ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sched / sch_cbq.c
1 /*
2 * net/sched/sch_cbq.c Class-Based Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 */
12
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/skbuff.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22
23
24 /* Class-Based Queueing (CBQ) algorithm.
25 =======================================
26
27 Sources: [1] Sally Floyd and Van Jacobson, "Link-sharing and Resource
28 Management Models for Packet Networks",
29 IEEE/ACM Transactions on Networking, Vol.3, No.4, 1995
30
31 [2] Sally Floyd, "Notes on CBQ and Guaranteed Service", 1995
32
33 [3] Sally Floyd, "Notes on Class-Based Queueing: Setting
34 Parameters", 1996
35
36 [4] Sally Floyd and Michael Speer, "Experimental Results
37 for Class-Based Queueing", 1998, not published.
38
39 -----------------------------------------------------------------------
40
41 Algorithm skeleton was taken from NS simulator cbq.cc.
42 If someone wants to check this code against the LBL version,
43 he should take into account that ONLY the skeleton was borrowed,
44 the implementation is different. Particularly:
45
46 --- The WRR algorithm is different. Our version looks more
47 reasonable (I hope) and works when quanta are allowed to be
48 less than MTU, which is always the case when real time classes
49 have small rates. Note, that the statement of [3] is
50 incomplete, delay may actually be estimated even if class
51 per-round allotment is less than MTU. Namely, if per-round
52 allotment is W*r_i, and r_1+...+r_k = r < 1
53
54 delay_i <= ([MTU/(W*r_i)]*W*r + W*r + k*MTU)/B
55
56 In the worst case we have IntServ estimate with D = W*r+k*MTU
57 and C = MTU*r. The proof (if correct at all) is trivial.
58
59
60 --- It seems that cbq-2.0 is not very accurate. At least, I cannot
61 interpret some places, which look like wrong translations
62 from NS. Anyone is advised to find these differences
63 and explain to me, why I am wrong 8).
64
65 --- Linux has no EOI event, so that we cannot estimate true class
66 idle time. Workaround is to consider the next dequeue event
67 as sign that previous packet is finished. This is wrong because of
68 internal device queueing, but on a permanently loaded link it is true.
69 Moreover, combined with clock integrator, this scheme looks
70 very close to an ideal solution. */
71
72 struct cbq_sched_data;
73
74
75 struct cbq_class {
76 struct Qdisc_class_common common;
77 struct cbq_class *next_alive; /* next class with backlog in this priority band */
78
79 /* Parameters */
80 unsigned char priority; /* class priority */
81 unsigned char priority2; /* priority to be used after overlimit */
82 unsigned char ewma_log; /* time constant for idle time calculation */
83 unsigned char ovl_strategy;
84 #ifdef CONFIG_NET_CLS_ACT
85 unsigned char police;
86 #endif
87
88 u32 defmap;
89
90 /* Link-sharing scheduler parameters */
91 long maxidle; /* Class parameters: see below. */
92 long offtime;
93 long minidle;
94 u32 avpkt;
95 struct qdisc_rate_table *R_tab;
96
97 /* Overlimit strategy parameters */
98 void (*overlimit)(struct cbq_class *cl);
99 psched_tdiff_t penalty;
100
101 /* General scheduler (WRR) parameters */
102 long allot;
103 long quantum; /* Allotment per WRR round */
104 long weight; /* Relative allotment: see below */
105
106 struct Qdisc *qdisc; /* Ptr to CBQ discipline */
107 struct cbq_class *split; /* Ptr to split node */
108 struct cbq_class *share; /* Ptr to LS parent in the class tree */
109 struct cbq_class *tparent; /* Ptr to tree parent in the class tree */
110 struct cbq_class *borrow; /* NULL if class is bandwidth limited;
111 parent otherwise */
112 struct cbq_class *sibling; /* Sibling chain */
113 struct cbq_class *children; /* Pointer to children chain */
114
115 struct Qdisc *q; /* Elementary queueing discipline */
116
117
118 /* Variables */
119 unsigned char cpriority; /* Effective priority */
120 unsigned char delayed;
121 unsigned char level; /* level of the class in hierarchy:
122 0 for leaf classes, and maximal
123 level of children + 1 for nodes.
124 */
125
126 psched_time_t last; /* Last end of service */
127 psched_time_t undertime;
128 long avgidle;
129 long deficit; /* Saved deficit for WRR */
130 psched_time_t penalized;
131 struct gnet_stats_basic_packed bstats;
132 struct gnet_stats_queue qstats;
133 struct gnet_stats_rate_est rate_est;
134 struct tc_cbq_xstats xstats;
135
136 struct tcf_proto *filter_list;
137
138 int refcnt;
139 int filters;
140
141 struct cbq_class *defaults[TC_PRIO_MAX + 1];
142 };
143
144 struct cbq_sched_data {
145 struct Qdisc_class_hash clhash; /* Hash table of all classes */
146 int nclasses[TC_CBQ_MAXPRIO + 1];
147 unsigned int quanta[TC_CBQ_MAXPRIO + 1];
148
149 struct cbq_class link;
150
151 unsigned int activemask;
152 struct cbq_class *active[TC_CBQ_MAXPRIO + 1]; /* List of all classes
153 with backlog */
154
155 #ifdef CONFIG_NET_CLS_ACT
156 struct cbq_class *rx_class;
157 #endif
158 struct cbq_class *tx_class;
159 struct cbq_class *tx_borrowed;
160 int tx_len;
161 psched_time_t now; /* Cached timestamp */
162 psched_time_t now_rt; /* Cached real time */
163 unsigned int pmask;
164
165 struct hrtimer delay_timer;
166 struct qdisc_watchdog watchdog; /* Watchdog timer,
167 started when CBQ has
168 backlog, but cannot
169 transmit just now */
170 psched_tdiff_t wd_expires;
171 int toplevel;
172 u32 hgenerator;
173 };
174
175
176 #define L2T(cl, len) qdisc_l2t((cl)->R_tab, len)
177
178 static inline struct cbq_class *
179 cbq_class_lookup(struct cbq_sched_data *q, u32 classid)
180 {
181 struct Qdisc_class_common *clc;
182
183 clc = qdisc_class_find(&q->clhash, classid);
184 if (clc == NULL)
185 return NULL;
186 return container_of(clc, struct cbq_class, common);
187 }
188
189 #ifdef CONFIG_NET_CLS_ACT
190
191 static struct cbq_class *
192 cbq_reclassify(struct sk_buff *skb, struct cbq_class *this)
193 {
194 struct cbq_class *cl;
195
196 for (cl = this->tparent; cl; cl = cl->tparent) {
197 struct cbq_class *new = cl->defaults[TC_PRIO_BESTEFFORT];
198
199 if (new != NULL && new != this)
200 return new;
201 }
202 return NULL;
203 }
204
205 #endif
206
207 /* Classify packet. The procedure is pretty complicated, but
208 * it allows us to combine link sharing and priority scheduling
209 * transparently.
210 *
211 * Namely, you can put link sharing rules (f.e. route based) at root of CBQ,
212 * so that it resolves to split nodes. Then packets are classified
213 * by logical priority, or a more specific classifier may be attached
214 * to the split node.
215 */
216
217 static struct cbq_class *
218 cbq_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
219 {
220 struct cbq_sched_data *q = qdisc_priv(sch);
221 struct cbq_class *head = &q->link;
222 struct cbq_class **defmap;
223 struct cbq_class *cl = NULL;
224 u32 prio = skb->priority;
225 struct tcf_result res;
226
227 /*
228 * Step 1. If skb->priority points to one of our classes, use it.
229 */
230 if (TC_H_MAJ(prio ^ sch->handle) == 0 &&
231 (cl = cbq_class_lookup(q, prio)) != NULL)
232 return cl;
233
234 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
235 for (;;) {
236 int result = 0;
237 defmap = head->defaults;
238
239 /*
240 * Step 2+n. Apply classifier.
241 */
242 if (!head->filter_list ||
243 (result = tc_classify_compat(skb, head->filter_list, &res)) < 0)
244 goto fallback;
245
246 cl = (void *)res.class;
247 if (!cl) {
248 if (TC_H_MAJ(res.classid))
249 cl = cbq_class_lookup(q, res.classid);
250 else if ((cl = defmap[res.classid & TC_PRIO_MAX]) == NULL)
251 cl = defmap[TC_PRIO_BESTEFFORT];
252
253 if (cl == NULL)
254 goto fallback;
255 }
256 if (cl->level >= head->level)
257 goto fallback;
258 #ifdef CONFIG_NET_CLS_ACT
259 switch (result) {
260 case TC_ACT_QUEUED:
261 case TC_ACT_STOLEN:
262 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
263 case TC_ACT_SHOT:
264 return NULL;
265 case TC_ACT_RECLASSIFY:
266 return cbq_reclassify(skb, cl);
267 }
268 #endif
269 if (cl->level == 0)
270 return cl;
271
272 /*
273 * Step 3+n. If classifier selected a link sharing class,
274 * apply agency specific classifier.
