sctp: Add Auto-ASCONF support (core).
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
84
85 /* WARNING: Please do not remove the SCTP_STATIC attribute to
86 * any of the functions below as they are used to export functions
87 * used by a project regression testsuite.
88 */
89
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
117
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
121
122 static void sctp_enter_memory_pressure(struct sock *sk)
123 {
124 sctp_memory_pressure = 1;
125 }
126
127
128 /* Get the sndbuf space available at the time on the association. */
129 static inline int sctp_wspace(struct sctp_association *asoc)
130 {
131 int amt;
132
133 if (asoc->ep->sndbuf_policy)
134 amt = asoc->sndbuf_used;
135 else
136 amt = sk_wmem_alloc_get(asoc->base.sk);
137
138 if (amt >= asoc->base.sk->sk_sndbuf) {
139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 amt = 0;
141 else {
142 amt = sk_stream_wspace(asoc->base.sk);
143 if (amt < 0)
144 amt = 0;
145 }
146 } else {
147 amt = asoc->base.sk->sk_sndbuf - amt;
148 }
149 return amt;
150 }
151
152 /* Increment the used sndbuf space count of the corresponding association by
153 * the size of the outgoing data chunk.
154 * Also, set the skb destructor for sndbuf accounting later.
155 *
156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158 * destructor in the data chunk skb for the purpose of the sndbuf space
159 * tracking.
160 */
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162 {
163 struct sctp_association *asoc = chunk->asoc;
164 struct sock *sk = asoc->base.sk;
165
166 /* The sndbuf space is tracked per association. */
167 sctp_association_hold(asoc);
168
169 skb_set_owner_w(chunk->skb, sk);
170
171 chunk->skb->destructor = sctp_wfree;
172 /* Save the chunk pointer in skb for sctp_wfree to use later. */
173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174
175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 sizeof(struct sk_buff) +
177 sizeof(struct sctp_chunk);
178
179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 sk->sk_wmem_queued += chunk->skb->truesize;
181 sk_mem_charge(sk, chunk->skb->truesize);
182 }
183
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 int len)
187 {
188 struct sctp_af *af;
189
190 /* Verify basic sockaddr. */
191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 if (!af)
193 return -EINVAL;
194
195 /* Is this a valid SCTP address? */
196 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 return -EINVAL;
198
199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 return -EINVAL;
201
202 return 0;
203 }
204
205 /* Look up the association by its id. If this is not a UDP-style
206 * socket, the ID field is always ignored.
207 */
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209 {
210 struct sctp_association *asoc = NULL;
211
212 /* If this is not a UDP-style socket, assoc id should be ignored. */
213 if (!sctp_style(sk, UDP)) {
214 /* Return NULL if the socket state is not ESTABLISHED. It
215 * could be a TCP-style listening socket or a socket which
216 * hasn't yet called connect() to establish an association.
217 */
218 if (!sctp_sstate(sk, ESTABLISHED))
219 return NULL;
220
221 /* Get the first and the only association from the list. */
222 if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 struct sctp_association, asocs);
225 return asoc;
226 }
227
228 /* Otherwise this is a UDP-style socket. */
229 if (!id || (id == (sctp_assoc_t)-1))
230 return NULL;
231
232 spin_lock_bh(&sctp_assocs_id_lock);
233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 spin_unlock_bh(&sctp_assocs_id_lock);
235
236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 return NULL;
238
239 return asoc;
240 }
241
242 /* Look up the transport from an address and an assoc id. If both address and
243 * id are specified, the associations matching the address and the id should be
244 * the same.
245 */
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 struct sockaddr_storage *addr,
248 sctp_assoc_t id)
249 {
250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 struct sctp_transport *transport;
252 union sctp_addr *laddr = (union sctp_addr *)addr;
253
254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 laddr,
256 &transport);
257
258 if (!addr_asoc)
259 return NULL;
260
261 id_asoc = sctp_id2assoc(sk, id);
262 if (id_asoc && (id_asoc != addr_asoc))
263 return NULL;
264
265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 (union sctp_addr *)addr);
267
268 return transport;
269 }
270
271 /* API 3.1.2 bind() - UDP Style Syntax
272 * The syntax of bind() is,
273 *
274 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
275 *
276 * sd - the socket descriptor returned by socket().
277 * addr - the address structure (struct sockaddr_in or struct
278 * sockaddr_in6 [RFC 2553]),
279 * addr_len - the size of the address structure.
280 */
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282 {
283 int retval = 0;
284
285 sctp_lock_sock(sk);
286
287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 sk, addr, addr_len);
289
290 /* Disallow binding twice. */
291 if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 addr_len);
294 else
295 retval = -EINVAL;
296
297 sctp_release_sock(sk);
298
299 return retval;
300 }
301
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
303
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 union sctp_addr *addr, int len)
307 {
308 struct sctp_af *af;
309
310 /* Check minimum size. */
311 if (len < sizeof (struct sockaddr))
312 return NULL;
313
314 /* V4 mapped address are really of AF_INET family */
315 if (addr->sa.sa_family == AF_INET6 &&
316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 if (!opt->pf->af_supported(AF_INET, opt))
318 return NULL;
319 } else {
320 /* Does this PF support this AF? */
321 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 return NULL;
323 }
324
325 /* If we get this far, af is valid. */
326 af = sctp_get_af_specific(addr->sa.sa_family);
327
328 if (len < af->sockaddr_len)
329 return NULL;
330
331 return af;
332 }
333
334 /* Bind a local address either to an endpoint or to an association. */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336 {
337 struct sctp_sock *sp = sctp_sk(sk);
338 struct sctp_endpoint *ep = sp->ep;
339 struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 struct sctp_af *af;
341 unsigned short snum;
342 int ret = 0;
343
344 /* Common sockaddr verification. */
345 af = sctp_sockaddr_af(sp, addr, len);
346 if (!af) {
347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 sk, addr, len);
349 return -EINVAL;
350 }
351
352 snum = ntohs(addr->v4.sin_port);
353
354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 ", port: %d, new port: %d, len: %d)\n",
356 sk,
357 addr,
358 bp->port, snum,
359 len);
360
361 /* PF specific bind() address verification. */
362 if (!sp->pf->bind_verify(sp, addr))
363 return -EADDRNOTAVAIL;
364
365 /* We must either be unbound, or bind to the same port.
366 * It's OK to allow 0 ports if we are already bound.
367 * We'll just inhert an already bound port in this case
368 */
369 if (bp->port) {
370 if (!snum)
371 snum = bp->port;
372 else if (snum != bp->port) {
373 SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 " New port %d does not match existing port "
375 "%d.\n", snum, bp->port);
376 return -EINVAL;
377 }
378 }
379
380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 return -EACCES;
382
383 /* See if the address matches any of the addresses we may have
384 * already bound before checking against other endpoints.
385 */
386 if (sctp_bind_addr_match(bp, addr, sp))
387 return -EINVAL;
388
389 /* Make sure we are allowed to bind here.
390 * The function sctp_get_port_local() does duplicate address
391 * detection.
392 */
393 addr->v4.sin_port = htons(snum);
394 if ((ret = sctp_get_port_local(sk, addr))) {
395 return -EADDRINUSE;
396 }
397
398 /* Refresh ephemeral port. */
399 if (!bp->port)
400 bp->port = inet_sk(sk)->inet_num;
401
402 /* Add the address to the bind address list.
403 * Use GFP_ATOMIC since BHs will be disabled.
404 */
405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406
407 /* Copy back into socket for getsockname() use. */
408 if (!ret) {
409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 af->to_sk_saddr(addr, sk);
411 }
412
413 return ret;
414 }
415
416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417 *
418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419 * at any one time. If a sender, after sending an ASCONF chunk, decides
420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422 * subsequent ASCONF. Note this restriction binds each side, so at any
423 * time two ASCONF may be in-transit on any given association (one sent
424 * from each endpoint).
425 */
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 struct sctp_chunk *chunk)
428 {
429 int retval = 0;
430
431 /* If there is an outstanding ASCONF chunk, queue it for later
432 * transmission.
433 */
434 if (asoc->addip_last_asconf) {
435 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 goto out;
437 }
438
439 /* Hold the chunk until an ASCONF_ACK is received. */
440 sctp_chunk_hold(chunk);
441 retval = sctp_primitive_ASCONF(asoc, chunk);
442 if (retval)
443 sctp_chunk_free(chunk);
444 else
445 asoc->addip_last_asconf = chunk;
446
447 out:
448 return retval;
449 }
450
451 /* Add a list of addresses as bind addresses to local endpoint or
452 * association.
453 *
454 * Basically run through each address specified in the addrs/addrcnt
455 * array/length pair, determine if it is IPv6 or IPv4 and call
456 * sctp_do_bind() on it.
457 *
458 * If any of them fails, then the operation will be reversed and the
459 * ones that were added will be removed.
460 *
461 * Only sctp_setsockopt_bindx() is supposed to call this function.
462 */
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464 {
465 int cnt;
466 int retval = 0;
467 void *addr_buf;
468 struct sockaddr *sa_addr;
469 struct sctp_af *af;
470
471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 sk, addrs, addrcnt);
473
474 addr_buf = addrs;
475 for (cnt = 0; cnt < addrcnt; cnt++) {
476 /* The list may contain either IPv4 or IPv6 address;
477 * determine the address length for walking thru the list.
478 */
479 sa_addr = (struct sockaddr *)addr_buf;
480 af = sctp_get_af_specific(sa_addr->sa_family);
481 if (!af) {
482 retval = -EINVAL;
483 goto err_bindx_add;
484 }
485
486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 af->sockaddr_len);
488
489 addr_buf += af->sockaddr_len;
490
491 err_bindx_add:
492 if (retval < 0) {
493 /* Failed. Cleanup the ones that have been added */
494 if (cnt > 0)
495 sctp_bindx_rem(sk, addrs, cnt);
496 return retval;
497 }
498 }
499
500 return retval;
501 }
502
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504 * associations that are part of the endpoint indicating that a list of local
505 * addresses are added to the endpoint.
506 *
507 * If any of the addresses is already in the bind address list of the
508 * association, we do not send the chunk for that association. But it will not
509 * affect other associations.
510 *
511 * Only sctp_setsockopt_bindx() is supposed to call this function.
512 */
513 static int sctp_send_asconf_add_ip(struct sock *sk,
514 struct sockaddr *addrs,
515 int addrcnt)
516 {
517 struct sctp_sock *sp;
518 struct sctp_endpoint *ep;
519 struct sctp_association *asoc;
520 struct sctp_bind_addr *bp;
521 struct sctp_chunk *chunk;
522 struct sctp_sockaddr_entry *laddr;
523 union sctp_addr *addr;
524 union sctp_addr saveaddr;
525 void *addr_buf;
526 struct sctp_af *af;
527 struct list_head *p;
528 int i;
529 int retval = 0;
530
531 if (!sctp_addip_enable)
532 return retval;
533
534 sp = sctp_sk(sk);
535 ep = sp->ep;
536
537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 __func__, sk, addrs, addrcnt);
539
540 list_for_each_entry(asoc, &ep->asocs, asocs) {
541
542 if (!asoc->peer.asconf_capable)
543 continue;
544
545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 continue;
547
548 if (!sctp_state(asoc, ESTABLISHED))
549 continue;
550
551 /* Check if any address in the packed array of addresses is
552 * in the bind address list of the association. If so,
553 * do not send the asconf chunk to its peer, but continue with
554 * other associations.
555 */
556 addr_buf = addrs;
557 for (i = 0; i < addrcnt; i++) {
558 addr = (union sctp_addr *)addr_buf;
559 af = sctp_get_af_specific(addr->v4.sin_family);
560 if (!af) {
561 retval = -EINVAL;
562 goto out;
563 }
564
565 if (sctp_assoc_lookup_laddr(asoc, addr))
566 break;
567
568 addr_buf += af->sockaddr_len;
569 }
570 if (i < addrcnt)
571 continue;
572
573 /* Use the first valid address in bind addr list of
574 * association as Address Parameter of ASCONF CHUNK.
575 */
576 bp = &asoc->base.bind_addr;
577 p = bp->address_list.next;
578 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 addrcnt, SCTP_PARAM_ADD_IP);
581 if (!chunk) {
582 retval = -ENOMEM;
583 goto out;
584 }
585
586 retval = sctp_send_asconf(asoc, chunk);
587 if (retval)
588 goto out;
589
590 /* Add the new addresses to the bind address list with
591 * use_as_src set to 0.
592 */
593 addr_buf = addrs;
594 for (i = 0; i < addrcnt; i++) {
595 addr = (union sctp_addr *)addr_buf;
596 af = sctp_get_af_specific(addr->v4.sin_family);
597 memcpy(&saveaddr, addr, af->sockaddr_len);
598 retval = sctp_add_bind_addr(bp, &saveaddr,
599 SCTP_ADDR_NEW, GFP_ATOMIC);
600 addr_buf += af->sockaddr_len;
601 }
602 }
603
604 out:
605 return retval;
606 }
607
608 /* Remove a list of addresses from bind addresses list. Do not remove the
609 * last address.
610 *
611 * Basically run through each address specified in the addrs/addrcnt
612 * array/length pair, determine if it is IPv6 or IPv4 and call
613 * sctp_del_bind() on it.
614 *
615 * If any of them fails, then the operation will be reversed and the
616 * ones that were removed will be added back.
617 *
618 * At least one address has to be left; if only one address is
619 * available, the operation will return -EBUSY.
620 *
621 * Only sctp_setsockopt_bindx() is supposed to call this function.
622 */
623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
624 {
625 struct sctp_sock *sp = sctp_sk(sk);
626 struct sctp_endpoint *ep = sp->ep;
627 int cnt;
628 struct sctp_bind_addr *bp = &ep->base.bind_addr;
629 int retval = 0;
630 void *addr_buf;
631 union sctp_addr *sa_addr;
632 struct sctp_af *af;
633
634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635 sk, addrs, addrcnt);
636
637 addr_buf = addrs;
638 for (cnt = 0; cnt < addrcnt; cnt++) {
639 /* If the bind address list is empty or if there is only one
640 * bind address, there is nothing more to be removed (we need
641 * at least one address here).
642 */
643 if (list_empty(&bp->address_list) ||
644 (sctp_list_single_entry(&bp->address_list))) {
645 retval = -EBUSY;
646 goto err_bindx_rem;
647 }
648
649 sa_addr = (union sctp_addr *)addr_buf;
650 af = sctp_get_af_specific(sa_addr->sa.sa_family);
651 if (!af) {
652 retval = -EINVAL;
653 goto err_bindx_rem;
654 }
655
656 if (!af->addr_valid(sa_addr, sp, NULL)) {
657 retval = -EADDRNOTAVAIL;
658 goto err_bindx_rem;
659 }
660
661 if (sa_addr->v4.sin_port &&
662 sa_addr->v4.sin_port != htons(bp->port)) {
663 retval = -EINVAL;
664 goto err_bindx_rem;
665 }
666
667 if (!sa_addr->v4.sin_port)
668 sa_addr->v4.sin_port = htons(bp->port);
669
670 /* FIXME - There is probably a need to check if sk->sk_saddr and
671 * sk->sk_rcv_addr are currently set to one of the addresses to
672 * be removed. This is something which needs to be looked into
673 * when we are fixing the outstanding issues with multi-homing
674 * socket routing and failover schemes. Refer to comments in
675 * sctp_do_bind(). -daisy
676 */
677 retval = sctp_del_bind_addr(bp, sa_addr);
678
679 addr_buf += af->sockaddr_len;
680 err_bindx_rem:
681 if (retval < 0) {
682 /* Failed. Add the ones that has been removed back */
683 if (cnt > 0)
684 sctp_bindx_add(sk, addrs, cnt);
685 return retval;
686 }
687 }
688
689 return retval;
690 }
691
692 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
693 * the associations that are part of the endpoint indicating that a list of
694 * local addresses are removed from the endpoint.
695 *
696 * If any of the addresses is already in the bind address list of the
697 * association, we do not send the chunk for that association. But it will not
698 * affect other associations.
699 *
700 * Only sctp_setsockopt_bindx() is supposed to call this function.
701 */
702 static int sctp_send_asconf_del_ip(struct sock *sk,
703 struct sockaddr *addrs,
704 int addrcnt)
705 {
706 struct sctp_sock *sp;
707 struct sctp_endpoint *ep;
708 struct sctp_association *asoc;
709 struct sctp_transport *transport;
710 struct sctp_bind_addr *bp;
711 struct sctp_chunk *chunk;
712 union sctp_addr *laddr;
713 void *addr_buf;
714 struct sctp_af *af;
715 struct sctp_sockaddr_entry *saddr;
716 int i;
717 int retval = 0;
718
719 if (!sctp_addip_enable)
720 return retval;
721
722 sp = sctp_sk(sk);
723 ep = sp->ep;
724
725 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
726 __func__, sk, addrs, addrcnt);
727
728 list_for_each_entry(asoc, &ep->asocs, asocs) {
729
730 if (!asoc->peer.asconf_capable)
731 continue;
732
733 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
734 continue;
735
736 if (!sctp_state(asoc, ESTABLISHED))
737 continue;
738
739 /* Check if any address in the packed array of addresses is
740 * not present in the bind address list of the association.
741 * If so, do not send the asconf chunk to its peer, but
742 * continue with other associations.
743 */
744 addr_buf = addrs;
745 for (i = 0; i < addrcnt; i++) {
746 laddr = (union sctp_addr *)addr_buf;
747 af = sctp_get_af_specific(laddr->v4.sin_family);
748 if (!af) {
749 retval = -EINVAL;
750 goto out;
751 }
752
753 if (!sctp_assoc_lookup_laddr(asoc, laddr))
754 break;
755
756 addr_buf += af->sockaddr_len;
757 }
758 if (i < addrcnt)
759 continue;
760
761 /* Find one address in the association's bind address list
762 * that is not in the packed array of addresses. This is to
763 * make sure that we do not delete all the addresses in the
764 * association.
765 */
766 bp = &asoc->base.bind_addr;
767 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
768 addrcnt, sp);
769 if (!laddr)
770 continue;
771
772 /* We do not need RCU protection throughout this loop
773 * because this is done under a socket lock from the
774 * setsockopt call.
775 */
776 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
777 SCTP_PARAM_DEL_IP);
778 if (!chunk) {
779 retval = -ENOMEM;
780 goto out;
781 }
782
783 /* Reset use_as_src flag for the addresses in the bind address
784 * list that are to be deleted.
785 */
786 addr_buf = addrs;
787 for (i = 0; i < addrcnt; i++) {
788 laddr = (union sctp_addr *)addr_buf;
789 af = sctp_get_af_specific(laddr->v4.sin_family);
790 list_for_each_entry(saddr, &bp->address_list, list) {
791 if (sctp_cmp_addr_exact(&saddr->a, laddr))
792 saddr->state = SCTP_ADDR_DEL;
793 }
794 addr_buf += af->sockaddr_len;
795 }
796
797 /* Update the route and saddr entries for all the transports
798 * as some of the addresses in the bind address list are
799 * about to be deleted and cannot be used as source addresses.
800 */
801 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
802 transports) {
803 dst_release(transport->dst);
804 sctp_transport_route(transport, NULL,
805 sctp_sk(asoc->base.sk));
806 }
807
808 retval = sctp_send_asconf(asoc, chunk);
809 }
810 out:
811 return retval;
812 }
813
814 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
815 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
816 {
817 struct sock *sk = sctp_opt2sk(sp);
818 union sctp_addr *addr;
819 struct sctp_af *af;
820
821 /* It is safe to write port space in caller. */
822 addr = &addrw->a;
823 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
824 af = sctp_get_af_specific(addr->sa.sa_family);
825 if (!af)
826 return -EINVAL;
827 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
828 return -EINVAL;
829
830 if (addrw->state == SCTP_ADDR_NEW)
831 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
832 else
833 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
834 }
835
836 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
837 *
838 * API 8.1
839 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
840 * int flags);
841 *
842 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
843 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
844 * or IPv6 addresses.
845 *
846 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
847 * Section 3.1.2 for this usage.
848 *
849 * addrs is a pointer to an array of one or more socket addresses. Each
850 * address is contained in its appropriate structure (i.e. struct
851 * sockaddr_in or struct sockaddr_in6) the family of the address type
852 * must be used to distinguish the address length (note that this
853 * representation is termed a "packed array" of addresses). The caller
854 * specifies the number of addresses in the array with addrcnt.
855 *
856 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
857 * -1, and sets errno to the appropriate error code.
858 *
859 * For SCTP, the port given in each socket address must be the same, or
860 * sctp_bindx() will fail, setting errno to EINVAL.
861 *
862 * The flags parameter is formed from the bitwise OR of zero or more of
863 * the following currently defined flags:
864 *
865 * SCTP_BINDX_ADD_ADDR
866 *
867 * SCTP_BINDX_REM_ADDR
868 *
869 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
870 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
871 * addresses from the association. The two flags are mutually exclusive;
872 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
873 * not remove all addresses from an association; sctp_bindx() will
874 * reject such an attempt with EINVAL.
875 *
876 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
877 * additional addresses with an endpoint after calling bind(). Or use
878 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
879 * socket is associated with so that no new association accepted will be
880 * associated with those addresses. If the endpoint supports dynamic
881 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
882 * endpoint to send the appropriate message to the peer to change the
883 * peers address lists.
884 *
885 * Adding and removing addresses from a connected association is
886 * optional functionality. Implementations that do not support this
887 * functionality should return EOPNOTSUPP.
888 *
889 * Basically do nothing but copying the addresses from user to kernel
890 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
891 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
892 * from userspace.
893 *
894 * We don't use copy_from_user() for optimization: we first do the
895 * sanity checks (buffer size -fast- and access check-healthy
896 * pointer); if all of those succeed, then we can alloc the memory
897 * (expensive operation) needed to copy the data to kernel. Then we do
898 * the copying without checking the user space area
899 * (__copy_from_user()).
900 *
901 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
902 * it.
903 *
904 * sk The sk of the socket
905 * addrs The pointer to the addresses in user land
906 * addrssize Size of the addrs buffer
907 * op Operation to perform (add or remove, see the flags of
908 * sctp_bindx)
909 *
910 * Returns 0 if ok, <0 errno code on error.
911 */
912 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
913 struct sockaddr __user *addrs,
914 int addrs_size, int op)
915 {
916 struct sockaddr *kaddrs;
917 int err;
918 int addrcnt = 0;
919 int walk_size = 0;
920 struct sockaddr *sa_addr;
921 void *addr_buf;
922 struct sctp_af *af;
923
924 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
925 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
926
927 if (unlikely(addrs_size <= 0))
928 return -EINVAL;
929
930 /* Check the user passed a healthy pointer. */
931 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
932 return -EFAULT;
933
934 /* Alloc space for the address array in kernel memory. */
935 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
936 if (unlikely(!kaddrs))
937 return -ENOMEM;
938
939 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
940 kfree(kaddrs);
941 return -EFAULT;
942 }
943
944 /* Walk through the addrs buffer and count the number of addresses. */
945 addr_buf = kaddrs;
946 while (walk_size < addrs_size) {
947 if (walk_size + sizeof(sa_family_t) > addrs_size) {
948 kfree(kaddrs);
949 return -EINVAL;
950 }
951
952 sa_addr = (struct sockaddr *)addr_buf;
953 af = sctp_get_af_specific(sa_addr->sa_family);
954
955 /* If the address family is not supported or if this address
956 * causes the address buffer to overflow return EINVAL.
957 */
958 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
959 kfree(kaddrs);
960 return -EINVAL;
961 }
962 addrcnt++;
963 addr_buf += af->sockaddr_len;
964 walk_size += af->sockaddr_len;
965 }
966
967 /* Do the work. */
968 switch (op) {
969 case SCTP_BINDX_ADD_ADDR:
970 err = sctp_bindx_add(sk, kaddrs, addrcnt);
971 if (err)
972 goto out;
973 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
974 break;
975
976 case SCTP_BINDX_REM_ADDR:
977 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
978 if (err)
979 goto out;
980 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
981 break;
982
983 default:
984 err = -EINVAL;
985 break;
986 }
987
988 out:
989 kfree(kaddrs);
990
991 return err;
992 }
993
994 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
995 *
996 * Common routine for handling connect() and sctp_connectx().
997 * Connect will come in with just a single address.
998 */
999 static int __sctp_connect(struct sock* sk,
1000 struct sockaddr *kaddrs,
1001 int addrs_size,
1002 sctp_assoc_t *assoc_id)
1003 {
1004 struct sctp_sock *sp;
1005 struct sctp_endpoint *ep;
1006 struct sctp_association *asoc = NULL;
1007 struct sctp_association *asoc2;
1008 struct sctp_transport *transport;
1009 union sctp_addr to;
1010 struct sctp_af *af;
1011 sctp_scope_t scope;
1012 long timeo;
1013 int err = 0;
1014 int addrcnt = 0;
1015 int walk_size = 0;
1016 union sctp_addr *sa_addr = NULL;
1017 void *addr_buf;
1018 unsigned short port;
1019 unsigned int f_flags = 0;
1020
1021 sp = sctp_sk(sk);
1022 ep = sp->ep;
1023
1024 /* connect() cannot be done on a socket that is already in ESTABLISHED
1025 * state - UDP-style peeled off socket or a TCP-style socket that
1026 * is already connected.
1027 * It cannot be done even on a TCP-style listening socket.
1028 */
1029 if (sctp_sstate(sk, ESTABLISHED) ||
1030 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1031 err = -EISCONN;
1032 goto out_free;
1033 }
1034
1035 /* Walk through the addrs buffer and count the number of addresses. */
1036 addr_buf = kaddrs;
1037 while (walk_size < addrs_size) {
1038 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1039 err = -EINVAL;
1040 goto out_free;
1041 }
1042
1043 sa_addr = (union sctp_addr *)addr_buf;
1044 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1045
1046 /* If the address family is not supported or if this address
1047 * causes the address buffer to overflow return EINVAL.
1048 */
1049 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1050 err = -EINVAL;
1051 goto out_free;
1052 }
1053
1054 port = ntohs(sa_addr->v4.sin_port);
1055
1056 /* Save current address so we can work with it */
1057 memcpy(&to, sa_addr, af->sockaddr_len);
1058
1059 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1060 if (err)
1061 goto out_free;
1062
1063 /* Make sure the destination port is correctly set
1064 * in all addresses.
1065 */
1066 if (asoc && asoc->peer.port && asoc->peer.port != port)
1067 goto out_free;
1068
1069
1070 /* Check if there already is a matching association on the
1071 * endpoint (other than the one created here).
1072 */
1073 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1074 if (asoc2 && asoc2 != asoc) {
1075 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1076 err = -EISCONN;
1077 else
1078 err = -EALREADY;
1079 goto out_free;
1080 }
1081
1082 /* If we could not find a matching association on the endpoint,
1083 * make sure that there is no peeled-off association matching
1084 * the peer address even on another socket.
1085 */
1086 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1087 err = -EADDRNOTAVAIL;
1088 goto out_free;
1089 }
1090
1091 if (!asoc) {
1092 /* If a bind() or sctp_bindx() is not called prior to
1093 * an sctp_connectx() call, the system picks an
1094 * ephemeral port and will choose an address set
1095 * equivalent to binding with a wildcard address.
1096 */
1097 if (!ep->base.bind_addr.port) {
1098 if (sctp_autobind(sk)) {
1099 err = -EAGAIN;
1100 goto out_free;
1101 }
1102 } else {
1103 /*
1104 * If an unprivileged user inherits a 1-many
1105 * style socket with open associations on a
1106 * privileged port, it MAY be permitted to
1107 * accept new associations, but it SHOULD NOT
1108 * be permitted to open new associations.
1109 */
1110 if (ep->base.bind_addr.port < PROT_SOCK &&
1111 !capable(CAP_NET_BIND_SERVICE)) {
1112 err = -EACCES;
1113 goto out_free;
1114 }
1115 }
1116
1117 scope = sctp_scope(&to);
1118 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1119 if (!asoc) {
1120 err = -ENOMEM;
1121 goto out_free;
1122 }
1123
1124 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1125 GFP_KERNEL);
1126 if (err < 0) {
1127 goto out_free;
1128 }
1129
1130 }
1131
1132 /* Prime the peer's transport structures. */
1133 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1134 SCTP_UNKNOWN);
1135 if (!transport) {
1136 err = -ENOMEM;
1137 goto out_free;
1138 }
1139
1140 addrcnt++;
1141 addr_buf += af->sockaddr_len;
1142 walk_size += af->sockaddr_len;
1143 }
1144
1145 /* In case the user of sctp_connectx() wants an association
1146 * id back, assign one now.
1147 */
1148 if (assoc_id) {
1149 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1150 if (err < 0)
1151 goto out_free;
1152 }
1153
1154 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1155 if (err < 0) {
1156 goto out_free;
1157 }
1158
1159 /* Initialize sk's dport and daddr for getpeername() */
1160 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1161 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1162 af->to_sk_daddr(sa_addr, sk);
1163 sk->sk_err = 0;
1164
1165 /* in-kernel sockets don't generally have a file allocated to them
1166 * if all they do is call sock_create_kern().
1167 */
1168 if (sk->sk_socket->file)
1169 f_flags = sk->sk_socket->file->f_flags;
1170
1171 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1172
1173 err = sctp_wait_for_connect(asoc, &timeo);
1174 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1175 *assoc_id = asoc->assoc_id;
1176
1177 /* Don't free association on exit. */
1178 asoc = NULL;
1179
1180 out_free:
1181
1182 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1183 " kaddrs: %p err: %d\n",
1184 asoc, kaddrs, err);
1185 if (asoc)
1186 sctp_association_free(asoc);
1187 return err;
1188 }
1189
1190 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1191 *
1192 * API 8.9
1193 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1194 * sctp_assoc_t *asoc);
1195 *
1196 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1197 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1198 * or IPv6 addresses.
1199 *
1200 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1201 * Section 3.1.2 for this usage.
1202 *
1203 * addrs is a pointer to an array of one or more socket addresses. Each
1204 * address is contained in its appropriate structure (i.e. struct
1205 * sockaddr_in or struct sockaddr_in6) the family of the address type
1206 * must be used to distengish the address length (note that this
1207 * representation is termed a "packed array" of addresses). The caller
1208 * specifies the number of addresses in the array with addrcnt.
1209 *
1210 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1211 * the association id of the new association. On failure, sctp_connectx()
1212 * returns -1, and sets errno to the appropriate error code. The assoc_id
1213 * is not touched by the kernel.
1214 *
1215 * For SCTP, the port given in each socket address must be the same, or
1216 * sctp_connectx() will fail, setting errno to EINVAL.
1217 *
1218 * An application can use sctp_connectx to initiate an association with
1219 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1220 * allows a caller to specify multiple addresses at which a peer can be
1221 * reached. The way the SCTP stack uses the list of addresses to set up
1222 * the association is implementation dependent. This function only
1223 * specifies that the stack will try to make use of all the addresses in
1224 * the list when needed.
1225 *
1226 * Note that the list of addresses passed in is only used for setting up
1227 * the association. It does not necessarily equal the set of addresses
1228 * the peer uses for the resulting association. If the caller wants to
1229 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1230 * retrieve them after the association has been set up.
1231 *
1232 * Basically do nothing but copying the addresses from user to kernel
1233 * land and invoking either sctp_connectx(). This is used for tunneling
1234 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1235 *
1236 * We don't use copy_from_user() for optimization: we first do the
1237 * sanity checks (buffer size -fast- and access check-healthy
1238 * pointer); if all of those succeed, then we can alloc the memory
1239 * (expensive operation) needed to copy the data to kernel. Then we do
1240 * the copying without checking the user space area
1241 * (__copy_from_user()).
1242 *
1243 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1244 * it.
1245 *
1246 * sk The sk of the socket
1247 * addrs The pointer to the addresses in user land
1248 * addrssize Size of the addrs buffer
1249 *
1250 * Returns >=0 if ok, <0 errno code on error.
1251 */
1252 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1253 struct sockaddr __user *addrs,
1254 int addrs_size,
1255 sctp_assoc_t *assoc_id)
1256 {
1257 int err = 0;
1258 struct sockaddr *kaddrs;
1259
1260 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1261 __func__, sk, addrs, addrs_size);
1262
1263 if (unlikely(addrs_size <= 0))
1264 return -EINVAL;
1265
1266 /* Check the user passed a healthy pointer. */
1267 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1268 return -EFAULT;
1269
1270 /* Alloc space for the address array in kernel memory. */
1271 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1272 if (unlikely(!kaddrs))
1273 return -ENOMEM;
1274
1275 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1276 err = -EFAULT;
1277 } else {
1278 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1279 }
1280
1281 kfree(kaddrs);
1282
1283 return err;
1284 }
1285
1286 /*
1287 * This is an older interface. It's kept for backward compatibility
1288 * to the option that doesn't provide association id.
1289 */
1290 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1291 struct sockaddr __user *addrs,
1292 int addrs_size)
1293 {
1294 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1295 }
1296
1297 /*
1298 * New interface for the API. The since the API is done with a socket
1299 * option, to make it simple we feed back the association id is as a return
1300 * indication to the call. Error is always negative and association id is
1301 * always positive.
1302 */
1303 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1304 struct sockaddr __user *addrs,
1305 int addrs_size)
1306 {
1307 sctp_assoc_t assoc_id = 0;
1308 int err = 0;
1309
1310 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1311
1312 if (err)
1313 return err;
1314 else
1315 return assoc_id;
1316 }
1317
1318 /*
1319 * New (hopefully final) interface for the API.
1320 * We use the sctp_getaddrs_old structure so that use-space library
1321 * can avoid any unnecessary allocations. The only defferent part
1322 * is that we store the actual length of the address buffer into the
1323 * addrs_num structure member. That way we can re-use the existing
1324 * code.
1325 */
1326 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1327 char __user *optval,
1328 int __user *optlen)
1329 {
1330 struct sctp_getaddrs_old param;
1331 sctp_assoc_t assoc_id = 0;
1332 int err = 0;
1333
1334 if (len < sizeof(param))
1335 return -EINVAL;
1336
1337 if (copy_from_user(&param, optval, sizeof(param)))
1338 return -EFAULT;
1339
1340 err = __sctp_setsockopt_connectx(sk,
1341 (struct sockaddr __user *)param.addrs,
1342 param.addr_num, &assoc_id);
1343
1344 if (err == 0 || err == -EINPROGRESS) {
1345 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1346 return -EFAULT;
1347 if (put_user(sizeof(assoc_id), optlen))
1348 return -EFAULT;
1349 }
1350
1351 return err;
1352 }
1353
1354 /* API 3.1.4 close() - UDP Style Syntax
1355 * Applications use close() to perform graceful shutdown (as described in
1356 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1357 * by a UDP-style socket.
1358 *
1359 * The syntax is
1360 *
1361 * ret = close(int sd);
1362 *
1363 * sd - the socket descriptor of the associations to be closed.
1364 *
1365 * To gracefully shutdown a specific association represented by the
1366 * UDP-style socket, an application should use the sendmsg() call,
1367 * passing no user data, but including the appropriate flag in the
1368 * ancillary data (see Section xxxx).
1369 *
1370 * If sd in the close() call is a branched-off socket representing only
1371 * one association, the shutdown is performed on that association only.
1372 *
1373 * 4.1.6 close() - TCP Style Syntax
1374 *
1375 * Applications use close() to gracefully close down an association.
1376 *
1377 * The syntax is:
1378 *
1379 * int close(int sd);
1380 *
1381 * sd - the socket descriptor of the association to be closed.
1382 *
1383 * After an application calls close() on a socket descriptor, no further
1384 * socket operations will succeed on that descriptor.
1385 *
1386 * API 7.1.4 SO_LINGER
1387 *
1388 * An application using the TCP-style socket can use this option to
1389 * perform the SCTP ABORT primitive. The linger option structure is:
1390 *
1391 * struct linger {
1392 * int l_onoff; // option on/off
1393 * int l_linger; // linger time
1394 * };
1395 *
1396 * To enable the option, set l_onoff to 1. If the l_linger value is set
1397 * to 0, calling close() is the same as the ABORT primitive. If the
1398 * value is set to a negative value, the setsockopt() call will return
1399 * an error. If the value is set to a positive value linger_time, the
1400 * close() can be blocked for at most linger_time ms. If the graceful
1401 * shutdown phase does not finish during this period, close() will
1402 * return but the graceful shutdown phase continues in the system.
1403 */
1404 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1405 {
1406 struct sctp_endpoint *ep;
1407 struct sctp_association *asoc;
1408 struct list_head *pos, *temp;
1409
1410 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1411
1412 sctp_lock_sock(sk);
1413 sk->sk_shutdown = SHUTDOWN_MASK;
1414 sk->sk_state = SCTP_SS_CLOSING;
1415
1416 ep = sctp_sk(sk)->ep;
1417
1418 /* Walk all associations on an endpoint. */
1419 list_for_each_safe(pos, temp, &ep->asocs) {
1420 asoc = list_entry(pos, struct sctp_association, asocs);
1421
1422 if (sctp_style(sk, TCP)) {
1423 /* A closed association can still be in the list if
1424 * it belongs to a TCP-style listening socket that is
1425 * not yet accepted. If so, free it. If not, send an
1426 * ABORT or SHUTDOWN based on the linger options.
1427 */
1428 if (sctp_state(asoc, CLOSED)) {
1429 sctp_unhash_established(asoc);
1430 sctp_association_free(asoc);
1431 continue;
1432 }
1433 }
1434
1435 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1436 struct sctp_chunk *chunk;
1437
1438 chunk = sctp_make_abort_user(asoc, NULL, 0);
1439 if (chunk)
1440 sctp_primitive_ABORT(asoc, chunk);
1441 } else
1442 sctp_primitive_SHUTDOWN(asoc, NULL);
1443 }
1444
1445 /* Clean up any skbs sitting on the receive queue. */
1446 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1447 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1448
1449 /* On a TCP-style socket, block for at most linger_time if set. */
1450 if (sctp_style(sk, TCP) && timeout)
1451 sctp_wait_for_close(sk, timeout);
1452
1453 /* This will run the backlog queue. */
1454 sctp_release_sock(sk);
1455
1456 /* Supposedly, no process has access to the socket, but
1457 * the net layers still may.
1458 */
1459 sctp_local_bh_disable();
1460 sctp_bh_lock_sock(sk);
1461
1462 /* Hold the sock, since sk_common_release() will put sock_put()
1463 * and we have just a little more cleanup.
1464 */
1465 sock_hold(sk);
1466 sk_common_release(sk);
1467
1468 sctp_bh_unlock_sock(sk);
1469 sctp_local_bh_enable();
1470
1471 sock_put(sk);
1472
1473 SCTP_DBG_OBJCNT_DEC(sock);
1474 }
1475
1476 /* Handle EPIPE error. */
1477 static int sctp_error(struct sock *sk, int flags, int err)
1478 {
1479 if (err == -EPIPE)
1480 err = sock_error(sk) ? : -EPIPE;
1481 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1482 send_sig(SIGPIPE, current, 0);
1483 return err;
1484 }
1485
1486 /* API 3.1.3 sendmsg() - UDP Style Syntax
1487 *
1488 * An application uses sendmsg() and recvmsg() calls to transmit data to
1489 * and receive data from its peer.
1490 *
1491 * ssize_t sendmsg(int socket, const struct msghdr *message,
1492 * int flags);
1493 *
1494 * socket - the socket descriptor of the endpoint.
1495 * message - pointer to the msghdr structure which contains a single
1496 * user message and possibly some ancillary data.
1497 *
1498 * See Section 5 for complete description of the data
1499 * structures.
1500 *
1501 * flags - flags sent or received with the user message, see Section
1502 * 5 for complete description of the flags.
1503 *
1504 * Note: This function could use a rewrite especially when explicit
1505 * connect support comes in.
1506 */
1507 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1508
1509 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1510
1511 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1512 struct msghdr *msg, size_t msg_len)
1513 {
1514 struct sctp_sock *sp;
1515 struct sctp_endpoint *ep;
1516 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1517 struct sctp_transport *transport, *chunk_tp;
1518 struct sctp_chunk *chunk;
1519 union sctp_addr to;
1520 struct sockaddr *msg_name = NULL;
1521 struct sctp_sndrcvinfo default_sinfo;
1522 struct sctp_sndrcvinfo *sinfo;
1523 struct sctp_initmsg *sinit;
1524 sctp_assoc_t associd = 0;
1525 sctp_cmsgs_t cmsgs = { NULL };
1526 int err;
1527 sctp_scope_t scope;
1528 long timeo;
1529 __u16 sinfo_flags = 0;
1530 struct sctp_datamsg *datamsg;
1531 int msg_flags = msg->msg_flags;
1532
1533 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1534 sk, msg, msg_len);
1535
1536 err = 0;
1537 sp = sctp_sk(sk);
1538 ep = sp->ep;
1539
1540 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1541
1542 /* We cannot send a message over a TCP-style listening socket. */
1543 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1544 err = -EPIPE;
1545 goto out_nounlock;
1546 }
1547
1548 /* Parse out the SCTP CMSGs. */
1549 err = sctp_msghdr_parse(msg, &cmsgs);
1550
1551 if (err) {
1552 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1553 goto out_nounlock;
1554 }
1555
1556 /* Fetch the destination address for this packet. This
1557 * address only selects the association--it is not necessarily
1558 * the address we will send to.
1559 * For a peeled-off socket, msg_name is ignored.
1560 */
1561 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1562 int msg_namelen = msg->msg_namelen;
1563
1564 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1565 msg_namelen);
1566 if (err)
1567 return err;
1568
1569 if (msg_namelen > sizeof(to))
1570 msg_namelen = sizeof(to);
1571 memcpy(&to, msg->msg_name, msg_namelen);
1572 msg_name = msg->msg_name;
1573 }
1574
1575 sinfo = cmsgs.info;
1576 sinit = cmsgs.init;
1577
1578 /* Did the user specify SNDRCVINFO? */
1579 if (sinfo) {
1580 sinfo_flags = sinfo->sinfo_flags;
1581 associd = sinfo->sinfo_assoc_id;
1582 }
1583
1584 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1585 msg_len, sinfo_flags);
1586
1587 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1588 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1589 err = -EINVAL;
1590 goto out_nounlock;
1591 }
1592
1593 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1594 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1595 * If SCTP_ABORT is set, the message length could be non zero with
1596 * the msg_iov set to the user abort reason.
1597 */
1598 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1599 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1600 err = -EINVAL;
1601 goto out_nounlock;
1602 }
1603
1604 /* If SCTP_ADDR_OVER is set, there must be an address
1605 * specified in msg_name.
1606 */
1607 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1608 err = -EINVAL;
1609 goto out_nounlock;
1610 }
1611
1612 transport = NULL;
1613
1614 SCTP_DEBUG_PRINTK("About to look up association.\n");
1615
1616 sctp_lock_sock(sk);
1617
1618 /* If a msg_name has been specified, assume this is to be used. */
1619 if (msg_name) {
1620 /* Look for a matching association on the endpoint. */
1621 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1622 if (!asoc) {
1623 /* If we could not find a matching association on the
1624 * endpoint, make sure that it is not a TCP-style
1625 * socket that already has an association or there is
1626 * no peeled-off association on another socket.
1627 */
1628 if ((sctp_style(sk, TCP) &&
1629 sctp_sstate(sk, ESTABLISHED)) ||
1630 sctp_endpoint_is_peeled_off(ep, &to)) {
1631 err = -EADDRNOTAVAIL;
1632 goto out_unlock;
1633 }
1634 }
1635 } else {
1636 asoc = sctp_id2assoc(sk, associd);
1637 if (!asoc) {
1638 err = -EPIPE;
1639 goto out_unlock;
1640 }
1641 }
1642
1643 if (asoc) {
1644 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1645
1646 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1647 * socket that has an association in CLOSED state. This can
1648 * happen when an accepted socket has an association that is
1649 * already CLOSED.
1650 */
1651 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1652 err = -EPIPE;
1653 goto out_unlock;
1654 }
1655
1656 if (sinfo_flags & SCTP_EOF) {
1657 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1658 asoc);
1659 sctp_primitive_SHUTDOWN(asoc, NULL);
1660 err = 0;
1661 goto out_unlock;
1662 }
1663 if (sinfo_flags & SCTP_ABORT) {
1664
1665 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1666 if (!chunk) {
1667 err = -ENOMEM;
1668 goto out_unlock;
1669 }
1670
1671 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1672 sctp_primitive_ABORT(asoc, chunk);
1673 err = 0;
1674 goto out_unlock;
1675 }
1676 }
1677
1678 /* Do we need to create the association? */
1679 if (!asoc) {
1680 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1681
1682 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1683 err = -EINVAL;
1684 goto out_unlock;
1685 }
1686
1687 /* Check for invalid stream against the stream counts,
1688 * either the default or the user specified stream counts.
1689 */
1690 if (sinfo) {
1691 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1692 /* Check against the defaults. */
1693 if (sinfo->sinfo_stream >=
1694 sp->initmsg.sinit_num_ostreams) {
1695 err = -EINVAL;
1696 goto out_unlock;
1697 }
1698 } else {
1699 /* Check against the requested. */
1700 if (sinfo->sinfo_stream >=
1701 sinit->sinit_num_ostreams) {
1702 err = -EINVAL;
1703 goto out_unlock;
1704 }
1705 }
1706 }
1707
1708 /*
1709 * API 3.1.2 bind() - UDP Style Syntax
1710 * If a bind() or sctp_bindx() is not called prior to a
1711 * sendmsg() call that initiates a new association, the
1712 * system picks an ephemeral port and will choose an address
1713 * set equivalent to binding with a wildcard address.
1714 */
1715 if (!ep->base.bind_addr.port) {
1716 if (sctp_autobind(sk)) {
1717 err = -EAGAIN;
1718 goto out_unlock;
1719 }
1720 } else {
1721 /*
1722 * If an unprivileged user inherits a one-to-many
1723 * style socket with open associations on a privileged
1724 * port, it MAY be permitted to accept new associations,
1725 * but it SHOULD NOT be permitted to open new
1726 * associations.
1727 */
1728 if (ep->base.bind_addr.port < PROT_SOCK &&
1729 !capable(CAP_NET_BIND_SERVICE)) {
1730 err = -EACCES;
1731 goto out_unlock;
1732 }
1733 }
1734
1735 scope = sctp_scope(&to);
1736 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1737 if (!new_asoc) {
1738 err = -ENOMEM;
1739 goto out_unlock;
1740 }
1741 asoc = new_asoc;
1742 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1743 if (err < 0) {
1744 err = -ENOMEM;
1745 goto out_free;
1746 }
1747
1748 /* If the SCTP_INIT ancillary data is specified, set all
1749 * the association init values accordingly.
1750 */
1751 if (sinit) {
1752 if (sinit->sinit_num_ostreams) {
1753 asoc->c.sinit_num_ostreams =
1754 sinit->sinit_num_ostreams;
1755 }
1756 if (sinit->sinit_max_instreams) {
1757 asoc->c.sinit_max_instreams =
1758 sinit->sinit_max_instreams;
1759 }
1760 if (sinit->sinit_max_attempts) {
1761 asoc->max_init_attempts
1762 = sinit->sinit_max_attempts;
1763 }
1764 if (sinit->sinit_max_init_timeo) {
1765 asoc->max_init_timeo =
1766 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1767 }
1768 }
1769
1770 /* Prime the peer's transport structures. */
1771 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1772 if (!transport) {
1773 err = -ENOMEM;
1774 goto out_free;
1775 }
1776 }
1777
1778 /* ASSERT: we have a valid association at this point. */
1779 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1780
1781 if (!sinfo) {
1782 /* If the user didn't specify SNDRCVINFO, make up one with
1783 * some defaults.
1784 */
1785 memset(&default_sinfo, 0, sizeof(default_sinfo));
1786 default_sinfo.sinfo_stream = asoc->default_stream;
1787 default_sinfo.sinfo_flags = asoc->default_flags;
1788 default_sinfo.sinfo_ppid = asoc->default_ppid;
1789 default_sinfo.sinfo_context = asoc->default_context;
1790 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1791 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1792 sinfo = &default_sinfo;
1793 }
1794
1795 /* API 7.1.7, the sndbuf size per association bounds the
1796 * maximum size of data that can be sent in a single send call.
1797 */
1798 if (msg_len > sk->sk_sndbuf) {
1799 err = -EMSGSIZE;
1800 goto out_free;
1801 }
1802
1803 if (asoc->pmtu_pending)
1804 sctp_assoc_pending_pmtu(asoc);
1805
1806 /* If fragmentation is disabled and the message length exceeds the
1807 * association fragmentation point, return EMSGSIZE. The I-D
1808 * does not specify what this error is, but this looks like
1809 * a great fit.
1810 */
1811 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1812 err = -EMSGSIZE;
1813 goto out_free;
1814 }
1815
1816 /* Check for invalid stream. */
1817 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1818 err = -EINVAL;
1819 goto out_free;
1820 }
1821
1822 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1823 if (!sctp_wspace(asoc)) {
1824 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1825 if (err)
1826 goto out_free;
1827 }
1828
1829 /* If an address is passed with the sendto/sendmsg call, it is used
1830 * to override the primary destination address in the TCP model, or
1831 * when SCTP_ADDR_OVER flag is set in the UDP model.
1832 */
1833 if ((sctp_style(sk, TCP) && msg_name) ||
1834 (sinfo_flags & SCTP_ADDR_OVER)) {
1835 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1836 if (!chunk_tp) {
1837 err = -EINVAL;
1838 goto out_free;
1839 }
1840 } else
1841 chunk_tp = NULL;
1842
1843 /* Auto-connect, if we aren't connected already. */
1844 if (sctp_state(asoc, CLOSED)) {
1845 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1846 if (err < 0)
1847 goto out_free;
1848 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1849 }
1850
1851 /* Break the message into multiple chunks of maximum size. */
1852 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1853 if (!datamsg) {
1854 err = -ENOMEM;
1855 goto out_free;
1856 }
1857
1858 /* Now send the (possibly) fragmented message. */
1859 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1860 sctp_chunk_hold(chunk);
1861
1862 /* Do accounting for the write space. */
1863 sctp_set_owner_w(chunk);
1864
1865 chunk->transport = chunk_tp;
1866 }
1867
1868 /* Send it to the lower layers. Note: all chunks
1869 * must either fail or succeed. The lower layer
1870 * works that way today. Keep it that way or this
1871 * breaks.
1872 */
1873 err = sctp_primitive_SEND(asoc, datamsg);
1874 /* Did the lower layer accept the chunk? */
1875 if (err)
1876 sctp_datamsg_free(datamsg);
1877 else
1878 sctp_datamsg_put(datamsg);
1879
1880 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1881
1882 if (err)
1883 goto out_free;
1884 else
1885 err = msg_len;
1886
1887 /* If we are already past ASSOCIATE, the lower
1888 * layers are responsible for association cleanup.
1889 */
1890 goto out_unlock;
1891
1892 out_free:
1893 if (new_asoc)
1894 sctp_association_free(asoc);
1895 out_unlock:
1896 sctp_release_sock(sk);
1897
1898 out_nounlock:
1899 return sctp_error(sk, msg_flags, err);
1900
1901 #if 0
1902 do_sock_err:
1903 if (msg_len)
1904 err = msg_len;
1905 else
1906 err = sock_error(sk);
1907 goto out;
1908
1909 do_interrupted:
1910 if (msg_len)
1911 err = msg_len;
1912 goto out;
1913 #endif /* 0 */
1914 }
1915
1916 /* This is an extended version of skb_pull() that removes the data from the
1917 * start of a skb even when data is spread across the list of skb's in the
1918 * frag_list. len specifies the total amount of data that needs to be removed.
1919 * when 'len' bytes could be removed from the skb, it returns 0.
1920 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1921 * could not be removed.
1922 */
1923 static int sctp_skb_pull(struct sk_buff *skb, int len)
1924 {
1925 struct sk_buff *list;
1926 int skb_len = skb_headlen(skb);
1927 int rlen;
1928
1929 if (len <= skb_len) {
1930 __skb_pull(skb, len);
1931 return 0;
1932 }
1933 len -= skb_len;
1934 __skb_pull(skb, skb_len);
1935
1936 skb_walk_frags(skb, list) {
1937 rlen = sctp_skb_pull(list, len);
1938 skb->len -= (len-rlen);
1939 skb->data_len -= (len-rlen);
1940
1941 if (!rlen)
1942 return 0;
1943
1944 len = rlen;
1945 }
1946
1947 return len;
1948 }
1949
1950 /* API 3.1.3 recvmsg() - UDP Style Syntax
1951 *
1952 * ssize_t recvmsg(int socket, struct msghdr *message,
1953 * int flags);
1954 *
1955 * socket - the socket descriptor of the endpoint.
1956 * message - pointer to the msghdr structure which contains a single
1957 * user message and possibly some ancillary data.
1958 *
1959 * See Section 5 for complete description of the data
1960 * structures.
1961 *
1962 * flags - flags sent or received with the user message, see Section
1963 * 5 for complete description of the flags.
1964 */
1965 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1966
1967 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1968 struct msghdr *msg, size_t len, int noblock,
1969 int flags, int *addr_len)
1970 {
1971 struct sctp_ulpevent *event = NULL;
1972 struct sctp_sock *sp = sctp_sk(sk);
1973 struct sk_buff *skb;
1974 int copied;
1975 int err = 0;
1976 int skb_len;
1977
1978 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1979 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1980 "len", len, "knoblauch", noblock,
1981 "flags", flags, "addr_len", addr_len);
1982
1983 sctp_lock_sock(sk);
1984
1985 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1986 err = -ENOTCONN;
1987 goto out;
1988 }
1989
1990 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1991 if (!skb)
1992 goto out;
1993
1994 /* Get the total length of the skb including any skb's in the
1995 * frag_list.
1996 */
1997 skb_len = skb->len;
1998
1999 copied = skb_len;
2000 if (copied > len)
2001 copied = len;
2002
2003 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2004
2005 event = sctp_skb2event(skb);
2006
2007 if (err)
2008 goto out_free;
2009
2010 sock_recv_ts_and_drops(msg, sk, skb);
2011 if (sctp_ulpevent_is_notification(event)) {
2012 msg->msg_flags |= MSG_NOTIFICATION;
2013 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2014 } else {
2015 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2016 }
2017
2018 /* Check if we allow SCTP_SNDRCVINFO. */
2019 if (sp->subscribe.sctp_data_io_event)
2020 sctp_ulpevent_read_sndrcvinfo(event, msg);
2021 #if 0
2022 /* FIXME: we should be calling IP/IPv6 layers. */
2023 if (sk->sk_protinfo.af_inet.cmsg_flags)
2024 ip_cmsg_recv(msg, skb);
2025 #endif
2026
2027 err = copied;
2028
2029 /* If skb's length exceeds the user's buffer, update the skb and
2030 * push it back to the receive_queue so that the next call to
2031 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2032 */
2033 if (skb_len > copied) {
2034 msg->msg_flags &= ~MSG_EOR;
2035 if (flags & MSG_PEEK)
2036 goto out_free;
2037 sctp_skb_pull(skb, copied);
2038 skb_queue_head(&sk->sk_receive_queue, skb);
2039
2040 /* When only partial message is copied to the user, increase
2041 * rwnd by that amount. If all the data in the skb is read,
2042 * rwnd is updated when the event is freed.
2043 */
2044 if (!sctp_ulpevent_is_notification(event))
2045 sctp_assoc_rwnd_increase(event->asoc, copied);
2046 goto out;
2047 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2048 (event->msg_flags & MSG_EOR))
2049 msg->msg_flags |= MSG_EOR;
2050 else
2051 msg->msg_flags &= ~MSG_EOR;
2052
2053 out_free:
2054 if (flags & MSG_PEEK) {
2055 /* Release the skb reference acquired after peeking the skb in
2056 * sctp_skb_recv_datagram().
2057 */
2058 kfree_skb(skb);
2059 } else {
2060 /* Free the event which includes releasing the reference to
2061 * the owner of the skb, freeing the skb and updating the
2062 * rwnd.
2063 */
2064 sctp_ulpevent_free(event);
2065 }
2066 out:
2067 sctp_release_sock(sk);
2068 return err;
2069 }
2070
2071 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2072 *
2073 * This option is a on/off flag. If enabled no SCTP message
2074 * fragmentation will be performed. Instead if a message being sent
2075 * exceeds the current PMTU size, the message will NOT be sent and
2076 * instead a error will be indicated to the user.
2077 */
2078 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2079 char __user *optval,
2080 unsigned int optlen)
2081 {
2082 int val;
2083
2084 if (optlen < sizeof(int))
2085 return -EINVAL;
2086
2087 if (get_user(val, (int __user *)optval))
2088 return -EFAULT;
2089
2090 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2091
2092 return 0;
2093 }
2094
2095 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2096 unsigned int optlen)
2097 {
2098 if (optlen > sizeof(struct sctp_event_subscribe))
2099 return -EINVAL;
2100 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2101 return -EFAULT;
2102 return 0;
2103 }
2104
2105 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2106 *
2107 * This socket option is applicable to the UDP-style socket only. When
2108 * set it will cause associations that are idle for more than the
2109 * specified number of seconds to automatically close. An association
2110 * being idle is defined an association that has NOT sent or received
2111 * user data. The special value of '0' indicates that no automatic
2112 * close of any associations should be performed. The option expects an
2113 * integer defining the number of seconds of idle time before an
2114 * association is closed.
2115 */
2116 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2117 unsigned int optlen)
2118 {
2119 struct sctp_sock *sp = sctp_sk(sk);
2120
2121 /* Applicable to UDP-style socket only */
2122 if (sctp_style(sk, TCP))
2123 return -EOPNOTSUPP;
2124 if (optlen != sizeof(int))
2125 return -EINVAL;
2126 if (copy_from_user(&sp->autoclose, optval, optlen))
2127 return -EFAULT;
2128 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2129 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2130
2131 return 0;
2132 }
2133
2134 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2135 *
2136 * Applications can enable or disable heartbeats for any peer address of
2137 * an association, modify an address's heartbeat interval, force a
2138 * heartbeat to be sent immediately, and adjust the address's maximum
2139 * number of retransmissions sent before an address is considered
2140 * unreachable. The following structure is used to access and modify an
2141 * address's parameters:
2142 *
2143 * struct sctp_paddrparams {
2144 * sctp_assoc_t spp_assoc_id;
2145 * struct sockaddr_storage spp_address;
2146 * uint32_t spp_hbinterval;
2147 * uint16_t spp_pathmaxrxt;
2148 * uint32_t spp_pathmtu;
2149 * uint32_t spp_sackdelay;
2150 * uint32_t spp_flags;
2151 * };
2152 *
2153 * spp_assoc_id - (one-to-many style socket) This is filled in the
2154 * application, and identifies the association for
2155 * this query.
2156 * spp_address - This specifies which address is of interest.
2157 * spp_hbinterval - This contains the value of the heartbeat interval,
2158 * in milliseconds. If a value of zero
2159 * is present in this field then no changes are to
2160 * be made to this parameter.
2161 * spp_pathmaxrxt - This contains the maximum number of
2162 * retransmissions before this address shall be
2163 * considered unreachable. If a value of zero
2164 * is present in this field then no changes are to
2165 * be made to this parameter.
2166 * spp_pathmtu - When Path MTU discovery is disabled the value
2167 * specified here will be the "fixed" path mtu.
2168 * Note that if the spp_address field is empty
2169 * then all associations on this address will
2170 * have this fixed path mtu set upon them.
2171 *
2172 * spp_sackdelay - When delayed sack is enabled, this value specifies
2173 * the number of milliseconds that sacks will be delayed
2174 * for. This value will apply to all addresses of an
2175 * association if the spp_address field is empty. Note
2176 * also, that if delayed sack is enabled and this
2177 * value is set to 0, no change is made to the last
2178 * recorded delayed sack timer value.
2179 *
2180 * spp_flags - These flags are used to control various features
2181 * on an association. The flag field may contain
2182 * zero or more of the following options.
2183 *
2184 * SPP_HB_ENABLE - Enable heartbeats on the
2185 * specified address. Note that if the address
2186 * field is empty all addresses for the association
2187 * have heartbeats enabled upon them.
2188 *
2189 * SPP_HB_DISABLE - Disable heartbeats on the
2190 * speicifed address. Note that if the address
2191 * field is empty all addresses for the association
2192 * will have their heartbeats disabled. Note also
2193 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2194 * mutually exclusive, only one of these two should
2195 * be specified. Enabling both fields will have
2196 * undetermined results.
2197 *
2198 * SPP_HB_DEMAND - Request a user initiated heartbeat
2199 * to be made immediately.
2200 *
2201 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2202 * heartbeat delayis to be set to the value of 0
2203 * milliseconds.
2204 *
2205 * SPP_PMTUD_ENABLE - This field will enable PMTU
2206 * discovery upon the specified address. Note that
2207 * if the address feild is empty then all addresses
2208 * on the association are effected.
2209 *
2210 * SPP_PMTUD_DISABLE - This field will disable PMTU
2211 * discovery upon the specified address. Note that
2212 * if the address feild is empty then all addresses
2213 * on the association are effected. Not also that
2214 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2215 * exclusive. Enabling both will have undetermined
2216 * results.
2217 *
2218 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2219 * on delayed sack. The time specified in spp_sackdelay
2220 * is used to specify the sack delay for this address. Note
2221 * that if spp_address is empty then all addresses will
2222 * enable delayed sack and take on the sack delay
2223 * value specified in spp_sackdelay.
2224 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2225 * off delayed sack. If the spp_address field is blank then
2226 * delayed sack is disabled for the entire association. Note
2227 * also that this field is mutually exclusive to
2228 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2229 * results.
2230 */
2231 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2232 struct sctp_transport *trans,
2233 struct sctp_association *asoc,
2234 struct sctp_sock *sp,
2235 int hb_change,
2236 int pmtud_change,
2237 int sackdelay_change)
2238 {
2239 int error;
2240
2241 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2242 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2243 if (error)
2244 return error;
2245 }
2246
2247 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2248 * this field is ignored. Note also that a value of zero indicates
2249 * the current setting should be left unchanged.
2250 */
2251 if (params->spp_flags & SPP_HB_ENABLE) {
2252
2253 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2254 * set. This lets us use 0 value when this flag
2255 * is set.
2256 */
2257 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2258 params->spp_hbinterval = 0;
2259
2260 if (params->spp_hbinterval ||
2261 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2262 if (trans) {
2263 trans->hbinterval =
2264 msecs_to_jiffies(params->spp_hbinterval);
2265 } else if (asoc) {
2266 asoc->hbinterval =
2267 msecs_to_jiffies(params->spp_hbinterval);
2268 } else {
2269 sp->hbinterval = params->spp_hbinterval;
2270 }
2271 }
2272 }
2273
2274 if (hb_change) {
2275 if (trans) {
2276 trans->param_flags =
2277 (trans->param_flags & ~SPP_HB) | hb_change;
2278 } else if (asoc) {
2279 asoc->param_flags =
2280 (asoc->param_flags & ~SPP_HB) | hb_change;
2281 } else {
2282 sp->param_flags =
2283 (sp->param_flags & ~SPP_HB) | hb_change;
2284 }
2285 }
2286
2287 /* When Path MTU discovery is disabled the value specified here will
2288 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2289 * include the flag SPP_PMTUD_DISABLE for this field to have any
2290 * effect).
2291 */
2292 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2293 if (trans) {
2294 trans->pathmtu = params->spp_pathmtu;
2295 sctp_assoc_sync_pmtu(asoc);
2296 } else if (asoc) {
2297 asoc->pathmtu = params->spp_pathmtu;
2298 sctp_frag_point(asoc, params->spp_pathmtu);
2299 } else {
2300 sp->pathmtu = params->spp_pathmtu;
2301 }
2302 }
2303
2304 if (pmtud_change) {
2305 if (trans) {
2306 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2307 (params->spp_flags & SPP_PMTUD_ENABLE);
2308 trans->param_flags =
2309 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2310 if (update) {
2311 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2312 sctp_assoc_sync_pmtu(asoc);
2313 }
2314 } else if (asoc) {
2315 asoc->param_flags =
2316 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2317 } else {
2318 sp->param_flags =
2319 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2320 }
2321 }
2322
2323 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2324 * value of this field is ignored. Note also that a value of zero
2325 * indicates the current setting should be left unchanged.
2326 */
2327 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2328 if (trans) {
2329 trans->sackdelay =
2330 msecs_to_jiffies(params->spp_sackdelay);
2331 } else if (asoc) {
2332 asoc->sackdelay =
2333 msecs_to_jiffies(params->spp_sackdelay);
2334 } else {
2335 sp->sackdelay = params->spp_sackdelay;
2336 }
2337 }
2338
2339 if (sackdelay_change) {
2340 if (trans) {
2341 trans->param_flags =
2342 (trans->param_flags & ~SPP_SACKDELAY) |
2343 sackdelay_change;
2344 } else if (asoc) {
2345 asoc->param_flags =
2346 (asoc->param_flags & ~SPP_SACKDELAY) |
2347 sackdelay_change;
2348 } else {
2349 sp->param_flags =
2350 (sp->param_flags & ~SPP_SACKDELAY) |
2351 sackdelay_change;
2352 }
2353 }
2354
2355 /* Note that a value of zero indicates the current setting should be
2356 left unchanged.
2357 */
2358 if (params->spp_pathmaxrxt) {
2359 if (trans) {
2360 trans->pathmaxrxt = params->spp_pathmaxrxt;
2361 } else if (asoc) {
2362 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2363 } else {
2364 sp->pathmaxrxt = params->spp_pathmaxrxt;
2365 }
2366 }
2367
2368 return 0;
2369 }
2370
2371 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2372 char __user *optval,
2373 unsigned int optlen)
2374 {
2375 struct sctp_paddrparams params;
2376 struct sctp_transport *trans = NULL;
2377 struct sctp_association *asoc = NULL;
2378 struct sctp_sock *sp = sctp_sk(sk);
2379 int error;
2380 int hb_change, pmtud_change, sackdelay_change;
2381
2382 if (optlen != sizeof(struct sctp_paddrparams))
2383 return - EINVAL;
2384
2385 if (copy_from_user(&params, optval, optlen))
2386 return -EFAULT;
2387
2388 /* Validate flags and value parameters. */
2389 hb_change = params.spp_flags & SPP_HB;
2390 pmtud_change = params.spp_flags & SPP_PMTUD;
2391 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2392
2393 if (hb_change == SPP_HB ||
2394 pmtud_change == SPP_PMTUD ||
2395 sackdelay_change == SPP_SACKDELAY ||
2396 params.spp_sackdelay > 500 ||
2397 (params.spp_pathmtu &&
2398 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2399 return -EINVAL;
2400
2401 /* If an address other than INADDR_ANY is specified, and
2402 * no transport is found, then the request is invalid.
2403 */
2404 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2405 trans = sctp_addr_id2transport(sk, &params.spp_address,
2406 params.spp_assoc_id);
2407 if (!trans)
2408 return -EINVAL;
2409 }
2410
2411 /* Get association, if assoc_id != 0 and the socket is a one
2412 * to many style socket, and an association was not found, then
2413 * the id was invalid.
2414 */
2415 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2416 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2417 return -EINVAL;
2418
2419 /* Heartbeat demand can only be sent on a transport or
2420 * association, but not a socket.
2421 */
2422 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2423 return -EINVAL;
2424
2425 /* Process parameters. */
2426 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2427 hb_change, pmtud_change,
2428 sackdelay_change);
2429
2430 if (error)
2431 return error;
2432
2433 /* If changes are for association, also apply parameters to each
2434 * transport.
2435 */
2436 if (!trans && asoc) {
2437 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2438 transports) {
2439 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2440 hb_change, pmtud_change,
2441 sackdelay_change);
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 /*
2449 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2450 *
2451 * This option will effect the way delayed acks are performed. This
2452 * option allows you to get or set the delayed ack time, in
2453 * milliseconds. It also allows changing the delayed ack frequency.
2454 * Changing the frequency to 1 disables the delayed sack algorithm. If
2455 * the assoc_id is 0, then this sets or gets the endpoints default
2456 * values. If the assoc_id field is non-zero, then the set or get
2457 * effects the specified association for the one to many model (the
2458 * assoc_id field is ignored by the one to one model). Note that if
2459 * sack_delay or sack_freq are 0 when setting this option, then the
2460 * current values will remain unchanged.
2461 *
2462 * struct sctp_sack_info {
2463 * sctp_assoc_t sack_assoc_id;
2464 * uint32_t sack_delay;
2465 * uint32_t sack_freq;
2466 * };
2467 *
2468 * sack_assoc_id - This parameter, indicates which association the user
2469 * is performing an action upon. Note that if this field's value is
2470 * zero then the endpoints default value is changed (effecting future
2471 * associations only).
2472 *
2473 * sack_delay - This parameter contains the number of milliseconds that
2474 * the user is requesting the delayed ACK timer be set to. Note that
2475 * this value is defined in the standard to be between 200 and 500
2476 * milliseconds.
2477 *
2478 * sack_freq - This parameter contains the number of packets that must
2479 * be received before a sack is sent without waiting for the delay
2480 * timer to expire. The default value for this is 2, setting this
2481 * value to 1 will disable the delayed sack algorithm.
2482 */
2483
2484 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2485 char __user *optval, unsigned int optlen)
2486 {
2487 struct sctp_sack_info params;
2488 struct sctp_transport *trans = NULL;
2489 struct sctp_association *asoc = NULL;
2490 struct sctp_sock *sp = sctp_sk(sk);
2491
2492 if (optlen == sizeof(struct sctp_sack_info)) {
2493 if (copy_from_user(&params, optval, optlen))
2494 return -EFAULT;
2495
2496 if (params.sack_delay == 0 && params.sack_freq == 0)
2497 return 0;
2498 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2499 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2500 pr_warn("Use struct sctp_sack_info instead\n");
2501 if (copy_from_user(&params, optval, optlen))
2502 return -EFAULT;
2503
2504 if (params.sack_delay == 0)
2505 params.sack_freq = 1;
2506 else
2507 params.sack_freq = 0;
2508 } else
2509 return - EINVAL;
2510
2511 /* Validate value parameter. */
2512 if (params.sack_delay > 500)
2513 return -EINVAL;
2514
2515 /* Get association, if sack_assoc_id != 0 and the socket is a one
2516 * to many style socket, and an association was not found, then
2517 * the id was invalid.
2518 */
2519 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2520 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2521 return -EINVAL;
2522
2523 if (params.sack_delay) {
2524 if (asoc) {
2525 asoc->sackdelay =
2526 msecs_to_jiffies(params.sack_delay);
2527 asoc->param_flags =
2528 (asoc->param_flags & ~SPP_SACKDELAY) |
2529 SPP_SACKDELAY_ENABLE;
2530 } else {
2531 sp->sackdelay = params.sack_delay;
2532 sp->param_flags =
2533 (sp->param_flags & ~SPP_SACKDELAY) |
2534 SPP_SACKDELAY_ENABLE;
2535 }
2536 }
2537
2538 if (params.sack_freq == 1) {
2539 if (asoc) {
2540 asoc->param_flags =
2541 (asoc->param_flags & ~SPP_SACKDELAY) |
2542 SPP_SACKDELAY_DISABLE;
2543 } else {
2544 sp->param_flags =
2545 (sp->param_flags & ~SPP_SACKDELAY) |
2546 SPP_SACKDELAY_DISABLE;
2547 }
2548 } else if (params.sack_freq > 1) {
2549 if (asoc) {
2550 asoc->sackfreq = params.sack_freq;
2551 asoc->param_flags =
2552 (asoc->param_flags & ~SPP_SACKDELAY) |
2553 SPP_SACKDELAY_ENABLE;
2554 } else {
2555 sp->sackfreq = params.sack_freq;
2556 sp->param_flags =
2557 (sp->param_flags & ~SPP_SACKDELAY) |
2558 SPP_SACKDELAY_ENABLE;
2559 }
2560 }
2561
2562 /* If change is for association, also apply to each transport. */
2563 if (asoc) {
2564 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2565 transports) {
2566 if (params.sack_delay) {
2567 trans->sackdelay =
2568 msecs_to_jiffies(params.sack_delay);
2569 trans->param_flags =
2570 (trans->param_flags & ~SPP_SACKDELAY) |
2571 SPP_SACKDELAY_ENABLE;
2572 }
2573 if (params.sack_freq == 1) {
2574 trans->param_flags =
2575 (trans->param_flags & ~SPP_SACKDELAY) |
2576 SPP_SACKDELAY_DISABLE;
2577 } else if (params.sack_freq > 1) {
2578 trans->sackfreq = params.sack_freq;
2579 trans->param_flags =
2580 (trans->param_flags & ~SPP_SACKDELAY) |
2581 SPP_SACKDELAY_ENABLE;
2582 }
2583 }
2584 }
2585
2586 return 0;
2587 }
2588
2589 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2590 *
2591 * Applications can specify protocol parameters for the default association
2592 * initialization. The option name argument to setsockopt() and getsockopt()
2593 * is SCTP_INITMSG.
2594 *
2595 * Setting initialization parameters is effective only on an unconnected
2596 * socket (for UDP-style sockets only future associations are effected
2597 * by the change). With TCP-style sockets, this option is inherited by
2598 * sockets derived from a listener socket.
2599 */
2600 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2601 {
2602 struct sctp_initmsg sinit;
2603 struct sctp_sock *sp = sctp_sk(sk);
2604
2605 if (optlen != sizeof(struct sctp_initmsg))
2606 return -EINVAL;
2607 if (copy_from_user(&sinit, optval, optlen))
2608 return -EFAULT;
2609
2610 if (sinit.sinit_num_ostreams)
2611 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2612 if (sinit.sinit_max_instreams)
2613 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2614 if (sinit.sinit_max_attempts)
2615 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2616 if (sinit.sinit_max_init_timeo)
2617 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2618
2619 return 0;
2620 }
2621
2622 /*
2623 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2624 *
2625 * Applications that wish to use the sendto() system call may wish to
2626 * specify a default set of parameters that would normally be supplied
2627 * through the inclusion of ancillary data. This socket option allows
2628 * such an application to set the default sctp_sndrcvinfo structure.
2629 * The application that wishes to use this socket option simply passes
2630 * in to this call the sctp_sndrcvinfo structure defined in Section
2631 * 5.2.2) The input parameters accepted by this call include
2632 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2633 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2634 * to this call if the caller is using the UDP model.
2635 */
2636 static int sctp_setsockopt_default_send_param(struct sock *sk,
2637 char __user *optval,
2638 unsigned int optlen)
2639 {
2640 struct sctp_sndrcvinfo info;
2641 struct sctp_association *asoc;
2642 struct sctp_sock *sp = sctp_sk(sk);
2643
2644 if (optlen != sizeof(struct sctp_sndrcvinfo))
2645 return -EINVAL;
2646 if (copy_from_user(&info, optval, optlen))
2647 return -EFAULT;
2648
2649 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2650 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2651 return -EINVAL;
2652
2653 if (asoc) {
2654 asoc->default_stream = info.sinfo_stream;
2655 asoc->default_flags = info.sinfo_flags;
2656 asoc->default_ppid = info.sinfo_ppid;
2657 asoc->default_context = info.sinfo_context;
2658 asoc->default_timetolive = info.sinfo_timetolive;
2659 } else {
2660 sp->default_stream = info.sinfo_stream;
2661 sp->default_flags = info.sinfo_flags;
2662 sp->default_ppid = info.sinfo_ppid;
2663 sp->default_context = info.sinfo_context;
2664 sp->default_timetolive = info.sinfo_timetolive;
2665 }
2666
2667 return 0;
2668 }
2669
2670 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2671 *
2672 * Requests that the local SCTP stack use the enclosed peer address as
2673 * the association primary. The enclosed address must be one of the
2674 * association peer's addresses.
2675 */
2676 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2677 unsigned int optlen)
2678 {
2679 struct sctp_prim prim;
2680 struct sctp_transport *trans;
2681
2682 if (optlen != sizeof(struct sctp_prim))
2683 return -EINVAL;
2684
2685 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2686 return -EFAULT;
2687
2688 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2689 if (!trans)
2690 return -EINVAL;
2691
2692 sctp_assoc_set_primary(trans->asoc, trans);
2693
2694 return 0;
2695 }
2696
2697 /*
2698 * 7.1.5 SCTP_NODELAY
2699 *
2700 * Turn on/off any Nagle-like algorithm. This means that packets are
2701 * generally sent as soon as possible and no unnecessary delays are
2702 * introduced, at the cost of more packets in the network. Expects an
2703 * integer boolean flag.
2704 */
2705 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2706 unsigned int optlen)
2707 {
2708 int val;
2709
2710 if (optlen < sizeof(int))
2711 return -EINVAL;
2712 if (get_user(val, (int __user *)optval))
2713 return -EFAULT;
2714
2715 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2716 return 0;
2717 }
2718
2719 /*
2720 *
2721 * 7.1.1 SCTP_RTOINFO
2722 *
2723 * The protocol parameters used to initialize and bound retransmission
2724 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2725 * and modify these parameters.
2726 * All parameters are time values, in milliseconds. A value of 0, when
2727 * modifying the parameters, indicates that the current value should not
2728 * be changed.
2729 *
2730 */
2731 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2732 {
2733 struct sctp_rtoinfo rtoinfo;
2734 struct sctp_association *asoc;
2735
2736 if (optlen != sizeof (struct sctp_rtoinfo))
2737 return -EINVAL;
2738
2739 if (copy_from_user(&rtoinfo, optval, optlen))
2740 return -EFAULT;
2741
2742 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2743
2744 /* Set the values to the specific association */
2745 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2746 return -EINVAL;
2747
2748 if (asoc) {
2749 if (rtoinfo.srto_initial != 0)
2750 asoc->rto_initial =
2751 msecs_to_jiffies(rtoinfo.srto_initial);
2752 if (rtoinfo.srto_max != 0)
2753 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2754 if (rtoinfo.srto_min != 0)
2755 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2756 } else {
2757 /* If there is no association or the association-id = 0
2758 * set the values to the endpoint.
2759 */
2760 struct sctp_sock *sp = sctp_sk(sk);
2761
2762 if (rtoinfo.srto_initial != 0)
2763 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2764 if (rtoinfo.srto_max != 0)
2765 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2766 if (rtoinfo.srto_min != 0)
2767 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2768 }
2769
2770 return 0;
2771 }
2772
2773 /*
2774 *
2775 * 7.1.2 SCTP_ASSOCINFO
2776 *
2777 * This option is used to tune the maximum retransmission attempts
2778 * of the association.
2779 * Returns an error if the new association retransmission value is
2780 * greater than the sum of the retransmission value of the peer.
2781 * See [SCTP] for more information.
2782 *
2783 */
2784 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2785 {
2786
2787 struct sctp_assocparams assocparams;
2788 struct sctp_association *asoc;
2789
2790 if (optlen != sizeof(struct sctp_assocparams))
2791 return -EINVAL;
2792 if (copy_from_user(&assocparams, optval, optlen))
2793 return -EFAULT;
2794
2795 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2796
2797 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2798 return -EINVAL;
2799
2800 /* Set the values to the specific association */
2801 if (asoc) {
2802 if (assocparams.sasoc_asocmaxrxt != 0) {
2803 __u32 path_sum = 0;
2804 int paths = 0;
2805 struct sctp_transport *peer_addr;
2806
2807 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2808 transports) {
2809 path_sum += peer_addr->pathmaxrxt;
2810 paths++;
2811 }
2812
2813 /* Only validate asocmaxrxt if we have more than
2814 * one path/transport. We do this because path
2815 * retransmissions are only counted when we have more
2816 * then one path.
2817 */
2818 if (paths > 1 &&
2819 assocparams.sasoc_asocmaxrxt > path_sum)
2820 return -EINVAL;
2821
2822 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2823 }
2824
2825 if (assocparams.sasoc_cookie_life != 0) {
2826 asoc->cookie_life.tv_sec =
2827 assocparams.sasoc_cookie_life / 1000;
2828 asoc->cookie_life.tv_usec =
2829 (assocparams.sasoc_cookie_life % 1000)
2830 * 1000;
2831 }
2832 } else {
2833 /* Set the values to the endpoint */
2834 struct sctp_sock *sp = sctp_sk(sk);
2835
2836 if (assocparams.sasoc_asocmaxrxt != 0)
2837 sp->assocparams.sasoc_asocmaxrxt =
2838 assocparams.sasoc_asocmaxrxt;
2839 if (assocparams.sasoc_cookie_life != 0)
2840 sp->assocparams.sasoc_cookie_life =
2841 assocparams.sasoc_cookie_life;
2842 }
2843 return 0;
2844 }
2845
2846 /*
2847 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2848 *
2849 * This socket option is a boolean flag which turns on or off mapped V4
2850 * addresses. If this option is turned on and the socket is type
2851 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2852 * If this option is turned off, then no mapping will be done of V4
2853 * addresses and a user will receive both PF_INET6 and PF_INET type
2854 * addresses on the socket.
2855 */
2856 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2857 {
2858 int val;
2859 struct sctp_sock *sp = sctp_sk(sk);
2860
2861 if (optlen < sizeof(int))
2862 return -EINVAL;
2863 if (get_user(val, (int __user *)optval))
2864 return -EFAULT;
2865 if (val)
2866 sp->v4mapped = 1;
2867 else
2868 sp->v4mapped = 0;
2869
2870 return 0;
2871 }
2872
2873 /*
2874 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2875 * This option will get or set the maximum size to put in any outgoing
2876 * SCTP DATA chunk. If a message is larger than this size it will be
2877 * fragmented by SCTP into the specified size. Note that the underlying
2878 * SCTP implementation may fragment into smaller sized chunks when the
2879 * PMTU of the underlying association is smaller than the value set by
2880 * the user. The default value for this option is '0' which indicates
2881 * the user is NOT limiting fragmentation and only the PMTU will effect
2882 * SCTP's choice of DATA chunk size. Note also that values set larger
2883 * than the maximum size of an IP datagram will effectively let SCTP
2884 * control fragmentation (i.e. the same as setting this option to 0).
2885 *
2886 * The following structure is used to access and modify this parameter:
2887 *
2888 * struct sctp_assoc_value {
2889 * sctp_assoc_t assoc_id;
2890 * uint32_t assoc_value;
2891 * };
2892 *
2893 * assoc_id: This parameter is ignored for one-to-one style sockets.
2894 * For one-to-many style sockets this parameter indicates which
2895 * association the user is performing an action upon. Note that if
2896 * this field's value is zero then the endpoints default value is
2897 * changed (effecting future associations only).
2898 * assoc_value: This parameter specifies the maximum size in bytes.
2899 */
2900 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2901 {
2902 struct sctp_assoc_value params;
2903 struct sctp_association *asoc;
2904 struct sctp_sock *sp = sctp_sk(sk);
2905 int val;
2906
2907 if (optlen == sizeof(int)) {
2908 pr_warn("Use of int in maxseg socket option deprecated\n");
2909 pr_warn("Use struct sctp_assoc_value instead\n");
2910 if (copy_from_user(&val, optval, optlen))
2911 return -EFAULT;
2912 params.assoc_id = 0;
2913 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2914 if (copy_from_user(&params, optval, optlen))
2915 return -EFAULT;
2916 val = params.assoc_value;
2917 } else
2918 return -EINVAL;
2919
2920 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2921 return -EINVAL;
2922
2923 asoc = sctp_id2assoc(sk, params.assoc_id);
2924 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2925 return -EINVAL;
2926
2927 if (asoc) {
2928 if (val == 0) {
2929 val = asoc->pathmtu;
2930 val -= sp->pf->af->net_header_len;
2931 val -= sizeof(struct sctphdr) +
2932 sizeof(struct sctp_data_chunk);
2933 }
2934 asoc->user_frag = val;
2935 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2936 } else {
2937 sp->user_frag = val;
2938 }
2939
2940 return 0;
2941 }
2942
2943
2944 /*
2945 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2946 *
2947 * Requests that the peer mark the enclosed address as the association
2948 * primary. The enclosed address must be one of the association's
2949 * locally bound addresses. The following structure is used to make a
2950 * set primary request:
2951 */
2952 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2953 unsigned int optlen)
2954 {
2955 struct sctp_sock *sp;
2956 struct sctp_association *asoc = NULL;
2957 struct sctp_setpeerprim prim;
2958 struct sctp_chunk *chunk;
2959 struct sctp_af *af;
2960 int err;
2961
2962 sp = sctp_sk(sk);
2963
2964 if (!sctp_addip_enable)
2965 return -EPERM;
2966
2967 if (optlen != sizeof(struct sctp_setpeerprim))
2968 return -EINVAL;
2969
2970 if (copy_from_user(&prim, optval, optlen))
2971 return -EFAULT;
2972
2973 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2974 if (!asoc)
2975 return -EINVAL;
2976
2977 if (!asoc->peer.asconf_capable)
2978 return -EPERM;
2979
2980 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2981 return -EPERM;
2982
2983 if (!sctp_state(asoc, ESTABLISHED))
2984 return -ENOTCONN;
2985
2986 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
2987 if (!af)
2988 return -EINVAL;
2989
2990 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
2991 return -EADDRNOTAVAIL;
2992
2993 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2994 return -EADDRNOTAVAIL;
2995
2996 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2997 chunk = sctp_make_asconf_set_prim(asoc,
2998 (union sctp_addr *)&prim.sspp_addr);
2999 if (!chunk)
3000 return -ENOMEM;
3001
3002 err = sctp_send_asconf(asoc, chunk);
3003
3004 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3005
3006 return err;
3007 }
3008
3009 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3010 unsigned int optlen)
3011 {
3012 struct sctp_setadaptation adaptation;
3013
3014 if (optlen != sizeof(struct sctp_setadaptation))
3015 return -EINVAL;
3016 if (copy_from_user(&adaptation, optval, optlen))
3017 return -EFAULT;
3018
3019 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3020
3021 return 0;
3022 }
3023
3024 /*
3025 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3026 *
3027 * The context field in the sctp_sndrcvinfo structure is normally only
3028 * used when a failed message is retrieved holding the value that was
3029 * sent down on the actual send call. This option allows the setting of
3030 * a default context on an association basis that will be received on
3031 * reading messages from the peer. This is especially helpful in the
3032 * one-2-many model for an application to keep some reference to an
3033 * internal state machine that is processing messages on the
3034 * association. Note that the setting of this value only effects
3035 * received messages from the peer and does not effect the value that is
3036 * saved with outbound messages.
3037 */
3038 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3039 unsigned int optlen)
3040 {
3041 struct sctp_assoc_value params;
3042 struct sctp_sock *sp;
3043 struct sctp_association *asoc;
3044
3045 if (optlen != sizeof(struct sctp_assoc_value))
3046 return -EINVAL;
3047 if (copy_from_user(&params, optval, optlen))
3048 return -EFAULT;
3049
3050 sp = sctp_sk(sk);
3051
3052 if (params.assoc_id != 0) {
3053 asoc = sctp_id2assoc(sk, params.assoc_id);
3054 if (!asoc)
3055 return -EINVAL;
3056 asoc->default_rcv_context = params.assoc_value;
3057 } else {
3058 sp->default_rcv_context = params.assoc_value;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /*
3065 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3066 *
3067 * This options will at a minimum specify if the implementation is doing
3068 * fragmented interleave. Fragmented interleave, for a one to many
3069 * socket, is when subsequent calls to receive a message may return
3070 * parts of messages from different associations. Some implementations
3071 * may allow you to turn this value on or off. If so, when turned off,
3072 * no fragment interleave will occur (which will cause a head of line
3073 * blocking amongst multiple associations sharing the same one to many
3074 * socket). When this option is turned on, then each receive call may
3075 * come from a different association (thus the user must receive data
3076 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3077 * association each receive belongs to.
3078 *
3079 * This option takes a boolean value. A non-zero value indicates that
3080 * fragmented interleave is on. A value of zero indicates that
3081 * fragmented interleave is off.
3082 *
3083 * Note that it is important that an implementation that allows this
3084 * option to be turned on, have it off by default. Otherwise an unaware
3085 * application using the one to many model may become confused and act
3086 * incorrectly.
3087 */
3088 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3089 char __user *optval,
3090 unsigned int optlen)
3091 {
3092 int val;
3093
3094 if (optlen != sizeof(int))
3095 return -EINVAL;
3096 if (get_user(val, (int __user *)optval))
3097 return -EFAULT;
3098
3099 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3100
3101 return 0;
3102 }
3103
3104 /*
3105 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3106 * (SCTP_PARTIAL_DELIVERY_POINT)
3107 *
3108 * This option will set or get the SCTP partial delivery point. This
3109 * point is the size of a message where the partial delivery API will be
3110 * invoked to help free up rwnd space for the peer. Setting this to a
3111 * lower value will cause partial deliveries to happen more often. The
3112 * calls argument is an integer that sets or gets the partial delivery
3113 * point. Note also that the call will fail if the user attempts to set
3114 * this value larger than the socket receive buffer size.
3115 *
3116 * Note that any single message having a length smaller than or equal to
3117 * the SCTP partial delivery point will be delivered in one single read
3118 * call as long as the user provided buffer is large enough to hold the
3119 * message.
3120 */
3121 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3122 char __user *optval,
3123 unsigned int optlen)
3124 {
3125 u32 val;
3126
3127 if (optlen != sizeof(u32))
3128 return -EINVAL;
3129 if (get_user(val, (int __user *)optval))
3130 return -EFAULT;
3131
3132 /* Note: We double the receive buffer from what the user sets
3133 * it to be, also initial rwnd is based on rcvbuf/2.
3134 */
3135 if (val > (sk->sk_rcvbuf >> 1))
3136 return -EINVAL;
3137
3138 sctp_sk(sk)->pd_point = val;
3139
3140 return 0; /* is this the right error code? */
3141 }
3142
3143 /*
3144 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3145 *
3146 * This option will allow a user to change the maximum burst of packets
3147 * that can be emitted by this association. Note that the default value
3148 * is 4, and some implementations may restrict this setting so that it
3149 * can only be lowered.
3150 *
3151 * NOTE: This text doesn't seem right. Do this on a socket basis with
3152 * future associations inheriting the socket value.
3153 */
3154 static int sctp_setsockopt_maxburst(struct sock *sk,
3155 char __user *optval,
3156 unsigned int optlen)
3157 {
3158 struct sctp_assoc_value params;
3159 struct sctp_sock *sp;
3160 struct sctp_association *asoc;
3161 int val;
3162 int assoc_id = 0;
3163
3164 if (optlen == sizeof(int)) {
3165 pr_warn("Use of int in max_burst socket option deprecated\n");
3166 pr_warn("Use struct sctp_assoc_value instead\n");
3167 if (copy_from_user(&val, optval, optlen))
3168 return -EFAULT;
3169 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3170 if (copy_from_user(&params, optval, optlen))
3171 return -EFAULT;
3172 val = params.assoc_value;
3173 assoc_id = params.assoc_id;
3174 } else
3175 return -EINVAL;
3176
3177 sp = sctp_sk(sk);
3178
3179 if (assoc_id != 0) {
3180 asoc = sctp_id2assoc(sk, assoc_id);
3181 if (!asoc)
3182 return -EINVAL;
3183 asoc->max_burst = val;
3184 } else
3185 sp->max_burst = val;
3186
3187 return 0;
3188 }
3189
3190 /*
3191 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3192 *
3193 * This set option adds a chunk type that the user is requesting to be
3194 * received only in an authenticated way. Changes to the list of chunks
3195 * will only effect future associations on the socket.
3196 */
3197 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3198 char __user *optval,
3199 unsigned int optlen)
3200 {
3201 struct sctp_authchunk val;
3202
3203 if (!sctp_auth_enable)
3204 return -EACCES;
3205
3206 if (optlen != sizeof(struct sctp_authchunk))
3207 return -EINVAL;
3208 if (copy_from_user(&val, optval, optlen))
3209 return -EFAULT;
3210
3211 switch (val.sauth_chunk) {
3212 case SCTP_CID_INIT:
3213 case SCTP_CID_INIT_ACK:
3214 case SCTP_CID_SHUTDOWN_COMPLETE:
3215 case SCTP_CID_AUTH:
3216 return -EINVAL;
3217 }
3218
3219 /* add this chunk id to the endpoint */
3220 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3221 }
3222
3223 /*
3224 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3225 *
3226 * This option gets or sets the list of HMAC algorithms that the local
3227 * endpoint requires the peer to use.
3228 */
3229 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3230 char __user *optval,
3231 unsigned int optlen)
3232 {
3233 struct sctp_hmacalgo *hmacs;
3234 u32 idents;
3235 int err;
3236
3237 if (!sctp_auth_enable)
3238 return -EACCES;
3239
3240 if (optlen < sizeof(struct sctp_hmacalgo))
3241 return -EINVAL;
3242
3243 hmacs= memdup_user(optval, optlen);
3244 if (IS_ERR(hmacs))
3245 return PTR_ERR(hmacs);
3246
3247 idents = hmacs->shmac_num_idents;
3248 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3249 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3250 err = -EINVAL;
3251 goto out;
3252 }
3253
3254 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3255 out:
3256 kfree(hmacs);
3257 return err;
3258 }
3259
3260 /*
3261 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3262 *
3263 * This option will set a shared secret key which is used to build an
3264 * association shared key.
3265 */
3266 static int sctp_setsockopt_auth_key(struct sock *sk,
3267 char __user *optval,
3268 unsigned int optlen)
3269 {
3270 struct sctp_authkey *authkey;
3271 struct sctp_association *asoc;
3272 int ret;
3273
3274 if (!sctp_auth_enable)
3275 return -EACCES;
3276
3277 if (optlen <= sizeof(struct sctp_authkey))
3278 return -EINVAL;
3279
3280 authkey= memdup_user(optval, optlen);
3281 if (IS_ERR(authkey))
3282 return PTR_ERR(authkey);
3283
3284 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3285 ret = -EINVAL;
3286 goto out;
3287 }
3288
3289 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3290 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3291 ret = -EINVAL;
3292 goto out;
3293 }
3294
3295 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3296 out:
3297 kfree(authkey);
3298 return ret;
3299 }
3300
3301 /*
3302 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3303 *
3304 * This option will get or set the active shared key to be used to build
3305 * the association shared key.
3306 */
3307 static int sctp_setsockopt_active_key(struct sock *sk,
3308 char __user *optval,
3309 unsigned int optlen)
3310 {
3311 struct sctp_authkeyid val;
3312 struct sctp_association *asoc;
3313
3314 if (!sctp_auth_enable)
3315 return -EACCES;
3316
3317 if (optlen != sizeof(struct sctp_authkeyid))
3318 return -EINVAL;
3319 if (copy_from_user(&val, optval, optlen))
3320 return -EFAULT;
3321
3322 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3323 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3324 return -EINVAL;
3325
3326 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3327 val.scact_keynumber);
3328 }
3329
3330 /*
3331 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3332 *
3333 * This set option will delete a shared secret key from use.
3334 */
3335 static int sctp_setsockopt_del_key(struct sock *sk,
3336 char __user *optval,
3337 unsigned int optlen)
3338 {
3339 struct sctp_authkeyid val;
3340 struct sctp_association *asoc;
3341
3342 if (!sctp_auth_enable)
3343 return -EACCES;
3344
3345 if (optlen != sizeof(struct sctp_authkeyid))
3346 return -EINVAL;
3347 if (copy_from_user(&val, optval, optlen))
3348 return -EFAULT;
3349
3350 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3351 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3352 return -EINVAL;
3353
3354 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3355 val.scact_keynumber);
3356
3357 }
3358
3359
3360 /* API 6.2 setsockopt(), getsockopt()
3361 *
3362 * Applications use setsockopt() and getsockopt() to set or retrieve
3363 * socket options. Socket options are used to change the default
3364 * behavior of sockets calls. They are described in Section 7.
3365 *
3366 * The syntax is:
3367 *
3368 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3369 * int __user *optlen);
3370 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3371 * int optlen);
3372 *
3373 * sd - the socket descript.
3374 * level - set to IPPROTO_SCTP for all SCTP options.
3375 * optname - the option name.
3376 * optval - the buffer to store the value of the option.
3377 * optlen - the size of the buffer.
3378 */
3379 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3380 char __user *optval, unsigned int optlen)
3381 {
3382 int retval = 0;
3383
3384 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3385 sk, optname);
3386
3387 /* I can hardly begin to describe how wrong this is. This is
3388 * so broken as to be worse than useless. The API draft
3389 * REALLY is NOT helpful here... I am not convinced that the
3390 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3391 * are at all well-founded.
3392 */
3393 if (level != SOL_SCTP) {
3394 struct sctp_af *af = sctp_sk(sk)->pf->af;
3395 retval = af->setsockopt(sk, level, optname, optval, optlen);
3396 goto out_nounlock;
3397 }
3398
3399 sctp_lock_sock(sk);
3400
3401 switch (optname) {
3402 case SCTP_SOCKOPT_BINDX_ADD:
3403 /* 'optlen' is the size of the addresses buffer. */
3404 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3405 optlen, SCTP_BINDX_ADD_ADDR);
3406 break;
3407
3408 case SCTP_SOCKOPT_BINDX_REM:
3409 /* 'optlen' is the size of the addresses buffer. */
3410 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3411 optlen, SCTP_BINDX_REM_ADDR);
3412 break;
3413
3414 case SCTP_SOCKOPT_CONNECTX_OLD:
3415 /* 'optlen' is the size of the addresses buffer. */
3416 retval = sctp_setsockopt_connectx_old(sk,
3417 (struct sockaddr __user *)optval,
3418 optlen);
3419 break;
3420
3421 case SCTP_SOCKOPT_CONNECTX:
3422 /* 'optlen' is the size of the addresses buffer. */
3423 retval = sctp_setsockopt_connectx(sk,
3424 (struct sockaddr __user *)optval,
3425 optlen);
3426 break;
3427
3428 case SCTP_DISABLE_FRAGMENTS:
3429 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3430 break;
3431
3432 case SCTP_EVENTS:
3433 retval = sctp_setsockopt_events(sk, optval, optlen);
3434 break;
3435
3436 case SCTP_AUTOCLOSE:
3437 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3438 break;
3439
3440 case SCTP_PEER_ADDR_PARAMS:
3441 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3442 break;
3443
3444 case SCTP_DELAYED_SACK:
3445 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3446 break;
3447 case SCTP_PARTIAL_DELIVERY_POINT:
3448 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3449 break;
3450
3451 case SCTP_INITMSG:
3452 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3453 break;
3454 case SCTP_DEFAULT_SEND_PARAM:
3455 retval = sctp_setsockopt_default_send_param(sk, optval,
3456 optlen);
3457 break;
3458 case SCTP_PRIMARY_ADDR:
3459 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3460 break;
3461 case SCTP_SET_PEER_PRIMARY_ADDR:
3462 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3463 break;
3464 case SCTP_NODELAY:
3465 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3466 break;
3467 case SCTP_RTOINFO:
3468 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3469 break;
3470 case SCTP_ASSOCINFO:
3471 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3472 break;
3473 case SCTP_I_WANT_MAPPED_V4_ADDR:
3474 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3475 break;
3476 case SCTP_MAXSEG:
3477 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3478 break;
3479 case SCTP_ADAPTATION_LAYER:
3480 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3481 break;
3482 case SCTP_CONTEXT:
3483 retval = sctp_setsockopt_context(sk, optval, optlen);
3484 break;
3485 case SCTP_FRAGMENT_INTERLEAVE:
3486 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3487 break;
3488 case SCTP_MAX_BURST:
3489 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3490 break;
3491 case SCTP_AUTH_CHUNK:
3492 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3493 break;
3494 case SCTP_HMAC_IDENT:
3495 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3496 break;
3497 case SCTP_AUTH_KEY:
3498 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3499 break;
3500 case SCTP_AUTH_ACTIVE_KEY:
3501 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3502 break;
3503 case SCTP_AUTH_DELETE_KEY:
3504 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3505 break;
3506 default:
3507 retval = -ENOPROTOOPT;
3508 break;
3509 }
3510
3511 sctp_release_sock(sk);
3512
3513 out_nounlock:
3514 return retval;
3515 }
3516
3517 /* API 3.1.6 connect() - UDP Style Syntax
3518 *
3519 * An application may use the connect() call in the UDP model to initiate an
3520 * association without sending data.
3521 *
3522 * The syntax is:
3523 *
3524 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3525 *
3526 * sd: the socket descriptor to have a new association added to.
3527 *
3528 * nam: the address structure (either struct sockaddr_in or struct
3529 * sockaddr_in6 defined in RFC2553 [7]).
3530 *
3531 * len: the size of the address.
3532 */
3533 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3534 int addr_len)
3535 {
3536 int err = 0;
3537 struct sctp_af *af;
3538
3539 sctp_lock_sock(sk);
3540
3541 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3542 __func__, sk, addr, addr_len);
3543
3544 /* Validate addr_len before calling common connect/connectx routine. */
3545 af = sctp_get_af_specific(addr->sa_family);
3546 if (!af || addr_len < af->sockaddr_len) {
3547 err = -EINVAL;
3548 } else {
3549 /* Pass correct addr len to common routine (so it knows there
3550 * is only one address being passed.
3551 */
3552 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3553 }
3554
3555 sctp_release_sock(sk);
3556 return err;
3557 }
3558
3559 /* FIXME: Write comments. */
3560 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3561 {
3562 return -EOPNOTSUPP; /* STUB */
3563 }
3564
3565 /* 4.1.4 accept() - TCP Style Syntax
3566 *
3567 * Applications use accept() call to remove an established SCTP
3568 * association from the accept queue of the endpoint. A new socket
3569 * descriptor will be returned from accept() to represent the newly
3570 * formed association.
3571 */
3572 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3573 {
3574 struct sctp_sock *sp;
3575 struct sctp_endpoint *ep;
3576 struct sock *newsk = NULL;
3577 struct sctp_association *asoc;
3578 long timeo;
3579 int error = 0;
3580
3581 sctp_lock_sock(sk);
3582
3583 sp = sctp_sk(sk);
3584 ep = sp->ep;
3585
3586 if (!sctp_style(sk, TCP)) {
3587 error = -EOPNOTSUPP;
3588 goto out;
3589 }
3590
3591 if (!sctp_sstate(sk, LISTENING)) {
3592 error = -EINVAL;
3593 goto out;
3594 }
3595
3596 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3597
3598 error = sctp_wait_for_accept(sk, timeo);
3599 if (error)
3600 goto out;
3601
3602 /* We treat the list of associations on the endpoint as the accept
3603 * queue and pick the first association on the list.
3604 */
3605 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3606
3607 newsk = sp->pf->create_accept_sk(sk, asoc);
3608 if (!newsk) {
3609 error = -ENOMEM;
3610 goto out;
3611 }
3612
3613 /* Populate the fields of the newsk from the oldsk and migrate the
3614 * asoc to the newsk.
3615 */
3616 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3617
3618 out:
3619 sctp_release_sock(sk);
3620 *err = error;
3621 return newsk;
3622 }
3623
3624 /* The SCTP ioctl handler. */
3625 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3626 {
3627 int rc = -ENOTCONN;
3628
3629 sctp_lock_sock(sk);
3630
3631 /*
3632 * SEQPACKET-style sockets in LISTENING state are valid, for
3633 * SCTP, so only discard TCP-style sockets in LISTENING state.
3634 */
3635 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3636 goto out;
3637
3638 switch (cmd) {
3639 case SIOCINQ: {
3640 struct sk_buff *skb;
3641 unsigned int amount = 0;
3642
3643 skb = skb_peek(&sk->sk_receive_queue);
3644 if (skb != NULL) {
3645 /*
3646 * We will only return the amount of this packet since
3647 * that is all that will be read.
3648 */
3649 amount = skb->len;
3650 }
3651 rc = put_user(amount, (int __user *)arg);
3652 break;
3653 }
3654 default:
3655 rc = -ENOIOCTLCMD;
3656 break;
3657 }
3658 out:
3659 sctp_release_sock(sk);
3660 return rc;
3661 }
3662
3663 /* This is the function which gets called during socket creation to
3664 * initialized the SCTP-specific portion of the sock.
3665 * The sock structure should already be zero-filled memory.
3666 */
3667 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3668 {
3669 struct sctp_endpoint *ep;
3670 struct sctp_sock *sp;
3671
3672 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3673
3674 sp = sctp_sk(sk);
3675
3676 /* Initialize the SCTP per socket area. */
3677 switch (sk->sk_type) {
3678 case SOCK_SEQPACKET:
3679 sp->type = SCTP_SOCKET_UDP;
3680 break;
3681 case SOCK_STREAM:
3682 sp->type = SCTP_SOCKET_TCP;
3683 break;
3684 default:
3685 return -ESOCKTNOSUPPORT;
3686 }
3687
3688 /* Initialize default send parameters. These parameters can be
3689 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3690 */
3691 sp->default_stream = 0;
3692 sp->default_ppid = 0;
3693 sp->default_flags = 0;
3694 sp->default_context = 0;
3695 sp->default_timetolive = 0;
3696
3697 sp->default_rcv_context = 0;
3698 sp->max_burst = sctp_max_burst;
3699
3700 /* Initialize default setup parameters. These parameters
3701 * can be modified with the SCTP_INITMSG socket option or
3702 * overridden by the SCTP_INIT CMSG.
3703 */
3704 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3705 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3706 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3707 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3708
3709 /* Initialize default RTO related parameters. These parameters can
3710 * be modified for with the SCTP_RTOINFO socket option.
3711 */
3712 sp->rtoinfo.srto_initial = sctp_rto_initial;
3713 sp->rtoinfo.srto_max = sctp_rto_max;
3714 sp->rtoinfo.srto_min = sctp_rto_min;
3715
3716 /* Initialize default association related parameters. These parameters
3717 * can be modified with the SCTP_ASSOCINFO socket option.
3718 */
3719 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3720 sp->assocparams.sasoc_number_peer_destinations = 0;
3721 sp->assocparams.sasoc_peer_rwnd = 0;
3722 sp->assocparams.sasoc_local_rwnd = 0;
3723 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3724
3725 /* Initialize default event subscriptions. By default, all the
3726 * options are off.
3727 */
3728 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3729
3730 /* Default Peer Address Parameters. These defaults can
3731 * be modified via SCTP_PEER_ADDR_PARAMS
3732 */
3733 sp->hbinterval = sctp_hb_interval;
3734 sp->pathmaxrxt = sctp_max_retrans_path;
3735 sp->pathmtu = 0; // allow default discovery
3736 sp->sackdelay = sctp_sack_timeout;
3737 sp->sackfreq = 2;
3738 sp->param_flags = SPP_HB_ENABLE |
3739 SPP_PMTUD_ENABLE |
3740 SPP_SACKDELAY_ENABLE;
3741
3742 /* If enabled no SCTP message fragmentation will be performed.
3743 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3744 */
3745 sp->disable_fragments = 0;
3746
3747 /* Enable Nagle algorithm by default. */
3748 sp->nodelay = 0;
3749
3750 /* Enable by default. */
3751 sp->v4mapped = 1;
3752
3753 /* Auto-close idle associations after the configured
3754 * number of seconds. A value of 0 disables this
3755 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3756 * for UDP-style sockets only.
3757 */
3758 sp->autoclose = 0;
3759
3760 /* User specified fragmentation limit. */
3761 sp->user_frag = 0;
3762
3763 sp->adaptation_ind = 0;
3764
3765 sp->pf = sctp_get_pf_specific(sk->sk_family);
3766
3767 /* Control variables for partial data delivery. */
3768 atomic_set(&sp->pd_mode, 0);
3769 skb_queue_head_init(&sp->pd_lobby);
3770 sp->frag_interleave = 0;
3771
3772 /* Create a per socket endpoint structure. Even if we
3773 * change the data structure relationships, this may still
3774 * be useful for storing pre-connect address information.
3775 */
3776 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3777 if (!ep)
3778 return -ENOMEM;
3779
3780 sp->ep = ep;
3781 sp->hmac = NULL;
3782
3783 SCTP_DBG_OBJCNT_INC(sock);
3784
3785 local_bh_disable();
3786 percpu_counter_inc(&sctp_sockets_allocated);
3787 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3788 if (sctp_default_auto_asconf) {
3789 list_add_tail(&sp->auto_asconf_list,
3790 &sctp_auto_asconf_splist);
3791 sp->do_auto_asconf = 1;
3792 } else
3793 sp->do_auto_asconf = 0;
3794 local_bh_enable();
3795
3796 return 0;
3797 }
3798
3799 /* Cleanup any SCTP per socket resources. */
3800 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3801 {
3802 struct sctp_sock *sp;
3803
3804 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3805
3806 /* Release our hold on the endpoint. */
3807 sp = sctp_sk(sk);
3808 if (sp->do_auto_asconf) {
3809 sp->do_auto_asconf = 0;
3810 list_del(&sp->auto_asconf_list);
3811 }
3812 sctp_endpoint_free(sp->ep);
3813 local_bh_disable();
3814 percpu_counter_dec(&sctp_sockets_allocated);
3815 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3816 local_bh_enable();
3817 }
3818
3819 /* API 4.1.7 shutdown() - TCP Style Syntax
3820 * int shutdown(int socket, int how);
3821 *
3822 * sd - the socket descriptor of the association to be closed.
3823 * how - Specifies the type of shutdown. The values are
3824 * as follows:
3825 * SHUT_RD
3826 * Disables further receive operations. No SCTP
3827 * protocol action is taken.
3828 * SHUT_WR
3829 * Disables further send operations, and initiates
3830 * the SCTP shutdown sequence.
3831 * SHUT_RDWR
3832 * Disables further send and receive operations
3833 * and initiates the SCTP shutdown sequence.
3834 */
3835 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3836 {
3837 struct sctp_endpoint *ep;
3838 struct sctp_association *asoc;
3839
3840 if (!sctp_style(sk, TCP))
3841 return;
3842
3843 if (how & SEND_SHUTDOWN) {
3844 ep = sctp_sk(sk)->ep;
3845 if (!list_empty(&ep->asocs)) {
3846 asoc = list_entry(ep->asocs.next,
3847 struct sctp_association, asocs);
3848 sctp_primitive_SHUTDOWN(asoc, NULL);
3849 }
3850 }
3851 }
3852
3853 /* 7.2.1 Association Status (SCTP_STATUS)
3854
3855 * Applications can retrieve current status information about an
3856 * association, including association state, peer receiver window size,
3857 * number of unacked data chunks, and number of data chunks pending
3858 * receipt. This information is read-only.
3859 */
3860 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3861 char __user *optval,
3862 int __user *optlen)
3863 {
3864 struct sctp_status status;
3865 struct sctp_association *asoc = NULL;
3866 struct sctp_transport *transport;
3867 sctp_assoc_t associd;
3868 int retval = 0;
3869
3870 if (len < sizeof(status)) {
3871 retval = -EINVAL;
3872 goto out;
3873 }
3874
3875 len = sizeof(status);
3876 if (copy_from_user(&status, optval, len)) {
3877 retval = -EFAULT;
3878 goto out;
3879 }
3880
3881 associd = status.sstat_assoc_id;
3882 asoc = sctp_id2assoc(sk, associd);
3883 if (!asoc) {
3884 retval = -EINVAL;
3885 goto out;
3886 }
3887
3888 transport = asoc->peer.primary_path;
3889
3890 status.sstat_assoc_id = sctp_assoc2id(asoc);
3891 status.sstat_state = asoc->state;
3892 status.sstat_rwnd = asoc->peer.rwnd;
3893 status.sstat_unackdata = asoc->unack_data;
3894
3895 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3896 status.sstat_instrms = asoc->c.sinit_max_instreams;
3897 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3898 status.sstat_fragmentation_point = asoc->frag_point;
3899 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3900 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3901 transport->af_specific->sockaddr_len);
3902 /* Map ipv4 address into v4-mapped-on-v6 address. */
3903 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3904 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3905 status.sstat_primary.spinfo_state = transport->state;
3906 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3907 status.sstat_primary.spinfo_srtt = transport->srtt;
3908 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3909 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3910
3911 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3912 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3913
3914 if (put_user(len, optlen)) {
3915 retval = -EFAULT;
3916 goto out;
3917 }
3918
3919 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3920 len, status.sstat_state, status.sstat_rwnd,
3921 status.sstat_assoc_id);
3922
3923 if (copy_to_user(optval, &status, len)) {
3924 retval = -EFAULT;
3925 goto out;
3926 }
3927
3928 out:
3929 return retval;
3930 }
3931
3932
3933 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3934 *
3935 * Applications can retrieve information about a specific peer address
3936 * of an association, including its reachability state, congestion
3937 * window, and retransmission timer values. This information is
3938 * read-only.
3939 */
3940 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3941 char __user *optval,
3942 int __user *optlen)
3943 {
3944 struct sctp_paddrinfo pinfo;
3945 struct sctp_transport *transport;
3946 int retval = 0;
3947
3948 if (len < sizeof(pinfo)) {
3949 retval = -EINVAL;
3950 goto out;
3951 }
3952
3953 len = sizeof(pinfo);
3954 if (copy_from_user(&pinfo, optval, len)) {
3955 retval = -EFAULT;
3956 goto out;
3957 }
3958
3959 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3960 pinfo.spinfo_assoc_id);
3961 if (!transport)
3962 return -EINVAL;
3963
3964 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3965 pinfo.spinfo_state = transport->state;
3966 pinfo.spinfo_cwnd = transport->cwnd;
3967 pinfo.spinfo_srtt = transport->srtt;
3968 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3969 pinfo.spinfo_mtu = transport->pathmtu;
3970
3971 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3972 pinfo.spinfo_state = SCTP_ACTIVE;
3973
3974 if (put_user(len, optlen)) {
3975 retval = -EFAULT;
3976 goto out;
3977 }
3978
3979 if (copy_to_user(optval, &pinfo, len)) {
3980 retval = -EFAULT;
3981 goto out;
3982 }
3983
3984 out:
3985 return retval;
3986 }
3987
3988 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3989 *
3990 * This option is a on/off flag. If enabled no SCTP message
3991 * fragmentation will be performed. Instead if a message being sent
3992 * exceeds the current PMTU size, the message will NOT be sent and
3993 * instead a error will be indicated to the user.
3994 */
3995 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3996 char __user *optval, int __user *optlen)
3997 {
3998 int val;
3999
4000 if (len < sizeof(int))
4001 return -EINVAL;
4002
4003 len = sizeof(int);
4004 val = (sctp_sk(sk)->disable_fragments == 1);
4005 if (put_user(len, optlen))
4006 return -EFAULT;
4007 if (copy_to_user(optval, &val, len))
4008 return -EFAULT;
4009 return 0;
4010 }
4011
4012 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4013 *
4014 * This socket option is used to specify various notifications and
4015 * ancillary data the user wishes to receive.
4016 */
4017 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4018 int __user *optlen)
4019 {
4020 if (len < sizeof(struct sctp_event_subscribe))
4021 return -EINVAL;
4022 len = sizeof(struct sctp_event_subscribe);
4023 if (put_user(len, optlen))
4024 return -EFAULT;
4025 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4026 return -EFAULT;
4027 return 0;
4028 }
4029
4030 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4031 *
4032 * This socket option is applicable to the UDP-style socket only. When
4033 * set it will cause associations that are idle for more than the
4034 * specified number of seconds to automatically close. An association
4035 * being idle is defined an association that has NOT sent or received
4036 * user data. The special value of '0' indicates that no automatic
4037 * close of any associations should be performed. The option expects an
4038 * integer defining the number of seconds of idle time before an
4039 * association is closed.
4040 */
4041 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4042 {
4043 /* Applicable to UDP-style socket only */
4044 if (sctp_style(sk, TCP))
4045 return -EOPNOTSUPP;
4046 if (len < sizeof(int))
4047 return -EINVAL;
4048 len = sizeof(int);
4049 if (put_user(len, optlen))
4050 return -EFAULT;
4051 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4052 return -EFAULT;
4053 return 0;
4054 }
4055
4056 /* Helper routine to branch off an association to a new socket. */
4057 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4058 struct socket **sockp)
4059 {
4060 struct sock *sk = asoc->base.sk;
4061 struct socket *sock;
4062 struct sctp_af *af;
4063 int err = 0;
4064
4065 /* An association cannot be branched off from an already peeled-off
4066 * socket, nor is this supported for tcp style sockets.
4067 */
4068 if (!sctp_style(sk, UDP))
4069 return -EINVAL;
4070
4071 /* Create a new socket. */
4072 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4073 if (err < 0)
4074 return err;
4075
4076 sctp_copy_sock(sock->sk, sk, asoc);
4077
4078 /* Make peeled-off sockets more like 1-1 accepted sockets.
4079 * Set the daddr and initialize id to something more random
4080 */
4081 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4082 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4083
4084 /* Populate the fields of the newsk from the oldsk and migrate the
4085 * asoc to the newsk.
4086 */
4087 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4088
4089 *sockp = sock;
4090
4091 return err;
4092 }
4093
4094 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4095 {
4096 sctp_peeloff_arg_t peeloff;
4097 struct socket *newsock;
4098 int retval = 0;
4099 struct sctp_association *asoc;
4100
4101 if (len < sizeof(sctp_peeloff_arg_t))
4102 return -EINVAL;
4103 len = sizeof(sctp_peeloff_arg_t);
4104 if (copy_from_user(&peeloff, optval, len))
4105 return -EFAULT;
4106
4107 asoc = sctp_id2assoc(sk, peeloff.associd);
4108 if (!asoc) {
4109 retval = -EINVAL;
4110 goto out;
4111 }
4112
4113 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4114
4115 retval = sctp_do_peeloff(asoc, &newsock);
4116 if (retval < 0)
4117 goto out;
4118
4119 /* Map the socket to an unused fd that can be returned to the user. */
4120 retval = sock_map_fd(newsock, 0);
4121 if (retval < 0) {
4122 sock_release(newsock);
4123 goto out;
4124 }
4125
4126 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4127 __func__, sk, asoc, newsock->sk, retval);
4128
4129 /* Return the fd mapped to the new socket. */
4130 peeloff.sd = retval;
4131 if (put_user(len, optlen))
4132 return -EFAULT;
4133 if (copy_to_user(optval, &peeloff, len))
4134 retval = -EFAULT;
4135
4136 out:
4137 return retval;
4138 }
4139
4140 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4141 *
4142 * Applications can enable or disable heartbeats for any peer address of
4143 * an association, modify an address's heartbeat interval, force a
4144 * heartbeat to be sent immediately, and adjust the address's maximum
4145 * number of retransmissions sent before an address is considered
4146 * unreachable. The following structure is used to access and modify an
4147 * address's parameters:
4148 *
4149 * struct sctp_paddrparams {
4150 * sctp_assoc_t spp_assoc_id;
4151 * struct sockaddr_storage spp_address;
4152 * uint32_t spp_hbinterval;
4153 * uint16_t spp_pathmaxrxt;
4154 * uint32_t spp_pathmtu;
4155 * uint32_t spp_sackdelay;
4156 * uint32_t spp_flags;
4157 * };
4158 *
4159 * spp_assoc_id - (one-to-many style socket) This is filled in the
4160 * application, and identifies the association for
4161 * this query.
4162 * spp_address - This specifies which address is of interest.
4163 * spp_hbinterval - This contains the value of the heartbeat interval,
4164 * in milliseconds. If a value of zero
4165 * is present in this field then no changes are to
4166 * be made to this parameter.
4167 * spp_pathmaxrxt - This contains the maximum number of
4168 * retransmissions before this address shall be
4169 * considered unreachable. If a value of zero
4170 * is present in this field then no changes are to
4171 * be made to this parameter.
4172 * spp_pathmtu - When Path MTU discovery is disabled the value
4173 * specified here will be the "fixed" path mtu.
4174 * Note that if the spp_address field is empty
4175 * then all associations on this address will
4176 * have this fixed path mtu set upon them.
4177 *
4178 * spp_sackdelay - When delayed sack is enabled, this value specifies
4179 * the number of milliseconds that sacks will be delayed
4180 * for. This value will apply to all addresses of an
4181 * association if the spp_address field is empty. Note
4182 * also, that if delayed sack is enabled and this
4183 * value is set to 0, no change is made to the last
4184 * recorded delayed sack timer value.
4185 *
4186 * spp_flags - These flags are used to control various features
4187 * on an association. The flag field may contain
4188 * zero or more of the following options.
4189 *
4190 * SPP_HB_ENABLE - Enable heartbeats on the
4191 * specified address. Note that if the address
4192 * field is empty all addresses for the association
4193 * have heartbeats enabled upon them.
4194 *
4195 * SPP_HB_DISABLE - Disable heartbeats on the
4196 * speicifed address. Note that if the address
4197 * field is empty all addresses for the association
4198 * will have their heartbeats disabled. Note also
4199 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4200 * mutually exclusive, only one of these two should
4201 * be specified. Enabling both fields will have
4202 * undetermined results.
4203 *
4204 * SPP_HB_DEMAND - Request a user initiated heartbeat
4205 * to be made immediately.
4206 *
4207 * SPP_PMTUD_ENABLE - This field will enable PMTU
4208 * discovery upon the specified address. Note that
4209 * if the address feild is empty then all addresses
4210 * on the association are effected.
4211 *
4212 * SPP_PMTUD_DISABLE - This field will disable PMTU
4213 * discovery upon the specified address. Note that
4214 * if the address feild is empty then all addresses
4215 * on the association are effected. Not also that
4216 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4217 * exclusive. Enabling both will have undetermined
4218 * results.
4219 *
4220 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4221 * on delayed sack. The time specified in spp_sackdelay
4222 * is used to specify the sack delay for this address. Note
4223 * that if spp_address is empty then all addresses will
4224 * enable delayed sack and take on the sack delay
4225 * value specified in spp_sackdelay.
4226 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4227 * off delayed sack. If the spp_address field is blank then
4228 * delayed sack is disabled for the entire association. Note
4229 * also that this field is mutually exclusive to
4230 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4231 * results.
4232 */
4233 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4234 char __user *optval, int __user *optlen)
4235 {
4236 struct sctp_paddrparams params;
4237 struct sctp_transport *trans = NULL;
4238 struct sctp_association *asoc = NULL;
4239 struct sctp_sock *sp = sctp_sk(sk);
4240
4241 if (len < sizeof(struct sctp_paddrparams))
4242 return -EINVAL;
4243 len = sizeof(struct sctp_paddrparams);
4244 if (copy_from_user(&params, optval, len))
4245 return -EFAULT;
4246
4247 /* If an address other than INADDR_ANY is specified, and
4248 * no transport is found, then the request is invalid.
4249 */
4250 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4251 trans = sctp_addr_id2transport(sk, &params.spp_address,
4252 params.spp_assoc_id);
4253 if (!trans) {
4254 SCTP_DEBUG_PRINTK("Failed no transport\n");
4255 return -EINVAL;
4256 }
4257 }
4258
4259 /* Get association, if assoc_id != 0 and the socket is a one
4260 * to many style socket, and an association was not found, then
4261 * the id was invalid.
4262 */
4263 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4264 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4265 SCTP_DEBUG_PRINTK("Failed no association\n");
4266 return -EINVAL;
4267 }
4268
4269 if (trans) {
4270 /* Fetch transport values. */
4271 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4272 params.spp_pathmtu = trans->pathmtu;
4273 params.spp_pathmaxrxt = trans->pathmaxrxt;
4274 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4275
4276 /*draft-11 doesn't say what to return in spp_flags*/
4277 params.spp_flags = trans->param_flags;
4278 } else if (asoc) {
4279 /* Fetch association values. */
4280 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4281 params.spp_pathmtu = asoc->pathmtu;
4282 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4283 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4284
4285 /*draft-11 doesn't say what to return in spp_flags*/
4286 params.spp_flags = asoc->param_flags;
4287 } else {
4288 /* Fetch socket values. */
4289 params.spp_hbinterval = sp->hbinterval;
4290 params.spp_pathmtu = sp->pathmtu;
4291 params.spp_sackdelay = sp->sackdelay;
4292 params.spp_pathmaxrxt = sp->pathmaxrxt;
4293
4294 /*draft-11 doesn't say what to return in spp_flags*/
4295 params.spp_flags = sp->param_flags;
4296 }
4297
4298 if (copy_to_user(optval, &params, len))
4299 return -EFAULT;
4300
4301 if (put_user(len, optlen))
4302 return -EFAULT;
4303
4304 return 0;
4305 }
4306
4307 /*
4308 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4309 *
4310 * This option will effect the way delayed acks are performed. This
4311 * option allows you to get or set the delayed ack time, in
4312 * milliseconds. It also allows changing the delayed ack frequency.
4313 * Changing the frequency to 1 disables the delayed sack algorithm. If
4314 * the assoc_id is 0, then this sets or gets the endpoints default
4315 * values. If the assoc_id field is non-zero, then the set or get
4316 * effects the specified association for the one to many model (the
4317 * assoc_id field is ignored by the one to one model). Note that if
4318 * sack_delay or sack_freq are 0 when setting this option, then the
4319 * current values will remain unchanged.
4320 *
4321 * struct sctp_sack_info {
4322 * sctp_assoc_t sack_assoc_id;
4323 * uint32_t sack_delay;
4324 * uint32_t sack_freq;
4325 * };
4326 *
4327 * sack_assoc_id - This parameter, indicates which association the user
4328 * is performing an action upon. Note that if this field's value is
4329 * zero then the endpoints default value is changed (effecting future
4330 * associations only).
4331 *
4332 * sack_delay - This parameter contains the number of milliseconds that
4333 * the user is requesting the delayed ACK timer be set to. Note that
4334 * this value is defined in the standard to be between 200 and 500
4335 * milliseconds.
4336 *
4337 * sack_freq - This parameter contains the number of packets that must
4338 * be received before a sack is sent without waiting for the delay
4339 * timer to expire. The default value for this is 2, setting this
4340 * value to 1 will disable the delayed sack algorithm.
4341 */
4342 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4343 char __user *optval,
4344 int __user *optlen)
4345 {
4346 struct sctp_sack_info params;
4347 struct sctp_association *asoc = NULL;
4348 struct sctp_sock *sp = sctp_sk(sk);
4349
4350 if (len >= sizeof(struct sctp_sack_info)) {
4351 len = sizeof(struct sctp_sack_info);
4352
4353 if (copy_from_user(&params, optval, len))
4354 return -EFAULT;
4355 } else if (len == sizeof(struct sctp_assoc_value)) {
4356 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4357 pr_warn("Use struct sctp_sack_info instead\n");
4358 if (copy_from_user(&params, optval, len))
4359 return -EFAULT;
4360 } else
4361 return - EINVAL;
4362
4363 /* Get association, if sack_assoc_id != 0 and the socket is a one
4364 * to many style socket, and an association was not found, then
4365 * the id was invalid.
4366 */
4367 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4368 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4369 return -EINVAL;
4370
4371 if (asoc) {
4372 /* Fetch association values. */
4373 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4374 params.sack_delay = jiffies_to_msecs(
4375 asoc->sackdelay);
4376 params.sack_freq = asoc->sackfreq;
4377
4378 } else {
4379 params.sack_delay = 0;
4380 params.sack_freq = 1;
4381 }
4382 } else {
4383 /* Fetch socket values. */
4384 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4385 params.sack_delay = sp->sackdelay;
4386 params.sack_freq = sp->sackfreq;
4387 } else {
4388 params.sack_delay = 0;
4389 params.sack_freq = 1;
4390 }
4391 }
4392
4393 if (copy_to_user(optval, &params, len))
4394 return -EFAULT;
4395
4396 if (put_user(len, optlen))
4397 return -EFAULT;
4398
4399 return 0;
4400 }
4401
4402 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4403 *
4404 * Applications can specify protocol parameters for the default association
4405 * initialization. The option name argument to setsockopt() and getsockopt()
4406 * is SCTP_INITMSG.
4407 *
4408 * Setting initialization parameters is effective only on an unconnected
4409 * socket (for UDP-style sockets only future associations are effected
4410 * by the change). With TCP-style sockets, this option is inherited by
4411 * sockets derived from a listener socket.
4412 */
4413 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4414 {
4415 if (len < sizeof(struct sctp_initmsg))
4416 return -EINVAL;
4417 len = sizeof(struct sctp_initmsg);
4418 if (put_user(len, optlen))
4419 return -EFAULT;
4420 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4421 return -EFAULT;
4422 return 0;
4423 }
4424
4425
4426 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4427 char __user *optval, int __user *optlen)
4428 {
4429 struct sctp_association *asoc;
4430 int cnt = 0;
4431 struct sctp_getaddrs getaddrs;
4432 struct sctp_transport *from;
4433 void __user *to;
4434 union sctp_addr temp;
4435 struct sctp_sock *sp = sctp_sk(sk);
4436 int addrlen;
4437 size_t space_left;
4438 int bytes_copied;
4439
4440 if (len < sizeof(struct sctp_getaddrs))
4441 return -EINVAL;
4442
4443 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4444 return -EFAULT;
4445
4446 /* For UDP-style sockets, id specifies the association to query. */
4447 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4448 if (!asoc)
4449 return -EINVAL;
4450
4451 to = optval + offsetof(struct sctp_getaddrs,addrs);
4452 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4453
4454 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4455 transports) {
4456 memcpy(&temp, &from->ipaddr, sizeof(temp));
4457 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4458 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4459 if (space_left < addrlen)
4460 return -ENOMEM;
4461 if (copy_to_user(to, &temp, addrlen))
4462 return -EFAULT;
4463 to += addrlen;
4464 cnt++;
4465 space_left -= addrlen;
4466 }
4467
4468 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4469 return -EFAULT;
4470 bytes_copied = ((char __user *)to) - optval;
4471 if (put_user(bytes_copied, optlen))
4472 return -EFAULT;
4473
4474 return 0;
4475 }
4476
4477 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4478 size_t space_left, int *bytes_copied)
4479 {
4480 struct sctp_sockaddr_entry *addr;
4481 union sctp_addr temp;
4482 int cnt = 0;
4483 int addrlen;
4484
4485 rcu_read_lock();
4486 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4487 if (!addr->valid)
4488 continue;
4489
4490 if ((PF_INET == sk->sk_family) &&
4491 (AF_INET6 == addr->a.sa.sa_family))
4492 continue;
4493 if ((PF_INET6 == sk->sk_family) &&
4494 inet_v6_ipv6only(sk) &&
4495 (AF_INET == addr->a.sa.sa_family))
4496 continue;
4497 memcpy(&temp, &addr->a, sizeof(temp));
4498 if (!temp.v4.sin_port)
4499 temp.v4.sin_port = htons(port);
4500
4501 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4502 &temp);
4503 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4504 if (space_left < addrlen) {
4505 cnt = -ENOMEM;
4506 break;
4507 }
4508 memcpy(to, &temp, addrlen);
4509
4510 to += addrlen;
4511 cnt ++;
4512 space_left -= addrlen;
4513 *bytes_copied += addrlen;
4514 }
4515 rcu_read_unlock();
4516
4517 return cnt;
4518 }
4519
4520
4521 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4522 char __user *optval, int __user *optlen)
4523 {
4524 struct sctp_bind_addr *bp;
4525 struct sctp_association *asoc;
4526 int cnt = 0;
4527 struct sctp_getaddrs getaddrs;
4528 struct sctp_sockaddr_entry *addr;
4529 void __user *to;
4530 union sctp_addr temp;
4531 struct sctp_sock *sp = sctp_sk(sk);
4532 int addrlen;
4533 int err = 0;
4534 size_t space_left;
4535 int bytes_copied = 0;
4536 void *addrs;
4537 void *buf;
4538
4539 if (len < sizeof(struct sctp_getaddrs))
4540 return -EINVAL;
4541
4542 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4543 return -EFAULT;
4544
4545 /*
4546 * For UDP-style sockets, id specifies the association to query.
4547 * If the id field is set to the value '0' then the locally bound
4548 * addresses are returned without regard to any particular
4549 * association.
4550 */
4551 if (0 == getaddrs.assoc_id) {
4552 bp = &sctp_sk(sk)->ep->base.bind_addr;
4553 } else {
4554 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4555 if (!asoc)
4556 return -EINVAL;
4557 bp = &asoc->base.bind_addr;
4558 }
4559
4560 to = optval + offsetof(struct sctp_getaddrs,addrs);
4561 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4562
4563 addrs = kmalloc(space_left, GFP_KERNEL);
4564 if (!addrs)
4565 return -ENOMEM;
4566
4567 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4568 * addresses from the global local address list.
4569 */
4570 if (sctp_list_single_entry(&bp->address_list)) {
4571 addr = list_entry(bp->address_list.next,
4572 struct sctp_sockaddr_entry, list);
4573 if (sctp_is_any(sk, &addr->a)) {
4574 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4575 space_left, &bytes_copied);
4576 if (cnt < 0) {
4577 err = cnt;
4578 goto out;
4579 }
4580 goto copy_getaddrs;
4581 }
4582 }
4583
4584 buf = addrs;
4585 /* Protection on the bound address list is not needed since
4586 * in the socket option context we hold a socket lock and
4587 * thus the bound address list can't change.
4588 */
4589 list_for_each_entry(addr, &bp->address_list, list) {
4590 memcpy(&temp, &addr->a, sizeof(temp));
4591 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4592 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4593 if (space_left < addrlen) {
4594 err = -ENOMEM; /*fixme: right error?*/
4595 goto out;
4596 }
4597 memcpy(buf, &temp, addrlen);
4598 buf += addrlen;
4599 bytes_copied += addrlen;
4600 cnt ++;
4601 space_left -= addrlen;
4602 }
4603
4604 copy_getaddrs:
4605 if (copy_to_user(to, addrs, bytes_copied)) {
4606 err = -EFAULT;
4607 goto out;
4608 }
4609 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4610 err = -EFAULT;
4611 goto out;
4612 }
4613 if (put_user(bytes_copied, optlen))
4614 err = -EFAULT;
4615 out:
4616 kfree(addrs);
4617 return err;
4618 }
4619
4620 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4621 *
4622 * Requests that the local SCTP stack use the enclosed peer address as
4623 * the association primary. The enclosed address must be one of the
4624 * association peer's addresses.
4625 */
4626 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4627 char __user *optval, int __user *optlen)
4628 {
4629 struct sctp_prim prim;
4630 struct sctp_association *asoc;
4631 struct sctp_sock *sp = sctp_sk(sk);
4632
4633 if (len < sizeof(struct sctp_prim))
4634 return -EINVAL;
4635
4636 len = sizeof(struct sctp_prim);
4637
4638 if (copy_from_user(&prim, optval, len))
4639 return -EFAULT;
4640
4641 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4642 if (!asoc)
4643 return -EINVAL;
4644
4645 if (!asoc->peer.primary_path)
4646 return -ENOTCONN;
4647
4648 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4649 asoc->peer.primary_path->af_specific->sockaddr_len);
4650
4651 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4652 (union sctp_addr *)&prim.ssp_addr);
4653
4654 if (put_user(len, optlen))
4655 return -EFAULT;
4656 if (copy_to_user(optval, &prim, len))
4657 return -EFAULT;
4658
4659 return 0;
4660 }
4661
4662 /*
4663 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4664 *
4665 * Requests that the local endpoint set the specified Adaptation Layer
4666 * Indication parameter for all future INIT and INIT-ACK exchanges.
4667 */
4668 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4669 char __user *optval, int __user *optlen)
4670 {
4671 struct sctp_setadaptation adaptation;
4672
4673 if (len < sizeof(struct sctp_setadaptation))
4674 return -EINVAL;
4675
4676 len = sizeof(struct sctp_setadaptation);
4677
4678 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4679
4680 if (put_user(len, optlen))
4681 return -EFAULT;
4682 if (copy_to_user(optval, &adaptation, len))
4683 return -EFAULT;
4684
4685 return 0;
4686 }
4687
4688 /*
4689 *
4690 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4691 *
4692 * Applications that wish to use the sendto() system call may wish to
4693 * specify a default set of parameters that would normally be supplied
4694 * through the inclusion of ancillary data. This socket option allows
4695 * such an application to set the default sctp_sndrcvinfo structure.
4696
4697
4698 * The application that wishes to use this socket option simply passes
4699 * in to this call the sctp_sndrcvinfo structure defined in Section
4700 * 5.2.2) The input parameters accepted by this call include
4701 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4702 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4703 * to this call if the caller is using the UDP model.
4704 *
4705 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4706 */
4707 static int sctp_getsockopt_default_send_param(struct sock *sk,
4708 int len, char __user *optval,
4709 int __user *optlen)
4710 {
4711 struct sctp_sndrcvinfo info;
4712 struct sctp_association *asoc;
4713 struct sctp_sock *sp = sctp_sk(sk);
4714
4715 if (len < sizeof(struct sctp_sndrcvinfo))
4716 return -EINVAL;
4717
4718 len = sizeof(struct sctp_sndrcvinfo);
4719
4720 if (copy_from_user(&info, optval, len))
4721 return -EFAULT;
4722
4723 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4724 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4725 return -EINVAL;
4726
4727 if (asoc) {
4728 info.sinfo_stream = asoc->default_stream;
4729 info.sinfo_flags = asoc->default_flags;
4730 info.sinfo_ppid = asoc->default_ppid;
4731 info.sinfo_context = asoc->default_context;
4732 info.sinfo_timetolive = asoc->default_timetolive;
4733 } else {
4734 info.sinfo_stream = sp->default_stream;
4735 info.sinfo_flags = sp->default_flags;
4736 info.sinfo_ppid = sp->default_ppid;
4737 info.sinfo_context = sp->default_context;
4738 info.sinfo_timetolive = sp->default_timetolive;
4739 }
4740
4741 if (put_user(len, optlen))
4742 return -EFAULT;
4743 if (copy_to_user(optval, &info, len))
4744 return -EFAULT;
4745
4746 return 0;
4747 }
4748
4749 /*
4750 *
4751 * 7.1.5 SCTP_NODELAY
4752 *
4753 * Turn on/off any Nagle-like algorithm. This means that packets are
4754 * generally sent as soon as possible and no unnecessary delays are
4755 * introduced, at the cost of more packets in the network. Expects an
4756 * integer boolean flag.
4757 */
4758
4759 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4760 char __user *optval, int __user *optlen)
4761 {
4762 int val;
4763
4764 if (len < sizeof(int))
4765 return -EINVAL;
4766
4767 len = sizeof(int);
4768 val = (sctp_sk(sk)->nodelay == 1);
4769 if (put_user(len, optlen))
4770 return -EFAULT;
4771 if (copy_to_user(optval, &val, len))
4772 return -EFAULT;
4773 return 0;
4774 }
4775
4776 /*
4777 *
4778 * 7.1.1 SCTP_RTOINFO
4779 *
4780 * The protocol parameters used to initialize and bound retransmission
4781 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4782 * and modify these parameters.
4783 * All parameters are time values, in milliseconds. A value of 0, when
4784 * modifying the parameters, indicates that the current value should not
4785 * be changed.
4786 *
4787 */
4788 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4789 char __user *optval,
4790 int __user *optlen) {
4791 struct sctp_rtoinfo rtoinfo;
4792 struct sctp_association *asoc;
4793
4794 if (len < sizeof (struct sctp_rtoinfo))
4795 return -EINVAL;
4796
4797 len = sizeof(struct sctp_rtoinfo);
4798
4799 if (copy_from_user(&rtoinfo, optval, len))
4800 return -EFAULT;
4801
4802 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4803
4804 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4805 return -EINVAL;
4806
4807 /* Values corresponding to the specific association. */
4808 if (asoc) {
4809 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4810 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4811 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4812 } else {
4813 /* Values corresponding to the endpoint. */
4814 struct sctp_sock *sp = sctp_sk(sk);
4815
4816 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4817 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4818 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4819 }
4820
4821 if (put_user(len, optlen))
4822 return -EFAULT;
4823
4824 if (copy_to_user(optval, &rtoinfo, len))
4825 return -EFAULT;
4826
4827 return 0;
4828 }
4829
4830 /*
4831 *
4832 * 7.1.2 SCTP_ASSOCINFO
4833 *
4834 * This option is used to tune the maximum retransmission attempts
4835 * of the association.
4836 * Returns an error if the new association retransmission value is
4837 * greater than the sum of the retransmission value of the peer.
4838 * See [SCTP] for more information.
4839 *
4840 */
4841 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4842 char __user *optval,
4843 int __user *optlen)
4844 {
4845
4846 struct sctp_assocparams assocparams;
4847 struct sctp_association *asoc;
4848 struct list_head *pos;
4849 int cnt = 0;
4850
4851 if (len < sizeof (struct sctp_assocparams))
4852 return -EINVAL;
4853
4854 len = sizeof(struct sctp_assocparams);
4855
4856 if (copy_from_user(&assocparams, optval, len))
4857 return -EFAULT;
4858
4859 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4860
4861 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4862 return -EINVAL;
4863
4864 /* Values correspoinding to the specific association */
4865 if (asoc) {
4866 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4867 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4868 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4869 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4870 * 1000) +
4871 (asoc->cookie_life.tv_usec
4872 / 1000);
4873
4874 list_for_each(pos, &asoc->peer.transport_addr_list) {
4875 cnt ++;
4876 }
4877
4878 assocparams.sasoc_number_peer_destinations = cnt;
4879 } else {
4880 /* Values corresponding to the endpoint */
4881 struct sctp_sock *sp = sctp_sk(sk);
4882
4883 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4884 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4885 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4886 assocparams.sasoc_cookie_life =
4887 sp->assocparams.sasoc_cookie_life;
4888 assocparams.sasoc_number_peer_destinations =
4889 sp->assocparams.
4890 sasoc_number_peer_destinations;
4891 }
4892
4893 if (put_user(len, optlen))
4894 return -EFAULT;
4895
4896 if (copy_to_user(optval, &assocparams, len))
4897 return -EFAULT;
4898
4899 return 0;
4900 }
4901
4902 /*
4903 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4904 *
4905 * This socket option is a boolean flag which turns on or off mapped V4
4906 * addresses. If this option is turned on and the socket is type
4907 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4908 * If this option is turned off, then no mapping will be done of V4
4909 * addresses and a user will receive both PF_INET6 and PF_INET type
4910 * addresses on the socket.
4911 */
4912 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4913 char __user *optval, int __user *optlen)
4914 {
4915 int val;
4916 struct sctp_sock *sp = sctp_sk(sk);
4917
4918 if (len < sizeof(int))
4919 return -EINVAL;
4920
4921 len = sizeof(int);
4922 val = sp->v4mapped;
4923 if (put_user(len, optlen))
4924 return -EFAULT;
4925 if (copy_to_user(optval, &val, len))
4926 return -EFAULT;
4927
4928 return 0;
4929 }
4930
4931 /*
4932 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4933 * (chapter and verse is quoted at sctp_setsockopt_context())
4934 */
4935 static int sctp_getsockopt_context(struct sock *sk, int len,
4936 char __user *optval, int __user *optlen)
4937 {
4938 struct sctp_assoc_value params;
4939 struct sctp_sock *sp;
4940 struct sctp_association *asoc;
4941
4942 if (len < sizeof(struct sctp_assoc_value))
4943 return -EINVAL;
4944
4945 len = sizeof(struct sctp_assoc_value);
4946
4947 if (copy_from_user(&params, optval, len))
4948 return -EFAULT;
4949
4950 sp = sctp_sk(sk);
4951
4952 if (params.assoc_id != 0) {
4953 asoc = sctp_id2assoc(sk, params.assoc_id);
4954 if (!asoc)
4955 return -EINVAL;
4956 params.assoc_value = asoc->default_rcv_context;
4957 } else {
4958 params.assoc_value = sp->default_rcv_context;
4959 }
4960
4961 if (put_user(len, optlen))
4962 return -EFAULT;
4963 if (copy_to_user(optval, &params, len))
4964 return -EFAULT;
4965
4966 return 0;
4967 }
4968
4969 /*
4970 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4971 * This option will get or set the maximum size to put in any outgoing
4972 * SCTP DATA chunk. If a message is larger than this size it will be
4973 * fragmented by SCTP into the specified size. Note that the underlying
4974 * SCTP implementation may fragment into smaller sized chunks when the
4975 * PMTU of the underlying association is smaller than the value set by
4976 * the user. The default value for this option is '0' which indicates
4977 * the user is NOT limiting fragmentation and only the PMTU will effect
4978 * SCTP's choice of DATA chunk size. Note also that values set larger
4979 * than the maximum size of an IP datagram will effectively let SCTP
4980 * control fragmentation (i.e. the same as setting this option to 0).
4981 *
4982 * The following structure is used to access and modify this parameter:
4983 *
4984 * struct sctp_assoc_value {
4985 * sctp_assoc_t assoc_id;
4986 * uint32_t assoc_value;
4987 * };
4988 *
4989 * assoc_id: This parameter is ignored for one-to-one style sockets.
4990 * For one-to-many style sockets this parameter indicates which
4991 * association the user is performing an action upon. Note that if
4992 * this field's value is zero then the endpoints default value is
4993 * changed (effecting future associations only).
4994 * assoc_value: This parameter specifies the maximum size in bytes.
4995 */
4996 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4997 char __user *optval, int __user *optlen)
4998 {
4999 struct sctp_assoc_value params;
5000 struct sctp_association *asoc;
5001
5002 if (len == sizeof(int)) {
5003 pr_warn("Use of int in maxseg socket option deprecated\n");
5004 pr_warn("Use struct sctp_assoc_value instead\n");
5005 params.assoc_id = 0;
5006 } else if (len >= sizeof(struct sctp_assoc_value)) {
5007 len = sizeof(struct sctp_assoc_value);
5008 if (copy_from_user(&params, optval, sizeof(params)))
5009 return -EFAULT;
5010 } else
5011 return -EINVAL;
5012
5013 asoc = sctp_id2assoc(sk, params.assoc_id);
5014 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5015 return -EINVAL;
5016
5017 if (asoc)
5018 params.assoc_value = asoc->frag_point;
5019 else
5020 params.assoc_value = sctp_sk(sk)->user_frag;
5021
5022 if (put_user(len, optlen))
5023 return -EFAULT;
5024 if (len == sizeof(int)) {
5025 if (copy_to_user(optval, &params.assoc_value, len))
5026 return -EFAULT;
5027 } else {
5028 if (copy_to_user(optval, &params, len))
5029 return -EFAULT;
5030 }
5031
5032 return 0;
5033 }
5034
5035 /*
5036 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5037 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5038 */
5039 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5040 char __user *optval, int __user *optlen)
5041 {
5042 int val;
5043
5044 if (len < sizeof(int))
5045 return -EINVAL;
5046
5047 len = sizeof(int);
5048
5049 val = sctp_sk(sk)->frag_interleave;
5050 if (put_user(len, optlen))
5051 return -EFAULT;
5052 if (copy_to_user(optval, &val, len))
5053 return -EFAULT;
5054
5055 return 0;
5056 }
5057
5058 /*
5059 * 7.1.25. Set or Get the sctp partial delivery point
5060 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5061 */
5062 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5063 char __user *optval,
5064 int __user *optlen)
5065 {
5066 u32 val;
5067
5068 if (len < sizeof(u32))
5069 return -EINVAL;
5070
5071 len = sizeof(u32);
5072
5073 val = sctp_sk(sk)->pd_point;
5074 if (put_user(len, optlen))
5075 return -EFAULT;
5076 if (copy_to_user(optval, &val, len))
5077 return -EFAULT;
5078
5079 return 0;
5080 }
5081
5082 /*
5083 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5084 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5085 */
5086 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5087 char __user *optval,
5088 int __user *optlen)
5089 {
5090 struct sctp_assoc_value params;
5091 struct sctp_sock *sp;
5092 struct sctp_association *asoc;
5093
5094 if (len == sizeof(int)) {
5095 pr_warn("Use of int in max_burst socket option deprecated\n");
5096 pr_warn("Use struct sctp_assoc_value instead\n");
5097 params.assoc_id = 0;
5098 } else if (len >= sizeof(struct sctp_assoc_value)) {
5099 len = sizeof(struct sctp_assoc_value);
5100 if (copy_from_user(&params, optval, len))
5101 return -EFAULT;
5102 } else
5103 return -EINVAL;
5104
5105 sp = sctp_sk(sk);
5106
5107 if (params.assoc_id != 0) {
5108 asoc = sctp_id2assoc(sk, params.assoc_id);
5109 if (!asoc)
5110 return -EINVAL;
5111 params.assoc_value = asoc->max_burst;
5112 } else
5113 params.assoc_value = sp->max_burst;
5114
5115 if (len == sizeof(int)) {
5116 if (copy_to_user(optval, &params.assoc_value, len))
5117 return -EFAULT;
5118 } else {
5119 if (copy_to_user(optval, &params, len))
5120 return -EFAULT;
5121 }
5122
5123 return 0;
5124
5125 }
5126
5127 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5128 char __user *optval, int __user *optlen)
5129 {
5130 struct sctp_hmacalgo __user *p = (void __user *)optval;
5131 struct sctp_hmac_algo_param *hmacs;
5132 __u16 data_len = 0;
5133 u32 num_idents;
5134
5135 if (!sctp_auth_enable)
5136 return -EACCES;
5137
5138 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5139 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5140
5141 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5142 return -EINVAL;
5143
5144 len = sizeof(struct sctp_hmacalgo) + data_len;
5145 num_idents = data_len / sizeof(u16);
5146
5147 if (put_user(len, optlen))
5148 return -EFAULT;
5149 if (put_user(num_idents, &p->shmac_num_idents))
5150 return -EFAULT;
5151 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5152 return -EFAULT;
5153 return 0;
5154 }
5155
5156 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5157 char __user *optval, int __user *optlen)
5158 {
5159 struct sctp_authkeyid val;
5160 struct sctp_association *asoc;
5161
5162 if (!sctp_auth_enable)
5163 return -EACCES;
5164
5165 if (len < sizeof(struct sctp_authkeyid))
5166 return -EINVAL;
5167 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5168 return -EFAULT;
5169
5170 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5171 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5172 return -EINVAL;
5173
5174 if (asoc)
5175 val.scact_keynumber = asoc->active_key_id;
5176 else
5177 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5178
5179 len = sizeof(struct sctp_authkeyid);
5180 if (put_user(len, optlen))
5181 return -EFAULT;
5182 if (copy_to_user(optval, &val, len))
5183 return -EFAULT;
5184
5185 return 0;
5186 }
5187
5188 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5189 char __user *optval, int __user *optlen)
5190 {
5191 struct sctp_authchunks __user *p = (void __user *)optval;
5192 struct sctp_authchunks val;
5193 struct sctp_association *asoc;
5194 struct sctp_chunks_param *ch;
5195 u32 num_chunks = 0;
5196 char __user *to;
5197
5198 if (!sctp_auth_enable)
5199 return -EACCES;
5200
5201 if (len < sizeof(struct sctp_authchunks))
5202 return -EINVAL;
5203
5204 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5205 return -EFAULT;
5206
5207 to = p->gauth_chunks;
5208 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5209 if (!asoc)
5210 return -EINVAL;
5211
5212 ch = asoc->peer.peer_chunks;
5213 if (!ch)
5214 goto num;
5215
5216 /* See if the user provided enough room for all the data */
5217 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5218 if (len < num_chunks)
5219 return -EINVAL;
5220
5221 if (copy_to_user(to, ch->chunks, num_chunks))
5222 return -EFAULT;
5223 num:
5224 len = sizeof(struct sctp_authchunks) + num_chunks;
5225 if (put_user(len, optlen)) return -EFAULT;
5226 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5227 return -EFAULT;
5228 return 0;
5229 }
5230
5231 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5232 char __user *optval, int __user *optlen)
5233 {
5234 struct sctp_authchunks __user *p = (void __user *)optval;
5235 struct sctp_authchunks val;
5236 struct sctp_association *asoc;
5237 struct sctp_chunks_param *ch;
5238 u32 num_chunks = 0;
5239 char __user *to;
5240
5241 if (!sctp_auth_enable)
5242 return -EACCES;
5243
5244 if (len < sizeof(struct sctp_authchunks))
5245 return -EINVAL;
5246
5247 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5248 return -EFAULT;
5249
5250 to = p->gauth_chunks;
5251 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5252 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5253 return -EINVAL;
5254
5255 if (asoc)
5256 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5257 else
5258 ch = sctp_sk(sk)->ep->auth_chunk_list;
5259
5260 if (!ch)
5261 goto num;
5262
5263 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5264 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5265 return -EINVAL;
5266
5267 if (copy_to_user(to, ch->chunks, num_chunks))
5268 return -EFAULT;
5269 num:
5270 len = sizeof(struct sctp_authchunks) + num_chunks;
5271 if (put_user(len, optlen))
5272 return -EFAULT;
5273 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5274 return -EFAULT;
5275
5276 return 0;
5277 }
5278
5279 /*
5280 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5281 * This option gets the current number of associations that are attached
5282 * to a one-to-many style socket. The option value is an uint32_t.
5283 */
5284 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5285 char __user *optval, int __user *optlen)
5286 {
5287 struct sctp_sock *sp = sctp_sk(sk);
5288 struct sctp_association *asoc;
5289 u32 val = 0;
5290
5291 if (sctp_style(sk, TCP))
5292 return -EOPNOTSUPP;
5293
5294 if (len < sizeof(u32))
5295 return -EINVAL;
5296
5297 len = sizeof(u32);
5298
5299 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5300 val++;
5301 }
5302
5303 if (put_user(len, optlen))
5304 return -EFAULT;
5305 if (copy_to_user(optval, &val, len))
5306 return -EFAULT;
5307
5308 return 0;
5309 }
5310
5311 /*
5312 * 8.2.6. Get the Current Identifiers of Associations
5313 * (SCTP_GET_ASSOC_ID_LIST)
5314 *
5315 * This option gets the current list of SCTP association identifiers of
5316 * the SCTP associations handled by a one-to-many style socket.
5317 */
5318 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5319 char __user *optval, int __user *optlen)
5320 {
5321 struct sctp_sock *sp = sctp_sk(sk);
5322 struct sctp_association *asoc;
5323 struct sctp_assoc_ids *ids;
5324 u32 num = 0;
5325
5326 if (sctp_style(sk, TCP))
5327 return -EOPNOTSUPP;
5328
5329 if (len < sizeof(struct sctp_assoc_ids))
5330 return -EINVAL;
5331
5332 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5333 num++;
5334 }
5335
5336 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5337 return -EINVAL;
5338
5339 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5340
5341 ids = kmalloc(len, GFP_KERNEL);
5342 if (unlikely(!ids))
5343 return -ENOMEM;
5344
5345 ids->gaids_number_of_ids = num;
5346 num = 0;
5347 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5348 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5349 }
5350
5351 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5352 kfree(ids);
5353 return -EFAULT;
5354 }
5355
5356 kfree(ids);
5357 return 0;
5358 }
5359
5360 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5361 char __user *optval, int __user *optlen)
5362 {
5363 int retval = 0;
5364 int len;
5365
5366 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5367 sk, optname);
5368
5369 /* I can hardly begin to describe how wrong this is. This is
5370 * so broken as to be worse than useless. The API draft
5371 * REALLY is NOT helpful here... I am not convinced that the
5372 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5373 * are at all well-founded.
5374 */
5375 if (level != SOL_SCTP) {
5376 struct sctp_af *af = sctp_sk(sk)->pf->af;
5377
5378 retval = af->getsockopt(sk, level, optname, optval, optlen);
5379 return retval;
5380 }
5381
5382 if (get_user(len, optlen))
5383 return -EFAULT;
5384
5385 sctp_lock_sock(sk);
5386
5387 switch (optname) {
5388 case SCTP_STATUS:
5389 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5390 break;
5391 case SCTP_DISABLE_FRAGMENTS:
5392 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5393 optlen);
5394 break;
5395 case SCTP_EVENTS:
5396 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5397 break;
5398 case SCTP_AUTOCLOSE:
5399 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5400 break;
5401 case SCTP_SOCKOPT_PEELOFF:
5402 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5403 break;
5404 case SCTP_PEER_ADDR_PARAMS:
5405 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5406 optlen);
5407 break;
5408 case SCTP_DELAYED_SACK:
5409 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5410 optlen);
5411 break;
5412 case SCTP_INITMSG:
5413 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5414 break;
5415 case SCTP_GET_PEER_ADDRS:
5416 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5417 optlen);
5418 break;
5419 case SCTP_GET_LOCAL_ADDRS:
5420 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5421 optlen);
5422 break;
5423 case SCTP_SOCKOPT_CONNECTX3:
5424 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5425 break;
5426 case SCTP_DEFAULT_SEND_PARAM:
5427 retval = sctp_getsockopt_default_send_param(sk, len,
5428 optval, optlen);
5429 break;
5430 case SCTP_PRIMARY_ADDR:
5431 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5432 break;
5433 case SCTP_NODELAY:
5434 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5435 break;
5436 case SCTP_RTOINFO:
5437 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5438 break;
5439 case SCTP_ASSOCINFO:
5440 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5441 break;
5442 case SCTP_I_WANT_MAPPED_V4_ADDR:
5443 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5444 break;
5445 case SCTP_MAXSEG:
5446 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5447 break;
5448 case SCTP_GET_PEER_ADDR_INFO:
5449 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5450 optlen);
5451 break;
5452 case SCTP_ADAPTATION_LAYER:
5453 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5454 optlen);
5455 break;
5456 case SCTP_CONTEXT:
5457 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5458 break;
5459 case SCTP_FRAGMENT_INTERLEAVE:
5460 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5461 optlen);
5462 break;
5463 case SCTP_PARTIAL_DELIVERY_POINT:
5464 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5465 optlen);
5466 break;
5467 case SCTP_MAX_BURST:
5468 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5469 break;
5470 case SCTP_AUTH_KEY:
5471 case SCTP_AUTH_CHUNK:
5472 case SCTP_AUTH_DELETE_KEY:
5473 retval = -EOPNOTSUPP;
5474 break;
5475 case SCTP_HMAC_IDENT:
5476 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5477 break;
5478 case SCTP_AUTH_ACTIVE_KEY:
5479 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5480 break;
5481 case SCTP_PEER_AUTH_CHUNKS:
5482 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5483 optlen);
5484 break;
5485 case SCTP_LOCAL_AUTH_CHUNKS:
5486 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5487 optlen);
5488 break;
5489 case SCTP_GET_ASSOC_NUMBER:
5490 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5491 break;
5492 case SCTP_GET_ASSOC_ID_LIST:
5493 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5494 break;
5495 default:
5496 retval = -ENOPROTOOPT;
5497 break;
5498 }
5499
5500 sctp_release_sock(sk);
5501 return retval;
5502 }
5503
5504 static void sctp_hash(struct sock *sk)
5505 {
5506 /* STUB */
5507 }
5508
5509 static void sctp_unhash(struct sock *sk)
5510 {
5511 /* STUB */
5512 }
5513
5514 /* Check if port is acceptable. Possibly find first available port.
5515 *
5516 * The port hash table (contained in the 'global' SCTP protocol storage
5517 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5518 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5519 * list (the list number is the port number hashed out, so as you
5520 * would expect from a hash function, all the ports in a given list have
5521 * such a number that hashes out to the same list number; you were
5522 * expecting that, right?); so each list has a set of ports, with a
5523 * link to the socket (struct sock) that uses it, the port number and
5524 * a fastreuse flag (FIXME: NPI ipg).
5525 */
5526 static struct sctp_bind_bucket *sctp_bucket_create(
5527 struct sctp_bind_hashbucket *head, unsigned short snum);
5528
5529 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5530 {
5531 struct sctp_bind_hashbucket *head; /* hash list */
5532 struct sctp_bind_bucket *pp; /* hash list port iterator */
5533 struct hlist_node *node;
5534 unsigned short snum;
5535 int ret;
5536
5537 snum = ntohs(addr->v4.sin_port);
5538
5539 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5540 sctp_local_bh_disable();
5541
5542 if (snum == 0) {
5543 /* Search for an available port. */
5544 int low, high, remaining, index;
5545 unsigned int rover;
5546
5547 inet_get_local_port_range(&low, &high);
5548 remaining = (high - low) + 1;
5549 rover = net_random() % remaining + low;
5550
5551 do {
5552 rover++;
5553 if ((rover < low) || (rover > high))
5554 rover = low;
5555 if (inet_is_reserved_local_port(rover))
5556 continue;
5557 index = sctp_phashfn(rover);
5558 head = &sctp_port_hashtable[index];
5559 sctp_spin_lock(&head->lock);
5560 sctp_for_each_hentry(pp, node, &head->chain)
5561 if (pp->port == rover)
5562 goto next;
5563 break;
5564 next:
5565 sctp_spin_unlock(&head->lock);
5566 } while (--remaining > 0);
5567
5568 /* Exhausted local port range during search? */
5569 ret = 1;
5570 if (remaining <= 0)
5571 goto fail;
5572
5573 /* OK, here is the one we will use. HEAD (the port
5574 * hash table list entry) is non-NULL and we hold it's
5575 * mutex.
5576 */
5577 snum = rover;
5578 } else {
5579 /* We are given an specific port number; we verify
5580 * that it is not being used. If it is used, we will
5581 * exahust the search in the hash list corresponding
5582 * to the port number (snum) - we detect that with the
5583 * port iterator, pp being NULL.
5584 */
5585 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5586 sctp_spin_lock(&head->lock);
5587 sctp_for_each_hentry(pp, node, &head->chain) {
5588 if (pp->port == snum)
5589 goto pp_found;
5590 }
5591 }
5592 pp = NULL;
5593 goto pp_not_found;
5594 pp_found:
5595 if (!hlist_empty(&pp->owner)) {
5596 /* We had a port hash table hit - there is an
5597 * available port (pp != NULL) and it is being
5598 * used by other socket (pp->owner not empty); that other
5599 * socket is going to be sk2.
5600 */
5601 int reuse = sk->sk_reuse;
5602 struct sock *sk2;
5603
5604 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5605 if (pp->fastreuse && sk->sk_reuse &&
5606 sk->sk_state != SCTP_SS_LISTENING)
5607 goto success;
5608
5609 /* Run through the list of sockets bound to the port
5610 * (pp->port) [via the pointers bind_next and
5611 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5612 * we get the endpoint they describe and run through
5613 * the endpoint's list of IP (v4 or v6) addresses,
5614 * comparing each of the addresses with the address of
5615 * the socket sk. If we find a match, then that means
5616 * that this port/socket (sk) combination are already
5617 * in an endpoint.
5618 */
5619 sk_for_each_bound(sk2, node, &pp->owner) {
5620 struct sctp_endpoint *ep2;
5621 ep2 = sctp_sk(sk2)->ep;
5622
5623 if (sk == sk2 ||
5624 (reuse && sk2->sk_reuse &&
5625 sk2->sk_state != SCTP_SS_LISTENING))
5626 continue;
5627
5628 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5629 sctp_sk(sk2), sctp_sk(sk))) {
5630 ret = (long)sk2;
5631 goto fail_unlock;
5632 }
5633 }
5634 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5635 }
5636 pp_not_found:
5637 /* If there was a hash table miss, create a new port. */
5638 ret = 1;
5639 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5640 goto fail_unlock;
5641
5642 /* In either case (hit or miss), make sure fastreuse is 1 only
5643 * if sk->sk_reuse is too (that is, if the caller requested
5644 * SO_REUSEADDR on this socket -sk-).
5645 */
5646 if (hlist_empty(&pp->owner)) {
5647 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5648 pp->fastreuse = 1;
5649 else
5650 pp->fastreuse = 0;
5651 } else if (pp->fastreuse &&
5652 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5653 pp->fastreuse = 0;
5654
5655 /* We are set, so fill up all the data in the hash table
5656 * entry, tie the socket list information with the rest of the
5657 * sockets FIXME: Blurry, NPI (ipg).
5658 */
5659 success:
5660 if (!sctp_sk(sk)->bind_hash) {
5661 inet_sk(sk)->inet_num = snum;
5662 sk_add_bind_node(sk, &pp->owner);
5663 sctp_sk(sk)->bind_hash = pp;
5664 }
5665 ret = 0;
5666
5667 fail_unlock:
5668 sctp_spin_unlock(&head->lock);
5669
5670 fail:
5671 sctp_local_bh_enable();
5672 return ret;
5673 }
5674
5675 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5676 * port is requested.
5677 */
5678 static int sctp_get_port(struct sock *sk, unsigned short snum)
5679 {
5680 long ret;
5681 union sctp_addr addr;
5682 struct sctp_af *af = sctp_sk(sk)->pf->af;
5683
5684 /* Set up a dummy address struct from the sk. */
5685 af->from_sk(&addr, sk);
5686 addr.v4.sin_port = htons(snum);
5687
5688 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5689 ret = sctp_get_port_local(sk, &addr);
5690
5691 return ret ? 1 : 0;
5692 }
5693
5694 /*
5695 * Move a socket to LISTENING state.
5696 */
5697 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5698 {
5699 struct sctp_sock *sp = sctp_sk(sk);
5700 struct sctp_endpoint *ep = sp->ep;
5701 struct crypto_hash *tfm = NULL;
5702
5703 /* Allocate HMAC for generating cookie. */
5704 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5705 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5706 if (IS_ERR(tfm)) {
5707 if (net_ratelimit()) {
5708 pr_info("failed to load transform for %s: %ld\n",
5709 sctp_hmac_alg, PTR_ERR(tfm));
5710 }
5711 return -ENOSYS;
5712 }
5713 sctp_sk(sk)->hmac = tfm;
5714 }
5715
5716 /*
5717 * If a bind() or sctp_bindx() is not called prior to a listen()
5718 * call that allows new associations to be accepted, the system
5719 * picks an ephemeral port and will choose an address set equivalent
5720 * to binding with a wildcard address.
5721 *
5722 * This is not currently spelled out in the SCTP sockets
5723 * extensions draft, but follows the practice as seen in TCP
5724 * sockets.
5725 *
5726 */
5727 sk->sk_state = SCTP_SS_LISTENING;
5728 if (!ep->base.bind_addr.port) {
5729 if (sctp_autobind(sk))
5730 return -EAGAIN;
5731 } else {
5732 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5733 sk->sk_state = SCTP_SS_CLOSED;
5734 return -EADDRINUSE;
5735 }
5736 }
5737
5738 sk->sk_max_ack_backlog = backlog;
5739 sctp_hash_endpoint(ep);
5740 return 0;
5741 }
5742
5743 /*
5744 * 4.1.3 / 5.1.3 listen()
5745 *
5746 * By default, new associations are not accepted for UDP style sockets.
5747 * An application uses listen() to mark a socket as being able to
5748 * accept new associations.
5749 *
5750 * On TCP style sockets, applications use listen() to ready the SCTP
5751 * endpoint for accepting inbound associations.
5752 *
5753 * On both types of endpoints a backlog of '0' disables listening.
5754 *
5755 * Move a socket to LISTENING state.
5756 */
5757 int sctp_inet_listen(struct socket *sock, int backlog)
5758 {
5759 struct sock *sk = sock->sk;
5760 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5761 int err = -EINVAL;
5762
5763 if (unlikely(backlog < 0))
5764 return err;
5765
5766 sctp_lock_sock(sk);
5767
5768 /* Peeled-off sockets are not allowed to listen(). */
5769 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5770 goto out;
5771
5772 if (sock->state != SS_UNCONNECTED)
5773 goto out;
5774
5775 /* If backlog is zero, disable listening. */
5776 if (!backlog) {
5777 if (sctp_sstate(sk, CLOSED))
5778 goto out;
5779
5780 err = 0;
5781 sctp_unhash_endpoint(ep);
5782 sk->sk_state = SCTP_SS_CLOSED;
5783 if (sk->sk_reuse)
5784 sctp_sk(sk)->bind_hash->fastreuse = 1;
5785 goto out;
5786 }
5787
5788 /* If we are already listening, just update the backlog */
5789 if (sctp_sstate(sk, LISTENING))
5790 sk->sk_max_ack_backlog = backlog;
5791 else {
5792 err = sctp_listen_start(sk, backlog);
5793 if (err)
5794 goto out;
5795 }
5796
5797 err = 0;
5798 out:
5799 sctp_release_sock(sk);
5800 return err;
5801 }
5802
5803 /*
5804 * This function is done by modeling the current datagram_poll() and the
5805 * tcp_poll(). Note that, based on these implementations, we don't
5806 * lock the socket in this function, even though it seems that,
5807 * ideally, locking or some other mechanisms can be used to ensure
5808 * the integrity of the counters (sndbuf and wmem_alloc) used
5809 * in this place. We assume that we don't need locks either until proven
5810 * otherwise.
5811 *
5812 * Another thing to note is that we include the Async I/O support
5813 * here, again, by modeling the current TCP/UDP code. We don't have
5814 * a good way to test with it yet.
5815 */
5816 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5817 {
5818 struct sock *sk = sock->sk;
5819 struct sctp_sock *sp = sctp_sk(sk);
5820 unsigned int mask;
5821
5822 poll_wait(file, sk_sleep(sk), wait);
5823
5824 /* A TCP-style listening socket becomes readable when the accept queue
5825 * is not empty.
5826 */
5827 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5828 return (!list_empty(&sp->ep->asocs)) ?
5829 (POLLIN | POLLRDNORM) : 0;
5830
5831 mask = 0;
5832
5833 /* Is there any exceptional events? */
5834 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5835 mask |= POLLERR;
5836 if (sk->sk_shutdown & RCV_SHUTDOWN)
5837 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5838 if (sk->sk_shutdown == SHUTDOWN_MASK)
5839 mask |= POLLHUP;
5840
5841 /* Is it readable? Reconsider this code with TCP-style support. */
5842 if (!skb_queue_empty(&sk->sk_receive_queue))
5843 mask |= POLLIN | POLLRDNORM;
5844
5845 /* The association is either gone or not ready. */
5846 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5847 return mask;
5848
5849 /* Is it writable? */
5850 if (sctp_writeable(sk)) {
5851 mask |= POLLOUT | POLLWRNORM;
5852 } else {
5853 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5854 /*
5855 * Since the socket is not locked, the buffer
5856 * might be made available after the writeable check and
5857 * before the bit is set. This could cause a lost I/O
5858 * signal. tcp_poll() has a race breaker for this race
5859 * condition. Based on their implementation, we put
5860 * in the following code to cover it as well.
5861 */
5862 if (sctp_writeable(sk))
5863 mask |= POLLOUT | POLLWRNORM;
5864 }
5865 return mask;
5866 }
5867
5868 /********************************************************************
5869 * 2nd Level Abstractions
5870 ********************************************************************/
5871
5872 static struct sctp_bind_bucket *sctp_bucket_create(
5873 struct sctp_bind_hashbucket *head, unsigned short snum)
5874 {
5875 struct sctp_bind_bucket *pp;
5876
5877 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5878 if (pp) {
5879 SCTP_DBG_OBJCNT_INC(bind_bucket);
5880 pp->port = snum;
5881 pp->fastreuse = 0;
5882 INIT_HLIST_HEAD(&pp->owner);
5883 hlist_add_head(&pp->node, &head->chain);
5884 }
5885 return pp;
5886 }
5887
5888 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5889 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5890 {
5891 if (pp && hlist_empty(&pp->owner)) {
5892 __hlist_del(&pp->node);
5893 kmem_cache_free(sctp_bucket_cachep, pp);
5894 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5895 }
5896 }
5897
5898 /* Release this socket's reference to a local port. */
5899 static inline void __sctp_put_port(struct sock *sk)
5900 {
5901 struct sctp_bind_hashbucket *head =
5902 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5903 struct sctp_bind_bucket *pp;
5904
5905 sctp_spin_lock(&head->lock);
5906 pp = sctp_sk(sk)->bind_hash;
5907 __sk_del_bind_node(sk);
5908 sctp_sk(sk)->bind_hash = NULL;
5909 inet_sk(sk)->inet_num = 0;
5910 sctp_bucket_destroy(pp);
5911 sctp_spin_unlock(&head->lock);
5912 }
5913
5914 void sctp_put_port(struct sock *sk)
5915 {
5916 sctp_local_bh_disable();
5917 __sctp_put_port(sk);
5918 sctp_local_bh_enable();
5919 }
5920
5921 /*
5922 * The system picks an ephemeral port and choose an address set equivalent
5923 * to binding with a wildcard address.
5924 * One of those addresses will be the primary address for the association.
5925 * This automatically enables the multihoming capability of SCTP.
5926 */
5927 static int sctp_autobind(struct sock *sk)
5928 {
5929 union sctp_addr autoaddr;
5930 struct sctp_af *af;
5931 __be16 port;
5932
5933 /* Initialize a local sockaddr structure to INADDR_ANY. */
5934 af = sctp_sk(sk)->pf->af;
5935
5936 port = htons(inet_sk(sk)->inet_num);
5937 af->inaddr_any(&autoaddr, port);
5938
5939 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5940 }
5941
5942 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5943 *
5944 * From RFC 2292
5945 * 4.2 The cmsghdr Structure *
5946 *
5947 * When ancillary data is sent or received, any number of ancillary data
5948 * objects can be specified by the msg_control and msg_controllen members of
5949 * the msghdr structure, because each object is preceded by
5950 * a cmsghdr structure defining the object's length (the cmsg_len member).
5951 * Historically Berkeley-derived implementations have passed only one object
5952 * at a time, but this API allows multiple objects to be
5953 * passed in a single call to sendmsg() or recvmsg(). The following example
5954 * shows two ancillary data objects in a control buffer.
5955 *
5956 * |<--------------------------- msg_controllen -------------------------->|
5957 * | |
5958 *
5959 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5960 *
5961 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5962 * | | |
5963 *
5964 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5965 *
5966 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5967 * | | | | |
5968 *
5969 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5970 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5971 *
5972 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5973 *
5974 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5975 * ^
5976 * |
5977 *
5978 * msg_control
5979 * points here
5980 */
5981 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5982 sctp_cmsgs_t *cmsgs)
5983 {
5984 struct cmsghdr *cmsg;
5985 struct msghdr *my_msg = (struct msghdr *)msg;
5986
5987 for (cmsg = CMSG_FIRSTHDR(msg);
5988 cmsg != NULL;
5989 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5990 if (!CMSG_OK(my_msg, cmsg))
5991 return -EINVAL;
5992
5993 /* Should we parse this header or ignore? */
5994 if (cmsg->cmsg_level != IPPROTO_SCTP)
5995 continue;
5996
5997 /* Strictly check lengths following example in SCM code. */
5998 switch (cmsg->cmsg_type) {
5999 case SCTP_INIT:
6000 /* SCTP Socket API Extension
6001 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6002 *
6003 * This cmsghdr structure provides information for
6004 * initializing new SCTP associations with sendmsg().
6005 * The SCTP_INITMSG socket option uses this same data
6006 * structure. This structure is not used for
6007 * recvmsg().
6008 *
6009 * cmsg_level cmsg_type cmsg_data[]
6010 * ------------ ------------ ----------------------
6011 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6012 */
6013 if (cmsg->cmsg_len !=
6014 CMSG_LEN(sizeof(struct sctp_initmsg)))
6015 return -EINVAL;
6016 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6017 break;
6018
6019 case SCTP_SNDRCV:
6020 /* SCTP Socket API Extension
6021 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6022 *
6023 * This cmsghdr structure specifies SCTP options for
6024 * sendmsg() and describes SCTP header information
6025 * about a received message through recvmsg().
6026 *
6027 * cmsg_level cmsg_type cmsg_data[]
6028 * ------------ ------------ ----------------------
6029 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6030 */
6031 if (cmsg->cmsg_len !=
6032 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6033 return -EINVAL;
6034
6035 cmsgs->info =
6036 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6037
6038 /* Minimally, validate the sinfo_flags. */
6039 if (cmsgs->info->sinfo_flags &
6040 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6041 SCTP_ABORT | SCTP_EOF))
6042 return -EINVAL;
6043 break;
6044
6045 default:
6046 return -EINVAL;
6047 }
6048 }
6049 return 0;
6050 }
6051
6052 /*
6053 * Wait for a packet..
6054 * Note: This function is the same function as in core/datagram.c
6055 * with a few modifications to make lksctp work.
6056 */
6057 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6058 {
6059 int error;
6060 DEFINE_WAIT(wait);
6061
6062 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6063
6064 /* Socket errors? */
6065 error = sock_error(sk);
6066 if (error)
6067 goto out;
6068
6069 if (!skb_queue_empty(&sk->sk_receive_queue))
6070 goto ready;
6071
6072 /* Socket shut down? */
6073 if (sk->sk_shutdown & RCV_SHUTDOWN)
6074 goto out;
6075
6076 /* Sequenced packets can come disconnected. If so we report the
6077 * problem.
6078 */
6079 error = -ENOTCONN;
6080
6081 /* Is there a good reason to think that we may receive some data? */
6082 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6083 goto out;
6084
6085 /* Handle signals. */
6086 if (signal_pending(current))
6087 goto interrupted;
6088
6089 /* Let another process have a go. Since we are going to sleep
6090 * anyway. Note: This may cause odd behaviors if the message
6091 * does not fit in the user's buffer, but this seems to be the
6092 * only way to honor MSG_DONTWAIT realistically.
6093 */
6094 sctp_release_sock(sk);
6095 *timeo_p = schedule_timeout(*timeo_p);
6096 sctp_lock_sock(sk);
6097
6098 ready:
6099 finish_wait(sk_sleep(sk), &wait);
6100 return 0;
6101
6102 interrupted:
6103 error = sock_intr_errno(*timeo_p);
6104
6105 out:
6106 finish_wait(sk_sleep(sk), &wait);
6107 *err = error;
6108 return error;
6109 }
6110
6111 /* Receive a datagram.
6112 * Note: This is pretty much the same routine as in core/datagram.c
6113 * with a few changes to make lksctp work.
6114 */
6115 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6116 int noblock, int *err)
6117 {
6118 int error;
6119 struct sk_buff *skb;
6120 long timeo;
6121
6122 timeo = sock_rcvtimeo(sk, noblock);
6123
6124 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6125 timeo, MAX_SCHEDULE_TIMEOUT);
6126
6127 do {
6128 /* Again only user level code calls this function,
6129 * so nothing interrupt level
6130 * will suddenly eat the receive_queue.
6131 *
6132 * Look at current nfs client by the way...
6133 * However, this function was correct in any case. 8)
6134 */
6135 if (flags & MSG_PEEK) {
6136 spin_lock_bh(&sk->sk_receive_queue.lock);
6137 skb = skb_peek(&sk->sk_receive_queue);
6138 if (skb)
6139 atomic_inc(&skb->users);
6140 spin_unlock_bh(&sk->sk_receive_queue.lock);
6141 } else {
6142 skb = skb_dequeue(&sk->sk_receive_queue);
6143 }
6144
6145 if (skb)
6146 return skb;
6147
6148 /* Caller is allowed not to check sk->sk_err before calling. */
6149 error = sock_error(sk);
6150 if (error)
6151 goto no_packet;
6152
6153 if (sk->sk_shutdown & RCV_SHUTDOWN)
6154 break;
6155
6156 /* User doesn't want to wait. */
6157 error = -EAGAIN;
6158 if (!timeo)
6159 goto no_packet;
6160 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6161
6162 return NULL;
6163
6164 no_packet:
6165 *err = error;
6166 return NULL;
6167 }
6168
6169 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6170 static void __sctp_write_space(struct sctp_association *asoc)
6171 {
6172 struct sock *sk = asoc->base.sk;
6173 struct socket *sock = sk->sk_socket;
6174
6175 if ((sctp_wspace(asoc) > 0) && sock) {
6176 if (waitqueue_active(&asoc->wait))
6177 wake_up_interruptible(&asoc->wait);
6178
6179 if (sctp_writeable(sk)) {
6180 wait_queue_head_t *wq = sk_sleep(sk);
6181
6182 if (wq && waitqueue_active(wq))
6183 wake_up_interruptible(wq);
6184
6185 /* Note that we try to include the Async I/O support
6186 * here by modeling from the current TCP/UDP code.
6187 * We have not tested with it yet.
6188 */
6189 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6190 sock_wake_async(sock,
6191 SOCK_WAKE_SPACE, POLL_OUT);
6192 }
6193 }
6194 }
6195
6196 /* Do accounting for the sndbuf space.
6197 * Decrement the used sndbuf space of the corresponding association by the
6198 * data size which was just transmitted(freed).
6199 */
6200 static void sctp_wfree(struct sk_buff *skb)
6201 {
6202 struct sctp_association *asoc;
6203 struct sctp_chunk *chunk;
6204 struct sock *sk;
6205
6206 /* Get the saved chunk pointer. */
6207 chunk = *((struct sctp_chunk **)(skb->cb));
6208 asoc = chunk->asoc;
6209 sk = asoc->base.sk;
6210 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6211 sizeof(struct sk_buff) +
6212 sizeof(struct sctp_chunk);
6213
6214 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6215
6216 /*
6217 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6218 */
6219 sk->sk_wmem_queued -= skb->truesize;
6220 sk_mem_uncharge(sk, skb->truesize);
6221
6222 sock_wfree(skb);
6223 __sctp_write_space(asoc);
6224
6225 sctp_association_put(asoc);
6226 }
6227
6228 /* Do accounting for the receive space on the socket.
6229 * Accounting for the association is done in ulpevent.c
6230 * We set this as a destructor for the cloned data skbs so that
6231 * accounting is done at the correct time.
6232 */
6233 void sctp_sock_rfree(struct sk_buff *skb)
6234 {
6235 struct sock *sk = skb->sk;
6236 struct sctp_ulpevent *event = sctp_skb2event(skb);
6237
6238 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6239
6240 /*
6241 * Mimic the behavior of sock_rfree
6242 */
6243 sk_mem_uncharge(sk, event->rmem_len);
6244 }
6245
6246
6247 /* Helper function to wait for space in the sndbuf. */
6248 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6249 size_t msg_len)
6250 {
6251 struct sock *sk = asoc->base.sk;
6252 int err = 0;
6253 long current_timeo = *timeo_p;
6254 DEFINE_WAIT(wait);
6255
6256 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6257 asoc, (long)(*timeo_p), msg_len);
6258
6259 /* Increment the association's refcnt. */
6260 sctp_association_hold(asoc);
6261
6262 /* Wait on the association specific sndbuf space. */
6263 for (;;) {
6264 prepare_to_wait_exclusive(&asoc->wait, &wait,
6265 TASK_INTERRUPTIBLE);
6266 if (!*timeo_p)
6267 goto do_nonblock;
6268 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6269 asoc->base.dead)
6270 goto do_error;
6271 if (signal_pending(current))
6272 goto do_interrupted;
6273 if (msg_len <= sctp_wspace(asoc))
6274 break;
6275
6276 /* Let another process have a go. Since we are going
6277 * to sleep anyway.
6278 */
6279 sctp_release_sock(sk);
6280 current_timeo = schedule_timeout(current_timeo);
6281 BUG_ON(sk != asoc->base.sk);
6282 sctp_lock_sock(sk);
6283
6284 *timeo_p = current_timeo;
6285 }
6286
6287 out:
6288 finish_wait(&asoc->wait, &wait);
6289
6290 /* Release the association's refcnt. */
6291 sctp_association_put(asoc);
6292
6293 return err;
6294
6295 do_error:
6296 err = -EPIPE;
6297 goto out;
6298
6299 do_interrupted:
6300 err = sock_intr_errno(*timeo_p);
6301 goto out;
6302
6303 do_nonblock:
6304 err = -EAGAIN;
6305 goto out;
6306 }
6307
6308 void sctp_data_ready(struct sock *sk, int len)
6309 {
6310 struct socket_wq *wq;
6311
6312 rcu_read_lock();
6313 wq = rcu_dereference(sk->sk_wq);
6314 if (wq_has_sleeper(wq))
6315 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6316 POLLRDNORM | POLLRDBAND);
6317 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6318 rcu_read_unlock();
6319 }
6320
6321 /* If socket sndbuf has changed, wake up all per association waiters. */
6322 void sctp_write_space(struct sock *sk)
6323 {
6324 struct sctp_association *asoc;
6325
6326 /* Wake up the tasks in each wait queue. */
6327 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6328 __sctp_write_space(asoc);
6329 }
6330 }
6331
6332 /* Is there any sndbuf space available on the socket?
6333 *
6334 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6335 * associations on the same socket. For a UDP-style socket with
6336 * multiple associations, it is possible for it to be "unwriteable"
6337 * prematurely. I assume that this is acceptable because
6338 * a premature "unwriteable" is better than an accidental "writeable" which
6339 * would cause an unwanted block under certain circumstances. For the 1-1
6340 * UDP-style sockets or TCP-style sockets, this code should work.
6341 * - Daisy
6342 */
6343 static int sctp_writeable(struct sock *sk)
6344 {
6345 int amt = 0;
6346
6347 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6348 if (amt < 0)
6349 amt = 0;
6350 return amt;
6351 }
6352
6353 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6354 * returns immediately with EINPROGRESS.
6355 */
6356 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6357 {
6358 struct sock *sk = asoc->base.sk;
6359 int err = 0;
6360 long current_timeo = *timeo_p;
6361 DEFINE_WAIT(wait);
6362
6363 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6364 (long)(*timeo_p));
6365
6366 /* Increment the association's refcnt. */
6367 sctp_association_hold(asoc);
6368
6369 for (;;) {
6370 prepare_to_wait_exclusive(&asoc->wait, &wait,
6371 TASK_INTERRUPTIBLE);
6372 if (!*timeo_p)
6373 goto do_nonblock;
6374 if (sk->sk_shutdown & RCV_SHUTDOWN)
6375 break;
6376 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6377 asoc->base.dead)
6378 goto do_error;
6379 if (signal_pending(current))
6380 goto do_interrupted;
6381
6382 if (sctp_state(asoc, ESTABLISHED))
6383 break;
6384
6385 /* Let another process have a go. Since we are going
6386 * to sleep anyway.
6387 */
6388 sctp_release_sock(sk);
6389 current_timeo = schedule_timeout(current_timeo);
6390 sctp_lock_sock(sk);
6391
6392 *timeo_p = current_timeo;
6393 }
6394
6395 out:
6396 finish_wait(&asoc->wait, &wait);
6397
6398 /* Release the association's refcnt. */
6399 sctp_association_put(asoc);
6400
6401 return err;
6402
6403 do_error:
6404 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6405 err = -ETIMEDOUT;
6406 else
6407 err = -ECONNREFUSED;
6408 goto out;
6409
6410 do_interrupted:
6411 err = sock_intr_errno(*timeo_p);
6412 goto out;
6413
6414 do_nonblock:
6415 err = -EINPROGRESS;
6416 goto out;
6417 }
6418
6419 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6420 {
6421 struct sctp_endpoint *ep;
6422 int err = 0;
6423 DEFINE_WAIT(wait);
6424
6425 ep = sctp_sk(sk)->ep;
6426
6427
6428 for (;;) {
6429 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6430 TASK_INTERRUPTIBLE);
6431
6432 if (list_empty(&ep->asocs)) {
6433 sctp_release_sock(sk);
6434 timeo = schedule_timeout(timeo);
6435 sctp_lock_sock(sk);
6436 }
6437
6438 err = -EINVAL;
6439 if (!sctp_sstate(sk, LISTENING))
6440 break;
6441
6442 err = 0;
6443 if (!list_empty(&ep->asocs))
6444 break;
6445
6446 err = sock_intr_errno(timeo);
6447 if (signal_pending(current))
6448 break;
6449
6450 err = -EAGAIN;
6451 if (!timeo)
6452 break;
6453 }
6454
6455 finish_wait(sk_sleep(sk), &wait);
6456
6457 return err;
6458 }
6459
6460 static void sctp_wait_for_close(struct sock *sk, long timeout)
6461 {
6462 DEFINE_WAIT(wait);
6463
6464 do {
6465 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6466 if (list_empty(&sctp_sk(sk)->ep->asocs))
6467 break;
6468 sctp_release_sock(sk);
6469 timeout = schedule_timeout(timeout);
6470 sctp_lock_sock(sk);
6471 } while (!signal_pending(current) && timeout);
6472
6473 finish_wait(sk_sleep(sk), &wait);
6474 }
6475
6476 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6477 {
6478 struct sk_buff *frag;
6479
6480 if (!skb->data_len)
6481 goto done;
6482
6483 /* Don't forget the fragments. */
6484 skb_walk_frags(skb, frag)
6485 sctp_skb_set_owner_r_frag(frag, sk);
6486
6487 done:
6488 sctp_skb_set_owner_r(skb, sk);
6489 }
6490
6491 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6492 struct sctp_association *asoc)
6493 {
6494 struct inet_sock *inet = inet_sk(sk);
6495 struct inet_sock *newinet;
6496
6497 newsk->sk_type = sk->sk_type;
6498 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6499 newsk->sk_flags = sk->sk_flags;
6500 newsk->sk_no_check = sk->sk_no_check;
6501 newsk->sk_reuse = sk->sk_reuse;
6502
6503 newsk->sk_shutdown = sk->sk_shutdown;
6504 newsk->sk_destruct = inet_sock_destruct;
6505 newsk->sk_family = sk->sk_family;
6506 newsk->sk_protocol = IPPROTO_SCTP;
6507 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6508 newsk->sk_sndbuf = sk->sk_sndbuf;
6509 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6510 newsk->sk_lingertime = sk->sk_lingertime;
6511 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6512 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6513
6514 newinet = inet_sk(newsk);
6515
6516 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6517 * getsockname() and getpeername()
6518 */
6519 newinet->inet_sport = inet->inet_sport;
6520 newinet->inet_saddr = inet->inet_saddr;
6521 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6522 newinet->inet_dport = htons(asoc->peer.port);
6523 newinet->pmtudisc = inet->pmtudisc;
6524 newinet->inet_id = asoc->next_tsn ^ jiffies;
6525
6526 newinet->uc_ttl = inet->uc_ttl;
6527 newinet->mc_loop = 1;
6528 newinet->mc_ttl = 1;
6529 newinet->mc_index = 0;
6530 newinet->mc_list = NULL;
6531 }
6532
6533 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6534 * and its messages to the newsk.
6535 */
6536 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6537 struct sctp_association *assoc,
6538 sctp_socket_type_t type)
6539 {
6540 struct sctp_sock *oldsp = sctp_sk(oldsk);
6541 struct sctp_sock *newsp = sctp_sk(newsk);
6542 struct sctp_bind_bucket *pp; /* hash list port iterator */
6543 struct sctp_endpoint *newep = newsp->ep;
6544 struct sk_buff *skb, *tmp;
6545 struct sctp_ulpevent *event;
6546 struct sctp_bind_hashbucket *head;
6547 struct list_head tmplist;
6548
6549 /* Migrate socket buffer sizes and all the socket level options to the
6550 * new socket.
6551 */
6552 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6553 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6554 /* Brute force copy old sctp opt. */
6555 if (oldsp->do_auto_asconf) {
6556 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6557 inet_sk_copy_descendant(newsk, oldsk);
6558 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6559 } else
6560 inet_sk_copy_descendant(newsk, oldsk);
6561
6562 /* Restore the ep value that was overwritten with the above structure
6563 * copy.
6564 */
6565 newsp->ep = newep;
6566 newsp->hmac = NULL;
6567
6568 /* Hook this new socket in to the bind_hash list. */
6569 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6570 sctp_local_bh_disable();
6571 sctp_spin_lock(&head->lock);
6572 pp = sctp_sk(oldsk)->bind_hash;
6573 sk_add_bind_node(newsk, &pp->owner);
6574 sctp_sk(newsk)->bind_hash = pp;
6575 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6576 sctp_spin_unlock(&head->lock);
6577 sctp_local_bh_enable();
6578
6579 /* Copy the bind_addr list from the original endpoint to the new
6580 * endpoint so that we can handle restarts properly
6581 */
6582 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6583 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6584
6585 /* Move any messages in the old socket's receive queue that are for the
6586 * peeled off association to the new socket's receive queue.
6587 */
6588 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6589 event = sctp_skb2event(skb);
6590 if (event->asoc == assoc) {
6591 __skb_unlink(skb, &oldsk->sk_receive_queue);
6592 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6593 sctp_skb_set_owner_r_frag(skb, newsk);
6594 }
6595 }
6596
6597 /* Clean up any messages pending delivery due to partial
6598 * delivery. Three cases:
6599 * 1) No partial deliver; no work.
6600 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6601 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6602 */
6603 skb_queue_head_init(&newsp->pd_lobby);
6604 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6605
6606 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6607 struct sk_buff_head *queue;
6608
6609 /* Decide which queue to move pd_lobby skbs to. */
6610 if (assoc->ulpq.pd_mode) {
6611 queue = &newsp->pd_lobby;
6612 } else
6613 queue = &newsk->sk_receive_queue;
6614
6615 /* Walk through the pd_lobby, looking for skbs that
6616 * need moved to the new socket.
6617 */
6618 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6619 event = sctp_skb2event(skb);
6620 if (event->asoc == assoc) {
6621 __skb_unlink(skb, &oldsp->pd_lobby);
6622 __skb_queue_tail(queue, skb);
6623 sctp_skb_set_owner_r_frag(skb, newsk);
6624 }
6625 }
6626
6627 /* Clear up any skbs waiting for the partial
6628 * delivery to finish.
6629 */
6630 if (assoc->ulpq.pd_mode)
6631 sctp_clear_pd(oldsk, NULL);
6632
6633 }
6634
6635 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6636 sctp_skb_set_owner_r_frag(skb, newsk);
6637
6638 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6639 sctp_skb_set_owner_r_frag(skb, newsk);
6640
6641 /* Set the type of socket to indicate that it is peeled off from the
6642 * original UDP-style socket or created with the accept() call on a
6643 * TCP-style socket..
6644 */
6645 newsp->type = type;
6646
6647 /* Mark the new socket "in-use" by the user so that any packets
6648 * that may arrive on the association after we've moved it are
6649 * queued to the backlog. This prevents a potential race between
6650 * backlog processing on the old socket and new-packet processing
6651 * on the new socket.
6652 *
6653 * The caller has just allocated newsk so we can guarantee that other
6654 * paths won't try to lock it and then oldsk.
6655 */
6656 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6657 sctp_assoc_migrate(assoc, newsk);
6658
6659 /* If the association on the newsk is already closed before accept()
6660 * is called, set RCV_SHUTDOWN flag.
6661 */
6662 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6663 newsk->sk_shutdown |= RCV_SHUTDOWN;
6664
6665 newsk->sk_state = SCTP_SS_ESTABLISHED;
6666 sctp_release_sock(newsk);
6667 }
6668
6669
6670 /* This proto struct describes the ULP interface for SCTP. */
6671 struct proto sctp_prot = {
6672 .name = "SCTP",
6673 .owner = THIS_MODULE,
6674 .close = sctp_close,
6675 .connect = sctp_connect,
6676 .disconnect = sctp_disconnect,
6677 .accept = sctp_accept,
6678 .ioctl = sctp_ioctl,
6679 .init = sctp_init_sock,
6680 .destroy = sctp_destroy_sock,
6681 .shutdown = sctp_shutdown,
6682 .setsockopt = sctp_setsockopt,
6683 .getsockopt = sctp_getsockopt,
6684 .sendmsg = sctp_sendmsg,
6685 .recvmsg = sctp_recvmsg,
6686 .bind = sctp_bind,
6687 .backlog_rcv = sctp_backlog_rcv,
6688 .hash = sctp_hash,
6689 .unhash = sctp_unhash,
6690 .get_port = sctp_get_port,
6691 .obj_size = sizeof(struct sctp_sock),
6692 .sysctl_mem = sysctl_sctp_mem,
6693 .sysctl_rmem = sysctl_sctp_rmem,
6694 .sysctl_wmem = sysctl_sctp_wmem,
6695 .memory_pressure = &sctp_memory_pressure,
6696 .enter_memory_pressure = sctp_enter_memory_pressure,
6697 .memory_allocated = &sctp_memory_allocated,
6698 .sockets_allocated = &sctp_sockets_allocated,
6699 };
6700
6701 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6702
6703 struct proto sctpv6_prot = {
6704 .name = "SCTPv6",
6705 .owner = THIS_MODULE,
6706 .close = sctp_close,
6707 .connect = sctp_connect,
6708 .disconnect = sctp_disconnect,
6709 .accept = sctp_accept,
6710 .ioctl = sctp_ioctl,
6711 .init = sctp_init_sock,
6712 .destroy = sctp_destroy_sock,
6713 .shutdown = sctp_shutdown,
6714 .setsockopt = sctp_setsockopt,
6715 .getsockopt = sctp_getsockopt,
6716 .sendmsg = sctp_sendmsg,
6717 .recvmsg = sctp_recvmsg,
6718 .bind = sctp_bind,
6719 .backlog_rcv = sctp_backlog_rcv,
6720 .hash = sctp_hash,
6721 .unhash = sctp_unhash,
6722 .get_port = sctp_get_port,
6723 .obj_size = sizeof(struct sctp6_sock),
6724 .sysctl_mem = sysctl_sctp_mem,
6725 .sysctl_rmem = sysctl_sctp_rmem,
6726 .sysctl_wmem = sysctl_sctp_wmem,
6727 .memory_pressure = &sctp_memory_pressure,
6728 .enter_memory_pressure = sctp_enter_memory_pressure,
6729 .memory_allocated = &sctp_memory_allocated,
6730 .sockets_allocated = &sctp_sockets_allocated,
6731 };
6732 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */