAY_DISABLE;
2486 } else if (params.sack_freq > 1) {
2487 trans->sackfreq = params.sack_freq;
2488 trans->param_flags =
2489 (trans->param_flags & ~SPP_SACKDELAY) |
2490 SPP_SACKDELAY_ENABLE;
2491 }
2492 }
2493 }
2494
2495 return 0;
2496 }
2497
2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2499 *
2500 * Applications can specify protocol parameters for the default association
2501 * initialization. The option name argument to setsockopt() and getsockopt()
2502 * is SCTP_INITMSG.
2503 *
2504 * Setting initialization parameters is effective only on an unconnected
2505 * socket (for UDP-style sockets only future associations are effected
2506 * by the change). With TCP-style sockets, this option is inherited by
2507 * sockets derived from a listener socket.
2508 */
2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2510 {
2511 struct sctp_initmsg sinit;
2512 struct sctp_sock *sp = sctp_sk(sk);
2513
2514 if (optlen != sizeof(struct sctp_initmsg))
2515 return -EINVAL;
2516 if (copy_from_user(&sinit, optval, optlen))
2517 return -EFAULT;
2518
2519 if (sinit.sinit_num_ostreams)
2520 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 if (sinit.sinit_max_instreams)
2522 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 if (sinit.sinit_max_attempts)
2524 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 if (sinit.sinit_max_init_timeo)
2526 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2527
2528 return 0;
2529 }
2530
2531 /*
2532 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2533 *
2534 * Applications that wish to use the sendto() system call may wish to
2535 * specify a default set of parameters that would normally be supplied
2536 * through the inclusion of ancillary data. This socket option allows
2537 * such an application to set the default sctp_sndrcvinfo structure.
2538 * The application that wishes to use this socket option simply passes
2539 * in to this call the sctp_sndrcvinfo structure defined in Section
2540 * 5.2.2) The input parameters accepted by this call include
2541 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2543 * to this call if the caller is using the UDP model.
2544 */
2545 static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 char __user *optval, int optlen)
2547 {
2548 struct sctp_sndrcvinfo info;
2549 struct sctp_association *asoc;
2550 struct sctp_sock *sp = sctp_sk(sk);
2551
2552 if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 return -EINVAL;
2554 if (copy_from_user(&info, optval, optlen))
2555 return -EFAULT;
2556
2557 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 return -EINVAL;
2560
2561 if (asoc) {
2562 asoc->default_stream = info.sinfo_stream;
2563 asoc->default_flags = info.sinfo_flags;
2564 asoc->default_ppid = info.sinfo_ppid;
2565 asoc->default_context = info.sinfo_context;
2566 asoc->default_timetolive = info.sinfo_timetolive;
2567 } else {
2568 sp->default_stream = info.sinfo_stream;
2569 sp->default_flags = info.sinfo_flags;
2570 sp->default_ppid = info.sinfo_ppid;
2571 sp->default_context = info.sinfo_context;
2572 sp->default_timetolive = info.sinfo_timetolive;
2573 }
2574
2575 return 0;
2576 }
2577
2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2579 *
2580 * Requests that the local SCTP stack use the enclosed peer address as
2581 * the association primary. The enclosed address must be one of the
2582 * association peer's addresses.
2583 */
2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 int optlen)
2586 {
2587 struct sctp_prim prim;
2588 struct sctp_transport *trans;
2589
2590 if (optlen != sizeof(struct sctp_prim))
2591 return -EINVAL;
2592
2593 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 return -EFAULT;
2595
2596 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 if (!trans)
2598 return -EINVAL;
2599
2600 sctp_assoc_set_primary(trans->asoc, trans);
2601
2602 return 0;
2603 }
2604
2605 /*
2606 * 7.1.5 SCTP_NODELAY
2607 *
2608 * Turn on/off any Nagle-like algorithm. This means that packets are
2609 * generally sent as soon as possible and no unnecessary delays are
2610 * introduced, at the cost of more packets in the network. Expects an
2611 * integer boolean flag.
2612 */
2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 int optlen)
2615 {
2616 int val;
2617
2618 if (optlen < sizeof(int))
2619 return -EINVAL;
2620 if (get_user(val, (int __user *)optval))
2621 return -EFAULT;
2622
2623 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 return 0;
2625 }
2626
2627 /*
2628 *
2629 * 7.1.1 SCTP_RTOINFO
2630 *
2631 * The protocol parameters used to initialize and bound retransmission
2632 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633 * and modify these parameters.
2634 * All parameters are time values, in milliseconds. A value of 0, when
2635 * modifying the parameters, indicates that the current value should not
2636 * be changed.
2637 *
2638 */
2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 struct sctp_rtoinfo rtoinfo;
2641 struct sctp_association *asoc;
2642
2643 if (optlen != sizeof (struct sctp_rtoinfo))
2644 return -EINVAL;
2645
2646 if (copy_from_user(&rtoinfo, optval, optlen))
2647 return -EFAULT;
2648
2649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2650
2651 /* Set the values to the specific association */
2652 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 if (asoc) {
2656 if (rtoinfo.srto_initial != 0)
2657 asoc->rto_initial =
2658 msecs_to_jiffies(rtoinfo.srto_initial);
2659 if (rtoinfo.srto_max != 0)
2660 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 if (rtoinfo.srto_min != 0)
2662 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 } else {
2664 /* If there is no association or the association-id = 0
2665 * set the values to the endpoint.
2666 */
2667 struct sctp_sock *sp = sctp_sk(sk);
2668
2669 if (rtoinfo.srto_initial != 0)
2670 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 if (rtoinfo.srto_max != 0)
2672 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 if (rtoinfo.srto_min != 0)
2674 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2675 }
2676
2677 return 0;
2678 }
2679
2680 /*
2681 *
2682 * 7.1.2 SCTP_ASSOCINFO
2683 *
2684 * This option is used to tune the maximum retransmission attempts
2685 * of the association.
2686 * Returns an error if the new association retransmission value is
2687 * greater than the sum of the retransmission value of the peer.
2688 * See [SCTP] for more information.
2689 *
2690 */
2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2692 {
2693
2694 struct sctp_assocparams assocparams;
2695 struct sctp_association *asoc;
2696
2697 if (optlen != sizeof(struct sctp_assocparams))
2698 return -EINVAL;
2699 if (copy_from_user(&assocparams, optval, optlen))
2700 return -EFAULT;
2701
2702 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2703
2704 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 return -EINVAL;
2706
2707 /* Set the values to the specific association */
2708 if (asoc) {
2709 if (assocparams.sasoc_asocmaxrxt != 0) {
2710 __u32 path_sum = 0;
2711 int paths = 0;
2712 struct sctp_transport *peer_addr;
2713
2714 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 transports) {
2716 path_sum += peer_addr->pathmaxrxt;
2717 paths++;
2718 }
2719
2720 /* Only validate asocmaxrxt if we have more then
2721 * one path/transport. We do this because path
2722 * retransmissions are only counted when we have more
2723 * then one path.
2724 */
2725 if (paths > 1 &&
2726 assocparams.sasoc_asocmaxrxt > path_sum)
2727 return -EINVAL;
2728
2729 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2730 }
2731
2732 if (assocparams.sasoc_cookie_life != 0) {
2733 asoc->cookie_life.tv_sec =
2734 assocparams.sasoc_cookie_life / 1000;
2735 asoc->cookie_life.tv_usec =
2736 (assocparams.sasoc_cookie_life % 1000)
2737 * 1000;
2738 }
2739 } else {
2740 /* Set the values to the endpoint */
2741 struct sctp_sock *sp = sctp_sk(sk);
2742
2743 if (assocparams.sasoc_asocmaxrxt != 0)
2744 sp->assocparams.sasoc_asocmaxrxt =
2745 assocparams.sasoc_asocmaxrxt;
2746 if (assocparams.sasoc_cookie_life != 0)
2747 sp->assocparams.sasoc_cookie_life =
2748 assocparams.sasoc_cookie_life;
2749 }
2750 return 0;
2751 }
2752
2753 /*
2754 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2755 *
2756 * This socket option is a boolean flag which turns on or off mapped V4
2757 * addresses. If this option is turned on and the socket is type
2758 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759 * If this option is turned off, then no mapping will be done of V4
2760 * addresses and a user will receive both PF_INET6 and PF_INET type
2761 * addresses on the socket.
2762 */
2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2764 {
2765 int val;
2766 struct sctp_sock *sp = sctp_sk(sk);
2767
2768 if (optlen < sizeof(int))
2769 return -EINVAL;
2770 if (get_user(val, (int __user *)optval))
2771 return -EFAULT;
2772 if (val)
2773 sp->v4mapped = 1;
2774 else
2775 sp->v4mapped = 0;
2776
2777 return 0;
2778 }
2779
2780 /*
2781 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2782 *
2783 * This socket option specifies the maximum size to put in any outgoing
2784 * SCTP chunk. If a message is larger than this size it will be
2785 * fragmented by SCTP into the specified size. Note that the underlying
2786 * SCTP implementation may fragment into smaller sized chunks when the
2787 * PMTU of the underlying association is smaller than the value set by
2788 * the user.
2789 */
2790 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2791 {
2792 struct sctp_association *asoc;
2793 struct sctp_sock *sp = sctp_sk(sk);
2794 int val;
2795
2796 if (optlen < sizeof(int))
2797 return -EINVAL;
2798 if (get_user(val, (int __user *)optval))
2799 return -EFAULT;
2800 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2801 return -EINVAL;
2802 sp->user_frag = val;
2803
2804 /* Update the frag_point of the existing associations. */
2805 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2806 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2807 }
2808
2809 return 0;
2810 }
2811
2812
2813 /*
2814 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2815 *
2816 * Requests that the peer mark the enclosed address as the association
2817 * primary. The enclosed address must be one of the association's
2818 * locally bound addresses. The following structure is used to make a
2819 * set primary request:
2820 */
2821 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2822 int optlen)
2823 {
2824 struct sctp_sock *sp;
2825 struct sctp_endpoint *ep;
2826 struct sctp_association *asoc = NULL;
2827 struct sctp_setpeerprim prim;
2828 struct sctp_chunk *chunk;
2829 int err;
2830
2831 sp = sctp_sk(sk);
2832 ep = sp->ep;
2833
2834 if (!sctp_addip_enable)
2835 return -EPERM;
2836
2837 if (optlen != sizeof(struct sctp_setpeerprim))
2838 return -EINVAL;
2839
2840 if (copy_from_user(&prim, optval, optlen))
2841 return -EFAULT;
2842
2843 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2844 if (!asoc)
2845 return -EINVAL;
2846
2847 if (!asoc->peer.asconf_capable)
2848 return -EPERM;
2849
2850 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2851 return -EPERM;
2852
2853 if (!sctp_state(asoc, ESTABLISHED))
2854 return -ENOTCONN;
2855
2856 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2857 return -EADDRNOTAVAIL;
2858
2859 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2860 chunk = sctp_make_asconf_set_prim(asoc,
2861 (union sctp_addr *)&prim.sspp_addr);
2862 if (!chunk)
2863 return -ENOMEM;
2864
2865 err = sctp_send_asconf(asoc, chunk);
2866
2867 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2868
2869 return err;
2870 }
2871
2872 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2873 int optlen)
2874 {
2875 struct sctp_setadaptation adaptation;
2876
2877 if (optlen != sizeof(struct sctp_setadaptation))
2878 return -EINVAL;
2879 if (copy_from_user(&adaptation, optval, optlen))
2880 return -EFAULT;
2881
2882 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2883
2884 return 0;
2885 }
2886
2887 /*
2888 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2889 *
2890 * The context field in the sctp_sndrcvinfo structure is normally only
2891 * used when a failed message is retrieved holding the value that was
2892 * sent down on the actual send call. This option allows the setting of
2893 * a default context on an association basis that will be received on
2894 * reading messages from the peer. This is especially helpful in the
2895 * one-2-many model for an application to keep some reference to an
2896 * internal state machine that is processing messages on the
2897 * association. Note that the setting of this value only effects
2898 * received messages from the peer and does not effect the value that is
2899 * saved with outbound messages.
2900 */
2901 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2902 int optlen)
2903 {
2904 struct sctp_assoc_value params;
2905 struct sctp_sock *sp;
2906 struct sctp_association *asoc;
2907
2908 if (optlen != sizeof(struct sctp_assoc_value))
2909 return -EINVAL;
2910 if (copy_from_user(&params, optval, optlen))
2911 return -EFAULT;
2912
2913 sp = sctp_sk(sk);
2914
2915 if (params.assoc_id != 0) {
2916 asoc = sctp_id2assoc(sk, params.assoc_id);
2917 if (!asoc)
2918 return -EINVAL;
2919 asoc->default_rcv_context = params.assoc_value;
2920 } else {
2921 sp->default_rcv_context = params.assoc_value;
2922 }
2923
2924 return 0;
2925 }
2926
2927 /*
2928 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2929 *
2930 * This options will at a minimum specify if the implementation is doing
2931 * fragmented interleave. Fragmented interleave, for a one to many
2932 * socket, is when subsequent calls to receive a message may return
2933 * parts of messages from different associations. Some implementations
2934 * may allow you to turn this value on or off. If so, when turned off,
2935 * no fragment interleave will occur (which will cause a head of line
2936 * blocking amongst multiple associations sharing the same one to many
2937 * socket). When this option is turned on, then each receive call may
2938 * come from a different association (thus the user must receive data
2939 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2940 * association each receive belongs to.
2941 *
2942 * This option takes a boolean value. A non-zero value indicates that
2943 * fragmented interleave is on. A value of zero indicates that
2944 * fragmented interleave is off.
2945 *
2946 * Note that it is important that an implementation that allows this
2947 * option to be turned on, have it off by default. Otherwise an unaware
2948 * application using the one to many model may become confused and act
2949 * incorrectly.
2950 */
2951 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2952 char __user *optval,
2953 int optlen)
2954 {
2955 int val;
2956
2957 if (optlen != sizeof(int))
2958 return -EINVAL;
2959 if (get_user(val, (int __user *)optval))
2960 return -EFAULT;
2961
2962 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * 7.1.25. Set or Get the sctp partial delivery point
2969 * (SCTP_PARTIAL_DELIVERY_POINT)
2970 * This option will set or get the SCTP partial delivery point. This
2971 * point is the size of a message where the partial delivery API will be
2972 * invoked to help free up rwnd space for the peer. Setting this to a
2973 * lower value will cause partial delivery's to happen more often. The
2974 * calls argument is an integer that sets or gets the partial delivery
2975 * point.
2976 */
2977 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2978 char __user *optval,
2979 int optlen)
2980 {
2981 u32 val;
2982
2983 if (optlen != sizeof(u32))
2984 return -EINVAL;
2985 if (get_user(val, (int __user *)optval))
2986 return -EFAULT;
2987
2988 sctp_sk(sk)->pd_point = val;
2989
2990 return 0; /* is this the right error code? */
2991 }
2992
2993 /*
2994 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2995 *
2996 * This option will allow a user to change the maximum burst of packets
2997 * that can be emitted by this association. Note that the default value
2998 * is 4, and some implementations may restrict this setting so that it
2999 * can only be lowered.
3000 *
3001 * NOTE: This text doesn't seem right. Do this on a socket basis with
3002 * future associations inheriting the socket value.
3003 */
3004 static int sctp_setsockopt_maxburst(struct sock *sk,
3005 char __user *optval,
3006 int optlen)
3007 {
3008 struct sctp_assoc_value params;
3009 struct sctp_sock *sp;
3010 struct sctp_association *asoc;
3011 int val;
3012 int assoc_id = 0;
3013
3014 if (optlen < sizeof(int))
3015 return -EINVAL;
3016
3017 if (optlen == sizeof(int)) {
3018 printk(KERN_WARNING
3019 "SCTP: Use of int in max_burst socket option deprecated\n");
3020 printk(KERN_WARNING
3021 "SCTP: Use struct sctp_assoc_value instead\n");
3022 if (copy_from_user(&val, optval, optlen))
3023 return -EFAULT;
3024 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3025 if (copy_from_user(&params, optval, optlen))
3026 return -EFAULT;
3027 val = params.assoc_value;
3028 assoc_id = params.assoc_id;
3029 } else
3030 return -EINVAL;
3031
3032 sp = sctp_sk(sk);
3033
3034 if (assoc_id != 0) {
3035 asoc = sctp_id2assoc(sk, assoc_id);
3036 if (!asoc)
3037 return -EINVAL;
3038 asoc->max_burst = val;
3039 } else
3040 sp->max_burst = val;
3041
3042 return 0;
3043 }
3044
3045 /*
3046 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3047 *
3048 * This set option adds a chunk type that the user is requesting to be
3049 * received only in an authenticated way. Changes to the list of chunks
3050 * will only effect future associations on the socket.
