Merge branch 'fixes' of git://git.infradead.org/users/vkoul/slave-dma
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sched / sch_tbf.c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24
25
26 /* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99 */
100
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 s64 mtu;
106 u32 max_size;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109 bool peak_present;
110
111 /* Variables */
112 s64 tokens; /* Current number of B tokens */
113 s64 ptokens; /* Current number of P tokens */
114 s64 t_c; /* Time check-point */
115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
116 struct qdisc_watchdog watchdog; /* Watchdog timer */
117 };
118
119 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
120 {
121 struct tbf_sched_data *q = qdisc_priv(sch);
122 int ret;
123
124 if (qdisc_pkt_len(skb) > q->max_size)
125 return qdisc_reshape_fail(skb, sch);
126
127 ret = qdisc_enqueue(skb, q->qdisc);
128 if (ret != NET_XMIT_SUCCESS) {
129 if (net_xmit_drop_count(ret))
130 sch->qstats.drops++;
131 return ret;
132 }
133
134 sch->q.qlen++;
135 return NET_XMIT_SUCCESS;
136 }
137
138 static unsigned int tbf_drop(struct Qdisc *sch)
139 {
140 struct tbf_sched_data *q = qdisc_priv(sch);
141 unsigned int len = 0;
142
143 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
144 sch->q.qlen--;
145 sch->qstats.drops++;
146 }
147 return len;
148 }
149
150 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
151 {
152 struct tbf_sched_data *q = qdisc_priv(sch);
153 struct sk_buff *skb;
154
155 skb = q->qdisc->ops->peek(q->qdisc);
156
157 if (skb) {
158 s64 now;
159 s64 toks;
160 s64 ptoks = 0;
161 unsigned int len = qdisc_pkt_len(skb);
162
163 now = ktime_to_ns(ktime_get());
164 toks = min_t(s64, now - q->t_c, q->buffer);
165
166 if (q->peak_present) {
167 ptoks = toks + q->ptokens;
168 if (ptoks > q->mtu)
169 ptoks = q->mtu;
170 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
171 }
172 toks += q->tokens;
173 if (toks > q->buffer)
174 toks = q->buffer;
175 toks -= (s64) psched_l2t_ns(&q->rate, len);
176
177 if ((toks|ptoks) >= 0) {
178 skb = qdisc_dequeue_peeked(q->qdisc);
179 if (unlikely(!skb))
180 return NULL;
181
182 q->t_c = now;
183 q->tokens = toks;
184 q->ptokens = ptoks;
185 sch->q.qlen--;
186 qdisc_unthrottled(sch);
187 qdisc_bstats_update(sch, skb);
188 return skb;
189 }
190
191 qdisc_watchdog_schedule_ns(&q->watchdog,
192 now + max_t(long, -toks, -ptoks));
193
194 /* Maybe we have a shorter packet in the queue,
195 which can be sent now. It sounds cool,
196 but, however, this is wrong in principle.
197 We MUST NOT reorder packets under these circumstances.
198
199 Really, if we split the flow into independent
200 subflows, it would be a very good solution.
201 This is the main idea of all FQ algorithms
202 (cf. CSZ, HPFQ, HFSC)
203 */
204
205 sch->qstats.overlimits++;
206 }
207 return NULL;
208 }
209
210 static void tbf_reset(struct Qdisc *sch)
211 {
212 struct tbf_sched_data *q = qdisc_priv(sch);
213
214 qdisc_reset(q->qdisc);
215 sch->q.qlen = 0;
216 q->t_c = ktime_to_ns(ktime_get());
217 q->tokens = q->buffer;
218 q->ptokens = q->mtu;
219 qdisc_watchdog_cancel(&q->watchdog);
220 }
221
222 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
223 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
224 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
225 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
226 };
227
228 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
229 {
230 int err;
231 struct tbf_sched_data *q = qdisc_priv(sch);
232 struct nlattr *tb[TCA_TBF_PTAB + 1];
233 struct tc_tbf_qopt *qopt;
234 struct qdisc_rate_table *rtab = NULL;
235 struct qdisc_rate_table *ptab = NULL;
236 struct Qdisc *child = NULL;
237 int max_size, n;
238
239 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
240 if (err < 0)
241 return err;
242
243 err = -EINVAL;
244 if (tb[TCA_TBF_PARMS] == NULL)
245 goto done;
246
247 qopt = nla_data(tb[TCA_TBF_PARMS]);
248 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
249 if (rtab == NULL)
250 goto done;
251
252 if (qopt->peakrate.rate) {
253 if (qopt->peakrate.rate > qopt->rate.rate)
254 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
255 if (ptab == NULL)
256 goto done;
257 }
258
259 for (n = 0; n < 256; n++)
260 if (rtab->data[n] > qopt->buffer)
261 break;
262 max_size = (n << qopt->rate.cell_log) - 1;
263 if (ptab) {
264 int size;
265
266 for (n = 0; n < 256; n++)
267 if (ptab->data[n] > qopt->mtu)
268 break;
269 size = (n << qopt->peakrate.cell_log) - 1;
270 if (size < max_size)
271 max_size = size;
272 }
273 if (max_size < 0)
274 goto done;
275
276 if (q->qdisc != &noop_qdisc) {
277 err = fifo_set_limit(q->qdisc, qopt->limit);
278 if (err)
279 goto done;
280 } else if (qopt->limit > 0) {
281 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
282 if (IS_ERR(child)) {
283 err = PTR_ERR(child);
284 goto done;
285 }
286 }
287
288 sch_tree_lock(sch);
289 if (child) {
290 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
291 qdisc_destroy(q->qdisc);
292 q->qdisc = child;
293 }
294 q->limit = qopt->limit;
295 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
296 q->max_size = max_size;
297 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
298 q->tokens = q->buffer;
299 q->ptokens = q->mtu;
300
301 psched_ratecfg_precompute(&q->rate, &rtab->rate);
302 if (ptab) {
303 psched_ratecfg_precompute(&q->peak, &ptab->rate);
304 q->peak_present = true;
305 } else {
306 q->peak_present = false;
307 }
308
309 sch_tree_unlock(sch);
310 err = 0;
311 done:
312 if (rtab)
313 qdisc_put_rtab(rtab);
314 if (ptab)
315 qdisc_put_rtab(ptab);
316 return err;
317 }
318
319 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
320 {
321 struct tbf_sched_data *q = qdisc_priv(sch);
322
323 if (opt == NULL)
324 return -EINVAL;
325
326 q->t_c = ktime_to_ns(ktime_get());
327 qdisc_watchdog_init(&q->watchdog, sch);
328 q->qdisc = &noop_qdisc;
329
330 return tbf_change(sch, opt);
331 }
332
333 static void tbf_destroy(struct Qdisc *sch)
334 {
335 struct tbf_sched_data *q = qdisc_priv(sch);
336
337 qdisc_watchdog_cancel(&q->watchdog);
338 qdisc_destroy(q->qdisc);
339 }
340
341 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
342 {
343 struct tbf_sched_data *q = qdisc_priv(sch);
344 struct nlattr *nest;
345 struct tc_tbf_qopt opt;
346
347 sch->qstats.backlog = q->qdisc->qstats.backlog;
348 nest = nla_nest_start(skb, TCA_OPTIONS);
349 if (nest == NULL)
350 goto nla_put_failure;
351
352 opt.limit = q->limit;
353 psched_ratecfg_getrate(&opt.rate, &q->rate);
354 if (q->peak_present)
355 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
356 else
357 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
358 opt.mtu = PSCHED_NS2TICKS(q->mtu);
359 opt.buffer = PSCHED_NS2TICKS(q->buffer);
360 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
361 goto nla_put_failure;
362
363 nla_nest_end(skb, nest);
364 return skb->len;
365
366 nla_put_failure:
367 nla_nest_cancel(skb, nest);
368 return -1;
369 }
370
371 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
372 struct sk_buff *skb, struct tcmsg *tcm)
373 {
374 struct tbf_sched_data *q = qdisc_priv(sch);
375
376 tcm->tcm_handle |= TC_H_MIN(1);
377 tcm->tcm_info = q->qdisc->handle;
378
379 return 0;
380 }
381
382 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
383 struct Qdisc **old)
384 {
385 struct tbf_sched_data *q = qdisc_priv(sch);
386
387 if (new == NULL)
388 new = &noop_qdisc;
389
390 sch_tree_lock(sch);
391 *old = q->qdisc;
392 q->qdisc = new;
393 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
394 qdisc_reset(*old);
395 sch_tree_unlock(sch);
396
397 return 0;
398 }
399
400 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
401 {
402 struct tbf_sched_data *q = qdisc_priv(sch);
403 return q->qdisc;
404 }
405
406 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
407 {
408 return 1;
409 }
410
411 static void tbf_put(struct Qdisc *sch, unsigned long arg)
412 {
413 }
414
415 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
416 {
417 if (!walker->stop) {
418 if (walker->count >= walker->skip)
419 if (walker->fn(sch, 1, walker) < 0) {
420 walker->stop = 1;
421 return;
422 }
423 walker->count++;
424 }
425 }
426
427 static const struct Qdisc_class_ops tbf_class_ops = {
428 .graft = tbf_graft,
429 .leaf = tbf_leaf,
430 .get = tbf_get,
431 .put = tbf_put,
432 .walk = tbf_walk,
433 .dump = tbf_dump_class,
434 };
435
436 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
437 .next = NULL,
438 .cl_ops = &tbf_class_ops,
439 .id = "tbf",
440 .priv_size = sizeof(struct tbf_sched_data),
441 .enqueue = tbf_enqueue,
442 .dequeue = tbf_dequeue,
443 .peek = qdisc_peek_dequeued,
444 .drop = tbf_drop,
445 .init = tbf_init,
446 .reset = tbf_reset,
447 .destroy = tbf_destroy,
448 .change = tbf_change,
449 .dump = tbf_dump,
450 .owner = THIS_MODULE,
451 };
452
453 static int __init tbf_module_init(void)
454 {
455 return register_qdisc(&tbf_qdisc_ops);
456 }
457
458 static void __exit tbf_module_exit(void)
459 {
460 unregister_qdisc(&tbf_qdisc_ops);
461 }
462 module_init(tbf_module_init)
463 module_exit(tbf_module_exit)
464 MODULE_LICENSE("GPL");