275 * Repeat this procdure until we hit a leaf node.
276 */
277 head = cl;
278 }
279
280 fallback:
281 cl = head;
282
283 /*
284 * Step 4. No success...
285 */
286 if (TC_H_MAJ(prio) == 0 &&
287 !(cl = head->defaults[prio & TC_PRIO_MAX]) &&
288 !(cl = head->defaults[TC_PRIO_BESTEFFORT]))
289 return head;
290
291 return cl;
292 }
293
294 /*
295 * A packet has just been enqueued on the empty class.
296 * cbq_activate_class adds it to the tail of active class list
297 * of its priority band.
298 */
299
300 static inline void cbq_activate_class(struct cbq_class *cl)
301 {
302 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
303 int prio = cl->cpriority;
304 struct cbq_class *cl_tail;
305
306 cl_tail = q->active[prio];
307 q->active[prio] = cl;
308
309 if (cl_tail != NULL) {
310 cl->next_alive = cl_tail->next_alive;
311 cl_tail->next_alive = cl;
312 } else {
313 cl->next_alive = cl;
314 q->activemask |= (1<<prio);
315 }
316 }
317
318 /*
319 * Unlink class from active chain.
320 * Note that this same procedure is done directly in cbq_dequeue*
321 * during round-robin procedure.
322 */
323
324 static void cbq_deactivate_class(struct cbq_class *this)
325 {
326 struct cbq_sched_data *q = qdisc_priv(this->qdisc);
327 int prio = this->cpriority;
328 struct cbq_class *cl;
329 struct cbq_class *cl_prev = q->active[prio];
330
331 do {
332 cl = cl_prev->next_alive;
333 if (cl == this) {
334 cl_prev->next_alive = cl->next_alive;
335 cl->next_alive = NULL;
336
337 if (cl == q->active[prio]) {
338 q->active[prio] = cl_prev;
339 if (cl == q->active[prio]) {
340 q->active[prio] = NULL;
341 q->activemask &= ~(1<<prio);
342 return;
343 }
344 }
345 return;
346 }
347 } while ((cl_prev = cl) != q->active[prio]);
348 }
349
350 static void
351 cbq_mark_toplevel(struct cbq_sched_data *q, struct cbq_class *cl)
352 {
353 int toplevel = q->toplevel;
354
355 if (toplevel > cl->level && !(qdisc_is_throttled(cl->q))) {
356 psched_time_t now;
357 psched_tdiff_t incr;
358
359 now = psched_get_time();
360 incr = now - q->now_rt;
361 now = q->now + incr;
362
363 do {
364 if (cl->undertime < now) {
365 q->toplevel = cl->level;
366 return;
367 }
368 } while ((cl = cl->borrow) != NULL && toplevel > cl->level);
369 }
370 }
371
372 static int
373 cbq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
374 {
375 struct cbq_sched_data *q = qdisc_priv(sch);
376 int uninitialized_var(ret);
377 struct cbq_class *cl = cbq_classify(skb, sch, &ret);
378
379 #ifdef CONFIG_NET_CLS_ACT
380 q->rx_class = cl;
381 #endif
382 if (cl == NULL) {
383 if (ret & __NET_XMIT_BYPASS)
384 sch->qstats.drops++;
385 kfree_skb(skb);
386 return ret;
387 }
388
389 #ifdef CONFIG_NET_CLS_ACT
390 cl->q->__parent = sch;
391 #endif
392 ret = qdisc_enqueue(skb, cl->q);
393 if (ret == NET_XMIT_SUCCESS) {
394 sch->q.qlen++;
395 cbq_mark_toplevel(q, cl);
396 if (!cl->next_alive)
397 cbq_activate_class(cl);
398 return ret;
399 }
400
401 if (net_xmit_drop_count(ret)) {
402 sch->qstats.drops++;
403 cbq_mark_toplevel(q, cl);
404 cl->qstats.drops++;
405 }
406 return ret;
407 }
408
409 /* Overlimit actions */
410
411 /* TC_CBQ_OVL_CLASSIC: (default) penalize leaf class by adding offtime */
412
413 static void cbq_ovl_classic(struct cbq_class *cl)
414 {
415 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
416 psched_tdiff_t delay = cl->undertime - q->now;
417
418 if (!cl->delayed) {
419 delay += cl->offtime;
420
421 /*
422 * Class goes to sleep, so that it will have no
423 * chance to work avgidle. Let's forgive it 8)
424 *
425 * BTW cbq-2.0 has a crap in this
426 * place, apparently they forgot to shift it by cl->ewma_log.
427 */
428 if (cl->avgidle < 0)
429 delay -= (-cl->avgidle) - ((-cl->avgidle) >> cl->ewma_log);
430 if (cl->avgidle < cl->minidle)
431 cl->avgidle = cl->minidle;
432 if (delay <= 0)
433 delay = 1;
434 cl->undertime = q->now + delay;
435
436 cl->xstats.overactions++;
437 cl->delayed = 1;
438 }
439 if (q->wd_expires == 0 || q->wd_expires > delay)
440 q->wd_expires = delay;
441
442 /* Dirty work! We must schedule wakeups based on
443 * real available rate, rather than leaf rate,
444 * which may be tiny (even zero).
445 */
446 if (q->toplevel == TC_CBQ_MAXLEVEL) {
447 struct cbq_class *b;
448 psched_tdiff_t base_delay = q->wd_expires;
449
450 for (b = cl->borrow; b; b = b->borrow) {
451 delay = b->undertime - q->now;
452 if (delay < base_delay) {
453 if (delay <= 0)
454 delay = 1;
455 base_delay = delay;
456 }
457 }
458
459 q->wd_expires = base_delay;
460 }
461 }
462
463 /* TC_CBQ_OVL_RCLASSIC: penalize by offtime classes in hierarchy, when
464 * they go overlimit
465 */
466
467 static void cbq_ovl_rclassic(struct cbq_class *cl)
468 {
469 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
470 struct cbq_class *this = cl;
471
472 do {
473 if (cl->level > q->toplevel) {
474 cl = NULL;
475 break;
476 }
477 } while ((cl = cl->borrow) != NULL);
478
479 if (cl == NULL)
480 cl = this;
481 cbq_ovl_classic(cl);
482 }
483
484 /* TC_CBQ_OVL_DELAY: delay until it will go to underlimit */
485
486 static void cbq_ovl_delay(struct cbq_class *cl)
487 {
488 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
489 psched_tdiff_t delay = cl->undertime - q->now;
490
491 if (test_bit(__QDISC_STATE_DEACTIVATED,
492 &qdisc_root_sleeping(cl->qdisc)->state))
493 return;
494
495 if (!cl->delayed) {
496 psched_time_t sched = q->now;
497 ktime_t expires;
498
499 delay += cl->offtime;
500 if (cl->avgidle < 0)
501 delay -= (-cl->avgidle) - ((-cl->avgidle) >> cl->ewma_log);
502 if (cl->avgidle < cl->minidle)
503 cl->avgidle = cl->minidle;
504 cl->undertime = q->now + delay;
505
506 if (delay > 0) {
507 sched += delay + cl->penalty;
508 cl->penalized = sched;
509 cl->cpriority = TC_CBQ_MAXPRIO;
510 q->pmask |= (1<<TC_CBQ_MAXPRIO);
511
512 expires = ns_to_ktime(PSCHED_TICKS2NS(sched));
513 if (hrtimer_try_to_cancel(&q->delay_timer) &&
514 ktime_to_ns(ktime_sub(
515 hrtimer_get_expires(&q->delay_timer),
516 expires)) > 0)
517 hrtimer_set_expires(&q->delay_timer, expires);
518 hrtimer_restart(&q->delay_timer);
519 cl->delayed = 1;
520 cl->xstats.overactions++;
521 return;
522 }
523 delay = 1;
524 }
525 if (q->wd_expires == 0 || q->wd_expires > delay)
526 q->wd_expires = delay;
527 }
528
529 /* TC_CBQ_OVL_LOWPRIO: penalize class by lowering its priority band */
530
531 static void cbq_ovl_lowprio(struct cbq_class *cl)
532 {
533 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
534
535 cl->penalized = q->now + cl->penalty;
536
537 if (cl->cpriority != cl->priority2) {
538 cl->cpriority = cl->priority2;
539 q->pmask |= (1<<cl->cpriority);
540 cl->xstats.overactions++;
541 }
542 cbq_ovl_classic(cl);
543 }
544
545 /* TC_CBQ_OVL_DROP: penalize class by dropping */
546
547 static void cbq_ovl_drop(struct cbq_class *cl)
548 {
549 if (cl->q->ops->drop)
550 if (cl->q->ops->drop(cl->q))
551 cl->qdisc->q.qlen--;
552 cl->xstats.overactions++;
553 cbq_ovl_classic(cl);
554 }
555
556 static psched_tdiff_t cbq_undelay_prio(struct cbq_sched_data *q, int prio,
557 psched_time_t now)
558 {
559 struct cbq_class *cl;
560 struct cbq_class *cl_prev = q->active[prio];
561 psched_time_t sched = now;
562
563 if (cl_prev == NULL)
564 return 0;
565
566 do {
567 cl = cl_prev->next_alive;
568 if (now - cl->penalized > 0) {
569 cl_prev->next_alive = cl->next_alive;
570 cl->next_alive = NULL;
571 cl->cpriority = cl->priority;
572 cl->delayed = 0;
573 cbq_activate_class(cl);
574
575 if (cl == q->active[prio]) {
576 q->active[prio] = cl_prev;
577 if (cl == q->active[prio]) {
578 q->active[prio] = NULL;
579 return 0;
580 }
581 }
582
583 cl = cl_prev->next_alive;
584 } else if (sched - cl->penalized > 0)
585 sched = cl->penalized;
586 } while ((cl_prev = cl) != q->active[prio]);
587
588 return sched - now;
589 }
590
591 static enum hrtimer_restart cbq_undelay(struct hrtimer *timer)
592 {
593 struct cbq_sched_data *q = container_of(timer, struct cbq_sched_data,
594 delay_timer);
595 struct Qdisc *sch = q->watchdog.qdisc;
596 psched_time_t now;
597 psched_tdiff_t delay = 0;
598 unsigned int pmask;
599
600 now = psched_get_time();
601
602 pmask = q->pmask;
603 q->pmask = 0;
604
605 while (pmask) {
606 int prio = ffz(~pmask);
607 psched_tdiff_t tmp;
608
609 pmask &= ~(1<<prio);
610
611 tmp = cbq_undelay_prio(q, prio, now);
612 if (tmp > 0) {
613 q->pmask |= 1<<prio;
614 if (tmp < delay || delay == 0)
615 delay = tmp;
616 }
617 }
618
619 if (delay) {
620 ktime_t time;
621
622 time = ktime_set(0, 0);
623 time = ktime_add_ns(time, PSCHED_TICKS2NS(now + delay));
624 hrtimer_start(&q->delay_timer, time, HRTIMER_MODE_ABS);
625 }
626
627 qdisc_unthrottled(sch);
628 __netif_schedule(qdisc_root(sch));
629 return HRTIMER_NORESTART;
630 }
631
632 #ifdef CONFIG_NET_CLS_ACT
633 static int cbq_reshape_fail(struct sk_buff *skb, struct Qdisc *child)
634 {
635 struct Qdisc *sch = child->__parent;
636 struct cbq_sched_data *q = qdisc_priv(sch);
637 struct cbq_class *cl = q->rx_class;
638
639 q->rx_class = NULL;
640
641 if (cl && (cl = cbq_reclassify(skb, cl)) != NULL) {
642 int ret;
643
644 cbq_mark_toplevel(q, cl);
645
646 q->rx_class = cl;
647 cl->q->__parent = sch;
648
649 ret = qdisc_enqueue(skb, cl->q);
650 if (ret == NET_XMIT_SUCCESS) {
651 sch->q.qlen++;
652 if (!cl->next_alive)
653 cbq_activate_class(cl);
654 return 0;
655 }
656 if (net_xmit_drop_count(ret))
657 sch->qstats.drops++;
658 return 0;
659 }
660
661 sch->qstats.drops++;
662 return -1;
663 }
664 #endif
665
666 /*
667 * It is mission critical procedure.
668 *
669 * We "regenerate" toplevel cutoff, if transmitting class
670 * has backlog and it is not regulated. It is not part of
671 * original CBQ description, but looks more reasonable.
672 * Probably, it is wrong. This question needs further investigation.
673 */
674
675 static inline void
676 cbq_update_toplevel(struct cbq_sched_data *q, struct cbq_class *cl,
677 struct cbq_class *borrowed)
678 {
679 if (cl && q->toplevel >= borrowed->level) {
680 if (cl->q->q.qlen > 1) {
681 do {
682 if (borrowed->undertime == PSCHED_PASTPERFECT) {
683 q->toplevel = borrowed->level;
684 return;
685 }
686 } while ((borrowed = borrowed->borrow) != NULL);
687 }
688 #if 0
689 /* It is not necessary now. Uncommenting it
690 will save CPU cycles, but decrease fairness.
691 */
692 q->toplevel = TC_CBQ_MAXLEVEL;
693 #endif
694 }
695 }
696
697 static void
698 cbq_update(struct cbq_sched_data *q)
699 {
700 struct cbq_class *this = q->tx_class;
701 struct cbq_class *cl = this;
702 int len = q->tx_len;
703
704 q->tx_class = NULL;
705
706 for ( ; cl; cl = cl->share) {
707 long avgidle = cl->avgidle;
708 long idle;
709
710 cl->bstats.packets++;
711 cl->bstats.bytes += len;
712
713 /*
714 * (now - last) is total time between packet right edges.
715 * (last_pktlen/rate) is "virtual" busy time, so that
716 *
717 * idle = (now - last) - last_pktlen/rate
718 */
719
720 idle = q->now - cl->last;
721 if ((unsigned long)idle > 128*1024*1024) {
722 avgidle = cl->maxidle;
723 } else {
724 idle -= L2T(cl, len);
725
726 /* true_avgidle := (1-W)*true_avgidle + W*idle,
727 * where W=2^{-ewma_log}. But cl->avgidle is scaled:
728 * cl->avgidle == true_avgidle/W,
729 * hence:
730 */
731 avgidle += idle - (avgidle>>cl->ewma_log);
732 }
733
734 if (avgidle <= 0) {
735 /* Overlimit or at-limit */
736
737 if (avgidle < cl->minidle)
738 avgidle = cl->minidle;
739
740 cl->avgidle = avgidle;
741
742 /* Calculate expected time, when this class
743 * will be allowed to send.
744 * It will occur, when:
745 * (1-W)*true_avgidle + W*delay = 0, i.e.
746 * idle = (1/W - 1)*(-true_avgidle)
747 * or
748 * idle = (1 - W)*(-cl->avgidle);
749 */
750 idle = (-avgidle) - ((-avgidle) >> cl->ewma_log);
751
752 /*
753 * That is not all.
754 * To maintain the rate allocated to the class,
755 * we add to undertime virtual clock,
756 * necessary to complete transmitted packet.
757 * (len/phys_bandwidth has been already passed
758 * to the moment of cbq_update)
759 */
760
761 idle -= L2T(&q->link, len);
762 idle += L2T(cl, len);
763
764 cl->undertime = q->now + idle;
765 } else {
766 /* Underlimit */
767
768 cl->undertime = PSCHED_PASTPERFECT;
769 if (avgidle > cl->maxidle)
770 cl->avgidle = cl->maxidle;
771 else
772 cl->avgidle = avgidle;
773 }
774 cl->last = q->now;
775 }
776
777 cbq_update_toplevel(q, this, q->tx_borrowed);
778 }
779
780 static inline struct cbq_class *
781 cbq_under_limit(struct cbq_class *cl)
782 {
783 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
784 struct cbq_class *this_cl = cl;
785
786 if (cl->tparent == NULL)
787 return cl;
788
789 if (cl->undertime == PSCHED_PASTPERFECT || q->now >= cl->undertime) {
790 cl->delayed = 0;
791 return cl;
792 }
793
794 do {
795 /* It is very suspicious place. Now overlimit
796 * action is generated for not bounded classes
797 * only if link is completely congested.
798 * Though it is in agree with ancestor-only paradigm,
799 * it looks very stupid. Particularly,
800 * it means that this chunk of code will either
801 * never be called or result in strong amplification
802 * of burstiness. Dangerous, silly, and, however,
803 * no another solution exists.
804 */
805 cl = cl->borrow;
806 if (!cl) {
807 this_cl->qstats.overlimits++;
808 this_cl->overlimit(this_cl);
809 return NULL;
810 }
811 if (cl->level > q->toplevel)
812 return NULL;
813 } while (cl->undertime != PSCHED_PASTPERFECT && q->now < cl->undertime);
814
815 cl->delayed = 0;
816 return cl;
817 }
818
819 static inline struct sk_buff *
820 cbq_dequeue_prio(struct Qdisc *sch, int prio)
821 {
822 struct cbq_sched_data *q = qdisc_priv(sch);
823 struct cbq_class *cl_tail, *cl_prev, *cl;
824 struct sk_buff *skb;
825 int deficit;
826
827 cl_tail = cl_prev = q->active[prio];
828 cl = cl_prev->next_alive;
829
830 do {
831 deficit = 0;
832
833 /* Start round */
834 do {
835 struct cbq_class *borrow = cl;
836
837 if (cl->q->q.qlen &&
838 (borrow = cbq_under_limit(cl)) == NULL)
839 goto skip_class;
840
841 if (cl->deficit <= 0) {
842 /* Class exhausted its allotment per
843 * this round. Switch to the next one.
844 */
845 deficit = 1;
846 cl->deficit += cl->quantum;
847 goto next_class;
848 }
849
850 skb = cl->q->dequeue(cl->q);
851
852 /* Class did not give us any skb :-(
853 * It could occur even if cl->q->q.qlen != 0
854 * f.e. if cl->q == "tbf"
855 */
856 if (skb == NULL)
857 goto skip_class;
858
859 cl->deficit -= qdisc_pkt_len(skb);
860 q->tx_class = cl;
861 q->tx_borrowed = borrow;
862 if (borrow != cl) {
863 #ifndef CBQ_XSTATS_BORROWS_BYTES
864 borrow->xstats.borrows++;
865 cl->xstats.borrows++;
866 #else
867 borrow->xstats.borrows += qdisc_pkt_len(skb);
868 cl->xstats.borrows += qdisc_pkt_len(skb);
869 #endif
870 }
871 q->tx_len = qdisc_pkt_len(skb);
872
873 if (cl->deficit <= 0) {
874 q->active[prio] = cl;
875 cl = cl->next_alive;
876 cl->deficit += cl->quantum;
877 }
878 return skb;
879
880 skip_class:
881 if (cl->q->q.qlen == 0 || prio != cl->cpriority) {
882 /* Class is empty or penalized.
883 * Unlink it from active chain.
884 */
885 cl_prev->next_alive = cl->next_alive;
886 cl->next_alive = NULL;
887
888 /* Did cl_tail point to it? */
889 if (cl == cl_tail) {
890 /* Repair it! */
891 cl_tail = cl_prev;
892
893 /* Was it the last class in this band? */
894 if (cl == cl_tail) {
895 /* Kill the band! */
896 q->active[prio] = NULL;
897 q->activemask &= ~(1<<prio);
898 if (cl->q->q.qlen)
899 cbq_activate_class(cl);
900 return NULL;
901 }
902
903 q->active[prio] = cl_tail;
904 }
905 if (cl->q->q.qlen)
906 cbq_activate_class(cl);
907
908 cl = cl_prev;
909 }
910
911 next_class:
912 cl_prev = cl;
913 cl = cl->next_alive;
914 } while (cl_prev != cl_tail);
915 } while (deficit);
916
917 q->active[prio] = cl_prev;
918
919 return NULL;
920 }
921
922 static inline struct sk_buff *
923 cbq_dequeue_1(struct Qdisc *sch)
924 {
925 struct cbq_sched_data *q = qdisc_priv(sch);
926 struct sk_buff *skb;
927 unsigned int activemask;
928
929 activemask = q->activemask & 0xFF;
930 while (activemask) {
931 int prio = ffz(~activemask);
932 activemask &= ~(1<<prio);
933 skb = cbq_dequeue_prio(sch, prio);
934 if (skb)
935 return skb;
936 }
937 return NULL;
938 }
939
940 static struct sk_buff *
941 cbq_dequeue(struct Qdisc *sch)
942 {
943 struct sk_buff *skb;
944 struct cbq_sched_data *q = qdisc_priv(sch);
945 psched_time_t now;
946 psched_tdiff_t incr;
947
948 now = psched_get_time();
949 incr = now - q->now_rt;
950
951 if (q->tx_class) {
952 psched_tdiff_t incr2;
953 /* Time integrator. We calculate EOS time
954 * by adding expected packet transmission time.
955 * If real time is greater, we warp artificial clock,
956 * so that:
957 *
958 * cbq_time = max(real_time, work);
959 */
960 incr2 = L2T(&q->link, q->tx_len);
961 q->now += incr2;
962 cbq_update(q);
963 if ((incr -= incr2) < 0)
964 incr = 0;
965 }
966 q->now += incr;
967 q->now_rt = now;
968
969 for (;;) {
970 q->wd_expires = 0;
971
972 skb = cbq_dequeue_1(sch);
973 if (skb) {
974 qdisc_bstats_update(sch, skb);
975 sch->q.qlen--;
976 qdisc_unthrottled(sch);
977 return skb;
978 }
979
980 /* All the classes are overlimit.
981 *
982 * It is possible, if:
983 *
984 * 1. Scheduler is empty.
985 * 2. Toplevel cutoff inhibited borrowing.
986 * 3. Root class is overlimit.
987 *
988 * Reset 2d and 3d conditions and retry.
989 *
990 * Note, that NS and cbq-2.0 are buggy, peeking
991 * an arbitrary class is appropriate for ancestor-only
992 * sharing, but not for toplevel algorithm.
993 *
994 * Our version is better, but slower, because it requires
995 * two passes, but it is unavoidable with top-level sharing.
996 */
997
998 if (q->toplevel == TC_CBQ_MAXLEVEL &&
999 q->link.undertime == PSCHED_PASTPERFECT)
1000 break;
1001
1002 q->toplevel = TC_CBQ_MAXLEVEL;
1003 q->link.undertime = PSCHED_PASTPERFECT;
1004 }
1005
1006 /* No packets in scheduler or nobody wants to give them to us :-(
1007 * Sigh... start watchdog timer in the last case.
1008 */
1009
1010 if (sch->q.qlen) {
1011 sch->qstats.overlimits++;
1012 if (q->wd_expires)
1013 qdisc_watchdog_schedule(&q->watchdog,
1014 now + q->wd_expires);
1015 }
1016 return NULL;
1017 }
1018
1019 /* CBQ class maintanance routines */
1020
1021 static void cbq_adjust_levels(struct cbq_class *this)
1022 {
1023 if (this == NULL)
1024 return;
1025
1026 do {
1027 int level = 0;
1028 struct cbq_class *cl;
1029
1030 cl = this->children;
1031 if (cl) {
1032 do {
1033 if (cl->level > level)
1034 level = cl->level;
1035 } while ((cl = cl->sibling) != this->children);
1036 }
1037 this->level = level + 1;
1038 } while ((this = this->tparent) != NULL);
1039 }
1040
1041 static void cbq_normalize_quanta(struct cbq_sched_data *q, int prio)
1042 {
1043 struct cbq_class *cl;
1044 unsigned int h;
1045
1046 if (q->quanta[prio] == 0)
1047 return;
1048
1049 for (h = 0; h < q->clhash.hashsize; h++) {
1050 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) {
1051 /* BUGGGG... Beware! This expression suffer of
1052 * arithmetic overflows!
1053 */
1054 if (cl->priority == prio) {
1055 cl->quantum = (cl->weight*cl->allot*q->nclasses[prio])/
1056 q->quanta[prio];
1057 }
1058 if (cl->quantum <= 0 || cl->quantum>32*qdisc_dev(cl->qdisc)->mtu) {
1059 pr_warning("CBQ: class %08x has bad quantum==%ld, repaired.\n",
1060 cl->common.classid, cl->quantum);
1061 cl->quantum = qdisc_dev(cl->qdisc)->mtu/2 + 1;
1062 }
1063 }
1064 }
1065 }
1066
1067 static void cbq_sync_defmap(struct cbq_class *cl)
1068 {
1069 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
1070 struct cbq_class *split = cl->split;
1071 unsigned int h;
1072 int i;
1073
1074 if (split == NULL)
1075 return;
1076
1077 for (i = 0; i <= TC_PRIO_MAX; i++) {
1078 if (split->defaults[i] == cl && !(cl->defmap & (1<<i)))
1079 split->defaults[i] = NULL;
1080 }
1081
1082 for (i = 0; i <= TC_PRIO_MAX; i++) {
1083 int level = split->level;
1084
1085 if (split->defaults[i])
1086 continue;
1087
1088 for (h = 0; h < q->clhash.hashsize; h++) {
1089 struct cbq_class *c;
1090
1091 hlist_for_each_entry(c, &q->clhash.hash[h],
1092 common.hnode) {
1093 if (c->split == split && c->level < level &&
1094 c->defmap & (1<<i)) {
1095 split->defaults[i] = c;
1096 level = c->level;
1097 }
1098 }
1099 }
1100 }
1101 }
1102
1103 static void cbq_change_defmap(struct cbq_class *cl, u32 splitid, u32 def, u32 mask)
1104 {
1105 struct cbq_class *split = NULL;
1106
1107 if (splitid == 0) {
1108 split = cl->split;
1109 if (!split)
1110 return;
1111 splitid = split->common.classid;
1112 }
1113
1114 if (split == NULL || split->common.classid != splitid) {
1115 for (split = cl->tparent; split; split = split->tparent)
1116 if (split->common.classid == splitid)
1117 break;
1118 }
1119
1120 if (split == NULL)
1121 return;
1122
1123 if (cl->split != split) {
1124 cl->defmap = 0;
1125 cbq_sync_defmap(cl);
1126 cl->split = split;
1127 cl->defmap = def & mask;
1128 } else
1129 cl->defmap = (cl->defmap & ~mask) | (def & mask);
1130
1131 cbq_sync_defmap(cl);
1132 }
1133
1134 static void cbq_unlink_class(struct cbq_class *this)
1135 {
1136 struct cbq_class *cl, **clp;
1137 struct cbq_sched_data *q = qdisc_priv(this->qdisc);
1138
1139 qdisc_class_hash_remove(&q->clhash, &this->common);
1140
1141 if (this->tparent) {
1142 clp = &this->sibling;
1143 cl = *clp;
1144 do {
1145 if (cl == this) {
1146 *clp = cl->sibling;
1147 break;
1148 }
1149 clp = &cl->sibling;
1150 } while ((cl = *clp) != this->sibling);
1151
1152 if (this->tparent->children == this) {
1153 this->tparent->children = this->sibling;
1154 if (this->sibling == this)
1155 this->tparent->children = NULL;
1156 }
1157 } else {
1158 WARN_ON(this->sibling != this);
1159 }
1160 }
1161
1162 static void cbq_link_class(struct cbq_class *this)
1163 {
1164 struct cbq_sched_data *q = qdisc_priv(this->qdisc);
1165 struct cbq_class *parent = this->tparent;
1166
1167 this->sibling = this;
1168 qdisc_class_hash_insert(&q->clhash, &this->common);
1169
1170 if (parent == NULL)
1171 return;
1172
1173 if (parent->children == NULL) {
1174 parent->children = this;
1175 } else {
1176 this->sibling = parent->children->sibling;
1177 parent->children->sibling = this;
1178 }
1179 }
1180
1181 static unsigned int cbq_drop(struct Qdisc *sch)
1182 {
1183 struct cbq_sched_data *q = qdisc_priv(sch);
1184 struct cbq_class *cl, *cl_head;
1185 int prio;
1186 unsigned int len;
1187
1188 for (prio = TC_CBQ_MAXPRIO; prio >= 0; prio--) {
1189 cl_head = q->active[prio];
1190 if (!cl_head)
1191 continue;
1192
1193 cl = cl_head;
1194 do {
1195 if (cl->q->ops->drop && (len = cl->q->ops->drop(cl->q))) {
1196 sch->q.qlen--;
1197 if (!cl->q->q.qlen)
1198 cbq_deactivate_class(cl);
1199 return len;
1200 }
1201 } while ((cl = cl->next_alive) != cl_head);
1202 }
1203 return 0;
1204 }
1205
1206 static void
1207 cbq_reset(struct Qdisc *sch)
1208 {
1209 struct cbq_sched_data *q = qdisc_priv(sch);
1210 struct cbq_class *cl;
1211 int prio;
1212 unsigned int h;
1213
1214 q->activemask = 0;
1215 q->pmask = 0;
1216 q->tx_class = NULL;
1217 q->tx_borrowed = NULL;
1218 qdisc_watchdog_cancel(&q->watchdog);
1219 hrtimer_cancel(&q->delay_timer);
1220 q->toplevel = TC_CBQ_MAXLEVEL;
1221 q->now = psched_get_time();
1222 q->now_rt = q->now;
1223
1224 for (prio = 0; prio <= TC_CBQ_MAXPRIO; prio++)
1225 q->active[prio] = NULL;
1226
1227 for (h = 0; h < q->clhash.hashsize; h++) {
1228 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) {
1229 qdisc_reset(cl->q);
1230
1231 cl->next_alive = NULL;
1232 cl->undertime = PSCHED_PASTPERFECT;
1233 cl->avgidle = cl->maxidle;
1234 cl->deficit = cl->quantum;
1235 cl->cpriority = cl->priority;
1236 }
1237 }
1238 sch->q.qlen = 0;
1239 }
1240
1241
1242 static int cbq_set_lss(struct cbq_class *cl, struct tc_cbq_lssopt *lss)
1243 {
1244 if (lss->change & TCF_CBQ_LSS_FLAGS) {
1245 cl->share = (lss->flags & TCF_CBQ_LSS_ISOLATED) ? NULL : cl->tparent;
1246 cl->borrow = (lss->flags & TCF_CBQ_LSS_BOUNDED) ? NULL : cl->tparent;
1247 }
1248 if (lss->change & TCF_CBQ_LSS_EWMA)
1249 cl->ewma_log = lss->ewma_log;
1250 if (lss->change & TCF_CBQ_LSS_AVPKT)
1251 cl->avpkt = lss->avpkt;
1252 if (lss->change & TCF_CBQ_LSS_MINIDLE)
1253 cl->minidle = -(long)lss->minidle;
1254 if (lss->change & TCF_CBQ_LSS_MAXIDLE) {
1255 cl->maxidle = lss->maxidle;
1256 cl->avgidle = lss->maxidle;
1257 }
1258 if (lss->change & TCF_CBQ_LSS_OFFTIME)
1259 cl->offtime = lss->offtime;
1260 return 0;
1261 }
1262
1263 static void cbq_rmprio(struct cbq_sched_data *q, struct cbq_class *cl)
1264 {
1265 q->nclasses[cl->priority]--;
1266 q->quanta[cl->priority] -= cl->weight;
1267 cbq_normalize_quanta(q, cl->priority);
1268 }
1269
1270 static void cbq_addprio(struct cbq_sched_data *q, struct cbq_class *cl)
1271 {
1272 q->nclasses[cl->priority]++;
1273 q->quanta[cl->priority] += cl->weight;
1274 cbq_normalize_quanta(q, cl->priority);
1275 }
1276
1277 static int cbq_set_wrr(struct cbq_class *cl, struct tc_cbq_wrropt *wrr)
1278 {
1279 struct cbq_sched_data *q = qdisc_priv(cl->qdisc);
1280
1281 if (wrr->allot)
1282 cl->allot = wrr->allot;
1283 if (wrr->weight)
1284 cl->weight = wrr->weight;
1285 if (wrr->priority) {
1286 cl->priority = wrr->priority - 1;
1287 cl->cpriority = cl->priority;
1288 if (cl->priority >= cl->priority2)
1289 cl->priority2 = TC_CBQ_MAXPRIO - 1;
1290 }
1291
1292 cbq_addprio(q, cl);
1293 return 0;
1294 }
1295
1296 static int cbq_set_overlimit(struct cbq_class *cl, struct tc_cbq_ovl *ovl)
1297 {
1298 switch (ovl->strategy) {
1299 case TC_CBQ_OVL_CLASSIC:
1300 cl->overlimit = cbq_ovl_classic;
1301 break;
1302 case TC_CBQ_OVL_DELAY:
1303 cl->overlimit = cbq_ovl_delay;
1304 break;
1305 case TC_CBQ_OVL_LOWPRIO:
1306 if (ovl->priority2 - 1 >= TC_CBQ_MAXPRIO ||
1307 ovl->priority2 - 1 <= cl->priority)
1308 return -EINVAL;
1309 cl->priority2 = ovl->priority2 - 1;
1310 cl->overlimit = cbq_ovl_lowprio;
1311 break;
1312 case TC_CBQ_OVL_DROP:
1313 cl->overlimit = cbq_ovl_drop;
1314 break;
1315 case TC_CBQ_OVL_RCLASSIC:
1316 cl->overlimit = cbq_ovl_rclassic;
1317 break;
1318 default:
1319 return -EINVAL;
1320 }
1321 cl->penalty = ovl->penalty;
1322 return 0;
1323 }
1324
1325 #ifdef CONFIG_NET_CLS_ACT
1326 static int cbq_set_police(struct cbq_class *cl, struct tc_cbq_police *p)
1327 {
1328 cl->police = p->police;
1329
1330 if (cl->q->handle) {
1331 if (p->police == TC_POLICE_RECLASSIFY)
1332 cl->q->reshape_fail = cbq_reshape_fail;
1333 else
1334 cl->q->reshape_fail = NULL;
1335 }
1336 return 0;
1337 }
1338 #endif
1339
1340 static int cbq_set_fopt(struct cbq_class *cl, struct tc_cbq_fopt *fopt)
1341 {
1342 cbq_change_defmap(cl, fopt->split, fopt->defmap, fopt->defchange);
1343 return 0;
1344 }
1345
1346 static const struct nla_policy cbq_policy[TCA_CBQ_MAX + 1] = {
1347 [TCA_CBQ_LSSOPT] = { .len = sizeof(struct tc_cbq_lssopt) },
1348 [TCA_CBQ_WRROPT] = { .len = sizeof(struct tc_cbq_wrropt) },
1349 [TCA_CBQ_FOPT] = { .len = sizeof(struct tc_cbq_fopt) },
1350 [TCA_CBQ_OVL_STRATEGY] = { .len = sizeof(struct tc_cbq_ovl) },
1351 [TCA_CBQ_RATE] = { .len = sizeof(struct tc_ratespec) },
1352 [TCA_CBQ_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
1353 [TCA_CBQ_POLICE] = { .len = sizeof(struct tc_cbq_police) },
1354 };
1355
1356 static int cbq_init(struct Qdisc *sch, struct nlattr *opt)
1357 {
1358 struct cbq_sched_data *q = qdisc_priv(sch);
1359 struct nlattr *tb[TCA_CBQ_MAX + 1];
1360 struct tc_ratespec *r;
1361 int err;
1362
1363 err = nla_parse_nested(tb, TCA_CBQ_MAX, opt, cbq_policy);
1364 if (err < 0)
1365 return err;
1366
1367 if (tb[TCA_CBQ_RTAB] == NULL || tb[TCA_CBQ_RATE] == NULL)
1368 return -EINVAL;
1369
1370 r = nla_data(tb[TCA_CBQ_RATE]);
1371
1372 if ((q->link.R_tab = qdisc_get_rtab(r, tb[TCA_CBQ_RTAB])) == NULL)
1373 return -EINVAL;
1374
1375 err = qdisc_class_hash_init(&q->clhash);
1376 if (err < 0)
1377 goto put_rtab;
1378
1379 q->link.refcnt = 1;
1380 q->link.sibling = &q->link;
1381 q->link.common.classid = sch->handle;
1382 q->link.qdisc = sch;
1383 q->link.q = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1384 sch->handle);
1385 if (!q->link.q)
1386 q->link.q = &noop_qdisc;
1387
1388 q->link.priority = TC_CBQ_MAXPRIO - 1;
1389 q->link.priority2 = TC_CBQ_MAXPRIO - 1;
1390 q->link.cpriority = TC_CBQ_MAXPRIO - 1;
1391 q->link.ovl_strategy = TC_CBQ_OVL_CLASSIC;
1392 q->link.overlimit = cbq_ovl_classic;
1393 q->link.allot = psched_mtu(qdisc_dev(sch));
1394 q->link.quantum = q->link.allot;
1395 q->link.weight = q->link.R_tab->rate.rate;
1396
1397 q->link.ewma_log = TC_CBQ_DEF_EWMA;
1398 q->link.avpkt = q->link.allot/2;
1399 q->link.minidle = -0x7FFFFFFF;
1400
1401 qdisc_watchdog_init(&q->watchdog, sch);
1402 hrtimer_init(&q->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1403 q->delay_timer.function = cbq_undelay;
1404 q->toplevel = TC_CBQ_MAXLEVEL;
1405 q->now = psched_get_time();
1406 q->now_rt = q->now;
1407
1408 cbq_link_class(&q->link);
1409
1410 if (tb[TCA_CBQ_LSSOPT])
1411 cbq_set_lss(&q->link, nla_data(tb[TCA_CBQ_LSSOPT]));
1412
1413 cbq_addprio(q, &q->link);
1414 return 0;
1415
1416 put_rtab:
1417 qdisc_put_rtab(q->link.R_tab);
1418 return err;
1419 }
1420
1421 static int cbq_dump_rate(struct sk_buff *skb, struct cbq_class *cl)
1422 {
1423 unsigned char *b = skb_tail_pointer(skb);
1424
1425 if (nla_put(skb, TCA_CBQ_RATE, sizeof(cl->R_tab->rate), &cl->R_tab->rate))
1426 goto nla_put_failure;
1427 return skb->len;
1428
1429 nla_put_failure:
1430 nlmsg_trim(skb, b);
1431 return -1;
1432 }
1433
1434 static int cbq_dump_lss(struct sk_buff *skb, struct cbq_class *cl)
1435 {
1436 unsigned char *b = skb_tail_pointer(skb);
1437 struct tc_cbq_lssopt opt;
1438
1439 opt.flags = 0;
1440 if (cl->borrow == NULL)
1441 opt.flags |= TCF_CBQ_LSS_BOUNDED;
1442 if (cl->share == NULL)
1443 opt.flags |= TCF_CBQ_LSS_ISOLATED;
1444 opt.ewma_log = cl->ewma_log;
1445 opt.level = cl->level;
1446 opt.avpkt = cl->avpkt;
1447 opt.maxidle = cl->maxidle;
1448 opt.minidle = (u32)(-cl->minidle);
1449 opt.offtime = cl->offtime;
1450 opt.change = ~0;
1451 if (nla_put(skb, TCA_CBQ_LSSOPT, sizeof(opt), &opt))
1452 goto nla_put_failure;
1453 return skb->len;
1454
1455 nla_put_failure:
1456 nlmsg_trim(skb, b);
1457 return -1;
1458 }
1459
1460 static int cbq_dump_wrr(struct sk_buff *skb, struct cbq_class *cl)
1461 {
1462 unsigned char *b = skb_tail_pointer(skb);
1463 struct tc_cbq_wrropt opt;
1464
1465 opt.flags = 0;
1466 opt.allot = cl->allot;
1467 opt.priority = cl->priority + 1;
1468 opt.cpriority = cl->cpriority + 1;
1469 opt.weight = cl->weight;
1470 if (nla_put(skb, TCA_CBQ_WRROPT, sizeof(opt), &opt))
1471 goto nla_put_failure;
1472 return skb->len;
1473
1474 nla_put_failure:
1475 nlmsg_trim(skb, b);
1476 return -1;
1477 }
1478
1479 static int cbq_dump_ovl(struct sk_buff *skb, struct cbq_class *cl)
1480 {
1481 unsigned char *b = skb_tail_pointer(skb);
1482 struct tc_cbq_ovl opt;
1483
1484 opt.strategy = cl->ovl_strategy;
1485 opt.priority2 = cl->priority2 + 1;
1486 opt.pad = 0;
1487 opt.penalty = cl->penalty;
1488 if (nla_put(skb, TCA_CBQ_OVL_STRATEGY, sizeof(opt), &opt))
1489 goto nla_put_failure;
1490 return skb->len;
1491
1492 nla_put_failure:
1493 nlmsg_trim(skb, b);
1494 return -1;
1495 }
1496
1497 static int cbq_dump_fopt(struct sk_buff *skb, struct cbq_class *cl)
1498 {
1499 unsigned char *b = skb_tail_pointer(skb);
1500 struct tc_cbq_fopt opt;
1501
1502 if (cl->split || cl->defmap) {
1503 opt.split = cl->split ? cl->split->common.classid : 0;
1504 opt.defmap = cl->defmap;
1505 opt.defchange = ~0;
1506 if (nla_put(skb, TCA_CBQ_FOPT, sizeof(opt), &opt))
1507 goto nla_put_failure;
1508 }
1509 return skb->len;
1510
1511 nla_put_failure:
1512 nlmsg_trim(skb, b);
1513 return -1;
1514 }
1515
1516 #ifdef CONFIG_NET_CLS_ACT
1517 static int cbq_dump_police(struct sk_buff *skb, struct cbq_class *cl)
1518 {
1519 unsigned char *b = skb_tail_pointer(skb);
1520 struct tc_cbq_police opt;
1521
1522 if (cl->police) {
1523 opt.police = cl->police;
1524 opt.__res1 = 0;
1525 opt.__res2 = 0;
1526 if (nla_put(skb, TCA_CBQ_POLICE, sizeof(opt), &opt))
1527 goto nla_put_failure;
1528 }
1529 return skb->len;
1530
1531 nla_put_failure:
1532 nlmsg_trim(skb, b);
1533 return -1;
1534 }
1535 #endif
1536
1537 static int cbq_dump_attr(struct sk_buff *skb, struct cbq_class *cl)
1538 {
1539 if (cbq_dump_lss(skb, cl) < 0 ||
1540 cbq_dump_rate(skb, cl) < 0 ||
1541 cbq_dump_wrr(skb, cl) < 0 ||
1542 cbq_dump_ovl(skb, cl) < 0 ||
1543 #ifdef CONFIG_NET_CLS_ACT
1544 cbq_dump_police(skb, cl) < 0 ||
1545 #endif
1546 cbq_dump_fopt(skb, cl) < 0)
1547 return -1;
1548 return 0;
1549 }
1550
1551 static int cbq_dump(struct Qdisc *sch, struct sk_buff *skb)
1552 {
1553 struct cbq_sched_data *q = qdisc_priv(sch);
1554 struct nlattr *nest;
1555
1556 nest = nla_nest_start(skb, TCA_OPTIONS);
1557 if (nest == NULL)
1558 goto nla_put_failure;
1559 if (cbq_dump_attr(skb, &q->link) < 0)
1560 goto nla_put_failure;
1561 nla_nest_end(skb, nest);
1562 return skb->len;
1563
1564 nla_put_failure:
1565 nla_nest_cancel(skb, nest);
1566 return -1;
1567 }
1568
1569 static int
1570 cbq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1571 {
1572 struct cbq_sched_data *q = qdisc_priv(sch);
1573
1574 q->link.xstats.avgidle = q->link.avgidle;
1575 return gnet_stats_copy_app(d, &q->link.xstats, sizeof(q->link.xstats));
1576 }
1577
1578 static int
1579 cbq_dump_class(struct Qdisc *sch, unsigned long arg,
1580 struct sk_buff *skb, struct tcmsg *tcm)
1581 {
1582 struct cbq_class *cl = (struct cbq_class *)arg;
1583 struct nlattr *nest;
1584
1585 if (cl->tparent)
1586 tcm->tcm_parent = cl->tparent->common.classid;
1587 else
1588 tcm->tcm_parent = TC_H_ROOT;
1589 tcm->tcm_handle = cl->common.classid;
1590 tcm->tcm_info = cl->q->handle;
1591
1592 nest = nla_nest_start(skb, TCA_OPTIONS);
1593 if (nest == NULL)
1594 goto nla_put_failure;
1595 if (cbq_dump_attr(skb, cl) < 0)
1596 goto nla_put_failure;
1597 nla_nest_end(skb, nest);
1598 return skb->len;
1599
1600 nla_put_failure:
1601 nla_nest_cancel(skb, nest);
1602 return -1;
1603 }
1604
1605 static int
1606 cbq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1607 struct gnet_dump *d)
1608 {
1609 struct cbq_sched_data *q = qdisc_priv(sch);
1610 struct cbq_class *cl = (struct cbq_class *)arg;
1611
1612 cl->qstats.qlen = cl->q->q.qlen;
1613 cl->xstats.avgidle = cl->avgidle;
1614 cl->xstats.undertime = 0;
1615
1616 if (cl->undertime != PSCHED_PASTPERFECT)
1617 cl->xstats.undertime = cl->undertime - q->now;
1618
1619 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1620 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
1621 gnet_stats_copy_queue(d, &cl->qstats) < 0)
1622 return -1;
1623
1624 return gnet_stats_copy_app(d, &cl->xstats, sizeof(cl->xstats));
1625 }
1626
1627 static int cbq_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1628 struct Qdisc **old)
1629 {
1630 struct cbq_class *cl = (struct cbq_class *)arg;
1631
1632 if (new == NULL) {
1633 new = qdisc_create_dflt(sch->dev_queue,
1634 &pfifo_qdisc_ops, cl->common.classid);
1635 if (new == NULL)
1636 return -ENOBUFS;
1637 } else {
1638 #ifdef CONFIG_NET_CLS_ACT
1639 if (cl->police == TC_POLICE_RECLASSIFY)
1640 new->reshape_fail = cbq_reshape_fail;
1641 #endif
1642 }
1643 sch_tree_lock(sch);
1644 *old = cl->q;
1645 cl->q = new;
1646 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1647 qdisc_reset(*old);
1648 sch_tree_unlock(sch);
1649
1650 return 0;
1651 }
1652
1653 static struct Qdisc *cbq_leaf(struct Qdisc *sch, unsigned long arg)
1654 {
1655 struct cbq_class *cl = (struct cbq_class *)arg;
1656
1657 return cl->q;
1658 }
1659
1660 static void cbq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1661 {
1662 struct cbq_class *cl = (struct cbq_class *)arg;
1663
1664 if (cl->q->q.qlen == 0)
1665 cbq_deactivate_class(cl);
1666 }
1667
1668 static unsigned long cbq_get(struct Qdisc *sch, u32 classid)
1669 {
1670 struct cbq_sched_data *q = qdisc_priv(sch);
1671 struct cbq_class *cl = cbq_class_lookup(q, classid);
1672
1673 if (cl) {
1674 cl->refcnt++;
1675 return (unsigned long)cl;
1676 }
1677 return 0;
1678 }
1679
1680 static void cbq_destroy_class(struct Qdisc *sch, struct cbq_class *cl)
1681 {
1682 struct cbq_sched_data *q = qdisc_priv(sch);
1683
1684 WARN_ON(cl->filters);
1685
1686 tcf_destroy_chain(&cl->filter_list);
1687 qdisc_destroy(cl->q);
1688 qdisc_put_rtab(cl->R_tab);
1689 gen_kill_estimator(&cl->bstats, &cl->rate_est);
1690 if (cl != &q->link)
1691 kfree(cl);
1692 }
1693
1694 static void cbq_destroy(struct Qdisc *sch)
1695 {
1696 struct cbq_sched_data *q = qdisc_priv(sch);
1697 struct hlist_node *next;
1698 struct cbq_class *cl;
1699 unsigned int h;
1700
1701 #ifdef CONFIG_NET_CLS_ACT
1702 q->rx_class = NULL;
1703 #endif
1704 /*
1705 * Filters must be destroyed first because we don't destroy the
1706 * classes from root to leafs which means that filters can still
1707 * be bound to classes which have been destroyed already. --TGR '04
1708 */
1709 for (h = 0; h < q->clhash.hashsize; h++) {
1710 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode)
1711 tcf_destroy_chain(&cl->filter_list);
1712 }
1713 for (h = 0; h < q->clhash.hashsize; h++) {
1714 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[h],
1715 common.hnode)
1716 cbq_destroy_class(sch, cl);
1717 }
1718 qdisc_class_hash_destroy(&q->clhash);
1719 }
1720
1721 static void cbq_put(struct Qdisc *sch, unsigned long arg)
1722 {
1723 struct cbq_class *cl = (struct cbq_class *)arg;
1724
1725 if (--cl->refcnt == 0) {
1726 #ifdef CONFIG_NET_CLS_ACT
1727 spinlock_t *root_lock = qdisc_root_sleeping_lock(sch);
1728 struct cbq_sched_data *q = qdisc_priv(sch);
1729
1730 spin_lock_bh(root_lock);
1731 if (q->rx_class == cl)
1732 q->rx_class = NULL;
1733 spin_unlock_bh(root_lock);
1734 #endif
1735
1736 cbq_destroy_class(sch, cl);
1737 }
1738 }
1739
1740 static int
1741 cbq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, struct nlattr **tca,
1742 unsigned long *arg)
1743 {
1744 int err;
1745 struct cbq_sched_data *q = qdisc_priv(sch);
1746 struct cbq_class *cl = (struct cbq_class *)*arg;
1747 struct nlattr *opt = tca[TCA_OPTIONS];
1748 struct nlattr *tb[TCA_CBQ_MAX + 1];
1749 struct cbq_class *parent;
1750 struct qdisc_rate_table *rtab = NULL;
1751
1752 if (opt == NULL)
1753 return -EINVAL;
1754
1755 err = nla_parse_nested(tb, TCA_CBQ_MAX, opt, cbq_policy);
1756 if (err < 0)
1757 return err;
1758
1759 if (cl) {
1760 /* Check parent */
1761 if (parentid) {
1762 if (cl->tparent &&
1763 cl->tparent->common.classid != parentid)
1764 return -EINVAL;
1765 if (!cl->tparent && parentid != TC_H_ROOT)
1766 return -EINVAL;
1767 }
1768
1769 if (tb[TCA_CBQ_RATE]) {
1770 rtab = qdisc_get_rtab(nla_data(tb[TCA_CBQ_RATE]),
1771 tb[TCA_CBQ_RTAB]);
1772 if (rtab == NULL)
1773 return -EINVAL;
1774 }
1775
1776 if (tca[TCA_RATE]) {
1777 err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
1778 qdisc_root_sleeping_lock(sch),
1779 tca[TCA_RATE]);
1780 if (err) {
1781 if (rtab)
1782 qdisc_put_rtab(rtab);
1783 return err;
1784 }
1785 }
1786
1787 /* Change class parameters */
1788 sch_tree_lock(sch);
1789
1790 if (cl->next_alive != NULL)
1791 cbq_deactivate_class(cl);
1792
1793 if (rtab) {
1794 qdisc_put_rtab(cl->R_tab);
1795 cl->R_tab = rtab;
1796 }
1797
1798 if (tb[TCA_CBQ_LSSOPT])
1799 cbq_set_lss(cl, nla_data(tb[TCA_CBQ_LSSOPT]));
1800
1801 if (tb[TCA_CBQ_WRROPT]) {
1802 cbq_rmprio(q, cl);
1803 cbq_set_wrr(cl, nla_data(tb[TCA_CBQ_WRROPT]));
1804 }
1805
1806 if (tb[TCA_CBQ_OVL_STRATEGY])
1807 cbq_set_overlimit(cl, nla_data(tb[TCA_CBQ_OVL_STRATEGY]));
1808
1809 #ifdef CONFIG_NET_CLS_ACT
1810 if (tb[TCA_CBQ_POLICE])
1811 cbq_set_police(cl, nla_data(tb[TCA_CBQ_POLICE]));
1812 #endif
1813
1814 if (tb[TCA_CBQ_FOPT])
1815 cbq_set_fopt(cl, nla_data(tb[TCA_CBQ_FOPT]));
1816
1817 if (cl->q->q.qlen)
1818 cbq_activate_class(cl);
1819
1820 sch_tree_unlock(sch);
1821
1822 return 0;
1823 }
1824
1825 if (parentid == TC_H_ROOT)
1826 return -EINVAL;
1827
1828 if (tb[TCA_CBQ_WRROPT] == NULL || tb[TCA_CBQ_RATE] == NULL ||
1829 tb[TCA_CBQ_LSSOPT] == NULL)
1830 return -EINVAL;
1831
1832 rtab = qdisc_get_rtab(nla_data(tb[TCA_CBQ_RATE]), tb[TCA_CBQ_RTAB]);
1833 if (rtab == NULL)
1834 return -EINVAL;
1835
1836 if (classid) {
1837 err = -EINVAL;
1838 if (TC_H_MAJ(classid ^ sch->handle) ||
1839 cbq_class_lookup(q, classid))
1840 goto failure;
1841 } else {
1842 int i;
1843 classid = TC_H_MAKE(sch->handle, 0x8000);
1844
1845 for (i = 0; i < 0x8000; i++) {
1846 if (++q->hgenerator >= 0x8000)
1847 q->hgenerator = 1;
1848 if (cbq_class_lookup(q, classid|q->hgenerator) == NULL)
1849 break;
1850 }
1851 err = -ENOSR;
1852 if (i >= 0x8000)
1853 goto failure;
1854 classid = classid|q->hgenerator;
1855 }
1856
1857 parent = &q->link;
1858 if (parentid) {
1859 parent = cbq_class_lookup(q, parentid);
1860 err = -EINVAL;
1861 if (parent == NULL)
1862 goto failure;
1863 }
1864
1865 err = -ENOBUFS;
1866 cl = kzalloc(sizeof(*cl), GFP_KERNEL);
1867 if (cl == NULL)
1868 goto failure;
1869
1870 if (tca[TCA_RATE]) {
1871 err = gen_new_estimator(&cl->bstats, &cl->rate_est,
1872 qdisc_root_sleeping_lock(sch),
1873 tca[TCA_RATE]);
1874 if (err) {
1875 kfree(cl);
1876 goto failure;
1877 }
1878 }
1879
1880 cl->R_tab = rtab;
1881 rtab = NULL;
1882 cl->refcnt = 1;
1883 cl->q = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, classid);
1884 if (!cl->q)
1885 cl->q = &noop_qdisc;
1886 cl->common.classid = classid;
1887 cl->tparent = parent;
1888 cl->qdisc = sch;
1889 cl->allot = parent->allot;
1890 cl->quantum = cl->allot;
1891 cl->weight = cl->R_tab->rate.rate;
1892
1893 sch_tree_lock(sch);
1894 cbq_link_class(cl);
1895 cl->borrow = cl->tparent;
1896 if (cl->tparent != &q->link)
1897 cl->share = cl->tparent;
1898 cbq_adjust_levels(parent);
1899 cl->minidle = -0x7FFFFFFF;
1900 cbq_set_lss(cl, nla_data(tb[TCA_CBQ_LSSOPT]));
1901 cbq_set_wrr(cl, nla_data(tb[TCA_CBQ_WRROPT]));
1902 if (cl->ewma_log == 0)
1903 cl->ewma_log = q->link.ewma_log;
1904 if (cl->maxidle == 0)
1905 cl->maxidle = q->link.maxidle;
1906 if (cl->avpkt == 0)
1907 cl->avpkt = q->link.avpkt;
1908 cl->overlimit = cbq_ovl_classic;
1909 if (tb[TCA_CBQ_OVL_STRATEGY])
1910 cbq_set_overlimit(cl, nla_data(tb[TCA_CBQ_OVL_STRATEGY]));
1911 #ifdef CONFIG_NET_CLS_ACT
1912 if (tb[TCA_CBQ_POLICE])
1913 cbq_set_police(cl, nla_data(tb[TCA_CBQ_POLICE]));
1914 #endif
1915 if (tb[TCA_CBQ_FOPT])
1916 cbq_set_fopt(cl, nla_data(tb[TCA_CBQ_FOPT]));
1917 sch_tree_unlock(sch);
1918
1919 qdisc_class_hash_grow(sch, &q->clhash);
1920
1921 *arg = (unsigned long)cl;
1922 return 0;
1923
1924 failure:
1925 qdisc_put_rtab(rtab);
1926 return err;
1927 }
1928
1929 static int cbq_delete(struct Qdisc *sch, unsigned long arg)
1930 {
1931 struct cbq_sched_data *q = qdisc_priv(sch);
1932 struct cbq_class *cl = (struct cbq_class *)arg;
1933 unsigned int qlen;
1934
1935 if (cl->filters || cl->children || cl == &q->link)
1936 return -EBUSY;
1937
1938 sch_tree_lock(sch);
1939
1940 qlen = cl->q->q.qlen;
1941 qdisc_reset(cl->q);
1942 qdisc_tree_decrease_qlen(cl->q, qlen);
1943
1944 if (cl->next_alive)
1945 cbq_deactivate_class(cl);
1946
1947 if (q->tx_borrowed == cl)
1948 q->tx_borrowed = q->tx_class;
1949 if (q->tx_class == cl) {
1950 q->tx_class = NULL;
1951 q->tx_borrowed = NULL;
1952 }
1953 #ifdef CONFIG_NET_CLS_ACT
1954 if (q->rx_class == cl)
1955 q->rx_class = NULL;
1956 #endif
1957
1958 cbq_unlink_class(cl);
1959 cbq_adjust_levels(cl->tparent);
1960 cl->defmap = 0;
1961 cbq_sync_defmap(cl);
1962
1963 cbq_rmprio(q, cl);
1964 sch_tree_unlock(sch);
1965
1966 BUG_ON(--cl->refcnt == 0);
1967 /*
1968 * This shouldn't happen: we "hold" one cops->get() when called
1969 * from tc_ctl_tclass; the destroy method is done from cops->put().
1970 */
1971
1972 return 0;
1973 }
1974
1975 static struct tcf_proto **cbq_find_tcf(struct Qdisc *sch, unsigned long arg)
1976 {
1977 struct cbq_sched_data *q = qdisc_priv(sch);
1978 struct cbq_class *cl = (struct cbq_class *)arg;
1979
1980 if (cl == NULL)
1981 cl = &q->link;
1982
1983 return &cl->filter_list;
1984 }
1985
1986 static unsigned long cbq_bind_filter(struct Qdisc *sch, unsigned long parent,
1987 u32 classid)
1988 {
1989 struct cbq_sched_data *q = qdisc_priv(sch);
1990 struct cbq_class *p = (struct cbq_class *)parent;
1991 struct cbq_class *cl = cbq_class_lookup(q, classid);
1992
1993 if (cl) {
1994 if (p && p->level <= cl->level)
1995 return 0;
1996 cl->filters++;
1997 return (unsigned long)cl;
1998 }
1999 return 0;
2000 }
2001
2002 static void cbq_unbind_filter(struct Qdisc *sch, unsigned long arg)
2003 {
2004 struct cbq_class *cl = (struct cbq_class *)arg;
2005
2006 cl->filters--;
2007 }
2008
2009 static void cbq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2010 {
2011 struct cbq_sched_data *q = qdisc_priv(sch);
2012 struct cbq_class *cl;
2013 unsigned int h;
2014
2015 if (arg->stop)
2016 return;
2017
2018 for (h = 0; h < q->clhash.hashsize; h++) {
2019 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) {
2020 if (arg->count < arg->skip) {
2021 arg->count++;
2022 continue;
2023 }
2024 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
2025 arg->stop = 1;
2026 return;
2027 }
2028 arg->count++;
2029 }
2030 }
2031 }
2032
2033 static const struct Qdisc_class_ops cbq_class_ops = {
2034 .graft = cbq_graft,
2035 .leaf = cbq_leaf,
2036 .qlen_notify = cbq_qlen_notify,
2037 .get = cbq_get,
2038 .put = cbq_put,
2039 .change = cbq_change_class,
2040 .delete = cbq_delete,
2041 .walk = cbq_walk,
2042 .tcf_chain = cbq_find_tcf,
2043 .bind_tcf = cbq_bind_filter,
2044 .unbind_tcf = cbq_unbind_filter,
2045 .dump = cbq_dump_class,
2046 .dump_stats = cbq_dump_class_stats,
2047 };
2048
2049 static struct Qdisc_ops cbq_qdisc_ops __read_mostly = {
2050 .next = NULL,
2051 .cl_ops = &cbq_class_ops,
2052 .id = "cbq",
2053 .priv_size = sizeof(struct cbq_sched_data),
2054 .enqueue = cbq_enqueue,
2055 .dequeue = cbq_dequeue,
2056 .peek = qdisc_peek_dequeued,
2057 .drop = cbq_drop,
2058 .init = cbq_init,
2059 .reset = cbq_reset,
2060 .destroy = cbq_destroy,
2061 .change = NULL,
2062 .dump = cbq_dump,
2063 .dump_stats = cbq_dump_stats,
2064 .owner = THIS_MODULE,
2065 };
2066
2067 static int __init cbq_module_init(void)
2068 {
2069 return register_qdisc(&cbq_qdisc_ops);
2070 }
2071 static void __exit cbq_module_exit(void)
2072 {
2073 unregister_qdisc(&cbq_qdisc_ops);
2074 }
2075 module_init(cbq_module_init)
2076 module_exit(cbq_module_exit)
2077 MODULE_LICENSE("GPL");