3051 */
3052 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3053 char __user *optval,
3054 int optlen)
3055 {
3056 struct sctp_authchunk val;
3057
3058 if (!sctp_auth_enable)
3059 return -EACCES;
3060
3061 if (optlen != sizeof(struct sctp_authchunk))
3062 return -EINVAL;
3063 if (copy_from_user(&val, optval, optlen))
3064 return -EFAULT;
3065
3066 switch (val.sauth_chunk) {
3067 case SCTP_CID_INIT:
3068 case SCTP_CID_INIT_ACK:
3069 case SCTP_CID_SHUTDOWN_COMPLETE:
3070 case SCTP_CID_AUTH:
3071 return -EINVAL;
3072 }
3073
3074 /* add this chunk id to the endpoint */
3075 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3076 }
3077
3078 /*
3079 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3080 *
3081 * This option gets or sets the list of HMAC algorithms that the local
3082 * endpoint requires the peer to use.
3083 */
3084 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3085 char __user *optval,
3086 int optlen)
3087 {
3088 struct sctp_hmacalgo *hmacs;
3089 u32 idents;
3090 int err;
3091
3092 if (!sctp_auth_enable)
3093 return -EACCES;
3094
3095 if (optlen < sizeof(struct sctp_hmacalgo))
3096 return -EINVAL;
3097
3098 hmacs = kmalloc(optlen, GFP_KERNEL);
3099 if (!hmacs)
3100 return -ENOMEM;
3101
3102 if (copy_from_user(hmacs, optval, optlen)) {
3103 err = -EFAULT;
3104 goto out;
3105 }
3106
3107 idents = hmacs->shmac_num_idents;
3108 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3109 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3110 err = -EINVAL;
3111 goto out;
3112 }
3113
3114 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3115 out:
3116 kfree(hmacs);
3117 return err;
3118 }
3119
3120 /*
3121 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3122 *
3123 * This option will set a shared secret key which is used to build an
3124 * association shared key.
3125 */
3126 static int sctp_setsockopt_auth_key(struct sock *sk,
3127 char __user *optval,
3128 int optlen)
3129 {
3130 struct sctp_authkey *authkey;
3131 struct sctp_association *asoc;
3132 int ret;
3133
3134 if (!sctp_auth_enable)
3135 return -EACCES;
3136
3137 if (optlen <= sizeof(struct sctp_authkey))
3138 return -EINVAL;
3139
3140 authkey = kmalloc(optlen, GFP_KERNEL);
3141 if (!authkey)
3142 return -ENOMEM;
3143
3144 if (copy_from_user(authkey, optval, optlen)) {
3145 ret = -EFAULT;
3146 goto out;
3147 }
3148
3149 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3150 ret = -EINVAL;
3151 goto out;
3152 }
3153
3154 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3155 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3156 ret = -EINVAL;
3157 goto out;
3158 }
3159
3160 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3161 out:
3162 kfree(authkey);
3163 return ret;
3164 }
3165
3166 /*
3167 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3168 *
3169 * This option will get or set the active shared key to be used to build
3170 * the association shared key.
3171 */
3172 static int sctp_setsockopt_active_key(struct sock *sk,
3173 char __user *optval,
3174 int optlen)
3175 {
3176 struct sctp_authkeyid val;
3177 struct sctp_association *asoc;
3178
3179 if (!sctp_auth_enable)
3180 return -EACCES;
3181
3182 if (optlen != sizeof(struct sctp_authkeyid))
3183 return -EINVAL;
3184 if (copy_from_user(&val, optval, optlen))
3185 return -EFAULT;
3186
3187 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3188 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3189 return -EINVAL;
3190
3191 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3192 val.scact_keynumber);
3193 }
3194
3195 /*
3196 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3197 *
3198 * This set option will delete a shared secret key from use.
3199 */
3200 static int sctp_setsockopt_del_key(struct sock *sk,
3201 char __user *optval,
3202 int optlen)
3203 {
3204 struct sctp_authkeyid val;
3205 struct sctp_association *asoc;
3206
3207 if (!sctp_auth_enable)
3208 return -EACCES;
3209
3210 if (optlen != sizeof(struct sctp_authkeyid))
3211 return -EINVAL;
3212 if (copy_from_user(&val, optval, optlen))
3213 return -EFAULT;
3214
3215 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3216 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3217 return -EINVAL;
3218
3219 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3220 val.scact_keynumber);
3221
3222 }
3223
3224
3225 /* API 6.2 setsockopt(), getsockopt()
3226 *
3227 * Applications use setsockopt() and getsockopt() to set or retrieve
3228 * socket options. Socket options are used to change the default
3229 * behavior of sockets calls. They are described in Section 7.
3230 *
3231 * The syntax is:
3232 *
3233 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3234 * int __user *optlen);
3235 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3236 * int optlen);
3237 *
3238 * sd - the socket descript.
3239 * level - set to IPPROTO_SCTP for all SCTP options.
3240 * optname - the option name.
3241 * optval - the buffer to store the value of the option.
3242 * optlen - the size of the buffer.
3243 */
3244 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3245 char __user *optval, int optlen)
3246 {
3247 int retval = 0;
3248
3249 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3250 sk, optname);
3251
3252 /* I can hardly begin to describe how wrong this is. This is
3253 * so broken as to be worse than useless. The API draft
3254 * REALLY is NOT helpful here... I am not convinced that the
3255 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3256 * are at all well-founded.
3257 */
3258 if (level != SOL_SCTP) {
3259 struct sctp_af *af = sctp_sk(sk)->pf->af;
3260 retval = af->setsockopt(sk, level, optname, optval, optlen);
3261 goto out_nounlock;
3262 }
3263
3264 sctp_lock_sock(sk);
3265
3266 switch (optname) {
3267 case SCTP_SOCKOPT_BINDX_ADD:
3268 /* 'optlen' is the size of the addresses buffer. */
3269 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3270 optlen, SCTP_BINDX_ADD_ADDR);
3271 break;
3272
3273 case SCTP_SOCKOPT_BINDX_REM:
3274 /* 'optlen' is the size of the addresses buffer. */
3275 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3276 optlen, SCTP_BINDX_REM_ADDR);
3277 break;
3278
3279 case SCTP_SOCKOPT_CONNECTX_OLD:
3280 /* 'optlen' is the size of the addresses buffer. */
3281 retval = sctp_setsockopt_connectx_old(sk,
3282 (struct sockaddr __user *)optval,
3283 optlen);
3284 break;
3285
3286 case SCTP_SOCKOPT_CONNECTX:
3287 /* 'optlen' is the size of the addresses buffer. */
3288 retval = sctp_setsockopt_connectx(sk,
3289 (struct sockaddr __user *)optval,
3290 optlen);
3291 break;
3292
3293 case SCTP_DISABLE_FRAGMENTS:
3294 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3295 break;
3296
3297 case SCTP_EVENTS:
3298 retval = sctp_setsockopt_events(sk, optval, optlen);
3299 break;
3300
3301 case SCTP_AUTOCLOSE:
3302 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3303 break;
3304
3305 case SCTP_PEER_ADDR_PARAMS:
3306 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3307 break;
3308
3309 case SCTP_DELAYED_ACK:
3310 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3311 break;
3312 case SCTP_PARTIAL_DELIVERY_POINT:
3313 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3314 break;
3315
3316 case SCTP_INITMSG:
3317 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3318 break;
3319 case SCTP_DEFAULT_SEND_PARAM:
3320 retval = sctp_setsockopt_default_send_param(sk, optval,
3321 optlen);
3322 break;
3323 case SCTP_PRIMARY_ADDR:
3324 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3325 break;
3326 case SCTP_SET_PEER_PRIMARY_ADDR:
3327 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3328 break;
3329 case SCTP_NODELAY:
3330 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3331 break;
3332 case SCTP_RTOINFO:
3333 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3334 break;
3335 case SCTP_ASSOCINFO:
3336 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3337 break;
3338 case SCTP_I_WANT_MAPPED_V4_ADDR:
3339 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3340 break;
3341 case SCTP_MAXSEG:
3342 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3343 break;
3344 case SCTP_ADAPTATION_LAYER:
3345 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3346 break;
3347 case SCTP_CONTEXT:
3348 retval = sctp_setsockopt_context(sk, optval, optlen);
3349 break;
3350 case SCTP_FRAGMENT_INTERLEAVE:
3351 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3352 break;
3353 case SCTP_MAX_BURST:
3354 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3355 break;
3356 case SCTP_AUTH_CHUNK:
3357 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3358 break;
3359 case SCTP_HMAC_IDENT:
3360 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3361 break;
3362 case SCTP_AUTH_KEY:
3363 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3364 break;
3365 case SCTP_AUTH_ACTIVE_KEY:
3366 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3367 break;
3368 case SCTP_AUTH_DELETE_KEY:
3369 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3370 break;
3371 default:
3372 retval = -ENOPROTOOPT;
3373 break;
3374 }
3375
3376 sctp_release_sock(sk);
3377
3378 out_nounlock:
3379 return retval;
3380 }
3381
3382 /* API 3.1.6 connect() - UDP Style Syntax
3383 *
3384 * An application may use the connect() call in the UDP model to initiate an
3385 * association without sending data.
3386 *
3387 * The syntax is:
3388 *
3389 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3390 *
3391 * sd: the socket descriptor to have a new association added to.
3392 *
3393 * nam: the address structure (either struct sockaddr_in or struct
3394 * sockaddr_in6 defined in RFC2553 [7]).
3395 *
3396 * len: the size of the address.
3397 */
3398 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3399 int addr_len)
3400 {
3401 int err = 0;
3402 struct sctp_af *af;
3403
3404 sctp_lock_sock(sk);
3405
3406 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3407 __func__, sk, addr, addr_len);
3408
3409 /* Validate addr_len before calling common connect/connectx routine. */
3410 af = sctp_get_af_specific(addr->sa_family);
3411 if (!af || addr_len < af->sockaddr_len) {
3412 err = -EINVAL;
3413 } else {
3414 /* Pass correct addr len to common routine (so it knows there
3415 * is only one address being passed.
3416 */
3417 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3418 }
3419
3420 sctp_release_sock(sk);
3421 return err;
3422 }
3423
3424 /* FIXME: Write comments. */
3425 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3426 {
3427 return -EOPNOTSUPP; /* STUB */
3428 }
3429
3430 /* 4.1.4 accept() - TCP Style Syntax
3431 *
3432 * Applications use accept() call to remove an established SCTP
3433 * association from the accept queue of the endpoint. A new socket
3434 * descriptor will be returned from accept() to represent the newly
3435 * formed association.
3436 */
3437 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3438 {
3439 struct sctp_sock *sp;
3440 struct sctp_endpoint *ep;
3441 struct sock *newsk = NULL;
3442 struct sctp_association *asoc;
3443 long timeo;
3444 int error = 0;
3445
3446 sctp_lock_sock(sk);
3447
3448 sp = sctp_sk(sk);
3449 ep = sp->ep;
3450
3451 if (!sctp_style(sk, TCP)) {
3452 error = -EOPNOTSUPP;
3453 goto out;
3454 }
3455
3456 if (!sctp_sstate(sk, LISTENING)) {
3457 error = -EINVAL;
3458 goto out;
3459 }
3460
3461 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3462
3463 error = sctp_wait_for_accept(sk, timeo);
3464 if (error)
3465 goto out;
3466
3467 /* We treat the list of associations on the endpoint as the accept
3468 * queue and pick the first association on the list.
3469 */
3470 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3471
3472 newsk = sp->pf->create_accept_sk(sk, asoc);
3473 if (!newsk) {
3474 error = -ENOMEM;
3475 goto out;
3476 }
3477
3478 /* Populate the fields of the newsk from the oldsk and migrate the
3479 * asoc to the newsk.
3480 */
3481 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3482
3483 out:
3484 sctp_release_sock(sk);
3485 *err = error;
3486 return newsk;
3487 }
3488
3489 /* The SCTP ioctl handler. */
3490 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3491 {
3492 return -ENOIOCTLCMD;
3493 }
3494
3495 /* This is the function which gets called during socket creation to
3496 * initialized the SCTP-specific portion of the sock.
3497 * The sock structure should already be zero-filled memory.
3498 */
3499 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3500 {
3501 struct sctp_endpoint *ep;
3502 struct sctp_sock *sp;
3503
3504 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3505
3506 sp = sctp_sk(sk);
3507
3508 /* Initialize the SCTP per socket area. */
3509 switch (sk->sk_type) {
3510 case SOCK_SEQPACKET:
3511 sp->type = SCTP_SOCKET_UDP;
3512 break;
3513 case SOCK_STREAM:
3514 sp->type = SCTP_SOCKET_TCP;
3515 break;
3516 default:
3517 return -ESOCKTNOSUPPORT;
3518 }
3519
3520 /* Initialize default send parameters. These parameters can be
3521 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3522 */
3523 sp->default_stream = 0;
3524 sp->default_ppid = 0;
3525 sp->default_flags = 0;
3526 sp->default_context = 0;
3527 sp->default_timetolive = 0;
3528
3529 sp->default_rcv_context = 0;
3530 sp->max_burst = sctp_max_burst;
3531
3532 /* Initialize default setup parameters. These parameters
3533 * can be modified with the SCTP_INITMSG socket option or
3534 * overridden by the SCTP_INIT CMSG.
3535 */
3536 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3537 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3538 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3539 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3540
3541 /* Initialize default RTO related parameters. These parameters can
3542 * be modified for with the SCTP_RTOINFO socket option.
3543 */
3544 sp->rtoinfo.srto_initial = sctp_rto_initial;
3545 sp->rtoinfo.srto_max = sctp_rto_max;
3546 sp->rtoinfo.srto_min = sctp_rto_min;
3547
3548 /* Initialize default association related parameters. These parameters
3549 * can be modified with the SCTP_ASSOCINFO socket option.
3550 */
3551 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3552 sp->assocparams.sasoc_number_peer_destinations = 0;
3553 sp->assocparams.sasoc_peer_rwnd = 0;
3554 sp->assocparams.sasoc_local_rwnd = 0;
3555 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3556
3557 /* Initialize default event subscriptions. By default, all the
3558 * options are off.
3559 */
3560 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3561
3562 /* Default Peer Address Parameters. These defaults can
3563 * be modified via SCTP_PEER_ADDR_PARAMS
3564 */
3565 sp->hbinterval = sctp_hb_interval;
3566 sp->pathmaxrxt = sctp_max_retrans_path;
3567 sp->pathmtu = 0; // allow default discovery
3568 sp->sackdelay = sctp_sack_timeout;
3569 sp->sackfreq = 2;
3570 sp->param_flags = SPP_HB_ENABLE |
3571 SPP_PMTUD_ENABLE |
3572 SPP_SACKDELAY_ENABLE;
3573
3574 /* If enabled no SCTP message fragmentation will be performed.
3575 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3576 */
3577 sp->disable_fragments = 0;
3578
3579 /* Enable Nagle algorithm by default. */
3580 sp->nodelay = 0;
3581
3582 /* Enable by default. */
3583 sp->v4mapped = 1;
3584
3585 /* Auto-close idle associations after the configured
3586 * number of seconds. A value of 0 disables this
3587 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3588 * for UDP-style sockets only.
3589 */
3590 sp->autoclose = 0;
3591
3592 /* User specified fragmentation limit. */
3593 sp->user_frag = 0;
3594
3595 sp->adaptation_ind = 0;
3596
3597 sp->pf = sctp_get_pf_specific(sk->sk_family);
3598
3599 /* Control variables for partial data delivery. */
3600 atomic_set(&sp->pd_mode, 0);
3601 skb_queue_head_init(&sp->pd_lobby);
3602 sp->frag_interleave = 0;
3603
3604 /* Create a per socket endpoint structure. Even if we
3605 * change the data structure relationships, this may still
3606 * be useful for storing pre-connect address information.
3607 */
3608 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3609 if (!ep)
3610 return -ENOMEM;
3611
3612 sp->ep = ep;
3613 sp->hmac = NULL;
3614
3615 SCTP_DBG_OBJCNT_INC(sock);
3616 percpu_counter_inc(&sctp_sockets_allocated);
3617
3618 local_bh_disable();
3619 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3620 local_bh_enable();
3621
3622 return 0;
3623 }
3624
3625 /* Cleanup any SCTP per socket resources. */
3626 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3627 {
3628 struct sctp_endpoint *ep;
3629
3630 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3631
3632 /* Release our hold on the endpoint. */
3633 ep = sctp_sk(sk)->ep;
3634 sctp_endpoint_free(ep);
3635 percpu_counter_dec(&sctp_sockets_allocated);
3636 local_bh_disable();
3637 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3638 local_bh_enable();
3639 }
3640
3641 /* API 4.1.7 shutdown() - TCP Style Syntax
3642 * int shutdown(int socket, int how);
3643 *
3644 * sd - the socket descriptor of the association to be closed.
3645 * how - Specifies the type of shutdown. The values are
3646 * as follows:
3647 * SHUT_RD
3648 * Disables further receive operations. No SCTP
3649 * protocol action is taken.
3650 * SHUT_WR
3651 * Disables further send operations, and initiates
3652 * the SCTP shutdown sequence.
3653 * SHUT_RDWR
3654 * Disables further send and receive operations
3655 * and initiates the SCTP shutdown sequence.
3656 */
3657 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3658 {
3659 struct sctp_endpoint *ep;
3660 struct sctp_association *asoc;
3661
3662 if (!sctp_style(sk, TCP))
3663 return;
3664
3665 if (how & SEND_SHUTDOWN) {
3666 ep = sctp_sk(sk)->ep;
3667 if (!list_empty(&ep->asocs)) {
3668 asoc = list_entry(ep->asocs.next,
3669 struct sctp_association, asocs);
3670 sctp_primitive_SHUTDOWN(asoc, NULL);
3671 }
3672 }
3673 }
3674
3675 /* 7.2.1 Association Status (SCTP_STATUS)
3676
3677 * Applications can retrieve current status information about an
3678 * association, including association state, peer receiver window size,
3679 * number of unacked data chunks, and number of data chunks pending
3680 * receipt. This information is read-only.
3681 */
3682 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3683 char __user *optval,
3684 int __user *optlen)
3685 {
3686 struct sctp_status status;
3687 struct sctp_association *asoc = NULL;
3688 struct sctp_transport *transport;
3689 sctp_assoc_t associd;
3690 int retval = 0;
3691
3692 if (len < sizeof(status)) {
3693 retval = -EINVAL;
3694 goto out;
3695 }
3696
3697 len = sizeof(status);
3698 if (copy_from_user(&status, optval, len)) {
3699 retval = -EFAULT;
3700 goto out;
3701 }
3702
3703 associd = status.sstat_assoc_id;
3704 asoc = sctp_id2assoc(sk, associd);
3705 if (!asoc) {
3706 retval = -EINVAL;
3707 goto out;
3708 }
3709
3710 transport = asoc->peer.primary_path;
3711
3712 status.sstat_assoc_id = sctp_assoc2id(asoc);
3713 status.sstat_state = asoc->state;
3714 status.sstat_rwnd = asoc->peer.rwnd;
3715 status.sstat_unackdata = asoc->unack_data;
3716
3717 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3718 status.sstat_instrms = asoc->c.sinit_max_instreams;
3719 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3720 status.sstat_fragmentation_point = asoc->frag_point;
3721 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3722 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3723 transport->af_specific->sockaddr_len);
3724 /* Map ipv4 address into v4-mapped-on-v6 address. */
3725 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3726 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3727 status.sstat_primary.spinfo_state = transport->state;
3728 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3729 status.sstat_primary.spinfo_srtt = transport->srtt;
3730 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3731 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3732
3733 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3734 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3735
3736 if (put_user(len, optlen)) {
3737 retval = -EFAULT;
3738 goto out;
3739 }
3740
3741 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3742 len, status.sstat_state, status.sstat_rwnd,
3743 status.sstat_assoc_id);
3744
3745 if (copy_to_user(optval, &status, len)) {
3746 retval = -EFAULT;
3747 goto out;
3748 }
3749
3750 out:
3751 return (retval);
3752 }
3753
3754
3755 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3756 *
3757 * Applications can retrieve information about a specific peer address
3758 * of an association, including its reachability state, congestion
3759 * window, and retransmission timer values. This information is
3760 * read-only.
3761 */
3762 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3763 char __user *optval,
3764 int __user *optlen)
3765 {
3766 struct sctp_paddrinfo pinfo;
3767 struct sctp_transport *transport;
3768 int retval = 0;
3769
3770 if (len < sizeof(pinfo)) {
3771 retval = -EINVAL;
3772 goto out;
3773 }
3774
3775 len = sizeof(pinfo);
3776 if (copy_from_user(&pinfo, optval, len)) {
3777 retval = -EFAULT;
3778 goto out;
3779 }
3780
3781 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3782 pinfo.spinfo_assoc_id);
3783 if (!transport)
3784 return -EINVAL;
3785
3786 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3787 pinfo.spinfo_state = transport->state;
3788 pinfo.spinfo_cwnd = transport->cwnd;
3789 pinfo.spinfo_srtt = transport->srtt;
3790 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3791 pinfo.spinfo_mtu = transport->pathmtu;
3792
3793 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3794 pinfo.spinfo_state = SCTP_ACTIVE;
3795
3796 if (put_user(len, optlen)) {
3797 retval = -EFAULT;
3798 goto out;
3799 }
3800
3801 if (copy_to_user(optval, &pinfo, len)) {
3802 retval = -EFAULT;
3803 goto out;
3804 }
3805
3806 out:
3807 return (retval);
3808 }
3809
3810 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3811 *
3812 * This option is a on/off flag. If enabled no SCTP message
3813 * fragmentation will be performed. Instead if a message being sent
3814 * exceeds the current PMTU size, the message will NOT be sent and
3815 * instead a error will be indicated to the user.
3816 */
3817 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3818 char __user *optval, int __user *optlen)
3819 {
3820 int val;
3821
3822 if (len < sizeof(int))
3823 return -EINVAL;
3824
3825 len = sizeof(int);
3826 val = (sctp_sk(sk)->disable_fragments == 1);
3827 if (put_user(len, optlen))
3828 return -EFAULT;
3829 if (copy_to_user(optval, &val, len))
3830 return -EFAULT;
3831 return 0;
3832 }
3833
3834 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3835 *
3836 * This socket option is used to specify various notifications and
3837 * ancillary data the user wishes to receive.
3838 */
3839 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3840 int __user *optlen)
3841 {
3842 if (len < sizeof(struct sctp_event_subscribe))
3843 return -EINVAL;
3844 len = sizeof(struct sctp_event_subscribe);
3845 if (put_user(len, optlen))
3846 return -EFAULT;
3847 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3848 return -EFAULT;
3849 return 0;
3850 }
3851
3852 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3853 *
3854 * This socket option is applicable to the UDP-style socket only. When
3855 * set it will cause associations that are idle for more than the
3856 * specified number of seconds to automatically close. An association
3857 * being idle is defined an association that has NOT sent or received
3858 * user data. The special value of '0' indicates that no automatic
3859 * close of any associations should be performed. The option expects an
3860 * integer defining the number of seconds of idle time before an
3861 * association is closed.
3862 */
3863 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3864 {
3865 /* Applicable to UDP-style socket only */
3866 if (sctp_style(sk, TCP))
3867 return -EOPNOTSUPP;
3868 if (len < sizeof(int))
3869 return -EINVAL;
3870 len = sizeof(int);
3871 if (put_user(len, optlen))
3872 return -EFAULT;
3873 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3874 return -EFAULT;
3875 return 0;
3876 }
3877
3878 /* Helper routine to branch off an association to a new socket. */
3879 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3880 struct socket **sockp)
3881 {
3882 struct sock *sk = asoc->base.sk;
3883 struct socket *sock;
3884 struct inet_sock *inetsk;
3885 struct sctp_af *af;
3886 int err = 0;
3887
3888 /* An association cannot be branched off from an already peeled-off
3889 * socket, nor is this supported for tcp style sockets.
3890 */
3891 if (!sctp_style(sk, UDP))
3892 return -EINVAL;
3893
3894 /* Create a new socket. */
3895 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3896 if (err < 0)
3897 return err;
3898
3899 /* Populate the fields of the newsk from the oldsk and migrate the
3900 * asoc to the newsk.
3901 */
3902 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3903
3904 /* Make peeled-off sockets more like 1-1 accepted sockets.
3905 * Set the daddr and initialize id to something more random
3906 */
3907 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3908 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3909 inetsk = inet_sk(sock->sk);
3910 inetsk->id = asoc->next_tsn ^ jiffies;
3911
3912 *sockp = sock;
3913
3914 return err;
3915 }
3916
3917 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3918 {
3919 sctp_peeloff_arg_t peeloff;
3920 struct socket *newsock;
3921 int retval = 0;
3922 struct sctp_association *asoc;
3923
3924 if (len < sizeof(sctp_peeloff_arg_t))
3925 return -EINVAL;
3926 len = sizeof(sctp_peeloff_arg_t);
3927 if (copy_from_user(&peeloff, optval, len))
3928 return -EFAULT;
3929
3930 asoc = sctp_id2assoc(sk, peeloff.associd);
3931 if (!asoc) {
3932 retval = -EINVAL;
3933 goto out;
3934 }
3935
3936 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3937
3938 retval = sctp_do_peeloff(asoc, &newsock);
3939 if (retval < 0)
3940 goto out;
3941
3942 /* Map the socket to an unused fd that can be returned to the user. */
3943 retval = sock_map_fd(newsock, 0);
3944 if (retval < 0) {
3945 sock_release(newsock);
3946 goto out;
3947 }
3948
3949 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3950 __func__, sk, asoc, newsock->sk, retval);
3951
3952 /* Return the fd mapped to the new socket. */
3953 peeloff.sd = retval;
3954 if (put_user(len, optlen))
3955 return -EFAULT;
3956 if (copy_to_user(optval, &peeloff, len))
3957 retval = -EFAULT;
3958
3959 out:
3960 return retval;
3961 }
3962
3963 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3964 *
3965 * Applications can enable or disable heartbeats for any peer address of
3966 * an association, modify an address's heartbeat interval, force a
3967 * heartbeat to be sent immediately, and adjust the address's maximum
3968 * number of retransmissions sent before an address is considered
3969 * unreachable. The following structure is used to access and modify an
3970 * address's parameters:
3971 *
3972 * struct sctp_paddrparams {
3973 * sctp_assoc_t spp_assoc_id;
3974 * struct sockaddr_storage spp_address;
3975 * uint32_t spp_hbinterval;
3976 * uint16_t spp_pathmaxrxt;
3977 * uint32_t spp_pathmtu;
3978 * uint32_t spp_sackdelay;
3979 * uint32_t spp_flags;
3980 * };
3981 *
3982 * spp_assoc_id - (one-to-many style socket) This is filled in the
3983 * application, and identifies the association for
3984 * this query.
3985 * spp_address - This specifies which address is of interest.
3986 * spp_hbinterval - This contains the value of the heartbeat interval,
3987 * in milliseconds. If a value of zero
3988 * is present in this field then no changes are to
3989 * be made to this parameter.
3990 * spp_pathmaxrxt - This contains the maximum number of
3991 * retransmissions before this address shall be
3992 * considered unreachable. If a value of zero
3993 * is present in this field then no changes are to
3994 * be made to this parameter.
3995 * spp_pathmtu - When Path MTU discovery is disabled the value
3996 * specified here will be the "fixed" path mtu.
3997 * Note that if the spp_address field is empty
3998 * then all associations on this address will
3999 * have this fixed path mtu set upon them.
4000 *
4001 * spp_sackdelay - When delayed sack is enabled, this value specifies
4002 * the number of milliseconds that sacks will be delayed
4003 * for. This value will apply to all addresses of an
4004 * association if the spp_address field is empty. Note
4005 * also, that if delayed sack is enabled and this
4006 * value is set to 0, no change is made to the last
4007 * recorded delayed sack timer value.
4008 *
4009 * spp_flags - These flags are used to control various features
4010 * on an association. The flag field may contain
4011 * zero or more of the following options.
4012 *
4013 * SPP_HB_ENABLE - Enable heartbeats on the
4014 * specified address. Note that if the address
4015 * field is empty all addresses for the association
4016 * have heartbeats enabled upon them.
4017 *
4018 * SPP_HB_DISABLE - Disable heartbeats on the
4019 * speicifed address. Note that if the address
4020 * field is empty all addresses for the association
4021 * will have their heartbeats disabled. Note also
4022 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4023 * mutually exclusive, only one of these two should
4024 * be specified. Enabling both fields will have
4025 * undetermined results.
4026 *
4027 * SPP_HB_DEMAND - Request a user initiated heartbeat
4028 * to be made immediately.
4029 *
4030 * SPP_PMTUD_ENABLE - This field will enable PMTU
4031 * discovery upon the specified address. Note that
4032 * if the address feild is empty then all addresses
4033 * on the association are effected.
4034 *
4035 * SPP_PMTUD_DISABLE - This field will disable PMTU
4036 * discovery upon the specified address. Note that
4037 * if the address feild is empty then all addresses
4038 * on the association are effected. Not also that
4039 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4040 * exclusive. Enabling both will have undetermined
4041 * results.
4042 *
4043 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4044 * on delayed sack. The time specified in spp_sackdelay
4045 * is used to specify the sack delay for this address. Note
4046 * that if spp_address is empty then all addresses will
4047 * enable delayed sack and take on the sack delay
4048 * value specified in spp_sackdelay.
4049 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4050 * off delayed sack. If the spp_address field is blank then
4051 * delayed sack is disabled for the entire association. Note
4052 * also that this field is mutually exclusive to
4053 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4054 * results.
4055 */
4056 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4057 char __user *optval, int __user *optlen)
4058 {
4059 struct sctp_paddrparams params;
4060 struct sctp_transport *trans = NULL;
4061 struct sctp_association *asoc = NULL;
4062 struct sctp_sock *sp = sctp_sk(sk);
4063
4064 if (len < sizeof(struct sctp_paddrparams))
4065 return -EINVAL;
4066 len = sizeof(struct sctp_paddrparams);
4067 if (copy_from_user(&params, optval, len))
4068 return -EFAULT;
4069
4070 /* If an address other than INADDR_ANY is specified, and
4071 * no transport is found, then the request is invalid.
4072 */
4073 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4074 trans = sctp_addr_id2transport(sk, &params.spp_address,
4075 params.spp_assoc_id);
4076 if (!trans) {
4077 SCTP_DEBUG_PRINTK("Failed no transport\n");
4078 return -EINVAL;
4079 }
4080 }
4081
4082 /* Get association, if assoc_id != 0 and the socket is a one
4083 * to many style socket, and an association was not found, then
4084 * the id was invalid.
4085 */
4086 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4087 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4088 SCTP_DEBUG_PRINTK("Failed no association\n");
4089 return -EINVAL;
4090 }
4091
4092 if (trans) {
4093 /* Fetch transport values. */
4094 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4095 params.spp_pathmtu = trans->pathmtu;
4096 params.spp_pathmaxrxt = trans->pathmaxrxt;
4097 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4098
4099 /*draft-11 doesn't say what to return in spp_flags*/
4100 params.spp_flags = trans->param_flags;
4101 } else if (asoc) {
4102 /* Fetch association values. */
4103 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4104 params.spp_pathmtu = asoc->pathmtu;
4105 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4106 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4107
4108 /*draft-11 doesn't say what to return in spp_flags*/
4109 params.spp_flags = asoc->param_flags;
4110 } else {
4111 /* Fetch socket values. */
4112 params.spp_hbinterval = sp->hbinterval;
4113 params.spp_pathmtu = sp->pathmtu;
4114 params.spp_sackdelay = sp->sackdelay;
4115 params.spp_pathmaxrxt = sp->pathmaxrxt;
4116
4117 /*draft-11 doesn't say what to return in spp_flags*/
4118 params.spp_flags = sp->param_flags;
4119 }
4120
4121 if (copy_to_user(optval, &params, len))
4122 return -EFAULT;
4123
4124 if (put_user(len, optlen))
4125 return -EFAULT;
4126
4127 return 0;
4128 }
4129
4130 /*
4131 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4132 *
4133 * This option will effect the way delayed acks are performed. This
4134 * option allows you to get or set the delayed ack time, in
4135 * milliseconds. It also allows changing the delayed ack frequency.
4136 * Changing the frequency to 1 disables the delayed sack algorithm. If
4137 * the assoc_id is 0, then this sets or gets the endpoints default
4138 * values. If the assoc_id field is non-zero, then the set or get
4139 * effects the specified association for the one to many model (the
4140 * assoc_id field is ignored by the one to one model). Note that if
4141 * sack_delay or sack_freq are 0 when setting this option, then the
4142 * current values will remain unchanged.
4143 *
4144 * struct sctp_sack_info {
4145 * sctp_assoc_t sack_assoc_id;
4146 * uint32_t sack_delay;
4147 * uint32_t sack_freq;
4148 * };
4149 *
4150 * sack_assoc_id - This parameter, indicates which association the user
4151 * is performing an action upon. Note that if this field's value is
4152 * zero then the endpoints default value is changed (effecting future
4153 * associations only).
4154 *
4155 * sack_delay - This parameter contains the number of milliseconds that
4156 * the user is requesting the delayed ACK timer be set to. Note that
4157 * this value is defined in the standard to be between 200 and 500
4158 * milliseconds.
4159 *
4160 * sack_freq - This parameter contains the number of packets that must
4161 * be received before a sack is sent without waiting for the delay
4162 * timer to expire. The default value for this is 2, setting this
4163 * value to 1 will disable the delayed sack algorithm.
4164 */
4165 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4166 char __user *optval,
4167 int __user *optlen)
4168 {
4169 struct sctp_sack_info params;
4170 struct sctp_association *asoc = NULL;
4171 struct sctp_sock *sp = sctp_sk(sk);
4172
4173 if (len >= sizeof(struct sctp_sack_info)) {
4174 len = sizeof(struct sctp_sack_info);
4175
4176 if (copy_from_user(&params, optval, len))
4177 return -EFAULT;
4178 } else if (len == sizeof(struct sctp_assoc_value)) {
4179 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4180 "in delayed_ack socket option deprecated\n");
4181 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4182 if (copy_from_user(&params, optval, len))
4183 return -EFAULT;
4184 } else
4185 return - EINVAL;
4186
4187 /* Get association, if sack_assoc_id != 0 and the socket is a one
4188 * to many style socket, and an association was not found, then
4189 * the id was invalid.
4190 */
4191 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4192 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4193 return -EINVAL;
4194
4195 if (asoc) {
4196 /* Fetch association values. */
4197 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4198 params.sack_delay = jiffies_to_msecs(
4199 asoc->sackdelay);
4200 params.sack_freq = asoc->sackfreq;
4201
4202 } else {
4203 params.sack_delay = 0;
4204 params.sack_freq = 1;
4205 }
4206 } else {
4207 /* Fetch socket values. */
4208 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4209 params.sack_delay = sp->sackdelay;
4210 params.sack_freq = sp->sackfreq;
4211 } else {
4212 params.sack_delay = 0;
4213 params.sack_freq = 1;
4214 }
4215 }
4216
4217 if (copy_to_user(optval, &params, len))
4218 return -EFAULT;
4219
4220 if (put_user(len, optlen))
4221 return -EFAULT;
4222
4223 return 0;
4224 }
4225
4226 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4227 *
4228 * Applications can specify protocol parameters for the default association
4229 * initialization. The option name argument to setsockopt() and getsockopt()
4230 * is SCTP_INITMSG.
4231 *
4232 * Setting initialization parameters is effective only on an unconnected
4233 * socket (for UDP-style sockets only future associations are effected
4234 * by the change). With TCP-style sockets, this option is inherited by
4235 * sockets derived from a listener socket.
4236 */
4237 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4238 {
4239 if (len < sizeof(struct sctp_initmsg))
4240 return -EINVAL;
4241 len = sizeof(struct sctp_initmsg);
4242 if (put_user(len, optlen))
4243 return -EFAULT;
4244 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4245 return -EFAULT;
4246 return 0;
4247 }
4248
4249 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4250 char __user *optval,
4251 int __user *optlen)
4252 {
4253 sctp_assoc_t id;
4254 struct sctp_association *asoc;
4255 struct list_head *pos;
4256 int cnt = 0;
4257
4258 if (len < sizeof(sctp_assoc_t))
4259 return -EINVAL;
4260
4261 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4262 return -EFAULT;
4263
4264 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4265 "socket option deprecated\n");
4266 /* For UDP-style sockets, id specifies the association to query. */
4267 asoc = sctp_id2assoc(sk, id);
4268 if (!asoc)
4269 return -EINVAL;
4270
4271 list_for_each(pos, &asoc->peer.transport_addr_list) {
4272 cnt ++;
4273 }
4274
4275 return cnt;
4276 }
4277
4278 /*
4279 * Old API for getting list of peer addresses. Does not work for 32-bit
4280 * programs running on a 64-bit kernel
4281 */
4282 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4283 char __user *optval,
4284 int __user *optlen)
4285 {
4286 struct sctp_association *asoc;
4287 int cnt = 0;
4288 struct sctp_getaddrs_old getaddrs;
4289 struct sctp_transport *from;
4290 void __user *to;
4291 union sctp_addr temp;
4292 struct sctp_sock *sp = sctp_sk(sk);
4293 int addrlen;
4294
4295 if (len < sizeof(struct sctp_getaddrs_old))
4296 return -EINVAL;
4297
4298 len = sizeof(struct sctp_getaddrs_old);
4299
4300 if (copy_from_user(&getaddrs, optval, len))
4301 return -EFAULT;
4302
4303 if (getaddrs.addr_num <= 0) return -EINVAL;
4304
4305 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4306 "socket option deprecated\n");
4307
4308 /* For UDP-style sockets, id specifies the association to query. */
4309 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4310 if (!asoc)
4311 return -EINVAL;
4312
4313 to = (void __user *)getaddrs.addrs;
4314 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4315 transports) {
4316 memcpy(&temp, &from->ipaddr, sizeof(temp));
4317 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4318 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4319 if (copy_to_user(to, &temp, addrlen))
4320 return -EFAULT;
4321 to += addrlen ;
4322 cnt ++;
4323 if (cnt >= getaddrs.addr_num) break;
4324 }
4325 getaddrs.addr_num = cnt;
4326 if (put_user(len, optlen))
4327 return -EFAULT;
4328 if (copy_to_user(optval, &getaddrs, len))
4329 return -EFAULT;
4330
4331 return 0;
4332 }
4333
4334 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4335 char __user *optval, int __user *optlen)
4336 {
4337 struct sctp_association *asoc;
4338 int cnt = 0;
4339 struct sctp_getaddrs getaddrs;
4340 struct sctp_transport *from;
4341 void __user *to;
4342 union sctp_addr temp;
4343 struct sctp_sock *sp = sctp_sk(sk);
4344 int addrlen;
4345 size_t space_left;
4346 int bytes_copied;
4347
4348 if (len < sizeof(struct sctp_getaddrs))
4349 return -EINVAL;
4350
4351 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4352 return -EFAULT;
4353
4354 /* For UDP-style sockets, id specifies the association to query. */
4355 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4356 if (!asoc)
4357 return -EINVAL;
4358
4359 to = optval + offsetof(struct sctp_getaddrs,addrs);
4360 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4361
4362 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4363 transports) {
4364 memcpy(&temp, &from->ipaddr, sizeof(temp));
4365 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4366 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4367 if (space_left < addrlen)
4368 return -ENOMEM;
4369 if (copy_to_user(to, &temp, addrlen))
4370 return -EFAULT;
4371 to += addrlen;
4372 cnt++;
4373 space_left -= addrlen;
4374 }
4375
4376 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4377 return -EFAULT;
4378 bytes_copied = ((char __user *)to) - optval;
4379 if (put_user(bytes_copied, optlen))
4380 return -EFAULT;
4381
4382 return 0;
4383 }
4384
4385 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4386 char __user *optval,
4387 int __user *optlen)
4388 {
4389 sctp_assoc_t id;
4390 struct sctp_bind_addr *bp;
4391 struct sctp_association *asoc;
4392 struct sctp_sockaddr_entry *addr;
4393 int cnt = 0;
4394
4395 if (len < sizeof(sctp_assoc_t))
4396 return -EINVAL;
4397
4398 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4399 return -EFAULT;
4400
4401 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4402 "socket option deprecated\n");
4403
4404 /*
4405 * For UDP-style sockets, id specifies the association to query.
4406 * If the id field is set to the value '0' then the locally bound
4407 * addresses are returned without regard to any particular
4408 * association.
4409 */
4410 if (0 == id) {
4411 bp = &sctp_sk(sk)->ep->base.bind_addr;
4412 } else {
4413 asoc = sctp_id2assoc(sk, id);
4414 if (!asoc)
4415 return -EINVAL;
4416 bp = &asoc->base.bind_addr;
4417 }
4418
4419 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4420 * addresses from the global local address list.
4421 */
4422 if (sctp_list_single_entry(&bp->address_list)) {
4423 addr = list_entry(bp->address_list.next,
4424 struct sctp_sockaddr_entry, list);
4425 if (sctp_is_any(sk, &addr->a)) {
4426 rcu_read_lock();
4427 list_for_each_entry_rcu(addr,
4428 &sctp_local_addr_list, list) {
4429 if (!addr->valid)
4430 continue;
4431
4432 if ((PF_INET == sk->sk_family) &&
4433 (AF_INET6 == addr->a.sa.sa_family))
4434 continue;
4435
4436 if ((PF_INET6 == sk->sk_family) &&
4437 inet_v6_ipv6only(sk) &&
4438 (AF_INET == addr->a.sa.sa_family))
4439 continue;
4440
4441 cnt++;
4442 }
4443 rcu_read_unlock();
4444 } else {
4445 cnt = 1;
4446 }
4447 goto done;
4448 }
4449
4450 /* Protection on the bound address list is not needed,
4451 * since in the socket option context we hold the socket lock,
4452 * so there is no way that the bound address list can change.
4453 */
4454 list_for_each_entry(addr, &bp->address_list, list) {
4455 cnt ++;
4456 }
4457 done:
4458 return cnt;
4459 }
4460
4461 /* Helper function that copies local addresses to user and returns the number
4462 * of addresses copied.
4463 */
4464 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4465 int max_addrs, void *to,
4466 int *bytes_copied)
4467 {
4468 struct sctp_sockaddr_entry *addr;
4469 union sctp_addr temp;
4470 int cnt = 0;
4471 int addrlen;
4472
4473 rcu_read_lock();
4474 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4475 if (!addr->valid)
4476 continue;
4477
4478 if ((PF_INET == sk->sk_family) &&
4479 (AF_INET6 == addr->a.sa.sa_family))
4480 continue;
4481 if ((PF_INET6 == sk->sk_family) &&
4482 inet_v6_ipv6only(sk) &&
4483 (AF_INET == addr->a.sa.sa_family))
4484 continue;
4485 memcpy(&temp, &addr->a, sizeof(temp));
4486 if (!temp.v4.sin_port)
4487 temp.v4.sin_port = htons(port);
4488
4489 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4490 &temp);
4491 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4492 memcpy(to, &temp, addrlen);
4493
4494 to += addrlen;
4495 *bytes_copied += addrlen;
4496 cnt ++;
4497 if (cnt >= max_addrs) break;
4498 }
4499 rcu_read_unlock();
4500
4501 return cnt;
4502 }
4503
4504 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4505 size_t space_left, int *bytes_copied)
4506 {
4507 struct sctp_sockaddr_entry *addr;
4508 union sctp_addr temp;
4509 int cnt = 0;
4510 int addrlen;
4511
4512 rcu_read_lock();
4513 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4514 if (!addr->valid)
4515 continue;
4516
4517 if ((PF_INET == sk->sk_family) &&
4518 (AF_INET6 == addr->a.sa.sa_family))
4519 continue;
4520 if ((PF_INET6 == sk->sk_family) &&
4521 inet_v6_ipv6only(sk) &&
4522 (AF_INET == addr->a.sa.sa_family))
4523 continue;
4524 memcpy(&temp, &addr->a, sizeof(temp));
4525 if (!temp.v4.sin_port)
4526 temp.v4.sin_port = htons(port);
4527
4528 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4529 &temp);
4530 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4531 if (space_left < addrlen) {
4532 cnt = -ENOMEM;
4533 break;
4534 }
4535 memcpy(to, &temp, addrlen);
4536
4537 to += addrlen;
4538 cnt ++;
4539 space_left -= addrlen;
4540 *bytes_copied += addrlen;
4541 }
4542 rcu_read_unlock();
4543
4544 return cnt;
4545 }
4546
4547 /* Old API for getting list of local addresses. Does not work for 32-bit
4548 * programs running on a 64-bit kernel
4549 */
4550 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4551 char __user *optval, int __user *optlen)
4552 {
4553 struct sctp_bind_addr *bp;
4554 struct sctp_association *asoc;
4555 int cnt = 0;
4556 struct sctp_getaddrs_old getaddrs;
4557 struct sctp_sockaddr_entry *addr;
4558 void __user *to;
4559 union sctp_addr temp;
4560 struct sctp_sock *sp = sctp_sk(sk);
4561 int addrlen;
4562 int err = 0;
4563 void *addrs;
4564 void *buf;
4565 int bytes_copied = 0;
4566
4567 if (len < sizeof(struct sctp_getaddrs_old))
4568 return -EINVAL;
4569
4570 len = sizeof(struct sctp_getaddrs_old);
4571 if (copy_from_user(&getaddrs, optval, len))
4572 return -EFAULT;
4573
4574 if (getaddrs.addr_num <= 0 ||
4575 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4576 return -EINVAL;
4577
4578 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4579 "socket option deprecated\n");
4580
4581 /*
4582 * For UDP-style sockets, id specifies the association to query.
4583 * If the id field is set to the value '0' then the locally bound
4584 * addresses are returned without regard to any particular
4585 * association.
4586 */
4587 if (0 == getaddrs.assoc_id) {
4588 bp = &sctp_sk(sk)->ep->base.bind_addr;
4589 } else {
4590 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4591 if (!asoc)
4592 return -EINVAL;
4593 bp = &asoc->base.bind_addr;
4594 }
4595
4596 to = getaddrs.addrs;
4597
4598 /* Allocate space for a local instance of packed array to hold all
4599 * the data. We store addresses here first and then put write them
4600 * to the user in one shot.
4601 */
4602 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4603 GFP_KERNEL);
4604 if (!addrs)
4605 return -ENOMEM;
4606
4607 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4608 * addresses from the global local address list.
4609 */
4610 if (sctp_list_single_entry(&bp->address_list)) {
4611 addr = list_entry(bp->address_list.next,
4612 struct sctp_sockaddr_entry, list);
4613 if (sctp_is_any(sk, &addr->a)) {
4614 cnt = sctp_copy_laddrs_old(sk, bp->port,
4615 getaddrs.addr_num,
4616 addrs, &bytes_copied);
4617 goto copy_getaddrs;
4618 }
4619 }
4620
4621 buf = addrs;
4622 /* Protection on the bound address list is not needed since
4623 * in the socket option context we hold a socket lock and
4624 * thus the bound address list can't change.
