ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68
69 /* Keep track of the new idr low so that we don't re-use association id
70 * numbers too fast. It is protected by they idr spin lock is in the
71 * range of 1 - INT_MAX.
72 */
73 static u32 idr_low = 1;
74
75
76 /* 1st Level Abstractions. */
77
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 const struct sctp_endpoint *ep,
81 const struct sock *sk,
82 sctp_scope_t scope,
83 gfp_t gfp)
84 {
85 struct net *net = sock_net(sk);
86 struct sctp_sock *sp;
87 int i;
88 sctp_paramhdr_t *p;
89 int err;
90
91 /* Retrieve the SCTP per socket area. */
92 sp = sctp_sk((struct sock *)sk);
93
94 /* Discarding const is appropriate here. */
95 asoc->ep = (struct sctp_endpoint *)ep;
96 sctp_endpoint_hold(asoc->ep);
97
98 /* Hold the sock. */
99 asoc->base.sk = (struct sock *)sk;
100 sock_hold(asoc->base.sk);
101
102 /* Initialize the common base substructure. */
103 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104
105 /* Initialize the object handling fields. */
106 atomic_set(&asoc->base.refcnt, 1);
107 asoc->base.dead = 0;
108 asoc->base.malloced = 0;
109
110 /* Initialize the bind addr area. */
111 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112
113 asoc->state = SCTP_STATE_CLOSED;
114
115 /* Set these values from the socket values, a conversion between
116 * millsecons to seconds/microseconds must also be done.
117 */
118 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
119 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
120 * 1000;
121 asoc->frag_point = 0;
122 asoc->user_frag = sp->user_frag;
123
124 /* Set the association max_retrans and RTO values from the
125 * socket values.
126 */
127 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
128 asoc->pf_retrans = net->sctp.pf_retrans;
129
130 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
131 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
132 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
133
134 asoc->overall_error_count = 0;
135
136 /* Initialize the association's heartbeat interval based on the
137 * sock configured value.
138 */
139 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
140
141 /* Initialize path max retrans value. */
142 asoc->pathmaxrxt = sp->pathmaxrxt;
143
144 /* Initialize default path MTU. */
145 asoc->pathmtu = sp->pathmtu;
146
147 /* Set association default SACK delay */
148 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
149 asoc->sackfreq = sp->sackfreq;
150
151 /* Set the association default flags controlling
152 * Heartbeat, SACK delay, and Path MTU Discovery.
153 */
154 asoc->param_flags = sp->param_flags;
155
156 /* Initialize the maximum mumber of new data packets that can be sent
157 * in a burst.
158 */
159 asoc->max_burst = sp->max_burst;
160
161 /* initialize association timers */
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
166 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
167 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
168
169 /* sctpimpguide Section 2.12.2
170 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
171 * recommended value of 5 times 'RTO.Max'.
172 */
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
174 = 5 * asoc->rto_max;
175
176 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
177 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
178 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
179 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
180
181 /* Initializes the timers */
182 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
183 setup_timer(&asoc->timers[i], sctp_timer_events[i],
184 (unsigned long)asoc);
185
186 /* Pull default initialization values from the sock options.
187 * Note: This assumes that the values have already been
188 * validated in the sock.
189 */
190 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
191 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
192 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
193
194 asoc->max_init_timeo =
195 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
196
197 /* Allocate storage for the ssnmap after the inbound and outbound
198 * streams have been negotiated during Init.
199 */
200 asoc->ssnmap = NULL;
201
202 /* Set the local window size for receive.
203 * This is also the rcvbuf space per association.
204 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
205 * 1500 bytes in one SCTP packet.
206 */
207 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
208 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
209 else
210 asoc->rwnd = sk->sk_rcvbuf/2;
211
212 asoc->a_rwnd = asoc->rwnd;
213
214 asoc->rwnd_over = 0;
215 asoc->rwnd_press = 0;
216
217 /* Use my own max window until I learn something better. */
218 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
219
220 /* Set the sndbuf size for transmit. */
221 asoc->sndbuf_used = 0;
222
223 /* Initialize the receive memory counter */
224 atomic_set(&asoc->rmem_alloc, 0);
225
226 init_waitqueue_head(&asoc->wait);
227
228 asoc->c.my_vtag = sctp_generate_tag(ep);
229 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
230 asoc->c.peer_vtag = 0;
231 asoc->c.my_ttag = 0;
232 asoc->c.peer_ttag = 0;
233 asoc->c.my_port = ep->base.bind_addr.port;
234
235 asoc->c.initial_tsn = sctp_generate_tsn(ep);
236
237 asoc->next_tsn = asoc->c.initial_tsn;
238
239 asoc->ctsn_ack_point = asoc->next_tsn - 1;
240 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
241 asoc->highest_sacked = asoc->ctsn_ack_point;
242 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
243 asoc->unack_data = 0;
244
245 /* ADDIP Section 4.1 Asconf Chunk Procedures
246 *
247 * When an endpoint has an ASCONF signaled change to be sent to the
248 * remote endpoint it should do the following:
249 * ...
250 * A2) a serial number should be assigned to the chunk. The serial
251 * number SHOULD be a monotonically increasing number. The serial
252 * numbers SHOULD be initialized at the start of the
253 * association to the same value as the initial TSN.
254 */
255 asoc->addip_serial = asoc->c.initial_tsn;
256
257 INIT_LIST_HEAD(&asoc->addip_chunk_list);
258 INIT_LIST_HEAD(&asoc->asconf_ack_list);
259
260 /* Make an empty list of remote transport addresses. */
261 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
262 asoc->peer.transport_count = 0;
263
264 /* RFC 2960 5.1 Normal Establishment of an Association
265 *
266 * After the reception of the first data chunk in an
267 * association the endpoint must immediately respond with a
268 * sack to acknowledge the data chunk. Subsequent
269 * acknowledgements should be done as described in Section
270 * 6.2.
271 *
272 * [We implement this by telling a new association that it
273 * already received one packet.]
274 */
275 asoc->peer.sack_needed = 1;
276 asoc->peer.sack_cnt = 0;
277 asoc->peer.sack_generation = 1;
278
279 /* Assume that the peer will tell us if he recognizes ASCONF
280 * as part of INIT exchange.
281 * The sctp_addip_noauth option is there for backward compatibilty
282 * and will revert old behavior.
283 */
284 asoc->peer.asconf_capable = 0;
285 if (net->sctp.addip_noauth)
286 asoc->peer.asconf_capable = 1;
287 asoc->asconf_addr_del_pending = NULL;
288 asoc->src_out_of_asoc_ok = 0;
289 asoc->new_transport = NULL;
290
291 /* Create an input queue. */
292 sctp_inq_init(&asoc->base.inqueue);
293 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
294
295 /* Create an output queue. */
296 sctp_outq_init(asoc, &asoc->outqueue);
297
298 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
299 goto fail_init;
300
301 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
302
303 asoc->need_ecne = 0;
304
305 asoc->assoc_id = 0;
306
307 /* Assume that peer would support both address types unless we are
308 * told otherwise.
309 */
310 asoc->peer.ipv4_address = 1;
311 if (asoc->base.sk->sk_family == PF_INET6)
312 asoc->peer.ipv6_address = 1;
313 INIT_LIST_HEAD(&asoc->asocs);
314
315 asoc->autoclose = sp->autoclose;
316
317 asoc->default_stream = sp->default_stream;
318 asoc->default_ppid = sp->default_ppid;
319 asoc->default_flags = sp->default_flags;
320 asoc->default_context = sp->default_context;
321 asoc->default_timetolive = sp->default_timetolive;
322 asoc->default_rcv_context = sp->default_rcv_context;
323
324 /* SCTP_GET_ASSOC_STATS COUNTERS */
325 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
326
327 /* AUTH related initializations */
328 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
329 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
330 if (err)
331 goto fail_init;
332
333 asoc->active_key_id = ep->active_key_id;
334 asoc->asoc_shared_key = NULL;
335
336 asoc->default_hmac_id = 0;
337 /* Save the hmacs and chunks list into this association */
338 if (ep->auth_hmacs_list)
339 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
340 ntohs(ep->auth_hmacs_list->param_hdr.length));
341 if (ep->auth_chunk_list)
342 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
343 ntohs(ep->auth_chunk_list->param_hdr.length));
344
345 /* Get the AUTH random number for this association */
346 p = (sctp_paramhdr_t *)asoc->c.auth_random;
347 p->type = SCTP_PARAM_RANDOM;
348 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
349 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
350
351 return asoc;
352
353 fail_init:
354 sctp_endpoint_put(asoc->ep);
355 sock_put(asoc->base.sk);
356 return NULL;
357 }
358
359 /* Allocate and initialize a new association */
360 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
361 const struct sock *sk,
362 sctp_scope_t scope,
363 gfp_t gfp)
364 {
365 struct sctp_association *asoc;
366
367 asoc = t_new(struct sctp_association, gfp);
368 if (!asoc)
369 goto fail;
370
371 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
372 goto fail_init;
373
374 asoc->base.malloced = 1;
375 SCTP_DBG_OBJCNT_INC(assoc);
376 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
377
378 return asoc;
379
380 fail_init:
381 kfree(asoc);
382 fail:
383 return NULL;
384 }
385
386 /* Free this association if possible. There may still be users, so
387 * the actual deallocation may be delayed.
388 */
389 void sctp_association_free(struct sctp_association *asoc)
390 {
391 struct sock *sk = asoc->base.sk;
392 struct sctp_transport *transport;
393 struct list_head *pos, *temp;
394 int i;
395
396 /* Only real associations count against the endpoint, so
397 * don't bother for if this is a temporary association.
398 */
399 if (!asoc->temp) {
400 list_del(&asoc->asocs);
401
402 /* Decrement the backlog value for a TCP-style listening
403 * socket.
404 */
405 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
406 sk->sk_ack_backlog--;
407 }
408
409 /* Mark as dead, so other users can know this structure is
410 * going away.
411 */
412 asoc->base.dead = 1;
413
414 /* Dispose of any data lying around in the outqueue. */
415 sctp_outq_free(&asoc->outqueue);
416
417 /* Dispose of any pending messages for the upper layer. */
418 sctp_ulpq_free(&asoc->ulpq);
419
420 /* Dispose of any pending chunks on the inqueue. */
421 sctp_inq_free(&asoc->base.inqueue);
422
423 sctp_tsnmap_free(&asoc->peer.tsn_map);
424
425 /* Free ssnmap storage. */
426 sctp_ssnmap_free(asoc->ssnmap);
427
428 /* Clean up the bound address list. */
429 sctp_bind_addr_free(&asoc->base.bind_addr);
430
431 /* Do we need to go through all of our timers and
432 * delete them? To be safe we will try to delete all, but we
433 * should be able to go through and make a guess based
434 * on our state.
435 */
436 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
437 if (del_timer(&asoc->timers[i]))
438 sctp_association_put(asoc);
439 }
440
441 /* Free peer's cached cookie. */
442 kfree(asoc->peer.cookie);
443 kfree(asoc->peer.peer_random);
444 kfree(asoc->peer.peer_chunks);
445 kfree(asoc->peer.peer_hmacs);
446
447 /* Release the transport structures. */
448 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
449 transport = list_entry(pos, struct sctp_transport, transports);
450 list_del_rcu(pos);
451 sctp_transport_free(transport);
452 }
453
454 asoc->peer.transport_count = 0;
455
456 sctp_asconf_queue_teardown(asoc);
457
458 /* Free pending address space being deleted */
459 if (asoc->asconf_addr_del_pending != NULL)
460 kfree(asoc->asconf_addr_del_pending);
461
462 /* AUTH - Free the endpoint shared keys */
463 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
464
465 /* AUTH - Free the association shared key */
466 sctp_auth_key_put(asoc->asoc_shared_key);
467
468 sctp_association_put(asoc);
469 }
470
471 /* Cleanup and free up an association. */
472 static void sctp_association_destroy(struct sctp_association *asoc)
473 {
474 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
475
476 sctp_endpoint_put(asoc->ep);
477 sock_put(asoc->base.sk);
478
479 if (asoc->assoc_id != 0) {
480 spin_lock_bh(&sctp_assocs_id_lock);
481 idr_remove(&sctp_assocs_id, asoc->assoc_id);
482 spin_unlock_bh(&sctp_assocs_id_lock);
483 }
484
485 WARN_ON(atomic_read(&asoc->rmem_alloc));
486
487 if (asoc->base.malloced) {
488 kfree(asoc);
489 SCTP_DBG_OBJCNT_DEC(assoc);
490 }
491 }
492
493 /* Change the primary destination address for the peer. */
494 void sctp_assoc_set_primary(struct sctp_association *asoc,
495 struct sctp_transport *transport)
496 {
497 int changeover = 0;
498
499 /* it's a changeover only if we already have a primary path
500 * that we are changing
501 */
502 if (asoc->peer.primary_path != NULL &&
503 asoc->peer.primary_path != transport)
504 changeover = 1 ;
505
506 asoc->peer.primary_path = transport;
507
508 /* Set a default msg_name for events. */
509 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
510 sizeof(union sctp_addr));
511
512 /* If the primary path is changing, assume that the
513 * user wants to use this new path.
514 */
515 if ((transport->state == SCTP_ACTIVE) ||
516 (transport->state == SCTP_UNKNOWN))
517 asoc->peer.active_path = transport;
518
519 /*
520 * SFR-CACC algorithm:
521 * Upon the receipt of a request to change the primary
522 * destination address, on the data structure for the new
523 * primary destination, the sender MUST do the following:
524 *
525 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
526 * to this destination address earlier. The sender MUST set
527 * CYCLING_CHANGEOVER to indicate that this switch is a
528 * double switch to the same destination address.
529 *
530 * Really, only bother is we have data queued or outstanding on
531 * the association.
532 */
533 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
534 return;
535
536 if (transport->cacc.changeover_active)
537 transport->cacc.cycling_changeover = changeover;
538
539 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
540 * a changeover has occurred.
541 */
542 transport->cacc.changeover_active = changeover;
543
544 /* 3) The sender MUST store the next TSN to be sent in
545 * next_tsn_at_change.
546 */
547 transport->cacc.next_tsn_at_change = asoc->next_tsn;
548 }
549
550 /* Remove a transport from an association. */
551 void sctp_assoc_rm_peer(struct sctp_association *asoc,
552 struct sctp_transport *peer)
553 {
554 struct list_head *pos;
555 struct sctp_transport *transport;
556
557 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
558 " port: %d\n",
559 asoc,
560 (&peer->ipaddr),
561 ntohs(peer->ipaddr.v4.sin_port));
562
563 /* If we are to remove the current retran_path, update it
564 * to the next peer before removing this peer from the list.
565 */
566 if (asoc->peer.retran_path == peer)
567 sctp_assoc_update_retran_path(asoc);
568
569 /* Remove this peer from the list. */
570 list_del_rcu(&peer->transports);
571
572 /* Get the first transport of asoc. */
573 pos = asoc->peer.transport_addr_list.next;
574 transport = list_entry(pos, struct sctp_transport, transports);
575
576 /* Update any entries that match the peer to be deleted. */
577 if (asoc->peer.primary_path == peer)
578 sctp_assoc_set_primary(asoc, transport);
579 if (asoc->peer.active_path == peer)
580 asoc->peer.active_path = transport;
581 if (asoc->peer.retran_path == peer)
582 asoc->peer.retran_path = transport;
583 if (asoc->peer.last_data_from == peer)
584 asoc->peer.last_data_from = transport;
585
586 /* If we remove the transport an INIT was last sent to, set it to
587 * NULL. Combined with the update of the retran path above, this
588 * will cause the next INIT to be sent to the next available
589 * transport, maintaining the cycle.
590 */
591 if (asoc->init_last_sent_to == peer)
592 asoc->init_last_sent_to = NULL;
593
594 /* If we remove the transport an SHUTDOWN was last sent to, set it
595 * to NULL. Combined with the update of the retran path above, this
596 * will cause the next SHUTDOWN to be sent to the next available
597 * transport, maintaining the cycle.
598 */
599 if (asoc->shutdown_last_sent_to == peer)
600 asoc->shutdown_last_sent_to = NULL;
601
602 /* If we remove the transport an ASCONF was last sent to, set it to
603 * NULL.
604 */
605 if (asoc->addip_last_asconf &&
606 asoc->addip_last_asconf->transport == peer)
607 asoc->addip_last_asconf->transport = NULL;
608
609 /* If we have something on the transmitted list, we have to
610 * save it off. The best place is the active path.
611 */
612 if (!list_empty(&peer->transmitted)) {
613 struct sctp_transport *active = asoc->peer.active_path;
614 struct sctp_chunk *ch;
615
616 /* Reset the transport of each chunk on this list */
617 list_for_each_entry(ch, &peer->transmitted,
618 transmitted_list) {
619 ch->transport = NULL;
620 ch->rtt_in_progress = 0;
621 }
622
623 list_splice_tail_init(&peer->transmitted,
624 &active->transmitted);
625
626 /* Start a T3 timer here in case it wasn't running so
627 * that these migrated packets have a chance to get
628 * retrnasmitted.
629 */
630 if (!timer_pending(&active->T3_rtx_timer))
631 if (!mod_timer(&active->T3_rtx_timer,
632 jiffies + active->rto))
633 sctp_transport_hold(active);
634 }
635
636 asoc->peer.transport_count--;
637
638 sctp_transport_free(peer);
639 }
640
641 /* Add a transport address to an association. */
642 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
643 const union sctp_addr *addr,
644 const gfp_t gfp,
645 const int peer_state)
646 {
647 struct net *net = sock_net(asoc->base.sk);
648 struct sctp_transport *peer;
649 struct sctp_sock *sp;
650 unsigned short port;
651
652 sp = sctp_sk(asoc->base.sk);
653
654 /* AF_INET and AF_INET6 share common port field. */
655 port = ntohs(addr->v4.sin_port);
656
657 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
658 " port: %d state:%d\n",
659 asoc,
660 addr,
661 port,
662 peer_state);
663
664 /* Set the port if it has not been set yet. */
665 if (0 == asoc->peer.port)
666 asoc->peer.port = port;
667
668 /* Check to see if this is a duplicate. */
669 peer = sctp_assoc_lookup_paddr(asoc, addr);
670 if (peer) {
671 /* An UNKNOWN state is only set on transports added by
672 * user in sctp_connectx() call. Such transports should be
673 * considered CONFIRMED per RFC 4960, Section 5.4.
674 */
675 if (peer->state == SCTP_UNKNOWN) {
676 peer->state = SCTP_ACTIVE;
677 }
678 return peer;
679 }
680
681 peer = sctp_transport_new(net, addr, gfp);
682 if (!peer)
683 return NULL;
684
685 sctp_transport_set_owner(peer, asoc);
686
687 /* Initialize the peer's heartbeat interval based on the
688 * association configured value.
689 */
690 peer->hbinterval = asoc->hbinterval;
691
692 /* Set the path max_retrans. */
693 peer->pathmaxrxt = asoc->pathmaxrxt;
694
695 /* And the partial failure retrnas threshold */
696 peer->pf_retrans = asoc->pf_retrans;
697
698 /* Initialize the peer's SACK delay timeout based on the
699 * association configured value.
700 */
701 peer->sackdelay = asoc->sackdelay;
702 peer->sackfreq = asoc->sackfreq;
703
704 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
705 * based on association setting.
706 */
707 peer->param_flags = asoc->param_flags;
708
709 sctp_transport_route(peer, NULL, sp);
710
711 /* Initialize the pmtu of the transport. */
712 if (peer->param_flags & SPP_PMTUD_DISABLE) {
713 if (asoc->pathmtu)
714 peer->pathmtu = asoc->pathmtu;
715 else
716 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
717 }
718
719 /* If this is the first transport addr on this association,
720 * initialize the association PMTU to the peer's PMTU.
721 * If not and the current association PMTU is higher than the new
722 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
723 */
724 if (asoc->pathmtu)
725 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
726 else
727 asoc->pathmtu = peer->pathmtu;
728
729 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
730 "%d\n", asoc, asoc->pathmtu);
731 peer->pmtu_pending = 0;
732
733 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
734
735 /* The asoc->peer.port might not be meaningful yet, but
736 * initialize the packet structure anyway.
737 */
738 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
739 asoc->peer.port);
740
741 /* 7.2.1 Slow-Start
742 *
743 * o The initial cwnd before DATA transmission or after a sufficiently
744 * long idle period MUST be set to
745 * min(4*MTU, max(2*MTU, 4380 bytes))
746 *
747 * o The initial value of ssthresh MAY be arbitrarily high
748 * (for example, implementations MAY use the size of the
749 * receiver advertised window).
750 */
751 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
752
753 /* At this point, we may not have the receiver's advertised window,
754 * so initialize ssthresh to the default value and it will be set
755 * later when we process the INIT.
756 */
757 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
758
759 peer->partial_bytes_acked = 0;
760 peer->flight_size = 0;
761 peer->burst_limited = 0;
762
763 /* Set the transport's RTO.initial value */
764 peer->rto = asoc->rto_initial;
765 sctp_max_rto(asoc, peer);
766
767 /* Set the peer's active state. */
768 peer->state = peer_state;
769
770 /* Attach the remote transport to our asoc. */
771 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
772 asoc->peer.transport_count++;
773
774 /* If we do not yet have a primary path, set one. */
775 if (!asoc->peer.primary_path) {
776 sctp_assoc_set_primary(asoc, peer);
777 asoc->peer.retran_path = peer;
778 }
779
780 if (asoc->peer.active_path == asoc->peer.retran_path &&
781 peer->state != SCTP_UNCONFIRMED) {
782 asoc->peer.retran_path = peer;
783 }
784
785 return peer;
786 }
787
788 /* Delete a transport address from an association. */
789 void sctp_assoc_del_peer(struct sctp_association *asoc,
790 const union sctp_addr *addr)
791 {
792 struct list_head *pos;
793 struct list_head *temp;
794 struct sctp_transport *transport;
795
796 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
797 transport = list_entry(pos, struct sctp_transport, transports);
798 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
799 /* Do book keeping for removing the peer and free it. */
800 sctp_assoc_rm_peer(asoc, transport);
801 break;
802 }
803 }
804 }
805
806 /* Lookup a transport by address. */
807 struct sctp_transport *sctp_assoc_lookup_paddr(
808 const struct sctp_association *asoc,
809 const union sctp_addr *address)
810 {
811 struct sctp_transport *t;
812
813 /* Cycle through all transports searching for a peer address. */
814
815 list_for_each_entry(t, &asoc->peer.transport_addr_list,
816 transports) {
817 if (sctp_cmp_addr_exact(address, &t->ipaddr))
818 return t;
819 }
820
821 return NULL;
822 }
823
824 /* Remove all transports except a give one */
825 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
826 struct sctp_transport *primary)
827 {
828 struct sctp_transport *temp;
829 struct sctp_transport *t;
830
831 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
832 transports) {
833 /* if the current transport is not the primary one, delete it */
834 if (t != primary)
835 sctp_assoc_rm_peer(asoc, t);
836 }
837 }
838
839 /* Engage in transport control operations.
840 * Mark the transport up or down and send a notification to the user.
841 * Select and update the new active and retran paths.
842 */
843 void sctp_assoc_control_transport(struct sctp_association *asoc,
844 struct sctp_transport *transport,
845 sctp_transport_cmd_t command,
846 sctp_sn_error_t error)
847 {
848 struct sctp_transport *t = NULL;
849 struct sctp_transport *first;
850 struct sctp_transport *second;
851 struct sctp_ulpevent *event;
852 struct sockaddr_storage addr;
853 int spc_state = 0;
854 bool ulp_notify = true;
855
856 /* Record the transition on the transport. */
857 switch (command) {
858 case SCTP_TRANSPORT_UP:
859 /* If we are moving from UNCONFIRMED state due
860 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
861 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
862 */
863 if (SCTP_UNCONFIRMED == transport->state &&
864 SCTP_HEARTBEAT_SUCCESS == error)
865 spc_state = SCTP_ADDR_CONFIRMED;
866 else
867 spc_state = SCTP_ADDR_AVAILABLE;
868 /* Don't inform ULP about transition from PF to
869 * active state and set cwnd to 1, see SCTP
870 * Quick failover draft section 5.1, point 5
871 */
872 if (transport->state == SCTP_PF) {
873 ulp_notify = false;
874 transport->cwnd = 1;
875 }
876 transport->state = SCTP_ACTIVE;
877 break;
878
879 case SCTP_TRANSPORT_DOWN:
880 /* If the transport was never confirmed, do not transition it
881 * to inactive state. Also, release the cached route since
882 * there may be a better route next time.
883 */
884 if (transport->state != SCTP_UNCONFIRMED)
885 transport->state = SCTP_INACTIVE;
886 else {
887 dst_release(transport->dst);
888 transport->dst = NULL;
889 }
890
891 spc_state = SCTP_ADDR_UNREACHABLE;
892 break;
893
894 case SCTP_TRANSPORT_PF:
895 transport->state = SCTP_PF;
896 ulp_notify = false;
897 break;
898
899 default:
900 return;
901 }
902
903 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
904 * user.
905 */
906 if (ulp_notify) {
907 memset(&addr, 0, sizeof(struct sockaddr_storage));
908 memcpy(&addr, &transport->ipaddr,
909 transport->af_specific->sockaddr_len);
910 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
911 0, spc_state, error, GFP_ATOMIC);
912 if (event)
913 sctp_ulpq_tail_event(&asoc->ulpq, event);
914 }
915
916 /* Select new active and retran paths. */
917
918 /* Look for the two most recently used active transports.
919 *
920 * This code produces the wrong ordering whenever jiffies
921 * rolls over, but we still get usable transports, so we don't
922 * worry about it.
923 */
924 first = NULL; second = NULL;
925
926 list_for_each_entry(t, &asoc->peer.transport_addr_list,
927 transports) {
928
929 if ((t->state == SCTP_INACTIVE) ||
930 (t->state == SCTP_UNCONFIRMED) ||
931 (t->state == SCTP_PF))
932 continue;
933 if (!first || t->last_time_heard > first->last_time_heard) {
934 second = first;
935 first = t;
936 }
937 if (!second || t->last_time_heard > second->last_time_heard)
938 second = t;
939 }
940
941 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
942 *
943 * By default, an endpoint should always transmit to the
944 * primary path, unless the SCTP user explicitly specifies the
945 * destination transport address (and possibly source
946 * transport address) to use.
947 *
948 * [If the primary is active but not most recent, bump the most
949 * recently used transport.]
950 */
951 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
952 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
953 first != asoc->peer.primary_path) {
954 second = first;
955 first = asoc->peer.primary_path;
956 }
957
958 /* If we failed to find a usable transport, just camp on the
959 * primary, even if it is inactive.
960 */
961 if (!first) {
962 first = asoc->peer.primary_path;
963 second = asoc->peer.primary_path;
964 }
965
966 /* Set the active and retran transports. */
967 asoc->peer.active_path = first;
968 asoc->peer.retran_path = second;
969 }
970
971 /* Hold a reference to an association. */
972 void sctp_association_hold(struct sctp_association *asoc)
973 {
974 atomic_inc(&asoc->base.refcnt);
975 }
976
977 /* Release a reference to an association and cleanup
978 * if there are no more references.
979 */
980 void sctp_association_put(struct sctp_association *asoc)
981 {
982 if (atomic_dec_and_test(&asoc->base.refcnt))
983 sctp_association_destroy(asoc);
984 }
985
986 /* Allocate the next TSN, Transmission Sequence Number, for the given
987 * association.
988 */
989 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
990 {
991 /* From Section 1.6 Serial Number Arithmetic:
992 * Transmission Sequence Numbers wrap around when they reach
993 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
994 * after transmitting TSN = 2*32 - 1 is TSN = 0.
995 */
996 __u32 retval = asoc->next_tsn;
997 asoc->next_tsn++;
998 asoc->unack_data++;
999
1000 return retval;
1001 }
1002
1003 /* Compare two addresses to see if they match. Wildcard addresses
1004 * only match themselves.
1005 */
1006 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
1007 const union sctp_addr *ss2)
1008 {
1009 struct sctp_af *af;
1010
1011 af = sctp_get_af_specific(ss1->sa.sa_family);
1012 if (unlikely(!af))
1013 return 0;
1014
1015 return af->cmp_addr(ss1, ss2);
1016 }
1017
1018 /* Return an ecne chunk to get prepended to a packet.
1019 * Note: We are sly and return a shared, prealloced chunk. FIXME:
1020 * No we don't, but we could/should.
1021 */
1022 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1023 {
1024 struct sctp_chunk *chunk;
1025
1026 /* Send ECNE if needed.
1027 * Not being able to allocate a chunk here is not deadly.
1028 */
1029 if (asoc->need_ecne)
1030 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1031 else
1032 chunk = NULL;
1033
1034 return chunk;
1035 }
1036
1037 /*
1038 * Find which transport this TSN was sent on.
1039 */
1040 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1041 __u32 tsn)
1042 {
1043 struct sctp_transport *active;
1044 struct sctp_transport *match;
1045 struct sctp_transport *transport;
1046 struct sctp_chunk *chunk;
1047 __be32 key = htonl(tsn);
1048
1049 match = NULL;
1050
1051 /*
1052 * FIXME: In general, find a more efficient data structure for
1053 * searching.
1054 */
1055
1056 /*
1057 * The general strategy is to search each transport's transmitted
1058 * list. Return which transport this TSN lives on.
1059 *
1060 * Let's be hopeful and check the active_path first.
1061 * Another optimization would be to know if there is only one
1062 * outbound path and not have to look for the TSN at all.
1063 *
1064 */
1065
1066 active = asoc->peer.active_path;
1067
1068 list_for_each_entry(chunk, &active->transmitted,
1069 transmitted_list) {
1070
1071 if (key == chunk->subh.data_hdr->tsn) {
1072 match = active;
1073 goto out;
1074 }
1075 }
1076
1077 /* If not found, go search all the other transports. */
1078 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1079 transports) {
1080
1081 if (transport == active)
1082 break;
1083 list_for_each_entry(chunk, &transport->transmitted,
1084 transmitted_list) {
1085 if (key == chunk->subh.data_hdr->tsn) {
1086 match = transport;
1087 goto out;
1088 }
1089 }
1090 }
1091 out:
1092 return match;
1093 }
1094
1095 /* Is this the association we are looking for? */
1096 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1097 struct net *net,
1098 const union sctp_addr *laddr,
1099 const union sctp_addr *paddr)
1100 {
1101 struct sctp_transport *transport;
1102
1103 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1104 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1105 net_eq(sock_net(asoc->base.sk), net)) {
1106 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1107 if (!transport)
1108 goto out;
1109
1110 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1111 sctp_sk(asoc->base.sk)))
1112 goto out;
1113 }
1114 transport = NULL;
1115
1116 out:
1117 return transport;
1118 }
1119
1120 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1121 static void sctp_assoc_bh_rcv(struct work_struct *work)
1122 {
1123 struct sctp_association *asoc =
1124 container_of(work, struct sctp_association,
1125 base.inqueue.immediate);
1126 struct net *net = sock_net(asoc->base.sk);
1127 struct sctp_endpoint *ep;
1128 struct sctp_chunk *chunk;
1129 struct sctp_inq *inqueue;
1130 int state;
1131 sctp_subtype_t subtype;
1132 int error = 0;
1133
1134 /* The association should be held so we should be safe. */
1135 ep = asoc->ep;
1136
1137 inqueue = &asoc->base.inqueue;
1138 sctp_association_hold(asoc);
1139 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1140 state = asoc->state;
1141 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1142
1143 /* SCTP-AUTH, Section 6.3:
1144 * The receiver has a list of chunk types which it expects
1145 * to be received only after an AUTH-chunk. This list has
1146 * been sent to the peer during the association setup. It
1147 * MUST silently discard these chunks if they are not placed
1148 * after an AUTH chunk in the packet.
1149 */
1150 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1151 continue;
1152
1153 /* Remember where the last DATA chunk came from so we
1154 * know where to send the SACK.
1155 */
1156 if (sctp_chunk_is_data(chunk))
1157 asoc->peer.last_data_from = chunk->transport;
1158 else {
1159 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1160 asoc->stats.ictrlchunks++;
1161 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1162 asoc->stats.isacks++;
1163 }
1164
1165 if (chunk->transport)
1166 chunk->transport->last_time_heard = jiffies;
1167
1168 /* Run through the state machine. */
1169 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1170 state, ep, asoc, chunk, GFP_ATOMIC);
1171
1172 /* Check to see if the association is freed in response to
1173 * the incoming chunk. If so, get out of the while loop.
1174 */
1175 if (asoc->base.dead)
1176 break;
1177
1178 /* If there is an error on chunk, discard this packet. */
1179 if (error && chunk)
1180 chunk->pdiscard = 1;
1181 }
1182 sctp_association_put(asoc);
1183 }
1184
1185 /* This routine moves an association from its old sk to a new sk. */
1186 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1187 {
1188 struct sctp_sock *newsp = sctp_sk(newsk);
1189 struct sock *oldsk = assoc->base.sk;
1190
1191 /* Delete the association from the old endpoint's list of
1192 * associations.
1193 */
1194 list_del_init(&assoc->asocs);
1195
1196 /* Decrement the backlog value for a TCP-style socket. */
1197 if (sctp_style(oldsk, TCP))
1198 oldsk->sk_ack_backlog--;
1199
1200 /* Release references to the old endpoint and the sock. */
1201 sctp_endpoint_put(assoc->ep);
1202 sock_put(assoc->base.sk);
1203
1204 /* Get a reference to the new endpoint. */
1205 assoc->ep = newsp->ep;
1206 sctp_endpoint_hold(assoc->ep);
1207
1208 /* Get a reference to the new sock. */
1209 assoc->base.sk = newsk;
1210 sock_hold(assoc->base.sk);
1211
1212 /* Add the association to the new endpoint's list of associations. */
1213 sctp_endpoint_add_asoc(newsp->ep, assoc);
1214 }
1215
1216 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1217 void sctp_assoc_update(struct sctp_association *asoc,
1218 struct sctp_association *new)
1219 {
1220 struct sctp_transport *trans;
1221 struct list_head *pos, *temp;
1222
1223 /* Copy in new parameters of peer. */
1224 asoc->c = new->c;
1225 asoc->peer.rwnd = new->peer.rwnd;
1226 asoc->peer.sack_needed = new->peer.sack_needed;
1227 asoc->peer.i = new->peer.i;
1228 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1229 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1230
1231 /* Remove any peer addresses not present in the new association. */
1232 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1233 trans = list_entry(pos, struct sctp_transport, transports);
1234 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1235 sctp_assoc_rm_peer(asoc, trans);
1236 continue;
1237 }
1238
1239 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1240 sctp_transport_reset(trans);
1241 }
1242
1243 /* If the case is A (association restart), use
1244 * initial_tsn as next_tsn. If the case is B, use
1245 * current next_tsn in case data sent to peer
1246 * has been discarded and needs retransmission.
1247 */
1248 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1249 asoc->next_tsn = new->next_tsn;
1250 asoc->ctsn_ack_point = new->ctsn_ack_point;
1251 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1252
1253 /* Reinitialize SSN for both local streams
1254 * and peer's streams.
1255 */
1256 sctp_ssnmap_clear(asoc->ssnmap);
1257
1258 /* Flush the ULP reassembly and ordered queue.
1259 * Any data there will now be stale and will
1260 * cause problems.
1261 */
1262 sctp_ulpq_flush(&asoc->ulpq);
1263
1264 /* reset the overall association error count so
1265 * that the restarted association doesn't get torn
1266 * down on the next retransmission timer.
1267 */
1268 asoc->overall_error_count = 0;
1269
1270 } else {
1271 /* Add any peer addresses from the new association. */
1272 list_for_each_entry(trans, &new->peer.transport_addr_list,
1273 transports) {
1274 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1275 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1276 GFP_ATOMIC, trans->state);
1277 }
1278
1279 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1280 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1281 if (!asoc->ssnmap) {
1282 /* Move the ssnmap. */
1283 asoc->ssnmap = new->ssnmap;
1284 new->ssnmap = NULL;
1285 }
1286
1287 if (!asoc->assoc_id) {
1288 /* get a new association id since we don't have one
1289 * yet.
1290 */
1291 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1292 }
1293 }
1294
1295 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1296 * and also move the association shared keys over
1297 */
1298 kfree(asoc->peer.peer_random);
1299 asoc->peer.peer_random = new->peer.peer_random;
1300 new->peer.peer_random = NULL;
1301
1302 kfree(asoc->peer.peer_chunks);
1303 asoc->peer.peer_chunks = new->peer.peer_chunks;
1304 new->peer.peer_chunks = NULL;
1305
1306 kfree(asoc->peer.peer_hmacs);
1307 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1308 new->peer.peer_hmacs = NULL;
1309
1310 sctp_auth_key_put(asoc->asoc_shared_key);
1311 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1312 }
1313
1314 /* Update the retran path for sending a retransmitted packet.
1315 * Round-robin through the active transports, else round-robin
1316 * through the inactive transports as this is the next best thing
1317 * we can try.
1318 */
1319 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1320 {
1321 struct sctp_transport *t, *next;
1322 struct list_head *head = &asoc->peer.transport_addr_list;
1323 struct list_head *pos;
1324
1325 if (asoc->peer.transport_count == 1)
1326 return;
1327
1328 /* Find the next transport in a round-robin fashion. */
1329 t = asoc->peer.retran_path;
1330 pos = &t->transports;
1331 next = NULL;
1332
1333 while (1) {
1334 /* Skip the head. */
1335 if (pos->next == head)
1336 pos = head->next;
1337 else
1338 pos = pos->next;
1339
1340 t = list_entry(pos, struct sctp_transport, transports);
1341
1342 /* We have exhausted the list, but didn't find any
1343 * other active transports. If so, use the next
1344 * transport.
1345 */
1346 if (t == asoc->peer.retran_path) {
1347 t = next;
1348 break;
1349 }
1350
1351 /* Try to find an active transport. */
1352
1353 if ((t->state == SCTP_ACTIVE) ||
1354 (t->state == SCTP_UNKNOWN)) {
1355 break;
1356 } else {
1357 /* Keep track of the next transport in case
1358 * we don't find any active transport.
1359 */
1360 if (t->state != SCTP_UNCONFIRMED && !next)
1361 next = t;
1362 }
1363 }
1364
1365 if (t)
1366 asoc->peer.retran_path = t;
1367 else
1368 t = asoc->peer.retran_path;
1369
1370 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1371 " %p addr: ",
1372 " port: %d\n",
1373 asoc,
1374 (&t->ipaddr),
1375 ntohs(t->ipaddr.v4.sin_port));
1376 }
1377
1378 /* Choose the transport for sending retransmit packet. */
1379 struct sctp_transport *sctp_assoc_choose_alter_transport(
1380 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1381 {
1382 /* If this is the first time packet is sent, use the active path,
1383 * else use the retran path. If the last packet was sent over the
1384 * retran path, update the retran path and use it.
1385 */
1386 if (!last_sent_to)
1387 return asoc->peer.active_path;
1388 else {
1389 if (last_sent_to == asoc->peer.retran_path)
1390 sctp_assoc_update_retran_path(asoc);
1391 return asoc->peer.retran_path;
1392 }
1393 }
1394
1395 /* Update the association's pmtu and frag_point by going through all the
1396 * transports. This routine is called when a transport's PMTU has changed.
1397 */
1398 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1399 {
1400 struct sctp_transport *t;
1401 __u32 pmtu = 0;
1402
1403 if (!asoc)
1404 return;
1405
1406 /* Get the lowest pmtu of all the transports. */
1407 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1408 transports) {
1409 if (t->pmtu_pending && t->dst) {
1410 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1411 t->pmtu_pending = 0;
1412 }
1413 if (!pmtu || (t->pathmtu < pmtu))
1414 pmtu = t->pathmtu;
1415 }
1416
1417 if (pmtu) {
1418 asoc->pathmtu = pmtu;
1419 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1420 }
1421
1422 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1423 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1424 }
1425
1426 /* Should we send a SACK to update our peer? */
1427 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1428 {
1429 struct net *net = sock_net(asoc->base.sk);
1430 switch (asoc->state) {
1431 case SCTP_STATE_ESTABLISHED:
1432 case SCTP_STATE_SHUTDOWN_PENDING:
1433 case SCTP_STATE_SHUTDOWN_RECEIVED:
1434 case SCTP_STATE_SHUTDOWN_SENT:
1435 if ((asoc->rwnd > asoc->a_rwnd) &&
1436 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1437 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1438 asoc->pathmtu)))
1439 return 1;
1440 break;
1441 default:
1442 break;
1443 }
1444 return 0;
1445 }
1446
1447 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1448 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1449 {
1450 struct sctp_chunk *sack;
1451 struct timer_list *timer;
1452
1453 if (asoc->rwnd_over) {
1454 if (asoc->rwnd_over >= len) {
1455 asoc->rwnd_over -= len;
1456 } else {
1457 asoc->rwnd += (len - asoc->rwnd_over);
1458 asoc->rwnd_over = 0;
1459 }
1460 } else {
1461 asoc->rwnd += len;
1462 }
1463
1464 /* If we had window pressure, start recovering it
1465 * once our rwnd had reached the accumulated pressure
1466 * threshold. The idea is to recover slowly, but up
1467 * to the initial advertised window.
1468 */
1469 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1470 int change = min(asoc->pathmtu, asoc->rwnd_press);
1471 asoc->rwnd += change;
1472 asoc->rwnd_press -= change;
1473 }
1474
1475 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1476 "- %u\n", __func__, asoc, len, asoc->rwnd,
1477 asoc->rwnd_over, asoc->a_rwnd);
1478
1479 /* Send a window update SACK if the rwnd has increased by at least the
1480 * minimum of the association's PMTU and half of the receive buffer.
1481 * The algorithm used is similar to the one described in
1482 * Section 4.2.3.3 of RFC 1122.
1483 */
1484 if (sctp_peer_needs_update(asoc)) {
1485 asoc->a_rwnd = asoc->rwnd;
1486 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1487 "rwnd: %u a_rwnd: %u\n", __func__,
1488 asoc, asoc->rwnd, asoc->a_rwnd);
1489 sack = sctp_make_sack(asoc);
1490 if (!sack)
1491 return;
1492
1493 asoc->peer.sack_needed = 0;
1494
1495 sctp_outq_tail(&asoc->outqueue, sack);
1496
1497 /* Stop the SACK timer. */
1498 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1499 if (del_timer(timer))
1500 sctp_association_put(asoc);
1501 }
1502 }
1503
1504 /* Decrease asoc's rwnd by len. */
1505 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1506 {
1507 int rx_count;
1508 int over = 0;
1509
1510 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1511 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1512
1513 if (asoc->ep->rcvbuf_policy)
1514 rx_count = atomic_read(&asoc->rmem_alloc);
1515 else
1516 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1517
1518 /* If we've reached or overflowed our receive buffer, announce
1519 * a 0 rwnd if rwnd would still be positive. Store the
1520 * the pottential pressure overflow so that the window can be restored
1521 * back to original value.
1522 */
1523 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1524 over = 1;
1525
1526 if (asoc->rwnd >= len) {
1527 asoc->rwnd -= len;
1528 if (over) {
1529 asoc->rwnd_press += asoc->rwnd;
1530 asoc->rwnd = 0;
1531 }
1532 } else {
1533 asoc->rwnd_over = len - asoc->rwnd;
1534 asoc->rwnd = 0;
1535 }
1536 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1537 __func__, asoc, len, asoc->rwnd,
1538 asoc->rwnd_over, asoc->rwnd_press);
1539 }
1540
1541 /* Build the bind address list for the association based on info from the
1542 * local endpoint and the remote peer.
1543 */
1544 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1545 sctp_scope_t scope, gfp_t gfp)
1546 {
1547 int flags;
1548
1549 /* Use scoping rules to determine the subset of addresses from
1550 * the endpoint.
1551 */
1552 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1553 if (asoc->peer.ipv4_address)
1554 flags |= SCTP_ADDR4_PEERSUPP;
1555 if (asoc->peer.ipv6_address)
1556 flags |= SCTP_ADDR6_PEERSUPP;
1557
1558 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1559 &asoc->base.bind_addr,
1560 &asoc->ep->base.bind_addr,
1561 scope, gfp, flags);
1562 }
1563
1564 /* Build the association's bind address list from the cookie. */
1565 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1566 struct sctp_cookie *cookie,
1567 gfp_t gfp)
1568 {
1569 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1570 int var_size3 = cookie->raw_addr_list_len;
1571 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1572
1573 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1574 asoc->ep->base.bind_addr.port, gfp);
1575 }
1576
1577 /* Lookup laddr in the bind address list of an association. */
1578 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1579 const union sctp_addr *laddr)
1580 {
1581 int found = 0;
1582
1583 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1584 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1585 sctp_sk(asoc->base.sk)))
1586 found = 1;
1587
1588 return found;
1589 }
1590
1591 /* Set an association id for a given association */
1592 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1593 {
1594 bool preload = gfp & __GFP_WAIT;
1595 int ret;
1596
1597 /* If the id is already assigned, keep it. */
1598 if (asoc->assoc_id)
1599 return 0;
1600
1601 if (preload)
1602 idr_preload(gfp);
1603 spin_lock_bh(&sctp_assocs_id_lock);
1604 /* 0 is not a valid id, idr_low is always >= 1 */
1605 ret = idr_alloc(&sctp_assocs_id, asoc, idr_low, 0, GFP_NOWAIT);
1606 if (ret >= 0) {
1607 idr_low = ret + 1;
1608 if (idr_low == INT_MAX)
1609 idr_low = 1;
1610 }
1611 spin_unlock_bh(&sctp_assocs_id_lock);
1612 if (preload)
1613 idr_preload_end();
1614 if (ret < 0)
1615 return ret;
1616
1617 asoc->assoc_id = (sctp_assoc_t)ret;
1618 return 0;
1619 }
1620
1621 /* Free the ASCONF queue */
1622 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1623 {
1624 struct sctp_chunk *asconf;
1625 struct sctp_chunk *tmp;
1626
1627 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1628 list_del_init(&asconf->list);
1629 sctp_chunk_free(asconf);
1630 }
1631 }
1632
1633 /* Free asconf_ack cache */
1634 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1635 {
1636 struct sctp_chunk *ack;
1637 struct sctp_chunk *tmp;
1638
1639 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1640 transmitted_list) {
1641 list_del_init(&ack->transmitted_list);
1642 sctp_chunk_free(ack);
1643 }
1644 }
1645
1646 /* Clean up the ASCONF_ACK queue */
1647 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1648 {
1649 struct sctp_chunk *ack;
1650 struct sctp_chunk *tmp;
1651
1652 /* We can remove all the entries from the queue up to
1653 * the "Peer-Sequence-Number".
1654 */
1655 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1656 transmitted_list) {
1657 if (ack->subh.addip_hdr->serial ==
1658 htonl(asoc->peer.addip_serial))
1659 break;
1660
1661 list_del_init(&ack->transmitted_list);
1662 sctp_chunk_free(ack);
1663 }
1664 }
1665
1666 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1667 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1668 const struct sctp_association *asoc,
1669 __be32 serial)
1670 {
1671 struct sctp_chunk *ack;
1672
1673 /* Walk through the list of cached ASCONF-ACKs and find the
1674 * ack chunk whose serial number matches that of the request.
1675 */
1676 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1677 if (ack->subh.addip_hdr->serial == serial) {
1678 sctp_chunk_hold(ack);
1679 return ack;
1680 }
1681 }
1682
1683 return NULL;
1684 }
1685
1686 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1687 {
1688 /* Free any cached ASCONF_ACK chunk. */
1689 sctp_assoc_free_asconf_acks(asoc);
1690
1691 /* Free the ASCONF queue. */
1692 sctp_assoc_free_asconf_queue(asoc);
1693
1694 /* Free any cached ASCONF chunk. */
1695 if (asoc->addip_last_asconf)
1696 sctp_chunk_free(asoc->addip_last_asconf);
1697 }