[ARM] 5107/1: Add maintainer entries for the CompuLab CM-X270/EM-X270 machines
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sched / sch_hfsc.c
1 /*
2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * 2003-10-17 - Ported from altq
10 */
11 /*
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
19 *
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33 * DAMAGE.
34 *
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
39 */
40 /*
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45 *
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
50 */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
70
71 /*
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
76 *
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
82 */
83
84 struct internal_sc
85 {
86 u64 sm1; /* scaled slope of the 1st segment */
87 u64 ism1; /* scaled inverse-slope of the 1st segment */
88 u64 dx; /* the x-projection of the 1st segment */
89 u64 dy; /* the y-projection of the 1st segment */
90 u64 sm2; /* scaled slope of the 2nd segment */
91 u64 ism2; /* scaled inverse-slope of the 2nd segment */
92 };
93
94 /* runtime service curve */
95 struct runtime_sc
96 {
97 u64 x; /* current starting position on x-axis */
98 u64 y; /* current starting position on y-axis */
99 u64 sm1; /* scaled slope of the 1st segment */
100 u64 ism1; /* scaled inverse-slope of the 1st segment */
101 u64 dx; /* the x-projection of the 1st segment */
102 u64 dy; /* the y-projection of the 1st segment */
103 u64 sm2; /* scaled slope of the 2nd segment */
104 u64 ism2; /* scaled inverse-slope of the 2nd segment */
105 };
106
107 enum hfsc_class_flags
108 {
109 HFSC_RSC = 0x1,
110 HFSC_FSC = 0x2,
111 HFSC_USC = 0x4
112 };
113
114 struct hfsc_class
115 {
116 u32 classid; /* class id */
117 unsigned int refcnt; /* usage count */
118
119 struct gnet_stats_basic bstats;
120 struct gnet_stats_queue qstats;
121 struct gnet_stats_rate_est rate_est;
122 unsigned int level; /* class level in hierarchy */
123 struct tcf_proto *filter_list; /* filter list */
124 unsigned int filter_cnt; /* filter count */
125
126 struct hfsc_sched *sched; /* scheduler data */
127 struct hfsc_class *cl_parent; /* parent class */
128 struct list_head siblings; /* sibling classes */
129 struct list_head children; /* child classes */
130 struct Qdisc *qdisc; /* leaf qdisc */
131
132 struct rb_node el_node; /* qdisc's eligible tree member */
133 struct rb_root vt_tree; /* active children sorted by cl_vt */
134 struct rb_node vt_node; /* parent's vt_tree member */
135 struct rb_root cf_tree; /* active children sorted by cl_f */
136 struct rb_node cf_node; /* parent's cf_heap member */
137 struct list_head hlist; /* hash list member */
138 struct list_head dlist; /* drop list member */
139
140 u64 cl_total; /* total work in bytes */
141 u64 cl_cumul; /* cumulative work in bytes done by
142 real-time criteria */
143
144 u64 cl_d; /* deadline*/
145 u64 cl_e; /* eligible time */
146 u64 cl_vt; /* virtual time */
147 u64 cl_f; /* time when this class will fit for
148 link-sharing, max(myf, cfmin) */
149 u64 cl_myf; /* my fit-time (calculated from this
150 class's own upperlimit curve) */
151 u64 cl_myfadj; /* my fit-time adjustment (to cancel
152 history dependence) */
153 u64 cl_cfmin; /* earliest children's fit-time (used
154 with cl_myf to obtain cl_f) */
155 u64 cl_cvtmin; /* minimal virtual time among the
156 children fit for link-sharing
157 (monotonic within a period) */
158 u64 cl_vtadj; /* intra-period cumulative vt
159 adjustment */
160 u64 cl_vtoff; /* inter-period cumulative vt offset */
161 u64 cl_cvtmax; /* max child's vt in the last period */
162 u64 cl_cvtoff; /* cumulative cvtmax of all periods */
163 u64 cl_pcvtoff; /* parent's cvtoff at initialization
164 time */
165
166 struct internal_sc cl_rsc; /* internal real-time service curve */
167 struct internal_sc cl_fsc; /* internal fair service curve */
168 struct internal_sc cl_usc; /* internal upperlimit service curve */
169 struct runtime_sc cl_deadline; /* deadline curve */
170 struct runtime_sc cl_eligible; /* eligible curve */
171 struct runtime_sc cl_virtual; /* virtual curve */
172 struct runtime_sc cl_ulimit; /* upperlimit curve */
173
174 unsigned long cl_flags; /* which curves are valid */
175 unsigned long cl_vtperiod; /* vt period sequence number */
176 unsigned long cl_parentperiod;/* parent's vt period sequence number*/
177 unsigned long cl_nactive; /* number of active children */
178 };
179
180 #define HFSC_HSIZE 16
181
182 struct hfsc_sched
183 {
184 u16 defcls; /* default class id */
185 struct hfsc_class root; /* root class */
186 struct list_head clhash[HFSC_HSIZE]; /* class hash */
187 struct rb_root eligible; /* eligible tree */
188 struct list_head droplist; /* active leaf class list (for
189 dropping) */
190 struct sk_buff_head requeue; /* requeued packet */
191 struct qdisc_watchdog watchdog; /* watchdog timer */
192 };
193
194 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
195
196
197 /*
198 * eligible tree holds backlogged classes being sorted by their eligible times.
199 * there is one eligible tree per hfsc instance.
200 */
201
202 static void
203 eltree_insert(struct hfsc_class *cl)
204 {
205 struct rb_node **p = &cl->sched->eligible.rb_node;
206 struct rb_node *parent = NULL;
207 struct hfsc_class *cl1;
208
209 while (*p != NULL) {
210 parent = *p;
211 cl1 = rb_entry(parent, struct hfsc_class, el_node);
212 if (cl->cl_e >= cl1->cl_e)
213 p = &parent->rb_right;
214 else
215 p = &parent->rb_left;
216 }
217 rb_link_node(&cl->el_node, parent, p);
218 rb_insert_color(&cl->el_node, &cl->sched->eligible);
219 }
220
221 static inline void
222 eltree_remove(struct hfsc_class *cl)
223 {
224 rb_erase(&cl->el_node, &cl->sched->eligible);
225 }
226
227 static inline void
228 eltree_update(struct hfsc_class *cl)
229 {
230 eltree_remove(cl);
231 eltree_insert(cl);
232 }
233
234 /* find the class with the minimum deadline among the eligible classes */
235 static inline struct hfsc_class *
236 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
237 {
238 struct hfsc_class *p, *cl = NULL;
239 struct rb_node *n;
240
241 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
242 p = rb_entry(n, struct hfsc_class, el_node);
243 if (p->cl_e > cur_time)
244 break;
245 if (cl == NULL || p->cl_d < cl->cl_d)
246 cl = p;
247 }
248 return cl;
249 }
250
251 /* find the class with minimum eligible time among the eligible classes */
252 static inline struct hfsc_class *
253 eltree_get_minel(struct hfsc_sched *q)
254 {
255 struct rb_node *n;
256
257 n = rb_first(&q->eligible);
258 if (n == NULL)
259 return NULL;
260 return rb_entry(n, struct hfsc_class, el_node);
261 }
262
263 /*
264 * vttree holds holds backlogged child classes being sorted by their virtual
265 * time. each intermediate class has one vttree.
266 */
267 static void
268 vttree_insert(struct hfsc_class *cl)
269 {
270 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
271 struct rb_node *parent = NULL;
272 struct hfsc_class *cl1;
273
274 while (*p != NULL) {
275 parent = *p;
276 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
277 if (cl->cl_vt >= cl1->cl_vt)
278 p = &parent->rb_right;
279 else
280 p = &parent->rb_left;
281 }
282 rb_link_node(&cl->vt_node, parent, p);
283 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
284 }
285
286 static inline void
287 vttree_remove(struct hfsc_class *cl)
288 {
289 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
290 }
291
292 static inline void
293 vttree_update(struct hfsc_class *cl)
294 {
295 vttree_remove(cl);
296 vttree_insert(cl);
297 }
298
299 static inline struct hfsc_class *
300 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
301 {
302 struct hfsc_class *p;
303 struct rb_node *n;
304
305 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
306 p = rb_entry(n, struct hfsc_class, vt_node);
307 if (p->cl_f <= cur_time)
308 return p;
309 }
310 return NULL;
311 }
312
313 /*
314 * get the leaf class with the minimum vt in the hierarchy
315 */
316 static struct hfsc_class *
317 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
318 {
319 /* if root-class's cfmin is bigger than cur_time nothing to do */
320 if (cl->cl_cfmin > cur_time)
321 return NULL;
322
323 while (cl->level > 0) {
324 cl = vttree_firstfit(cl, cur_time);
325 if (cl == NULL)
326 return NULL;
327 /*
328 * update parent's cl_cvtmin.
329 */
330 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
331 cl->cl_parent->cl_cvtmin = cl->cl_vt;
332 }
333 return cl;
334 }
335
336 static void
337 cftree_insert(struct hfsc_class *cl)
338 {
339 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
340 struct rb_node *parent = NULL;
341 struct hfsc_class *cl1;
342
343 while (*p != NULL) {
344 parent = *p;
345 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
346 if (cl->cl_f >= cl1->cl_f)
347 p = &parent->rb_right;
348 else
349 p = &parent->rb_left;
350 }
351 rb_link_node(&cl->cf_node, parent, p);
352 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
353 }
354
355 static inline void
356 cftree_remove(struct hfsc_class *cl)
357 {
358 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
359 }
360
361 static inline void
362 cftree_update(struct hfsc_class *cl)
363 {
364 cftree_remove(cl);
365 cftree_insert(cl);
366 }
367
368 /*
369 * service curve support functions
370 *
371 * external service curve parameters
372 * m: bps
373 * d: us
374 * internal service curve parameters
375 * sm: (bytes/psched_us) << SM_SHIFT
376 * ism: (psched_us/byte) << ISM_SHIFT
377 * dx: psched_us
378 *
379 * The clock source resolution with ktime is 1.024us.
380 *
381 * sm and ism are scaled in order to keep effective digits.
382 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
383 * digits in decimal using the following table.
384 *
385 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
386 * ------------+-------------------------------------------------------
387 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
388 *
389 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
390 */
391 #define SM_SHIFT 20
392 #define ISM_SHIFT 18
393
394 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
395 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
396
397 static inline u64
398 seg_x2y(u64 x, u64 sm)
399 {
400 u64 y;
401
402 /*
403 * compute
404 * y = x * sm >> SM_SHIFT
405 * but divide it for the upper and lower bits to avoid overflow
406 */
407 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
408 return y;
409 }
410
411 static inline u64
412 seg_y2x(u64 y, u64 ism)
413 {
414 u64 x;
415
416 if (y == 0)
417 x = 0;
418 else if (ism == HT_INFINITY)
419 x = HT_INFINITY;
420 else {
421 x = (y >> ISM_SHIFT) * ism
422 + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
423 }
424 return x;
425 }
426
427 /* Convert m (bps) into sm (bytes/psched us) */
428 static u64
429 m2sm(u32 m)
430 {
431 u64 sm;
432
433 sm = ((u64)m << SM_SHIFT);
434 sm += PSCHED_TICKS_PER_SEC - 1;
435 do_div(sm, PSCHED_TICKS_PER_SEC);
436 return sm;
437 }
438
439 /* convert m (bps) into ism (psched us/byte) */
440 static u64
441 m2ism(u32 m)
442 {
443 u64 ism;
444
445 if (m == 0)
446 ism = HT_INFINITY;
447 else {
448 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
449 ism += m - 1;
450 do_div(ism, m);
451 }
452 return ism;
453 }
454
455 /* convert d (us) into dx (psched us) */
456 static u64
457 d2dx(u32 d)
458 {
459 u64 dx;
460
461 dx = ((u64)d * PSCHED_TICKS_PER_SEC);
462 dx += USEC_PER_SEC - 1;
463 do_div(dx, USEC_PER_SEC);
464 return dx;
465 }
466
467 /* convert sm (bytes/psched us) into m (bps) */
468 static u32
469 sm2m(u64 sm)
470 {
471 u64 m;
472
473 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
474 return (u32)m;
475 }
476
477 /* convert dx (psched us) into d (us) */
478 static u32
479 dx2d(u64 dx)
480 {
481 u64 d;
482
483 d = dx * USEC_PER_SEC;
484 do_div(d, PSCHED_TICKS_PER_SEC);
485 return (u32)d;
486 }
487
488 static void
489 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
490 {
491 isc->sm1 = m2sm(sc->m1);
492 isc->ism1 = m2ism(sc->m1);
493 isc->dx = d2dx(sc->d);
494 isc->dy = seg_x2y(isc->dx, isc->sm1);
495 isc->sm2 = m2sm(sc->m2);
496 isc->ism2 = m2ism(sc->m2);
497 }
498
499 /*
500 * initialize the runtime service curve with the given internal
501 * service curve starting at (x, y).
502 */
503 static void
504 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
505 {
506 rtsc->x = x;
507 rtsc->y = y;
508 rtsc->sm1 = isc->sm1;
509 rtsc->ism1 = isc->ism1;
510 rtsc->dx = isc->dx;
511 rtsc->dy = isc->dy;
512 rtsc->sm2 = isc->sm2;
513 rtsc->ism2 = isc->ism2;
514 }
515
516 /*
517 * calculate the y-projection of the runtime service curve by the
518 * given x-projection value
519 */
520 static u64
521 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
522 {
523 u64 x;
524
525 if (y < rtsc->y)
526 x = rtsc->x;
527 else if (y <= rtsc->y + rtsc->dy) {
528 /* x belongs to the 1st segment */
529 if (rtsc->dy == 0)
530 x = rtsc->x + rtsc->dx;
531 else
532 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
533 } else {
534 /* x belongs to the 2nd segment */
535 x = rtsc->x + rtsc->dx
536 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
537 }
538 return x;
539 }
540
541 static u64
542 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
543 {
544 u64 y;
545
546 if (x <= rtsc->x)
547 y = rtsc->y;
548 else if (x <= rtsc->x + rtsc->dx)
549 /* y belongs to the 1st segment */
550 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
551 else
552 /* y belongs to the 2nd segment */
553 y = rtsc->y + rtsc->dy
554 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
555 return y;
556 }
557
558 /*
559 * update the runtime service curve by taking the minimum of the current
560 * runtime service curve and the service curve starting at (x, y).
561 */
562 static void
563 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
564 {
565 u64 y1, y2, dx, dy;
566 u32 dsm;
567
568 if (isc->sm1 <= isc->sm2) {
569 /* service curve is convex */
570 y1 = rtsc_x2y(rtsc, x);
571 if (y1 < y)
572 /* the current rtsc is smaller */
573 return;
574 rtsc->x = x;
575 rtsc->y = y;
576 return;
577 }
578
579 /*
580 * service curve is concave
581 * compute the two y values of the current rtsc
582 * y1: at x
583 * y2: at (x + dx)
584 */
585 y1 = rtsc_x2y(rtsc, x);
586 if (y1 <= y) {
587 /* rtsc is below isc, no change to rtsc */
588 return;
589 }
590
591 y2 = rtsc_x2y(rtsc, x + isc->dx);
592 if (y2 >= y + isc->dy) {
593 /* rtsc is above isc, replace rtsc by isc */
594 rtsc->x = x;
595 rtsc->y = y;
596 rtsc->dx = isc->dx;
597 rtsc->dy = isc->dy;
598 return;
599 }
600
601 /*
602 * the two curves intersect
603 * compute the offsets (dx, dy) using the reverse
604 * function of seg_x2y()
605 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
606 */
607 dx = (y1 - y) << SM_SHIFT;
608 dsm = isc->sm1 - isc->sm2;
609 do_div(dx, dsm);
610 /*
611 * check if (x, y1) belongs to the 1st segment of rtsc.
612 * if so, add the offset.
613 */
614 if (rtsc->x + rtsc->dx > x)
615 dx += rtsc->x + rtsc->dx - x;
616 dy = seg_x2y(dx, isc->sm1);
617
618 rtsc->x = x;
619 rtsc->y = y;
620 rtsc->dx = dx;
621 rtsc->dy = dy;
622 return;
623 }
624
625 static void
626 init_ed(struct hfsc_class *cl, unsigned int next_len)
627 {
628 u64 cur_time = psched_get_time();
629
630 /* update the deadline curve */
631 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
632
633 /*
634 * update the eligible curve.
635 * for concave, it is equal to the deadline curve.
636 * for convex, it is a linear curve with slope m2.
637 */
638 cl->cl_eligible = cl->cl_deadline;
639 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
640 cl->cl_eligible.dx = 0;
641 cl->cl_eligible.dy = 0;
642 }
643
644 /* compute e and d */
645 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
646 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
647
648 eltree_insert(cl);
649 }
650
651 static void
652 update_ed(struct hfsc_class *cl, unsigned int next_len)
653 {
654 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
655 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
656
657 eltree_update(cl);
658 }
659
660 static inline void
661 update_d(struct hfsc_class *cl, unsigned int next_len)
662 {
663 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
664 }
665
666 static inline void
667 update_cfmin(struct hfsc_class *cl)
668 {
669 struct rb_node *n = rb_first(&cl->cf_tree);
670 struct hfsc_class *p;
671
672 if (n == NULL) {
673 cl->cl_cfmin = 0;
674 return;
675 }
676 p = rb_entry(n, struct hfsc_class, cf_node);
677 cl->cl_cfmin = p->cl_f;
678 }
679
680 static void
681 init_vf(struct hfsc_class *cl, unsigned int len)
682 {
683 struct hfsc_class *max_cl;
684 struct rb_node *n;
685 u64 vt, f, cur_time;
686 int go_active;
687
688 cur_time = 0;
689 go_active = 1;
690 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
691 if (go_active && cl->cl_nactive++ == 0)
692 go_active = 1;
693 else
694 go_active = 0;
695
696 if (go_active) {
697 n = rb_last(&cl->cl_parent->vt_tree);
698 if (n != NULL) {
699 max_cl = rb_entry(n, struct hfsc_class,vt_node);
700 /*
701 * set vt to the average of the min and max
702 * classes. if the parent's period didn't
703 * change, don't decrease vt of the class.
704 */
705 vt = max_cl->cl_vt;
706 if (cl->cl_parent->cl_cvtmin != 0)
707 vt = (cl->cl_parent->cl_cvtmin + vt)/2;
708
709 if (cl->cl_parent->cl_vtperiod !=
710 cl->cl_parentperiod || vt > cl->cl_vt)
711 cl->cl_vt = vt;
712 } else {
713 /*
714 * first child for a new parent backlog period.
715 * add parent's cvtmax to cvtoff to make a new
716 * vt (vtoff + vt) larger than the vt in the
717 * last period for all children.
718 */
719 vt = cl->cl_parent->cl_cvtmax;
720 cl->cl_parent->cl_cvtoff += vt;
721 cl->cl_parent->cl_cvtmax = 0;
722 cl->cl_parent->cl_cvtmin = 0;
723 cl->cl_vt = 0;
724 }
725
726 cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
727 cl->cl_pcvtoff;
728
729 /* update the virtual curve */
730 vt = cl->cl_vt + cl->cl_vtoff;
731 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
732 cl->cl_total);
733 if (cl->cl_virtual.x == vt) {
734 cl->cl_virtual.x -= cl->cl_vtoff;
735 cl->cl_vtoff = 0;
736 }
737 cl->cl_vtadj = 0;
738
739 cl->cl_vtperiod++; /* increment vt period */
740 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
741 if (cl->cl_parent->cl_nactive == 0)
742 cl->cl_parentperiod++;
743 cl->cl_f = 0;
744
745 vttree_insert(cl);
746 cftree_insert(cl);
747
748 if (cl->cl_flags & HFSC_USC) {
749 /* class has upper limit curve */
750 if (cur_time == 0)
751 cur_time = psched_get_time();
752
753 /* update the ulimit curve */
754 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
755 cl->cl_total);
756 /* compute myf */
757 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
758 cl->cl_total);
759 cl->cl_myfadj = 0;
760 }
761 }
762
763 f = max(cl->cl_myf, cl->cl_cfmin);
764 if (f != cl->cl_f) {
765 cl->cl_f = f;
766 cftree_update(cl);
767 update_cfmin(cl->cl_parent);
768 }
769 }
770 }
771
772 static void
773 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
774 {
775 u64 f; /* , myf_bound, delta; */
776 int go_passive = 0;
777
778 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
779 go_passive = 1;
780
781 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
782 cl->cl_total += len;
783
784 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
785 continue;
786
787 if (go_passive && --cl->cl_nactive == 0)
788 go_passive = 1;
789 else
790 go_passive = 0;
791
792 if (go_passive) {
793 /* no more active child, going passive */
794
795 /* update cvtmax of the parent class */
796 if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
797 cl->cl_parent->cl_cvtmax = cl->cl_vt;
798
799 /* remove this class from the vt tree */
800 vttree_remove(cl);
801
802 cftree_remove(cl);
803 update_cfmin(cl->cl_parent);
804
805 continue;
806 }
807
808 /*
809 * update vt and f
810 */
811 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
812 - cl->cl_vtoff + cl->cl_vtadj;
813
814 /*
815 * if vt of the class is smaller than cvtmin,
816 * the class was skipped in the past due to non-fit.
817 * if so, we need to adjust vtadj.
818 */
819 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
820 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
821 cl->cl_vt = cl->cl_parent->cl_cvtmin;
822 }
823
824 /* update the vt tree */
825 vttree_update(cl);
826
827 if (cl->cl_flags & HFSC_USC) {
828 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
829 cl->cl_total);
830 #if 0
831 /*
832 * This code causes classes to stay way under their
833 * limit when multiple classes are used at gigabit
834 * speed. needs investigation. -kaber
835 */
836 /*
837 * if myf lags behind by more than one clock tick
838 * from the current time, adjust myfadj to prevent
839 * a rate-limited class from going greedy.
840 * in a steady state under rate-limiting, myf
841 * fluctuates within one clock tick.
842 */
843 myf_bound = cur_time - PSCHED_JIFFIE2US(1);
844 if (cl->cl_myf < myf_bound) {
845 delta = cur_time - cl->cl_myf;
846 cl->cl_myfadj += delta;
847 cl->cl_myf += delta;
848 }
849 #endif
850 }
851
852 f = max(cl->cl_myf, cl->cl_cfmin);
853 if (f != cl->cl_f) {
854 cl->cl_f = f;
855 cftree_update(cl);
856 update_cfmin(cl->cl_parent);
857 }
858 }
859 }
860
861 static void
862 set_active(struct hfsc_class *cl, unsigned int len)
863 {
864 if (cl->cl_flags & HFSC_RSC)
865 init_ed(cl, len);
866 if (cl->cl_flags & HFSC_FSC)
867 init_vf(cl, len);
868
869 list_add_tail(&cl->dlist, &cl->sched->droplist);
870 }
871
872 static void
873 set_passive(struct hfsc_class *cl)
874 {
875 if (cl->cl_flags & HFSC_RSC)
876 eltree_remove(cl);
877
878 list_del(&cl->dlist);
879
880 /*
881 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
882 * needs to be called explicitly to remove a class from vttree.
883 */
884 }
885
886 /*
887 * hack to get length of first packet in queue.
888 */
889 static unsigned int
890 qdisc_peek_len(struct Qdisc *sch)
891 {
892 struct sk_buff *skb;
893 unsigned int len;
894
895 skb = sch->dequeue(sch);
896 if (skb == NULL) {
897 if (net_ratelimit())
898 printk("qdisc_peek_len: non work-conserving qdisc ?\n");
899 return 0;
900 }
901 len = skb->len;
902 if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
903 if (net_ratelimit())
904 printk("qdisc_peek_len: failed to requeue\n");
905 qdisc_tree_decrease_qlen(sch, 1);
906 return 0;
907 }
908 return len;
909 }
910
911 static void
912 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
913 {
914 unsigned int len = cl->qdisc->q.qlen;
915
916 qdisc_reset(cl->qdisc);
917 qdisc_tree_decrease_qlen(cl->qdisc, len);
918 }
919
920 static void
921 hfsc_adjust_levels(struct hfsc_class *cl)
922 {
923 struct hfsc_class *p;
924 unsigned int level;
925
926 do {
927 level = 0;
928 list_for_each_entry(p, &cl->children, siblings) {
929 if (p->level >= level)
930 level = p->level + 1;
931 }
932 cl->level = level;
933 } while ((cl = cl->cl_parent) != NULL);
934 }
935
936 static inline unsigned int
937 hfsc_hash(u32 h)
938 {
939 h ^= h >> 8;
940 h ^= h >> 4;
941
942 return h & (HFSC_HSIZE - 1);
943 }
944
945 static inline struct hfsc_class *
946 hfsc_find_class(u32 classid, struct Qdisc *sch)
947 {
948 struct hfsc_sched *q = qdisc_priv(sch);
949 struct hfsc_class *cl;
950
951 list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
952 if (cl->classid == classid)
953 return cl;
954 }
955 return NULL;
956 }
957
958 static void
959 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
960 u64 cur_time)
961 {
962 sc2isc(rsc, &cl->cl_rsc);
963 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
964 cl->cl_eligible = cl->cl_deadline;
965 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
966 cl->cl_eligible.dx = 0;
967 cl->cl_eligible.dy = 0;
968 }
969 cl->cl_flags |= HFSC_RSC;
970 }
971
972 static void
973 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
974 {
975 sc2isc(fsc, &cl->cl_fsc);
976 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
977 cl->cl_flags |= HFSC_FSC;
978 }
979
980 static void
981 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
982 u64 cur_time)
983 {
984 sc2isc(usc, &cl->cl_usc);
985 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
986 cl->cl_flags |= HFSC_USC;
987 }
988
989 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
990 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
991 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
992 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
993 };
994
995 static int
996 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
997 struct nlattr **tca, unsigned long *arg)
998 {
999 struct hfsc_sched *q = qdisc_priv(sch);
1000 struct hfsc_class *cl = (struct hfsc_class *)*arg;
1001 struct hfsc_class *parent = NULL;
1002 struct nlattr *opt = tca[TCA_OPTIONS];
1003 struct nlattr *tb[TCA_HFSC_MAX + 1];
1004 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
1005 u64 cur_time;
1006 int err;
1007
1008 if (opt == NULL)
1009 return -EINVAL;
1010
1011 err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
1012 if (err < 0)
1013 return err;
1014
1015 if (tb[TCA_HFSC_RSC]) {
1016 rsc = nla_data(tb[TCA_HFSC_RSC]);
1017 if (rsc->m1 == 0 && rsc->m2 == 0)
1018 rsc = NULL;
1019 }
1020
1021 if (tb[TCA_HFSC_FSC]) {
1022 fsc = nla_data(tb[TCA_HFSC_FSC]);
1023 if (fsc->m1 == 0 && fsc->m2 == 0)
1024 fsc = NULL;
1025 }
1026
1027 if (tb[TCA_HFSC_USC]) {
1028 usc = nla_data(tb[TCA_HFSC_USC]);
1029 if (usc->m1 == 0 && usc->m2 == 0)
1030 usc = NULL;
1031 }
1032
1033 if (cl != NULL) {
1034 if (parentid) {
1035 if (cl->cl_parent && cl->cl_parent->classid != parentid)
1036 return -EINVAL;
1037 if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1038 return -EINVAL;
1039 }
1040 cur_time = psched_get_time();
1041
1042 sch_tree_lock(sch);
1043 if (rsc != NULL)
1044 hfsc_change_rsc(cl, rsc, cur_time);
1045 if (fsc != NULL)
1046 hfsc_change_fsc(cl, fsc);
1047 if (usc != NULL)
1048 hfsc_change_usc(cl, usc, cur_time);
1049
1050 if (cl->qdisc->q.qlen != 0) {
1051 if (cl->cl_flags & HFSC_RSC)
1052 update_ed(cl, qdisc_peek_len(cl->qdisc));
1053 if (cl->cl_flags & HFSC_FSC)
1054 update_vf(cl, 0, cur_time);
1055 }
1056 sch_tree_unlock(sch);
1057
1058 if (tca[TCA_RATE])
1059 gen_replace_estimator(&cl->bstats, &cl->rate_est,
1060 &sch->dev->queue_lock,
1061 tca[TCA_RATE]);
1062 return 0;
1063 }
1064
1065 if (parentid == TC_H_ROOT)
1066 return -EEXIST;
1067
1068 parent = &q->root;
1069 if (parentid) {
1070 parent = hfsc_find_class(parentid, sch);
1071 if (parent == NULL)
1072 return -ENOENT;
1073 }
1074
1075 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1076 return -EINVAL;
1077 if (hfsc_find_class(classid, sch))
1078 return -EEXIST;
1079
1080 if (rsc == NULL && fsc == NULL)
1081 return -EINVAL;
1082
1083 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1084 if (cl == NULL)
1085 return -ENOBUFS;
1086
1087 if (rsc != NULL)
1088 hfsc_change_rsc(cl, rsc, 0);
1089 if (fsc != NULL)
1090 hfsc_change_fsc(cl, fsc);
1091 if (usc != NULL)
1092 hfsc_change_usc(cl, usc, 0);
1093
1094 cl->refcnt = 1;
1095 cl->classid = classid;
1096 cl->sched = q;
1097 cl->cl_parent = parent;
1098 cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, classid);
1099 if (cl->qdisc == NULL)
1100 cl->qdisc = &noop_qdisc;
1101 INIT_LIST_HEAD(&cl->children);
1102 cl->vt_tree = RB_ROOT;
1103 cl->cf_tree = RB_ROOT;
1104
1105 sch_tree_lock(sch);
1106 list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1107 list_add_tail(&cl->siblings, &parent->children);
1108 if (parent->level == 0)
1109 hfsc_purge_queue(sch, parent);
1110 hfsc_adjust_levels(parent);
1111 cl->cl_pcvtoff = parent->cl_cvtoff;
1112 sch_tree_unlock(sch);
1113
1114 if (tca[TCA_RATE])
1115 gen_new_estimator(&cl->bstats, &cl->rate_est,
1116 &sch->dev->queue_lock, tca[TCA_RATE]);
1117 *arg = (unsigned long)cl;
1118 return 0;
1119 }
1120
1121 static void
1122 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1123 {
1124 struct hfsc_sched *q = qdisc_priv(sch);
1125
1126 tcf_destroy_chain(cl->filter_list);
1127 qdisc_destroy(cl->qdisc);
1128 gen_kill_estimator(&cl->bstats, &cl->rate_est);
1129 if (cl != &q->root)
1130 kfree(cl);
1131 }
1132
1133 static int
1134 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1135 {
1136 struct hfsc_sched *q = qdisc_priv(sch);
1137 struct hfsc_class *cl = (struct hfsc_class *)arg;
1138
1139 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1140 return -EBUSY;
1141
1142 sch_tree_lock(sch);
1143
1144 list_del(&cl->siblings);
1145 hfsc_adjust_levels(cl->cl_parent);
1146
1147 hfsc_purge_queue(sch, cl);
1148 list_del(&cl->hlist);
1149
1150 if (--cl->refcnt == 0)
1151 hfsc_destroy_class(sch, cl);
1152
1153 sch_tree_unlock(sch);
1154 return 0;
1155 }
1156
1157 static struct hfsc_class *
1158 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1159 {
1160 struct hfsc_sched *q = qdisc_priv(sch);
1161 struct hfsc_class *cl;
1162 struct tcf_result res;
1163 struct tcf_proto *tcf;
1164 int result;
1165
1166 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1167 (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1168 if (cl->level == 0)
1169 return cl;
1170
1171 *qerr = NET_XMIT_BYPASS;
1172 tcf = q->root.filter_list;
1173 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1174 #ifdef CONFIG_NET_CLS_ACT
1175 switch (result) {
1176 case TC_ACT_QUEUED:
1177 case TC_ACT_STOLEN:
1178 *qerr = NET_XMIT_SUCCESS;
1179 case TC_ACT_SHOT:
1180 return NULL;
1181 }
1182 #endif
1183 if ((cl = (struct hfsc_class *)res.class) == NULL) {
1184 if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1185 break; /* filter selected invalid classid */
1186 }
1187
1188 if (cl->level == 0)
1189 return cl; /* hit leaf class */
1190
1191 /* apply inner filter chain */
1192 tcf = cl->filter_list;
1193 }
1194
1195 /* classification failed, try default class */
1196 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1197 if (cl == NULL || cl->level > 0)
1198 return NULL;
1199
1200 return cl;
1201 }
1202
1203 static int
1204 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1205 struct Qdisc **old)
1206 {
1207 struct hfsc_class *cl = (struct hfsc_class *)arg;
1208
1209 if (cl == NULL)
1210 return -ENOENT;
1211 if (cl->level > 0)
1212 return -EINVAL;
1213 if (new == NULL) {
1214 new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1215 cl->classid);
1216 if (new == NULL)
1217 new = &noop_qdisc;
1218 }
1219
1220 sch_tree_lock(sch);
1221 hfsc_purge_queue(sch, cl);
1222 *old = xchg(&cl->qdisc, new);
1223 sch_tree_unlock(sch);
1224 return 0;
1225 }
1226
1227 static struct Qdisc *
1228 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1229 {
1230 struct hfsc_class *cl = (struct hfsc_class *)arg;
1231
1232 if (cl != NULL && cl->level == 0)
1233 return cl->qdisc;
1234
1235 return NULL;
1236 }
1237
1238 static void
1239 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1240 {
1241 struct hfsc_class *cl = (struct hfsc_class *)arg;
1242
1243 if (cl->qdisc->q.qlen == 0) {
1244 update_vf(cl, 0, 0);
1245 set_passive(cl);
1246 }
1247 }
1248
1249 static unsigned long
1250 hfsc_get_class(struct Qdisc *sch, u32 classid)
1251 {
1252 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1253
1254 if (cl != NULL)
1255 cl->refcnt++;
1256
1257 return (unsigned long)cl;
1258 }
1259
1260 static void
1261 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1262 {
1263 struct hfsc_class *cl = (struct hfsc_class *)arg;
1264
1265 if (--cl->refcnt == 0)
1266 hfsc_destroy_class(sch, cl);
1267 }
1268
1269 static unsigned long
1270 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1271 {
1272 struct hfsc_class *p = (struct hfsc_class *)parent;
1273 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1274
1275 if (cl != NULL) {
1276 if (p != NULL && p->level <= cl->level)
1277 return 0;
1278 cl->filter_cnt++;
1279 }
1280
1281 return (unsigned long)cl;
1282 }
1283
1284 static void
1285 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1286 {
1287 struct hfsc_class *cl = (struct hfsc_class *)arg;
1288
1289 cl->filter_cnt--;
1290 }
1291
1292 static struct tcf_proto **
1293 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1294 {
1295 struct hfsc_sched *q = qdisc_priv(sch);
1296 struct hfsc_class *cl = (struct hfsc_class *)arg;
1297
1298 if (cl == NULL)
1299 cl = &q->root;
1300
1301 return &cl->filter_list;
1302 }
1303
1304 static int
1305 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1306 {
1307 struct tc_service_curve tsc;
1308
1309 tsc.m1 = sm2m(sc->sm1);
1310 tsc.d = dx2d(sc->dx);
1311 tsc.m2 = sm2m(sc->sm2);
1312 NLA_PUT(skb, attr, sizeof(tsc), &tsc);
1313
1314 return skb->len;
1315
1316 nla_put_failure:
1317 return -1;
1318 }
1319
1320 static inline int
1321 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1322 {
1323 if ((cl->cl_flags & HFSC_RSC) &&
1324 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1325 goto nla_put_failure;
1326
1327 if ((cl->cl_flags & HFSC_FSC) &&
1328 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1329 goto nla_put_failure;
1330
1331 if ((cl->cl_flags & HFSC_USC) &&
1332 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1333 goto nla_put_failure;
1334
1335 return skb->len;
1336
1337 nla_put_failure:
1338 return -1;
1339 }
1340
1341 static int
1342 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1343 struct tcmsg *tcm)
1344 {
1345 struct hfsc_class *cl = (struct hfsc_class *)arg;
1346 struct nlattr *nest;
1347
1348 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1349 tcm->tcm_handle = cl->classid;
1350 if (cl->level == 0)
1351 tcm->tcm_info = cl->qdisc->handle;
1352
1353 nest = nla_nest_start(skb, TCA_OPTIONS);
1354 if (nest == NULL)
1355 goto nla_put_failure;
1356 if (hfsc_dump_curves(skb, cl) < 0)
1357 goto nla_put_failure;
1358 nla_nest_end(skb, nest);
1359 return skb->len;
1360
1361 nla_put_failure:
1362 nla_nest_cancel(skb, nest);
1363 return -1;
1364 }
1365
1366 static int
1367 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1368 struct gnet_dump *d)
1369 {
1370 struct hfsc_class *cl = (struct hfsc_class *)arg;
1371 struct tc_hfsc_stats xstats;
1372
1373 cl->qstats.qlen = cl->qdisc->q.qlen;
1374 xstats.level = cl->level;
1375 xstats.period = cl->cl_vtperiod;
1376 xstats.work = cl->cl_total;
1377 xstats.rtwork = cl->cl_cumul;
1378
1379 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1380 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1381 gnet_stats_copy_queue(d, &cl->qstats) < 0)
1382 return -1;
1383
1384 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1385 }
1386
1387
1388
1389 static void
1390 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1391 {
1392 struct hfsc_sched *q = qdisc_priv(sch);
1393 struct hfsc_class *cl;
1394 unsigned int i;
1395
1396 if (arg->stop)
1397 return;
1398
1399 for (i = 0; i < HFSC_HSIZE; i++) {
1400 list_for_each_entry(cl, &q->clhash[i], hlist) {
1401 if (arg->count < arg->skip) {
1402 arg->count++;
1403 continue;
1404 }
1405 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1406 arg->stop = 1;
1407 return;
1408 }
1409 arg->count++;
1410 }
1411 }
1412 }
1413
1414 static void
1415 hfsc_schedule_watchdog(struct Qdisc *sch)
1416 {
1417 struct hfsc_sched *q = qdisc_priv(sch);
1418 struct hfsc_class *cl;
1419 u64 next_time = 0;
1420
1421 if ((cl = eltree_get_minel(q)) != NULL)
1422 next_time = cl->cl_e;
1423 if (q->root.cl_cfmin != 0) {
1424 if (next_time == 0 || next_time > q->root.cl_cfmin)
1425 next_time = q->root.cl_cfmin;
1426 }
1427 WARN_ON(next_time == 0);
1428 qdisc_watchdog_schedule(&q->watchdog, next_time);
1429 }
1430
1431 static int
1432 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1433 {
1434 struct hfsc_sched *q = qdisc_priv(sch);
1435 struct tc_hfsc_qopt *qopt;
1436 unsigned int i;
1437
1438 if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1439 return -EINVAL;
1440 qopt = nla_data(opt);
1441
1442 q->defcls = qopt->defcls;
1443 for (i = 0; i < HFSC_HSIZE; i++)
1444 INIT_LIST_HEAD(&q->clhash[i]);
1445 q->eligible = RB_ROOT;
1446 INIT_LIST_HEAD(&q->droplist);
1447 skb_queue_head_init(&q->requeue);
1448
1449 q->root.refcnt = 1;
1450 q->root.classid = sch->handle;
1451 q->root.sched = q;
1452 q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1453 sch->handle);
1454 if (q->root.qdisc == NULL)
1455 q->root.qdisc = &noop_qdisc;
1456 INIT_LIST_HEAD(&q->root.children);
1457 q->root.vt_tree = RB_ROOT;
1458 q->root.cf_tree = RB_ROOT;
1459
1460 list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1461
1462 qdisc_watchdog_init(&q->watchdog, sch);
1463
1464 return 0;
1465 }
1466
1467 static int
1468 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1469 {
1470 struct hfsc_sched *q = qdisc_priv(sch);
1471 struct tc_hfsc_qopt *qopt;
1472
1473 if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1474 return -EINVAL;
1475 qopt = nla_data(opt);
1476
1477 sch_tree_lock(sch);
1478 q->defcls = qopt->defcls;
1479 sch_tree_unlock(sch);
1480
1481 return 0;
1482 }
1483
1484 static void
1485 hfsc_reset_class(struct hfsc_class *cl)
1486 {
1487 cl->cl_total = 0;
1488 cl->cl_cumul = 0;
1489 cl->cl_d = 0;
1490 cl->cl_e = 0;
1491 cl->cl_vt = 0;
1492 cl->cl_vtadj = 0;
1493 cl->cl_vtoff = 0;
1494 cl->cl_cvtmin = 0;
1495 cl->cl_cvtmax = 0;
1496 cl->cl_cvtoff = 0;
1497 cl->cl_pcvtoff = 0;
1498 cl->cl_vtperiod = 0;
1499 cl->cl_parentperiod = 0;
1500 cl->cl_f = 0;
1501 cl->cl_myf = 0;
1502 cl->cl_myfadj = 0;
1503 cl->cl_cfmin = 0;
1504 cl->cl_nactive = 0;
1505
1506 cl->vt_tree = RB_ROOT;
1507 cl->cf_tree = RB_ROOT;
1508 qdisc_reset(cl->qdisc);
1509
1510 if (cl->cl_flags & HFSC_RSC)
1511 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1512 if (cl->cl_flags & HFSC_FSC)
1513 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1514 if (cl->cl_flags & HFSC_USC)
1515 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1516 }
1517
1518 static void
1519 hfsc_reset_qdisc(struct Qdisc *sch)
1520 {
1521 struct hfsc_sched *q = qdisc_priv(sch);
1522 struct hfsc_class *cl;
1523 unsigned int i;
1524
1525 for (i = 0; i < HFSC_HSIZE; i++) {
1526 list_for_each_entry(cl, &q->clhash[i], hlist)
1527 hfsc_reset_class(cl);
1528 }
1529 __skb_queue_purge(&q->requeue);
1530 q->eligible = RB_ROOT;
1531 INIT_LIST_HEAD(&q->droplist);
1532 qdisc_watchdog_cancel(&q->watchdog);
1533 sch->q.qlen = 0;
1534 }
1535
1536 static void
1537 hfsc_destroy_qdisc(struct Qdisc *sch)
1538 {
1539 struct hfsc_sched *q = qdisc_priv(sch);
1540 struct hfsc_class *cl, *next;
1541 unsigned int i;
1542
1543 for (i = 0; i < HFSC_HSIZE; i++) {
1544 list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1545 hfsc_destroy_class(sch, cl);
1546 }
1547 __skb_queue_purge(&q->requeue);
1548 qdisc_watchdog_cancel(&q->watchdog);
1549 }
1550
1551 static int
1552 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1553 {
1554 struct hfsc_sched *q = qdisc_priv(sch);
1555 unsigned char *b = skb_tail_pointer(skb);
1556 struct tc_hfsc_qopt qopt;
1557
1558 qopt.defcls = q->defcls;
1559 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1560 return skb->len;
1561
1562 nla_put_failure:
1563 nlmsg_trim(skb, b);
1564 return -1;
1565 }
1566
1567 static int
1568 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1569 {
1570 struct hfsc_class *cl;
1571 unsigned int len;
1572 int err;
1573
1574 cl = hfsc_classify(skb, sch, &err);
1575 if (cl == NULL) {
1576 if (err == NET_XMIT_BYPASS)
1577 sch->qstats.drops++;
1578 kfree_skb(skb);
1579 return err;
1580 }
1581
1582 len = skb->len;
1583 err = cl->qdisc->enqueue(skb, cl->qdisc);
1584 if (unlikely(err != NET_XMIT_SUCCESS)) {
1585 cl->qstats.drops++;
1586 sch->qstats.drops++;
1587 return err;
1588 }
1589
1590 if (cl->qdisc->q.qlen == 1)
1591 set_active(cl, len);
1592
1593 cl->bstats.packets++;
1594 cl->bstats.bytes += len;
1595 sch->bstats.packets++;
1596 sch->bstats.bytes += len;
1597 sch->q.qlen++;
1598
1599 return NET_XMIT_SUCCESS;
1600 }
1601
1602 static struct sk_buff *
1603 hfsc_dequeue(struct Qdisc *sch)
1604 {
1605 struct hfsc_sched *q = qdisc_priv(sch);
1606 struct hfsc_class *cl;
1607 struct sk_buff *skb;
1608 u64 cur_time;
1609 unsigned int next_len;
1610 int realtime = 0;
1611
1612 if (sch->q.qlen == 0)
1613 return NULL;
1614 if ((skb = __skb_dequeue(&q->requeue)))
1615 goto out;
1616
1617 cur_time = psched_get_time();
1618
1619 /*
1620 * if there are eligible classes, use real-time criteria.
1621 * find the class with the minimum deadline among
1622 * the eligible classes.
1623 */
1624 if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1625 realtime = 1;
1626 } else {
1627 /*
1628 * use link-sharing criteria
1629 * get the class with the minimum vt in the hierarchy
1630 */
1631 cl = vttree_get_minvt(&q->root, cur_time);
1632 if (cl == NULL) {
1633 sch->qstats.overlimits++;
1634 hfsc_schedule_watchdog(sch);
1635 return NULL;
1636 }
1637 }
1638
1639 skb = cl->qdisc->dequeue(cl->qdisc);
1640 if (skb == NULL) {
1641 if (net_ratelimit())
1642 printk("HFSC: Non-work-conserving qdisc ?\n");
1643 return NULL;
1644 }
1645
1646 update_vf(cl, skb->len, cur_time);
1647 if (realtime)
1648 cl->cl_cumul += skb->len;
1649
1650 if (cl->qdisc->q.qlen != 0) {
1651 if (cl->cl_flags & HFSC_RSC) {
1652 /* update ed */
1653 next_len = qdisc_peek_len(cl->qdisc);
1654 if (realtime)
1655 update_ed(cl, next_len);
1656 else
1657 update_d(cl, next_len);
1658 }
1659 } else {
1660 /* the class becomes passive */
1661 set_passive(cl);
1662 }
1663
1664 out:
1665 sch->flags &= ~TCQ_F_THROTTLED;
1666 sch->q.qlen--;
1667
1668 return skb;
1669 }
1670
1671 static int
1672 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1673 {
1674 struct hfsc_sched *q = qdisc_priv(sch);
1675
1676 __skb_queue_head(&q->requeue, skb);
1677 sch->q.qlen++;
1678 sch->qstats.requeues++;
1679 return NET_XMIT_SUCCESS;
1680 }
1681
1682 static unsigned int
1683 hfsc_drop(struct Qdisc *sch)
1684 {
1685 struct hfsc_sched *q = qdisc_priv(sch);
1686 struct hfsc_class *cl;
1687 unsigned int len;
1688
1689 list_for_each_entry(cl, &q->droplist, dlist) {
1690 if (cl->qdisc->ops->drop != NULL &&
1691 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1692 if (cl->qdisc->q.qlen == 0) {
1693 update_vf(cl, 0, 0);
1694 set_passive(cl);
1695 } else {
1696 list_move_tail(&cl->dlist, &q->droplist);
1697 }
1698 cl->qstats.drops++;
1699 sch->qstats.drops++;
1700 sch->q.qlen--;
1701 return len;
1702 }
1703 }
1704 return 0;
1705 }
1706
1707 static const struct Qdisc_class_ops hfsc_class_ops = {
1708 .change = hfsc_change_class,
1709 .delete = hfsc_delete_class,
1710 .graft = hfsc_graft_class,
1711 .leaf = hfsc_class_leaf,
1712 .qlen_notify = hfsc_qlen_notify,
1713 .get = hfsc_get_class,
1714 .put = hfsc_put_class,
1715 .bind_tcf = hfsc_bind_tcf,
1716 .unbind_tcf = hfsc_unbind_tcf,
1717 .tcf_chain = hfsc_tcf_chain,
1718 .dump = hfsc_dump_class,
1719 .dump_stats = hfsc_dump_class_stats,
1720 .walk = hfsc_walk
1721 };
1722
1723 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1724 .id = "hfsc",
1725 .init = hfsc_init_qdisc,
1726 .change = hfsc_change_qdisc,
1727 .reset = hfsc_reset_qdisc,
1728 .destroy = hfsc_destroy_qdisc,
1729 .dump = hfsc_dump_qdisc,
1730 .enqueue = hfsc_enqueue,
1731 .dequeue = hfsc_dequeue,
1732 .requeue = hfsc_requeue,
1733 .drop = hfsc_drop,
1734 .cl_ops = &hfsc_class_ops,
1735 .priv_size = sizeof(struct hfsc_sched),
1736 .owner = THIS_MODULE
1737 };
1738
1739 static int __init
1740 hfsc_init(void)
1741 {
1742 return register_qdisc(&hfsc_qdisc_ops);
1743 }
1744
1745 static void __exit
1746 hfsc_cleanup(void)
1747 {
1748 unregister_qdisc(&hfsc_qdisc_ops);
1749 }
1750
1751 MODULE_LICENSE("GPL");
1752 module_init(hfsc_init);
1753 module_exit(hfsc_cleanup);