4625 */
4626 list_for_each_entry(addr, &bp->address_list, list) {
4627 memcpy(&temp, &addr->a, sizeof(temp));
4628 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4629 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4630 memcpy(buf, &temp, addrlen);
4631 buf += addrlen;
4632 bytes_copied += addrlen;
4633 cnt ++;
4634 if (cnt >= getaddrs.addr_num) break;
4635 }
4636
4637 copy_getaddrs:
4638 /* copy the entire address list into the user provided space */
4639 if (copy_to_user(to, addrs, bytes_copied)) {
4640 err = -EFAULT;
4641 goto error;
4642 }
4643
4644 /* copy the leading structure back to user */
4645 getaddrs.addr_num = cnt;
4646 if (copy_to_user(optval, &getaddrs, len))
4647 err = -EFAULT;
4648
4649 error:
4650 kfree(addrs);
4651 return err;
4652 }
4653
4654 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4655 char __user *optval, int __user *optlen)
4656 {
4657 struct sctp_bind_addr *bp;
4658 struct sctp_association *asoc;
4659 int cnt = 0;
4660 struct sctp_getaddrs getaddrs;
4661 struct sctp_sockaddr_entry *addr;
4662 void __user *to;
4663 union sctp_addr temp;
4664 struct sctp_sock *sp = sctp_sk(sk);
4665 int addrlen;
4666 int err = 0;
4667 size_t space_left;
4668 int bytes_copied = 0;
4669 void *addrs;
4670 void *buf;
4671
4672 if (len < sizeof(struct sctp_getaddrs))
4673 return -EINVAL;
4674
4675 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4676 return -EFAULT;
4677
4678 /*
4679 * For UDP-style sockets, id specifies the association to query.
4680 * If the id field is set to the value '0' then the locally bound
4681 * addresses are returned without regard to any particular
4682 * association.
4683 */
4684 if (0 == getaddrs.assoc_id) {
4685 bp = &sctp_sk(sk)->ep->base.bind_addr;
4686 } else {
4687 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4688 if (!asoc)
4689 return -EINVAL;
4690 bp = &asoc->base.bind_addr;
4691 }
4692
4693 to = optval + offsetof(struct sctp_getaddrs,addrs);
4694 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4695
4696 addrs = kmalloc(space_left, GFP_KERNEL);
4697 if (!addrs)
4698 return -ENOMEM;
4699
4700 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4701 * addresses from the global local address list.
4702 */
4703 if (sctp_list_single_entry(&bp->address_list)) {
4704 addr = list_entry(bp->address_list.next,
4705 struct sctp_sockaddr_entry, list);
4706 if (sctp_is_any(sk, &addr->a)) {
4707 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4708 space_left, &bytes_copied);
4709 if (cnt < 0) {
4710 err = cnt;
4711 goto out;
4712 }
4713 goto copy_getaddrs;
4714 }
4715 }
4716
4717 buf = addrs;
4718 /* Protection on the bound address list is not needed since
4719 * in the socket option context we hold a socket lock and
4720 * thus the bound address list can't change.
4721 */
4722 list_for_each_entry(addr, &bp->address_list, list) {
4723 memcpy(&temp, &addr->a, sizeof(temp));
4724 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4725 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4726 if (space_left < addrlen) {
4727 err = -ENOMEM; /*fixme: right error?*/
4728 goto out;
4729 }
4730 memcpy(buf, &temp, addrlen);
4731 buf += addrlen;
4732 bytes_copied += addrlen;
4733 cnt ++;
4734 space_left -= addrlen;
4735 }
4736
4737 copy_getaddrs:
4738 if (copy_to_user(to, addrs, bytes_copied)) {
4739 err = -EFAULT;
4740 goto out;
4741 }
4742 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4743 err = -EFAULT;
4744 goto out;
4745 }
4746 if (put_user(bytes_copied, optlen))
4747 err = -EFAULT;
4748 out:
4749 kfree(addrs);
4750 return err;
4751 }
4752
4753 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4754 *
4755 * Requests that the local SCTP stack use the enclosed peer address as
4756 * the association primary. The enclosed address must be one of the
4757 * association peer's addresses.
4758 */
4759 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4760 char __user *optval, int __user *optlen)
4761 {
4762 struct sctp_prim prim;
4763 struct sctp_association *asoc;
4764 struct sctp_sock *sp = sctp_sk(sk);
4765
4766 if (len < sizeof(struct sctp_prim))
4767 return -EINVAL;
4768
4769 len = sizeof(struct sctp_prim);
4770
4771 if (copy_from_user(&prim, optval, len))
4772 return -EFAULT;
4773
4774 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4775 if (!asoc)
4776 return -EINVAL;
4777
4778 if (!asoc->peer.primary_path)
4779 return -ENOTCONN;
4780
4781 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4782 asoc->peer.primary_path->af_specific->sockaddr_len);
4783
4784 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4785 (union sctp_addr *)&prim.ssp_addr);
4786
4787 if (put_user(len, optlen))
4788 return -EFAULT;
4789 if (copy_to_user(optval, &prim, len))
4790 return -EFAULT;
4791
4792 return 0;
4793 }
4794
4795 /*
4796 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4797 *
4798 * Requests that the local endpoint set the specified Adaptation Layer
4799 * Indication parameter for all future INIT and INIT-ACK exchanges.
4800 */
4801 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4802 char __user *optval, int __user *optlen)
4803 {
4804 struct sctp_setadaptation adaptation;
4805
4806 if (len < sizeof(struct sctp_setadaptation))
4807 return -EINVAL;
4808
4809 len = sizeof(struct sctp_setadaptation);
4810
4811 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4812
4813 if (put_user(len, optlen))
4814 return -EFAULT;
4815 if (copy_to_user(optval, &adaptation, len))
4816 return -EFAULT;
4817
4818 return 0;
4819 }
4820
4821 /*
4822 *
4823 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4824 *
4825 * Applications that wish to use the sendto() system call may wish to
4826 * specify a default set of parameters that would normally be supplied
4827 * through the inclusion of ancillary data. This socket option allows
4828 * such an application to set the default sctp_sndrcvinfo structure.
4829
4830
4831 * The application that wishes to use this socket option simply passes
4832 * in to this call the sctp_sndrcvinfo structure defined in Section
4833 * 5.2.2) The input parameters accepted by this call include
4834 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4835 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4836 * to this call if the caller is using the UDP model.
4837 *
4838 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4839 */
4840 static int sctp_getsockopt_default_send_param(struct sock *sk,
4841 int len, char __user *optval,
4842 int __user *optlen)
4843 {
4844 struct sctp_sndrcvinfo info;
4845 struct sctp_association *asoc;
4846 struct sctp_sock *sp = sctp_sk(sk);
4847
4848 if (len < sizeof(struct sctp_sndrcvinfo))
4849 return -EINVAL;
4850
4851 len = sizeof(struct sctp_sndrcvinfo);
4852
4853 if (copy_from_user(&info, optval, len))
4854 return -EFAULT;
4855
4856 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4857 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4858 return -EINVAL;
4859
4860 if (asoc) {
4861 info.sinfo_stream = asoc->default_stream;
4862 info.sinfo_flags = asoc->default_flags;
4863 info.sinfo_ppid = asoc->default_ppid;
4864 info.sinfo_context = asoc->default_context;
4865 info.sinfo_timetolive = asoc->default_timetolive;
4866 } else {
4867 info.sinfo_stream = sp->default_stream;
4868 info.sinfo_flags = sp->default_flags;
4869 info.sinfo_ppid = sp->default_ppid;
4870 info.sinfo_context = sp->default_context;
4871 info.sinfo_timetolive = sp->default_timetolive;
4872 }
4873
4874 if (put_user(len, optlen))
4875 return -EFAULT;
4876 if (copy_to_user(optval, &info, len))
4877 return -EFAULT;
4878
4879 return 0;
4880 }
4881
4882 /*
4883 *
4884 * 7.1.5 SCTP_NODELAY
4885 *
4886 * Turn on/off any Nagle-like algorithm. This means that packets are
4887 * generally sent as soon as possible and no unnecessary delays are
4888 * introduced, at the cost of more packets in the network. Expects an
4889 * integer boolean flag.
4890 */
4891
4892 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4893 char __user *optval, int __user *optlen)
4894 {
4895 int val;
4896
4897 if (len < sizeof(int))
4898 return -EINVAL;
4899
4900 len = sizeof(int);
4901 val = (sctp_sk(sk)->nodelay == 1);
4902 if (put_user(len, optlen))
4903 return -EFAULT;
4904 if (copy_to_user(optval, &val, len))
4905 return -EFAULT;
4906 return 0;
4907 }
4908
4909 /*
4910 *
4911 * 7.1.1 SCTP_RTOINFO
4912 *
4913 * The protocol parameters used to initialize and bound retransmission
4914 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4915 * and modify these parameters.
4916 * All parameters are time values, in milliseconds. A value of 0, when
4917 * modifying the parameters, indicates that the current value should not
4918 * be changed.
4919 *
4920 */
4921 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4922 char __user *optval,
4923 int __user *optlen) {
4924 struct sctp_rtoinfo rtoinfo;
4925 struct sctp_association *asoc;
4926
4927 if (len < sizeof (struct sctp_rtoinfo))
4928 return -EINVAL;
4929
4930 len = sizeof(struct sctp_rtoinfo);
4931
4932 if (copy_from_user(&rtoinfo, optval, len))
4933 return -EFAULT;
4934
4935 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4936
4937 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4938 return -EINVAL;
4939
4940 /* Values corresponding to the specific association. */
4941 if (asoc) {
4942 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4943 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4944 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4945 } else {
4946 /* Values corresponding to the endpoint. */
4947 struct sctp_sock *sp = sctp_sk(sk);
4948
4949 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4950 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4951 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4952 }
4953
4954 if (put_user(len, optlen))
4955 return -EFAULT;
4956
4957 if (copy_to_user(optval, &rtoinfo, len))
4958 return -EFAULT;
4959
4960 return 0;
4961 }
4962
4963 /*
4964 *
4965 * 7.1.2 SCTP_ASSOCINFO
4966 *
4967 * This option is used to tune the maximum retransmission attempts
4968 * of the association.
4969 * Returns an error if the new association retransmission value is
4970 * greater than the sum of the retransmission value of the peer.
4971 * See [SCTP] for more information.
4972 *
4973 */
4974 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4975 char __user *optval,
4976 int __user *optlen)
4977 {
4978
4979 struct sctp_assocparams assocparams;
4980 struct sctp_association *asoc;
4981 struct list_head *pos;
4982 int cnt = 0;
4983
4984 if (len < sizeof (struct sctp_assocparams))
4985 return -EINVAL;
4986
4987 len = sizeof(struct sctp_assocparams);
4988
4989 if (copy_from_user(&assocparams, optval, len))
4990 return -EFAULT;
4991
4992 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4993
4994 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4995 return -EINVAL;
4996
4997 /* Values correspoinding to the specific association */
4998 if (asoc) {
4999 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5000 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5001 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5002 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5003 * 1000) +
5004 (asoc->cookie_life.tv_usec
5005 / 1000);
5006
5007 list_for_each(pos, &asoc->peer.transport_addr_list) {
5008 cnt ++;
5009 }
5010
5011 assocparams.sasoc_number_peer_destinations = cnt;
5012 } else {
5013 /* Values corresponding to the endpoint */
5014 struct sctp_sock *sp = sctp_sk(sk);
5015
5016 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5017 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5018 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5019 assocparams.sasoc_cookie_life =
5020 sp->assocparams.sasoc_cookie_life;
5021 assocparams.sasoc_number_peer_destinations =
5022 sp->assocparams.
5023 sasoc_number_peer_destinations;
5024 }
5025
5026 if (put_user(len, optlen))
5027 return -EFAULT;
5028
5029 if (copy_to_user(optval, &assocparams, len))
5030 return -EFAULT;
5031
5032 return 0;
5033 }
5034
5035 /*
5036 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5037 *
5038 * This socket option is a boolean flag which turns on or off mapped V4
5039 * addresses. If this option is turned on and the socket is type
5040 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5041 * If this option is turned off, then no mapping will be done of V4
5042 * addresses and a user will receive both PF_INET6 and PF_INET type
5043 * addresses on the socket.
5044 */
5045 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5046 char __user *optval, int __user *optlen)
5047 {
5048 int val;
5049 struct sctp_sock *sp = sctp_sk(sk);
5050
5051 if (len < sizeof(int))
5052 return -EINVAL;
5053
5054 len = sizeof(int);
5055 val = sp->v4mapped;
5056 if (put_user(len, optlen))
5057 return -EFAULT;
5058 if (copy_to_user(optval, &val, len))
5059 return -EFAULT;
5060
5061 return 0;
5062 }
5063
5064 /*
5065 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5066 * (chapter and verse is quoted at sctp_setsockopt_context())
5067 */
5068 static int sctp_getsockopt_context(struct sock *sk, int len,
5069 char __user *optval, int __user *optlen)
5070 {
5071 struct sctp_assoc_value params;
5072 struct sctp_sock *sp;
5073 struct sctp_association *asoc;
5074
5075 if (len < sizeof(struct sctp_assoc_value))
5076 return -EINVAL;
5077
5078 len = sizeof(struct sctp_assoc_value);
5079
5080 if (copy_from_user(&params, optval, len))
5081 return -EFAULT;
5082
5083 sp = sctp_sk(sk);
5084
5085 if (params.assoc_id != 0) {
5086 asoc = sctp_id2assoc(sk, params.assoc_id);
5087 if (!asoc)
5088 return -EINVAL;
5089 params.assoc_value = asoc->default_rcv_context;
5090 } else {
5091 params.assoc_value = sp->default_rcv_context;
5092 }
5093
5094 if (put_user(len, optlen))
5095 return -EFAULT;
5096 if (copy_to_user(optval, &params, len))
5097 return -EFAULT;
5098
5099 return 0;
5100 }
5101
5102 /*
5103 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5104 *
5105 * This socket option specifies the maximum size to put in any outgoing
5106 * SCTP chunk. If a message is larger than this size it will be
5107 * fragmented by SCTP into the specified size. Note that the underlying
5108 * SCTP implementation may fragment into smaller sized chunks when the
5109 * PMTU of the underlying association is smaller than the value set by
5110 * the user.
5111 */
5112 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5113 char __user *optval, int __user *optlen)
5114 {
5115 int val;
5116
5117 if (len < sizeof(int))
5118 return -EINVAL;
5119
5120 len = sizeof(int);
5121
5122 val = sctp_sk(sk)->user_frag;
5123 if (put_user(len, optlen))
5124 return -EFAULT;
5125 if (copy_to_user(optval, &val, len))
5126 return -EFAULT;
5127
5128 return 0;
5129 }
5130
5131 /*
5132 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5133 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5134 */
5135 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5136 char __user *optval, int __user *optlen)
5137 {
5138 int val;
5139
5140 if (len < sizeof(int))
5141 return -EINVAL;
5142
5143 len = sizeof(int);
5144
5145 val = sctp_sk(sk)->frag_interleave;
5146 if (put_user(len, optlen))
5147 return -EFAULT;
5148 if (copy_to_user(optval, &val, len))
5149 return -EFAULT;
5150
5151 return 0;
5152 }
5153
5154 /*
5155 * 7.1.25. Set or Get the sctp partial delivery point
5156 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5157 */
5158 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5159 char __user *optval,
5160 int __user *optlen)
5161 {
5162 u32 val;
5163
5164 if (len < sizeof(u32))
5165 return -EINVAL;
5166
5167 len = sizeof(u32);
5168
5169 val = sctp_sk(sk)->pd_point;
5170 if (put_user(len, optlen))
5171 return -EFAULT;
5172 if (copy_to_user(optval, &val, len))
5173 return -EFAULT;
5174
5175 return -ENOTSUPP;
5176 }
5177
5178 /*
5179 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5180 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5181 */
5182 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5183 char __user *optval,
5184 int __user *optlen)
5185 {
5186 struct sctp_assoc_value params;
5187 struct sctp_sock *sp;
5188 struct sctp_association *asoc;
5189
5190 if (len < sizeof(int))
5191 return -EINVAL;
5192
5193 if (len == sizeof(int)) {
5194 printk(KERN_WARNING
5195 "SCTP: Use of int in max_burst socket option deprecated\n");
5196 printk(KERN_WARNING
5197 "SCTP: Use struct sctp_assoc_value instead\n");
5198 params.assoc_id = 0;
5199 } else if (len == sizeof (struct sctp_assoc_value)) {
5200 if (copy_from_user(&params, optval, len))
5201 return -EFAULT;
5202 } else
5203 return -EINVAL;
5204
5205 sp = sctp_sk(sk);
5206
5207 if (params.assoc_id != 0) {
5208 asoc = sctp_id2assoc(sk, params.assoc_id);
5209 if (!asoc)
5210 return -EINVAL;
5211 params.assoc_value = asoc->max_burst;
5212 } else
5213 params.assoc_value = sp->max_burst;
5214
5215 if (len == sizeof(int)) {
5216 if (copy_to_user(optval, &params.assoc_value, len))
5217 return -EFAULT;
5218 } else {
5219 if (copy_to_user(optval, &params, len))
5220 return -EFAULT;
5221 }
5222
5223 return 0;
5224
5225 }
5226
5227 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5228 char __user *optval, int __user *optlen)
5229 {
5230 struct sctp_hmacalgo __user *p = (void __user *)optval;
5231 struct sctp_hmac_algo_param *hmacs;
5232 __u16 data_len = 0;
5233 u32 num_idents;
5234
5235 if (!sctp_auth_enable)
5236 return -EACCES;
5237
5238 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5239 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5240
5241 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5242 return -EINVAL;
5243
5244 len = sizeof(struct sctp_hmacalgo) + data_len;
5245 num_idents = data_len / sizeof(u16);
5246
5247 if (put_user(len, optlen))
5248 return -EFAULT;
5249 if (put_user(num_idents, &p->shmac_num_idents))
5250 return -EFAULT;
5251 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5252 return -EFAULT;
5253 return 0;
5254 }
5255
5256 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5257 char __user *optval, int __user *optlen)
5258 {
5259 struct sctp_authkeyid val;
5260 struct sctp_association *asoc;
5261
5262 if (!sctp_auth_enable)
5263 return -EACCES;
5264
5265 if (len < sizeof(struct sctp_authkeyid))
5266 return -EINVAL;
5267 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5268 return -EFAULT;
5269
5270 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5271 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5272 return -EINVAL;
5273
5274 if (asoc)
5275 val.scact_keynumber = asoc->active_key_id;
5276 else
5277 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5278
5279 len = sizeof(struct sctp_authkeyid);
5280 if (put_user(len, optlen))
5281 return -EFAULT;
5282 if (copy_to_user(optval, &val, len))
5283 return -EFAULT;
5284
5285 return 0;
5286 }
5287
5288 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5289 char __user *optval, int __user *optlen)
5290 {
5291 struct sctp_authchunks __user *p = (void __user *)optval;
5292 struct sctp_authchunks val;
5293 struct sctp_association *asoc;
5294 struct sctp_chunks_param *ch;
5295 u32 num_chunks = 0;
5296 char __user *to;
5297
5298 if (!sctp_auth_enable)
5299 return -EACCES;
5300
5301 if (len < sizeof(struct sctp_authchunks))
5302 return -EINVAL;
5303
5304 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5305 return -EFAULT;
5306
5307 to = p->gauth_chunks;
5308 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5309 if (!asoc)
5310 return -EINVAL;
5311
5312 ch = asoc->peer.peer_chunks;
5313 if (!ch)
5314 goto num;
5315
5316 /* See if the user provided enough room for all the data */
5317 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5318 if (len < num_chunks)
5319 return -EINVAL;
5320
5321 if (copy_to_user(to, ch->chunks, num_chunks))
5322 return -EFAULT;
5323 num:
5324 len = sizeof(struct sctp_authchunks) + num_chunks;
5325 if (put_user(len, optlen)) return -EFAULT;
5326 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5327 return -EFAULT;
5328 return 0;
5329 }
5330
5331 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5332 char __user *optval, int __user *optlen)
5333 {
5334 struct sctp_authchunks __user *p = (void __user *)optval;
5335 struct sctp_authchunks val;
5336 struct sctp_association *asoc;
5337 struct sctp_chunks_param *ch;
5338 u32 num_chunks = 0;
5339 char __user *to;
5340
5341 if (!sctp_auth_enable)
5342 return -EACCES;
5343
5344 if (len < sizeof(struct sctp_authchunks))
5345 return -EINVAL;
5346
5347 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5348 return -EFAULT;
5349
5350 to = p->gauth_chunks;
5351 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5352 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5353 return -EINVAL;
5354
5355 if (asoc)
5356 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5357 else
5358 ch = sctp_sk(sk)->ep->auth_chunk_list;
5359
5360 if (!ch)
5361 goto num;
5362
5363 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5364 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5365 return -EINVAL;
5366
5367 if (copy_to_user(to, ch->chunks, num_chunks))
5368 return -EFAULT;
5369 num:
5370 len = sizeof(struct sctp_authchunks) + num_chunks;
5371 if (put_user(len, optlen))
5372 return -EFAULT;
5373 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5374 return -EFAULT;
5375
5376 return 0;
5377 }
5378
5379 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5380 char __user *optval, int __user *optlen)
5381 {
5382 int retval = 0;
5383 int len;
5384
5385 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5386 sk, optname);
5387
5388 /* I can hardly begin to describe how wrong this is. This is
5389 * so broken as to be worse than useless. The API draft
5390 * REALLY is NOT helpful here... I am not convinced that the
5391 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5392 * are at all well-founded.
5393 */
5394 if (level != SOL_SCTP) {
5395 struct sctp_af *af = sctp_sk(sk)->pf->af;
5396
5397 retval = af->getsockopt(sk, level, optname, optval, optlen);
5398 return retval;
5399 }
5400
5401 if (get_user(len, optlen))
5402 return -EFAULT;
5403
5404 sctp_lock_sock(sk);
5405
5406 switch (optname) {
5407 case SCTP_STATUS:
5408 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5409 break;
5410 case SCTP_DISABLE_FRAGMENTS:
5411 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5412 optlen);
5413 break;
5414 case SCTP_EVENTS:
5415 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5416 break;
5417 case SCTP_AUTOCLOSE:
5418 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5419 break;
5420 case SCTP_SOCKOPT_PEELOFF:
5421 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5422 break;
5423 case SCTP_PEER_ADDR_PARAMS:
5424 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5425 optlen);
5426 break;
5427 case SCTP_DELAYED_ACK:
5428 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5429 optlen);
5430 break;
5431 case SCTP_INITMSG:
5432 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5433 break;
5434 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5435 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5436 optlen);
5437 break;
5438 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5439 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5440 optlen);
5441 break;
5442 case SCTP_GET_PEER_ADDRS_OLD:
5443 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5444 optlen);
5445 break;
5446 case SCTP_GET_LOCAL_ADDRS_OLD:
5447 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5448 optlen);
5449 break;
5450 case SCTP_GET_PEER_ADDRS:
5451 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5452 optlen);
5453 break;
5454 case SCTP_GET_LOCAL_ADDRS:
5455 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5456 optlen);
5457 break;
5458 case SCTP_DEFAULT_SEND_PARAM:
5459 retval = sctp_getsockopt_default_send_param(sk, len,
5460 optval, optlen);
5461 break;
5462 case SCTP_PRIMARY_ADDR:
5463 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5464 break;
5465 case SCTP_NODELAY:
5466 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5467 break;
5468 case SCTP_RTOINFO:
5469 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5470 break;
5471 case SCTP_ASSOCINFO:
5472 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5473 break;
5474 case SCTP_I_WANT_MAPPED_V4_ADDR:
5475 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5476 break;
5477 case SCTP_MAXSEG:
5478 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5479 break;
5480 case SCTP_GET_PEER_ADDR_INFO:
5481 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5482 optlen);
5483 break;
5484 case SCTP_ADAPTATION_LAYER:
5485 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5486 optlen);
5487 break;
5488 case SCTP_CONTEXT:
5489 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5490 break;
5491 case SCTP_FRAGMENT_INTERLEAVE:
5492 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5493 optlen);
5494 break;
5495 case SCTP_PARTIAL_DELIVERY_POINT:
5496 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5497 optlen);
5498 break;
5499 case SCTP_MAX_BURST:
5500 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5501 break;
5502 case SCTP_AUTH_KEY:
5503 case SCTP_AUTH_CHUNK:
5504 case SCTP_AUTH_DELETE_KEY:
5505 retval = -EOPNOTSUPP;
5506 break;
5507 case SCTP_HMAC_IDENT:
5508 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5509 break;
5510 case SCTP_AUTH_ACTIVE_KEY:
5511 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5512 break;
5513 case SCTP_PEER_AUTH_CHUNKS:
5514 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5515 optlen);
5516 break;
5517 case SCTP_LOCAL_AUTH_CHUNKS:
5518 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5519 optlen);
5520 break;
5521 default:
5522 retval = -ENOPROTOOPT;
5523 break;
5524 }
5525
5526 sctp_release_sock(sk);
5527 return retval;
5528 }
5529
5530 static void sctp_hash(struct sock *sk)
5531 {
5532 /* STUB */
5533 }
5534
5535 static void sctp_unhash(struct sock *sk)
5536 {
5537 /* STUB */
5538 }
5539
5540 /* Check if port is acceptable. Possibly find first available port.
5541 *
5542 * The port hash table (contained in the 'global' SCTP protocol storage
5543 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5544 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5545 * list (the list number is the port number hashed out, so as you
5546 * would expect from a hash function, all the ports in a given list have
5547 * such a number that hashes out to the same list number; you were
5548 * expecting that, right?); so each list has a set of ports, with a
5549 * link to the socket (struct sock) that uses it, the port number and
5550 * a fastreuse flag (FIXME: NPI ipg).
5551 */
5552 static struct sctp_bind_bucket *sctp_bucket_create(
5553 struct sctp_bind_hashbucket *head, unsigned short snum);
5554
5555 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5556 {
5557 struct sctp_bind_hashbucket *head; /* hash list */
5558 struct sctp_bind_bucket *pp; /* hash list port iterator */
5559 struct hlist_node *node;
5560 unsigned short snum;
5561 int ret;
5562
5563 snum = ntohs(addr->v4.sin_port);
5564
5565 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5566 sctp_local_bh_disable();
5567
5568 if (snum == 0) {
5569 /* Search for an available port. */
5570 int low, high, remaining, index;
5571 unsigned int rover;
5572
5573 inet_get_local_port_range(&low, &high);
5574 remaining = (high - low) + 1;
5575 rover = net_random() % remaining + low;
5576
5577 do {
5578 rover++;
5579 if ((rover < low) || (rover > high))
5580 rover = low;
5581 index = sctp_phashfn(rover);
5582 head = &sctp_port_hashtable[index];
5583 sctp_spin_lock(&head->lock);
5584 sctp_for_each_hentry(pp, node, &head->chain)
5585 if (pp->port == rover)
5586 goto next;
5587 break;
5588 next:
5589 sctp_spin_unlock(&head->lock);
5590 } while (--remaining > 0);
5591
5592 /* Exhausted local port range during search? */
5593 ret = 1;
5594 if (remaining <= 0)
5595 goto fail;
5596
5597 /* OK, here is the one we will use. HEAD (the port
5598 * hash table list entry) is non-NULL and we hold it's
5599 * mutex.
5600 */
5601 snum = rover;
5602 } else {
5603 /* We are given an specific port number; we verify
5604 * that it is not being used. If it is used, we will
5605 * exahust the search in the hash list corresponding
5606 * to the port number (snum) - we detect that with the
5607 * port iterator, pp being NULL.
5608 */
5609 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5610 sctp_spin_lock(&head->lock);
5611 sctp_for_each_hentry(pp, node, &head->chain) {
5612 if (pp->port == snum)
5613 goto pp_found;
5614 }
5615 }
5616 pp = NULL;
5617 goto pp_not_found;
5618 pp_found:
5619 if (!hlist_empty(&pp->owner)) {
5620 /* We had a port hash table hit - there is an
5621 * available port (pp != NULL) and it is being
5622 * used by other socket (pp->owner not empty); that other
5623 * socket is going to be sk2.
5624 */
5625 int reuse = sk->sk_reuse;
5626 struct sock *sk2;
5627 struct hlist_node *node;
5628
5629 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5630 if (pp->fastreuse && sk->sk_reuse &&
5631 sk->sk_state != SCTP_SS_LISTENING)
5632 goto success;
5633
5634 /* Run through the list of sockets bound to the port
5635 * (pp->port) [via the pointers bind_next and
5636 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5637 * we get the endpoint they describe and run through
5638 * the endpoint's list of IP (v4 or v6) addresses,
5639 * comparing each of the addresses with the address of
5640 * the socket sk. If we find a match, then that means
5641 * that this port/socket (sk) combination are already
5642 * in an endpoint.
5643 */
5644 sk_for_each_bound(sk2, node, &pp->owner) {
5645 struct sctp_endpoint *ep2;
5646 ep2 = sctp_sk(sk2)->ep;
5647
5648 if (sk == sk2 ||
5649 (reuse && sk2->sk_reuse &&
5650 sk2->sk_state != SCTP_SS_LISTENING))
5651 continue;
5652
5653 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5654 sctp_sk(sk2), sctp_sk(sk))) {
5655 ret = (long)sk2;
5656 goto fail_unlock;
5657 }
5658 }
5659 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5660 }
5661 pp_not_found:
5662 /* If there was a hash table miss, create a new port. */
5663 ret = 1;
5664 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5665 goto fail_unlock;
5666
5667 /* In either case (hit or miss), make sure fastreuse is 1 only
5668 * if sk->sk_reuse is too (that is, if the caller requested
5669 * SO_REUSEADDR on this socket -sk-).
5670 */
5671 if (hlist_empty(&pp->owner)) {
5672 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5673 pp->fastreuse = 1;
5674 else
5675 pp->fastreuse = 0;
5676 } else if (pp->fastreuse &&
5677 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5678 pp->fastreuse = 0;
5679
5680 /* We are set, so fill up all the data in the hash table
5681 * entry, tie the socket list information with the rest of the
5682 * sockets FIXME: Blurry, NPI (ipg).
5683 */
5684 success:
5685 if (!sctp_sk(sk)->bind_hash) {
5686 inet_sk(sk)->num = snum;
5687 sk_add_bind_node(sk, &pp->owner);
5688 sctp_sk(sk)->bind_hash = pp;
5689 }
5690 ret = 0;
5691
5692 fail_unlock:
5693 sctp_spin_unlock(&head->lock);
5694
5695 fail:
5696 sctp_local_bh_enable();
5697 return ret;
5698 }
5699
5700 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5701 * port is requested.
5702 */
5703 static int sctp_get_port(struct sock *sk, unsigned short snum)
5704 {
5705 long ret;
5706 union sctp_addr addr;
5707 struct sctp_af *af = sctp_sk(sk)->pf->af;
5708
5709 /* Set up a dummy address struct from the sk. */
5710 af->from_sk(&addr, sk);
5711 addr.v4.sin_port = htons(snum);
5712
5713 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5714 ret = sctp_get_port_local(sk, &addr);
5715
5716 return (ret ? 1 : 0);
5717 }
5718
5719 /*
5720 * 3.1.3 listen() - UDP Style Syntax
5721 *
5722 * By default, new associations are not accepted for UDP style sockets.
5723 * An application uses listen() to mark a socket as being able to
5724 * accept new associations.
5725 */
5726 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5727 {
5728 struct sctp_sock *sp = sctp_sk(sk);
5729 struct sctp_endpoint *ep = sp->ep;
5730
5731 /* Only UDP style sockets that are not peeled off are allowed to
5732 * listen().
5733 */
5734 if (!sctp_style(sk, UDP))
5735 return -EINVAL;
5736
5737 /* If backlog is zero, disable listening. */
5738 if (!backlog) {
5739 if (sctp_sstate(sk, CLOSED))
5740 return 0;
5741
5742 sctp_unhash_endpoint(ep);
5743 sk->sk_state = SCTP_SS_CLOSED;
5744 return 0;
5745 }
5746
5747 /* Return if we are already listening. */
5748 if (sctp_sstate(sk, LISTENING))
5749 return 0;
5750
5751 /*
5752 * If a bind() or sctp_bindx() is not called prior to a listen()
5753 * call that allows new associations to be accepted, the system
5754 * picks an ephemeral port and will choose an address set equivalent
5755 * to binding with a wildcard address.
5756 *
5757 * This is not currently spelled out in the SCTP sockets
5758 * extensions draft, but follows the practice as seen in TCP
5759 * sockets.
5760 *
5761 * Additionally, turn off fastreuse flag since we are not listening
5762 */
5763 sk->sk_state = SCTP_SS_LISTENING;
5764 if (!ep->base.bind_addr.port) {
5765 if (sctp_autobind(sk))
5766 return -EAGAIN;
5767 } else {
5768 if (sctp_get_port(sk, inet_sk(sk)->num)) {
5769 sk->sk_state = SCTP_SS_CLOSED;
5770 return -EADDRINUSE;
5771 }
5772 sctp_sk(sk)->bind_hash->fastreuse = 0;
5773 }
5774
5775 sctp_hash_endpoint(ep);
5776 return 0;
5777 }
5778
5779 /*
5780 * 4.1.3 listen() - TCP Style Syntax
5781 *
5782 * Applications uses listen() to ready the SCTP endpoint for accepting
5783 * inbound associations.
5784 */
5785 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5786 {
5787 struct sctp_sock *sp = sctp_sk(sk);
5788 struct sctp_endpoint *ep = sp->ep;
5789
5790 /* If backlog is zero, disable listening. */
5791 if (!backlog) {
5792 if (sctp_sstate(sk, CLOSED))
5793 return 0;
5794
5795 sctp_unhash_endpoint(ep);
5796 sk->sk_state = SCTP_SS_CLOSED;
5797 return 0;
5798 }
5799
5800 if (sctp_sstate(sk, LISTENING))
5801 return 0;
5802
5803 /*
5804 * If a bind() or sctp_bindx() is not called prior to a listen()
5805 * call that allows new associations to be accepted, the system
5806 * picks an ephemeral port and will choose an address set equivalent
5807 * to binding with a wildcard address.
5808 *
5809 * This is not currently spelled out in the SCTP sockets
5810 * extensions draft, but follows the practice as seen in TCP
5811 * sockets.
5812 */
5813 sk->sk_state = SCTP_SS_LISTENING;
5814 if (!ep->base.bind_addr.port) {
5815 if (sctp_autobind(sk))
5816 return -EAGAIN;
5817 } else
5818 sctp_sk(sk)->bind_hash->fastreuse = 0;
5819
5820 sk->sk_max_ack_backlog = backlog;
5821 sctp_hash_endpoint(ep);
5822 return 0;
5823 }
5824
5825 /*
5826 * Move a socket to LISTENING state.
5827 */
5828 int sctp_inet_listen(struct socket *sock, int backlog)
5829 {
5830 struct sock *sk = sock->sk;
5831 struct crypto_hash *tfm = NULL;
5832 int err = -EINVAL;
5833
5834 if (unlikely(backlog < 0))
5835 goto out;
5836
5837 sctp_lock_sock(sk);
5838
5839 if (sock->state != SS_UNCONNECTED)
5840 goto out;
5841
5842 /* Allocate HMAC for generating cookie. */
5843 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5844 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5845 if (IS_ERR(tfm)) {
5846 if (net_ratelimit()) {
5847 printk(KERN_INFO
5848 "SCTP: failed to load transform for %s: %ld\n",
5849 sctp_hmac_alg, PTR_ERR(tfm));
5850 }
5851 err = -ENOSYS;
5852 goto out;
5853 }
5854 }
5855
5856 switch (sock->type) {
5857 case SOCK_SEQPACKET:
5858 err = sctp_seqpacket_listen(sk, backlog);
5859 break;
5860 case SOCK_STREAM:
5861 err = sctp_stream_listen(sk, backlog);
5862 break;
5863 default:
5864 break;
5865 }
5866
5867 if (err)
5868 goto cleanup;
5869
5870 /* Store away the transform reference. */
5871 if (!sctp_sk(sk)->hmac)
5872 sctp_sk(sk)->hmac = tfm;
5873 out:
5874 sctp_release_sock(sk);
5875 return err;
5876 cleanup:
5877 crypto_free_hash(tfm);
5878 goto out;
5879 }
5880
5881 /*
5882 * This function is done by modeling the current datagram_poll() and the
5883 * tcp_poll(). Note that, based on these implementations, we don't
5884 * lock the socket in this function, even though it seems that,
5885 * ideally, locking or some other mechanisms can be used to ensure
5886 * the integrity of the counters (sndbuf and wmem_alloc) used
5887 * in this place. We assume that we don't need locks either until proven
5888 * otherwise.
5889 *
5890 * Another thing to note is that we include the Async I/O support
5891 * here, again, by modeling the current TCP/UDP code. We don't have
5892 * a good way to test with it yet.
5893 */
5894 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5895 {
5896 struct sock *sk = sock->sk;
5897 struct sctp_sock *sp = sctp_sk(sk);
5898 unsigned int mask;
5899
5900 poll_wait(file, sk->sk_sleep, wait);
5901
5902 /* A TCP-style listening socket becomes readable when the accept queue
5903 * is not empty.
5904 */
5905 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5906 return (!list_empty(&sp->ep->asocs)) ?
5907 (POLLIN | POLLRDNORM) : 0;
5908
5909 mask = 0;
5910
5911 /* Is there any exceptional events? */
5912 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5913 mask |= POLLERR;
5914 if (sk->sk_shutdown & RCV_SHUTDOWN)
5915 mask |= POLLRDHUP;
5916 if (sk->sk_shutdown == SHUTDOWN_MASK)
5917 mask |= POLLHUP;
5918
5919 /* Is it readable? Reconsider this code with TCP-style support. */
5920 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5921 (sk->sk_shutdown & RCV_SHUTDOWN))
5922 mask |= POLLIN | POLLRDNORM;
5923
5924 /* The association is either gone or not ready. */
5925 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5926 return mask;
5927
5928 /* Is it writable? */
5929 if (sctp_writeable(sk)) {
5930 mask |= POLLOUT | POLLWRNORM;
5931 } else {
5932 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5933 /*
5934 * Since the socket is not locked, the buffer
5935 * might be made available after the writeable check and
5936 * before the bit is set. This could cause a lost I/O
5937 * signal. tcp_poll() has a race breaker for this race
5938 * condition. Based on their implementation, we put
5939 * in the following code to cover it as well.
5940 */
5941 if (sctp_writeable(sk))
5942 mask |= POLLOUT | POLLWRNORM;
5943 }
5944 return mask;
5945 }
5946
5947 /********************************************************************
5948 * 2nd Level Abstractions
5949 ********************************************************************/
5950
5951 static struct sctp_bind_bucket *sctp_bucket_create(
5952 struct sctp_bind_hashbucket *head, unsigned short snum)
5953 {
5954 struct sctp_bind_bucket *pp;
5955
5956 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5957 if (pp) {
5958 SCTP_DBG_OBJCNT_INC(bind_bucket);
5959 pp->port = snum;
5960 pp->fastreuse = 0;
5961 INIT_HLIST_HEAD(&pp->owner);
5962 hlist_add_head(&pp->node, &head->chain);
5963 }
5964 return pp;
5965 }
5966
5967 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5968 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5969 {
5970 if (pp && hlist_empty(&pp->owner)) {
5971 __hlist_del(&pp->node);
5972 kmem_cache_free(sctp_bucket_cachep, pp);
5973 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5974 }
5975 }
5976
5977 /* Release this socket's reference to a local port. */
5978 static inline void __sctp_put_port(struct sock *sk)
5979 {
5980 struct sctp_bind_hashbucket *head =
5981 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5982 struct sctp_bind_bucket *pp;
5983
5984 sctp_spin_lock(&head->lock);
5985 pp = sctp_sk(sk)->bind_hash;
5986 __sk_del_bind_node(sk);
5987 sctp_sk(sk)->bind_hash = NULL;
5988 inet_sk(sk)->num = 0;
5989 sctp_bucket_destroy(pp);
5990 sctp_spin_unlock(&head->lock);
5991 }
5992
5993 void sctp_put_port(struct sock *sk)
5994 {
5995 sctp_local_bh_disable();
5996 __sctp_put_port(sk);
5997 sctp_local_bh_enable();
5998 }
5999
6000 /*
6001 * The system picks an ephemeral port and choose an address set equivalent
6002 * to binding with a wildcard address.
6003 * One of those addresses will be the primary address for the association.
6004 * This automatically enables the multihoming capability of SCTP.
6005 */
6006 static int sctp_autobind(struct sock *sk)
6007 {
6008 union sctp_addr autoaddr;
6009 struct sctp_af *af;
6010 __be16 port;
6011
6012 /* Initialize a local sockaddr structure to INADDR_ANY. */
6013 af = sctp_sk(sk)->pf->af;
6014
6015 port = htons(inet_sk(sk)->num);
6016 af->inaddr_any(&autoaddr, port);
6017
6018 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6019 }
6020
6021 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6022 *
6023 * From RFC 2292
6024 * 4.2 The cmsghdr Structure *
6025 *
6026 * When ancillary data is sent or received, any number of ancillary data
6027 * objects can be specified by the msg_control and msg_controllen members of
6028 * the msghdr structure, because each object is preceded by
6029 * a cmsghdr structure defining the object's length (the cmsg_len member).
6030 * Historically Berkeley-derived implementations have passed only one object
6031 * at a time, but this API allows multiple objects to be
6032 * passed in a single call to sendmsg() or recvmsg(). The following example
6033 * shows two ancillary data objects in a control buffer.
6034 *
6035 * |<--------------------------- msg_controllen -------------------------->|
6036 * | |
6037 *
6038 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6039 *
6040 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6041 * | | |
6042 *
6043 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6044 *
6045 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6046 * | | | | |
6047 *
6048 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6049 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6050 *
6051 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6052 *
6053 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6054 * ^
6055 * |
6056 *
6057 * msg_control
6058 * points here
6059 */
6060 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6061 sctp_cmsgs_t *cmsgs)
6062 {
6063 struct cmsghdr *cmsg;
6064 struct msghdr *my_msg = (struct msghdr *)msg;
6065
6066 for (cmsg = CMSG_FIRSTHDR(msg);
6067 cmsg != NULL;
6068 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6069 if (!CMSG_OK(my_msg, cmsg))
6070 return -EINVAL;
6071
6072 /* Should we parse this header or ignore? */
6073 if (cmsg->cmsg_level != IPPROTO_SCTP)
6074 continue;
6075
6076 /* Strictly check lengths following example in SCM code. */
6077 switch (cmsg->cmsg_type) {
6078 case SCTP_INIT:
6079 /* SCTP Socket API Extension
6080 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6081 *
6082 * This cmsghdr structure provides information for
6083 * initializing new SCTP associations with sendmsg().
6084 * The SCTP_INITMSG socket option uses this same data
6085 * structure. This structure is not used for
6086 * recvmsg().
6087 *
6088 * cmsg_level cmsg_type cmsg_data[]
6089 * ------------ ------------ ----------------------
6090 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6091 */
6092 if (cmsg->cmsg_len !=
6093 CMSG_LEN(sizeof(struct sctp_initmsg)))
6094 return -EINVAL;
6095 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6096 break;
6097
6098 case SCTP_SNDRCV:
6099 /* SCTP Socket API Extension
6100 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6101 *
6102 * This cmsghdr structure specifies SCTP options for
6103 * sendmsg() and describes SCTP header information
6104 * about a received message through recvmsg().
6105 *
6106 * cmsg_level cmsg_type cmsg_data[]
6107 * ------------ ------------ ----------------------
6108 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6109 */
6110 if (cmsg->cmsg_len !=
6111 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6112 return -EINVAL;
6113
6114 cmsgs->info =
6115 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6116
6117 /* Minimally, validate the sinfo_flags. */
6118 if (cmsgs->info->sinfo_flags &
6119 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6120 SCTP_ABORT | SCTP_EOF))
6121 return -EINVAL;
6122 break;
6123
6124 default:
6125 return -EINVAL;
6126 }
6127 }
6128 return 0;
6129 }
6130
6131 /*
6132 * Wait for a packet..
6133 * Note: This function is the same function as in core/datagram.c
6134 * with a few modifications to make lksctp work.
6135 */
6136 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6137 {
6138 int error;
6139 DEFINE_WAIT(wait);
6140
6141 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6142
6143 /* Socket errors? */
6144 error = sock_error(sk);
6145 if (error)
6146 goto out;
6147
6148 if (!skb_queue_empty(&sk->sk_receive_queue))
6149 goto ready;
6150
6151 /* Socket shut down? */
6152 if (sk->sk_shutdown & RCV_SHUTDOWN)
6153 goto out;
6154
6155 /* Sequenced packets can come disconnected. If so we report the
6156 * problem.
6157 */
6158 error = -ENOTCONN;
6159
6160 /* Is there a good reason to think that we may receive some data? */
6161 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6162 goto out;
6163
6164 /* Handle signals. */
6165 if (signal_pending(current))
6166 goto interrupted;
6167
6168 /* Let another process have a go. Since we are going to sleep
6169 * anyway. Note: This may cause odd behaviors if the message
6170 * does not fit in the user's buffer, but this seems to be the
6171 * only way to honor MSG_DONTWAIT realistically.
6172 */
6173 sctp_release_sock(sk);
6174 *timeo_p = schedule_timeout(*timeo_p);
6175 sctp_lock_sock(sk);
6176
6177 ready:
6178 finish_wait(sk->sk_sleep, &wait);
6179 return 0;
6180
6181 interrupted:
6182 error = sock_intr_errno(*timeo_p);
6183
6184 out:
6185 finish_wait(sk->sk_sleep, &wait);
6186 *err = error;
6187 return error;
6188 }
6189
6190 /* Receive a datagram.
6191 * Note: This is pretty much the same routine as in core/datagram.c
6192 * with a few changes to make lksctp work.
6193 */
6194 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6195 int noblock, int *err)
6196 {
6197 int error;
6198 struct sk_buff *skb;
6199 long timeo;
6200
6201 timeo = sock_rcvtimeo(sk, noblock);
6202
6203 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6204 timeo, MAX_SCHEDULE_TIMEOUT);
6205
6206 do {
6207 /* Again only user level code calls this function,
6208 * so nothing interrupt level
6209 * will suddenly eat the receive_queue.
6210 *
6211 * Look at current nfs client by the way...
6212 * However, this function was corrent in any case. 8)
6213 */
6214 if (flags & MSG_PEEK) {
6215 spin_lock_bh(&sk->sk_receive_queue.lock);
6216 skb = skb_peek(&sk->sk_receive_queue);
6217 if (skb)
6218 atomic_inc(&skb->users);
6219 spin_unlock_bh(&sk->sk_receive_queue.lock);
6220 } else {
6221 skb = skb_dequeue(&sk->sk_receive_queue);
6222 }
6223
6224 if (skb)
6225 return skb;
6226
6227 /* Caller is allowed not to check sk->sk_err before calling. */
6228 error = sock_error(sk);
6229 if (error)
6230 goto no_packet;
6231
6232 if (sk->sk_shutdown & RCV_SHUTDOWN)
6233 break;
6234
6235 /* User doesn't want to wait. */
6236 error = -EAGAIN;
6237 if (!timeo)
6238 goto no_packet;
6239 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6240
6241 return NULL;
6242
6243 no_packet:
6244 *err = error;
6245 return NULL;
6246 }
6247
6248 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6249 static void __sctp_write_space(struct sctp_association *asoc)
6250 {
6251 struct sock *sk = asoc->base.sk;
6252 struct socket *sock = sk->sk_socket;
6253
6254 if ((sctp_wspace(asoc) > 0) && sock) {
6255 if (waitqueue_active(&asoc->wait))
6256 wake_up_interruptible(&asoc->wait);
6257
6258 if (sctp_writeable(sk)) {
6259 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6260 wake_up_interruptible(sk->sk_sleep);
6261
6262 /* Note that we try to include the Async I/O support
6263 * here by modeling from the current TCP/UDP code.
6264 * We have not tested with it yet.
6265 */
6266 if (sock->fasync_list &&
6267 !(sk->sk_shutdown & SEND_SHUTDOWN))
6268 sock_wake_async(sock,
6269 SOCK_WAKE_SPACE, POLL_OUT);
6270 }
6271 }
6272 }
6273
6274 /* Do accounting for the sndbuf space.
6275 * Decrement the used sndbuf space of the corresponding association by the
6276 * data size which was just transmitted(freed).
6277 */
6278 static void sctp_wfree(struct sk_buff *skb)
6279 {
6280 struct sctp_association *asoc;
6281 struct sctp_chunk *chunk;
6282 struct sock *sk;
6283
6284 /* Get the saved chunk pointer. */
6285 chunk = *((struct sctp_chunk **)(skb->cb));
6286 asoc = chunk->asoc;
6287 sk = asoc->base.sk;
6288 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6289 sizeof(struct sk_buff) +
6290 sizeof(struct sctp_chunk);
6291
6292 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6293
6294 /*
6295 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6296 */
6297 sk->sk_wmem_queued -= skb->truesize;
6298 sk_mem_uncharge(sk, skb->truesize);
6299
6300 sock_wfree(skb);
6301 __sctp_write_space(asoc);
6302
6303 sctp_association_put(asoc);
6304 }
6305
6306 /* Do accounting for the receive space on the socket.
6307 * Accounting for the association is done in ulpevent.c
6308 * We set this as a destructor for the cloned data skbs so that
6309 * accounting is done at the correct time.
6310 */
6311 void sctp_sock_rfree(struct sk_buff *skb)
6312 {
6313 struct sock *sk = skb->sk;
6314 struct sctp_ulpevent *event = sctp_skb2event(skb);
6315
6316 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6317
6318 /*
6319 * Mimic the behavior of sock_rfree
6320 */
6321 sk_mem_uncharge(sk, event->rmem_len);
6322 }
6323
6324
6325 /* Helper function to wait for space in the sndbuf. */
6326 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6327 size_t msg_len)
6328 {
6329 struct sock *sk = asoc->base.sk;
6330 int err = 0;
6331 long current_timeo = *timeo_p;
6332 DEFINE_WAIT(wait);
6333
6334 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6335 asoc, (long)(*timeo_p), msg_len);
6336
6337 /* Increment the association's refcnt. */
6338 sctp_association_hold(asoc);
6339
6340 /* Wait on the association specific sndbuf space. */
6341 for (;;) {
6342 prepare_to_wait_exclusive(&asoc->wait, &wait,
6343 TASK_INTERRUPTIBLE);
6344 if (!*timeo_p)
6345 goto do_nonblock;
6346 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6347 asoc->base.dead)
6348 goto do_error;
6349 if (signal_pending(current))
6350 goto do_interrupted;
6351 if (msg_len <= sctp_wspace(asoc))
6352 break;
6353
6354 /* Let another process have a go. Since we are going
6355 * to sleep anyway.
6356 */
6357 sctp_release_sock(sk);
6358 current_timeo = schedule_timeout(current_timeo);
6359 BUG_ON(sk != asoc->base.sk);
6360 sctp_lock_sock(sk);
6361
6362 *timeo_p = current_timeo;
6363 }
6364
6365 out:
6366 finish_wait(&asoc->wait, &wait);
6367
6368 /* Release the association's refcnt. */
6369 sctp_association_put(asoc);
6370
6371 return err;
6372
6373 do_error:
6374 err = -EPIPE;
6375 goto out;
6376
6377 do_interrupted:
6378 err = sock_intr_errno(*timeo_p);
6379 goto out;
6380
6381 do_nonblock:
6382 err = -EAGAIN;
6383 goto out;
6384 }
6385
6386 /* If socket sndbuf has changed, wake up all per association waiters. */
6387 void sctp_write_space(struct sock *sk)
6388 {
6389 struct sctp_association *asoc;
6390
6391 /* Wake up the tasks in each wait queue. */
6392 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6393 __sctp_write_space(asoc);
6394 }
6395 }
6396
6397 /* Is there any sndbuf space available on the socket?
6398 *
6399 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6400 * associations on the same socket. For a UDP-style socket with
6401 * multiple associations, it is possible for it to be "unwriteable"
6402 * prematurely. I assume that this is acceptable because
6403 * a premature "unwriteable" is better than an accidental "writeable" which
6404 * would cause an unwanted block under certain circumstances. For the 1-1
6405 * UDP-style sockets or TCP-style sockets, this code should work.
6406 * - Daisy
6407 */
6408 static int sctp_writeable(struct sock *sk)
6409 {
6410 int amt = 0;
6411
6412 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6413 if (amt < 0)
6414 amt = 0;
6415 return amt;
6416 }
6417
6418 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6419 * returns immediately with EINPROGRESS.
6420 */
6421 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6422 {
6423 struct sock *sk = asoc->base.sk;
6424 int err = 0;
6425 long current_timeo = *timeo_p;
6426 DEFINE_WAIT(wait);
6427
6428 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6429 (long)(*timeo_p));
6430
6431 /* Increment the association's refcnt. */
6432 sctp_association_hold(asoc);
6433
6434 for (;;) {
6435 prepare_to_wait_exclusive(&asoc->wait, &wait,
6436 TASK_INTERRUPTIBLE);
6437 if (!*timeo_p)
6438 goto do_nonblock;
6439 if (sk->sk_shutdown & RCV_SHUTDOWN)
6440 break;
6441 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6442 asoc->base.dead)
6443 goto do_error;
6444 if (signal_pending(current))
6445 goto do_interrupted;
6446
6447 if (sctp_state(asoc, ESTABLISHED))
6448 break;
6449
6450 /* Let another process have a go. Since we are going
6451 * to sleep anyway.
6452 */
6453 sctp_release_sock(sk);
6454 current_timeo = schedule_timeout(current_timeo);
6455 sctp_lock_sock(sk);
6456
6457 *timeo_p = current_timeo;
6458 }
6459
6460 out:
6461 finish_wait(&asoc->wait, &wait);
6462
6463 /* Release the association's refcnt. */
6464 sctp_association_put(asoc);
6465
6466 return err;
6467
6468 do_error:
6469 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6470 err = -ETIMEDOUT;
6471 else
6472 err = -ECONNREFUSED;
6473 goto out;
6474
6475 do_interrupted:
6476 err = sock_intr_errno(*timeo_p);
6477 goto out;
6478
6479 do_nonblock:
6480 err = -EINPROGRESS;
6481 goto out;
6482 }
6483
6484 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6485 {
6486 struct sctp_endpoint *ep;
6487 int err = 0;
6488 DEFINE_WAIT(wait);
6489
6490 ep = sctp_sk(sk)->ep;
6491
6492
6493 for (;;) {
6494 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6495 TASK_INTERRUPTIBLE);
6496
6497 if (list_empty(&ep->asocs)) {
6498 sctp_release_sock(sk);
6499 timeo = schedule_timeout(timeo);
6500 sctp_lock_sock(sk);
6501 }
6502
6503 err = -EINVAL;
6504 if (!sctp_sstate(sk, LISTENING))
6505 break;
6506
6507 err = 0;
6508 if (!list_empty(&ep->asocs))
6509 break;
6510
6511 err = sock_intr_errno(timeo);
6512 if (signal_pending(current))
6513 break;
6514
6515 err = -EAGAIN;
6516 if (!timeo)
6517 break;
6518 }
6519
6520 finish_wait(sk->sk_sleep, &wait);
6521
6522 return err;
6523 }
6524
6525 static void sctp_wait_for_close(struct sock *sk, long timeout)
6526 {
6527 DEFINE_WAIT(wait);
6528
6529 do {
6530 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6531 if (list_empty(&sctp_sk(sk)->ep->asocs))
6532 break;
6533 sctp_release_sock(sk);
6534 timeout = schedule_timeout(timeout);
6535 sctp_lock_sock(sk);
6536 } while (!signal_pending(current) && timeout);
6537
6538 finish_wait(sk->sk_sleep, &wait);
6539 }
6540
6541 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6542 {
6543 struct sk_buff *frag;
6544
6545 if (!skb->data_len)
6546 goto done;
6547
6548 /* Don't forget the fragments. */
6549 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6550 sctp_sock_rfree_frag(frag);
6551
6552 done:
6553 sctp_sock_rfree(skb);
6554 }
6555
6556 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6557 {
6558 struct sk_buff *frag;
6559
6560 if (!skb->data_len)
6561 goto done;
6562
6563 /* Don't forget the fragments. */
6564 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6565 sctp_skb_set_owner_r_frag(frag, sk);
6566
6567 done:
6568 sctp_skb_set_owner_r(skb, sk);
6569 }
6570
6571 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6572 * and its messages to the newsk.
6573 */
6574 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6575 struct sctp_association *assoc,
6576 sctp_socket_type_t type)
6577 {
6578 struct sctp_sock *oldsp = sctp_sk(oldsk);
6579 struct sctp_sock *newsp = sctp_sk(newsk);
6580 struct sctp_bind_bucket *pp; /* hash list port iterator */
6581 struct sctp_endpoint *newep = newsp->ep;
6582 struct sk_buff *skb, *tmp;
6583 struct sctp_ulpevent *event;
6584 struct sctp_bind_hashbucket *head;
6585
6586 /* Migrate socket buffer sizes and all the socket level options to the
6587 * new socket.
6588 */
6589 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6590 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6591 /* Brute force copy old sctp opt. */
6592 inet_sk_copy_descendant(newsk, oldsk);
6593
6594 /* Restore the ep value that was overwritten with the above structure
6595 * copy.
6596 */
6597 newsp->ep = newep;
6598 newsp->hmac = NULL;
6599
6600 /* Hook this new socket in to the bind_hash list. */
6601 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6602 sctp_local_bh_disable();
6603 sctp_spin_lock(&head->lock);
6604 pp = sctp_sk(oldsk)->bind_hash;
6605 sk_add_bind_node(newsk, &pp->owner);
6606 sctp_sk(newsk)->bind_hash = pp;
6607 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6608 sctp_spin_unlock(&head->lock);
6609 sctp_local_bh_enable();
6610
6611 /* Copy the bind_addr list from the original endpoint to the new
6612 * endpoint so that we can handle restarts properly
6613 */
6614 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6615 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6616
6617 /* Move any messages in the old socket's receive queue that are for the
6618 * peeled off association to the new socket's receive queue.
6619 */
6620 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6621 event = sctp_skb2event(skb);
6622 if (event->asoc == assoc) {
6623 sctp_sock_rfree_frag(skb);
6624 __skb_unlink(skb, &oldsk->sk_receive_queue);
6625 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6626 sctp_skb_set_owner_r_frag(skb, newsk);
6627 }
6628 }
6629
6630 /* Clean up any messages pending delivery due to partial
6631 * delivery. Three cases:
6632 * 1) No partial deliver; no work.
6633 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6634 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6635 */
6636 skb_queue_head_init(&newsp->pd_lobby);
6637 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6638
6639 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6640 struct sk_buff_head *queue;
6641
6642 /* Decide which queue to move pd_lobby skbs to. */
6643 if (assoc->ulpq.pd_mode) {
6644 queue = &newsp->pd_lobby;
6645 } else
6646 queue = &newsk->sk_receive_queue;
6647
6648 /* Walk through the pd_lobby, looking for skbs that
6649 * need moved to the new socket.
6650 */
6651 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6652 event = sctp_skb2event(skb);
6653 if (event->asoc == assoc) {
6654 sctp_sock_rfree_frag(skb);
6655 __skb_unlink(skb, &oldsp->pd_lobby);
6656 __skb_queue_tail(queue, skb);
6657 sctp_skb_set_owner_r_frag(skb, newsk);
6658 }
6659 }
6660
6661 /* Clear up any skbs waiting for the partial
6662 * delivery to finish.
6663 */
6664 if (assoc->ulpq.pd_mode)
6665 sctp_clear_pd(oldsk, NULL);
6666
6667 }
6668
6669 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6670 sctp_sock_rfree_frag(skb);
6671 sctp_skb_set_owner_r_frag(skb, newsk);
6672 }
6673
6674 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6675 sctp_sock_rfree_frag(skb);
6676 sctp_skb_set_owner_r_frag(skb, newsk);
6677 }
6678
6679 /* Set the type of socket to indicate that it is peeled off from the
6680 * original UDP-style socket or created with the accept() call on a
6681 * TCP-style socket..
6682 */
6683 newsp->type = type;
6684
6685 /* Mark the new socket "in-use" by the user so that any packets
6686 * that may arrive on the association after we've moved it are
6687 * queued to the backlog. This prevents a potential race between
6688 * backlog processing on the old socket and new-packet processing
6689 * on the new socket.
6690 *
6691 * The caller has just allocated newsk so we can guarantee that other
6692 * paths won't try to lock it and then oldsk.
6693 */
6694 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6695 sctp_assoc_migrate(assoc, newsk);
6696
6697 /* If the association on the newsk is already closed before accept()
6698 * is called, set RCV_SHUTDOWN flag.
6699 */
6700 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6701 newsk->sk_shutdown |= RCV_SHUTDOWN;
6702
6703 newsk->sk_state = SCTP_SS_ESTABLISHED;
6704 sctp_release_sock(newsk);
6705 }
6706
6707
6708 /* This proto struct describes the ULP interface for SCTP. */
6709 struct proto sctp_prot = {
6710 .name = "SCTP",
6711 .owner = THIS_MODULE,
6712 .close = sctp_close,
6713 .connect = sctp_connect,
6714 .disconnect = sctp_disconnect,
6715 .accept = sctp_accept,
6716 .ioctl = sctp_ioctl,
6717 .init = sctp_init_sock,
6718 .destroy = sctp_destroy_sock,
6719 .shutdown = sctp_shutdown,
6720 .setsockopt = sctp_setsockopt,
6721 .getsockopt = sctp_getsockopt,
6722 .sendmsg = sctp_sendmsg,
6723 .recvmsg = sctp_recvmsg,
6724 .bind = sctp_bind,
6725 .backlog_rcv = sctp_backlog_rcv,
6726 .hash = sctp_hash,
6727 .unhash = sctp_unhash,
6728 .get_port = sctp_get_port,
6729 .obj_size = sizeof(struct sctp_sock),
6730 .sysctl_mem = sysctl_sctp_mem,
6731 .sysctl_rmem = sysctl_sctp_rmem,
6732 .sysctl_wmem = sysctl_sctp_wmem,
6733 .memory_pressure = &sctp_memory_pressure,
6734 .enter_memory_pressure = sctp_enter_memory_pressure,
6735 .memory_allocated = &sctp_memory_allocated,
6736 .sockets_allocated = &sctp_sockets_allocated,
6737 };
6738
6739 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6740
6741 struct proto sctpv6_prot = {
6742 .name = "SCTPv6",
6743 .owner = THIS_MODULE,
6744 .close = sctp_close,
6745 .connect = sctp_connect,
6746 .disconnect = sctp_disconnect,
6747 .accept = sctp_accept,
6748 .ioctl = sctp_ioctl,
6749 .init = sctp_init_sock,
6750 .destroy = sctp_destroy_sock,
6751 .shutdown = sctp_shutdown,
6752 .setsockopt = sctp_setsockopt,
6753 .getsockopt = sctp_getsockopt,
6754 .sendmsg = sctp_sendmsg,
6755 .recvmsg = sctp_recvmsg,
6756 .bind = sctp_bind,
6757 .backlog_rcv = sctp_backlog_rcv,
6758 .hash = sctp_hash,
6759 .unhash = sctp_unhash,
6760 .get_port = sctp_get_port,
6761 .obj_size = sizeof(struct sctp6_sock),
6762 .sysctl_mem = sysctl_sctp_mem,
6763 .sysctl_rmem = sysctl_sctp_rmem,
6764 .sysctl_wmem = sysctl_sctp_wmem,
6765 .memory_pressure = &sctp_memory_pressure,
6766 .enter_memory_pressure = sctp_enter_memory_pressure,
6767 .memory_allocated = &sctp_memory_allocated,
6768 .sockets_allocated = &sctp_sockets_allocated,
6769 };
6770 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */