RDS: Fix the atomicity for congestion map update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / rds / ib_recv.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds.h"
40 #include "ib.h"
41
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
45
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 struct rds_ib_recv_work *recv;
49 u32 i;
50
51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 struct ib_sge *sge;
53
54 recv->r_ibinc = NULL;
55 recv->r_frag = NULL;
56
57 recv->r_wr.next = NULL;
58 recv->r_wr.wr_id = i;
59 recv->r_wr.sg_list = recv->r_sge;
60 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61
62 sge = &recv->r_sge[0];
63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 sge->length = sizeof(struct rds_header);
65 sge->lkey = ic->i_mr->lkey;
66
67 sge = &recv->r_sge[1];
68 sge->addr = 0;
69 sge->length = RDS_FRAG_SIZE;
70 sge->lkey = ic->i_mr->lkey;
71 }
72 }
73
74 /*
75 * The entire 'from' list, including the from element itself, is put on
76 * to the tail of the 'to' list.
77 */
78 static void list_splice_entire_tail(struct list_head *from,
79 struct list_head *to)
80 {
81 struct list_head *from_last = from->prev;
82
83 list_splice_tail(from_last, to);
84 list_add_tail(from_last, to);
85 }
86
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 struct list_head *tmp;
90
91 tmp = xchg(&cache->xfer, NULL);
92 if (tmp) {
93 if (cache->ready)
94 list_splice_entire_tail(tmp, cache->ready);
95 else
96 cache->ready = tmp;
97 }
98 }
99
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 struct rds_ib_cache_head *head;
103 int cpu;
104
105 cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 if (!cache->percpu)
107 return -ENOMEM;
108
109 for_each_possible_cpu(cpu) {
110 head = per_cpu_ptr(cache->percpu, cpu);
111 head->first = NULL;
112 head->count = 0;
113 }
114 cache->xfer = NULL;
115 cache->ready = NULL;
116
117 return 0;
118 }
119
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 int ret;
123
124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 if (!ret) {
126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 if (ret)
128 free_percpu(ic->i_cache_incs.percpu);
129 }
130
131 return ret;
132 }
133
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 struct list_head *caller_list)
136 {
137 struct rds_ib_cache_head *head;
138 int cpu;
139
140 for_each_possible_cpu(cpu) {
141 head = per_cpu_ptr(cache->percpu, cpu);
142 if (head->first) {
143 list_splice_entire_tail(head->first, caller_list);
144 head->first = NULL;
145 }
146 }
147
148 if (cache->ready) {
149 list_splice_entire_tail(cache->ready, caller_list);
150 cache->ready = NULL;
151 }
152 }
153
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 struct rds_ib_incoming *inc;
157 struct rds_ib_incoming *inc_tmp;
158 struct rds_page_frag *frag;
159 struct rds_page_frag *frag_tmp;
160 LIST_HEAD(list);
161
162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 free_percpu(ic->i_cache_incs.percpu);
165
166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 list_del(&inc->ii_cache_entry);
168 WARN_ON(!list_empty(&inc->ii_frags));
169 kmem_cache_free(rds_ib_incoming_slab, inc);
170 }
171
172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 free_percpu(ic->i_cache_frags.percpu);
175
176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 list_del(&frag->f_cache_entry);
178 WARN_ON(!list_empty(&frag->f_item));
179 kmem_cache_free(rds_ib_frag_slab, frag);
180 }
181 }
182
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187
188
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 struct rds_page_frag *frag)
192 {
193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194
195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 struct rds_ib_incoming *ibinc;
202 struct rds_page_frag *frag;
203 struct rds_page_frag *pos;
204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205
206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207
208 /* Free attached frags */
209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 list_del_init(&frag->f_item);
211 rds_ib_frag_free(ic, frag);
212 }
213 BUG_ON(!list_empty(&ibinc->ii_frags));
214
215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 struct rds_ib_recv_work *recv)
221 {
222 if (recv->r_ibinc) {
223 rds_inc_put(&recv->r_ibinc->ii_inc);
224 recv->r_ibinc = NULL;
225 }
226 if (recv->r_frag) {
227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 rds_ib_frag_free(ic, recv->r_frag);
229 recv->r_frag = NULL;
230 }
231 }
232
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 u32 i;
236
237 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 gfp_t slab_mask)
243 {
244 struct rds_ib_incoming *ibinc;
245 struct list_head *cache_item;
246 int avail_allocs;
247
248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 if (cache_item) {
250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 } else {
252 avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 1, rds_ib_sysctl_max_recv_allocation);
254 if (!avail_allocs) {
255 rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 return NULL;
257 }
258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 if (!ibinc) {
260 atomic_dec(&rds_ib_allocation);
261 return NULL;
262 }
263 }
264 INIT_LIST_HEAD(&ibinc->ii_frags);
265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266
267 return ibinc;
268 }
269
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 gfp_t slab_mask, gfp_t page_mask)
272 {
273 struct rds_page_frag *frag;
274 struct list_head *cache_item;
275 int ret;
276
277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 if (cache_item) {
279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 } else {
281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 if (!frag)
283 return NULL;
284
285 sg_init_table(&frag->f_sg, 1);
286 ret = rds_page_remainder_alloc(&frag->f_sg,
287 RDS_FRAG_SIZE, page_mask);
288 if (ret) {
289 kmem_cache_free(rds_ib_frag_slab, frag);
290 return NULL;
291 }
292 }
293
294 INIT_LIST_HEAD(&frag->f_item);
295
296 return frag;
297 }
298
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 struct rds_ib_recv_work *recv, int prefill)
301 {
302 struct rds_ib_connection *ic = conn->c_transport_data;
303 struct ib_sge *sge;
304 int ret = -ENOMEM;
305 gfp_t slab_mask = GFP_NOWAIT;
306 gfp_t page_mask = GFP_NOWAIT;
307
308 if (prefill) {
309 slab_mask = GFP_KERNEL;
310 page_mask = GFP_HIGHUSER;
311 }
312
313 if (!ic->i_cache_incs.ready)
314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 if (!ic->i_cache_frags.ready)
316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317
318 /*
319 * ibinc was taken from recv if recv contained the start of a message.
320 * recvs that were continuations will still have this allocated.
321 */
322 if (!recv->r_ibinc) {
323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 if (!recv->r_ibinc)
325 goto out;
326 }
327
328 WARN_ON(recv->r_frag); /* leak! */
329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 if (!recv->r_frag)
331 goto out;
332
333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 1, DMA_FROM_DEVICE);
335 WARN_ON(ret != 1);
336
337 sge = &recv->r_sge[0];
338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 sge->length = sizeof(struct rds_header);
340
341 sge = &recv->r_sge[1];
342 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
344
345 ret = 0;
346 out:
347 return ret;
348 }
349
350 /*
351 * This tries to allocate and post unused work requests after making sure that
352 * they have all the allocations they need to queue received fragments into
353 * sockets.
354 *
355 * -1 is returned if posting fails due to temporary resource exhaustion.
356 */
357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
358 {
359 struct rds_ib_connection *ic = conn->c_transport_data;
360 struct rds_ib_recv_work *recv;
361 struct ib_recv_wr *failed_wr;
362 unsigned int posted = 0;
363 int ret = 0;
364 u32 pos;
365
366 while ((prefill || rds_conn_up(conn)) &&
367 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
368 if (pos >= ic->i_recv_ring.w_nr) {
369 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
370 pos);
371 break;
372 }
373
374 recv = &ic->i_recvs[pos];
375 ret = rds_ib_recv_refill_one(conn, recv, prefill);
376 if (ret) {
377 break;
378 }
379
380 /* XXX when can this fail? */
381 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
382 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
383 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
384 (long) ib_sg_dma_address(
385 ic->i_cm_id->device,
386 &recv->r_frag->f_sg),
387 ret);
388 if (ret) {
389 rds_ib_conn_error(conn, "recv post on "
390 "%pI4 returned %d, disconnecting and "
391 "reconnecting\n", &conn->c_faddr,
392 ret);
393 break;
394 }
395
396 posted++;
397 }
398
399 /* We're doing flow control - update the window. */
400 if (ic->i_flowctl && posted)
401 rds_ib_advertise_credits(conn, posted);
402
403 if (ret)
404 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
405 }
406
407 /*
408 * We want to recycle several types of recv allocations, like incs and frags.
409 * To use this, the *_free() function passes in the ptr to a list_head within
410 * the recyclee, as well as the cache to put it on.
411 *
412 * First, we put the memory on a percpu list. When this reaches a certain size,
413 * We move it to an intermediate non-percpu list in a lockless manner, with some
414 * xchg/compxchg wizardry.
415 *
416 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
417 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
418 * list_empty() will return true with one element is actually present.
419 */
420 static void rds_ib_recv_cache_put(struct list_head *new_item,
421 struct rds_ib_refill_cache *cache)
422 {
423 unsigned long flags;
424 struct list_head *old, *chpfirst;
425
426 local_irq_save(flags);
427
428 chpfirst = __this_cpu_read(cache->percpu->first);
429 if (!chpfirst)
430 INIT_LIST_HEAD(new_item);
431 else /* put on front */
432 list_add_tail(new_item, chpfirst);
433
434 __this_cpu_write(cache->percpu->first, new_item);
435 __this_cpu_inc(cache->percpu->count);
436
437 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
438 goto end;
439
440 /*
441 * Return our per-cpu first list to the cache's xfer by atomically
442 * grabbing the current xfer list, appending it to our per-cpu list,
443 * and then atomically returning that entire list back to the
444 * cache's xfer list as long as it's still empty.
445 */
446 do {
447 old = xchg(&cache->xfer, NULL);
448 if (old)
449 list_splice_entire_tail(old, chpfirst);
450 old = cmpxchg(&cache->xfer, NULL, chpfirst);
451 } while (old);
452
453
454 __this_cpu_write(cache->percpu->first, NULL);
455 __this_cpu_write(cache->percpu->count, 0);
456 end:
457 local_irq_restore(flags);
458 }
459
460 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
461 {
462 struct list_head *head = cache->ready;
463
464 if (head) {
465 if (!list_empty(head)) {
466 cache->ready = head->next;
467 list_del_init(head);
468 } else
469 cache->ready = NULL;
470 }
471
472 return head;
473 }
474
475 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
476 size_t size)
477 {
478 struct rds_ib_incoming *ibinc;
479 struct rds_page_frag *frag;
480 struct iovec *iov = first_iov;
481 unsigned long to_copy;
482 unsigned long frag_off = 0;
483 unsigned long iov_off = 0;
484 int copied = 0;
485 int ret;
486 u32 len;
487
488 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
489 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
490 len = be32_to_cpu(inc->i_hdr.h_len);
491
492 while (copied < size && copied < len) {
493 if (frag_off == RDS_FRAG_SIZE) {
494 frag = list_entry(frag->f_item.next,
495 struct rds_page_frag, f_item);
496 frag_off = 0;
497 }
498 while (iov_off == iov->iov_len) {
499 iov_off = 0;
500 iov++;
501 }
502
503 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
504 to_copy = min_t(size_t, to_copy, size - copied);
505 to_copy = min_t(unsigned long, to_copy, len - copied);
506
507 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
508 "[%p, %u] + %lu\n",
509 to_copy, iov->iov_base, iov->iov_len, iov_off,
510 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
511
512 /* XXX needs + offset for multiple recvs per page */
513 ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
514 frag->f_sg.offset + frag_off,
515 iov->iov_base + iov_off,
516 to_copy);
517 if (ret) {
518 copied = ret;
519 break;
520 }
521
522 iov_off += to_copy;
523 frag_off += to_copy;
524 copied += to_copy;
525 }
526
527 return copied;
528 }
529
530 /* ic starts out kzalloc()ed */
531 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
532 {
533 struct ib_send_wr *wr = &ic->i_ack_wr;
534 struct ib_sge *sge = &ic->i_ack_sge;
535
536 sge->addr = ic->i_ack_dma;
537 sge->length = sizeof(struct rds_header);
538 sge->lkey = ic->i_mr->lkey;
539
540 wr->sg_list = sge;
541 wr->num_sge = 1;
542 wr->opcode = IB_WR_SEND;
543 wr->wr_id = RDS_IB_ACK_WR_ID;
544 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
545 }
546
547 /*
548 * You'd think that with reliable IB connections you wouldn't need to ack
549 * messages that have been received. The problem is that IB hardware generates
550 * an ack message before it has DMAed the message into memory. This creates a
551 * potential message loss if the HCA is disabled for any reason between when it
552 * sends the ack and before the message is DMAed and processed. This is only a
553 * potential issue if another HCA is available for fail-over.
554 *
555 * When the remote host receives our ack they'll free the sent message from
556 * their send queue. To decrease the latency of this we always send an ack
557 * immediately after we've received messages.
558 *
559 * For simplicity, we only have one ack in flight at a time. This puts
560 * pressure on senders to have deep enough send queues to absorb the latency of
561 * a single ack frame being in flight. This might not be good enough.
562 *
563 * This is implemented by have a long-lived send_wr and sge which point to a
564 * statically allocated ack frame. This ack wr does not fall under the ring
565 * accounting that the tx and rx wrs do. The QP attribute specifically makes
566 * room for it beyond the ring size. Send completion notices its special
567 * wr_id and avoids working with the ring in that case.
568 */
569 #ifndef KERNEL_HAS_ATOMIC64
570 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
571 int ack_required)
572 {
573 unsigned long flags;
574
575 spin_lock_irqsave(&ic->i_ack_lock, flags);
576 ic->i_ack_next = seq;
577 if (ack_required)
578 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
579 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
580 }
581
582 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
583 {
584 unsigned long flags;
585 u64 seq;
586
587 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
588
589 spin_lock_irqsave(&ic->i_ack_lock, flags);
590 seq = ic->i_ack_next;
591 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
592
593 return seq;
594 }
595 #else
596 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
597 int ack_required)
598 {
599 atomic64_set(&ic->i_ack_next, seq);
600 if (ack_required) {
601 smp_mb__before_clear_bit();
602 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
603 }
604 }
605
606 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
607 {
608 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
609 smp_mb__after_clear_bit();
610
611 return atomic64_read(&ic->i_ack_next);
612 }
613 #endif
614
615
616 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
617 {
618 struct rds_header *hdr = ic->i_ack;
619 struct ib_send_wr *failed_wr;
620 u64 seq;
621 int ret;
622
623 seq = rds_ib_get_ack(ic);
624
625 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
626 rds_message_populate_header(hdr, 0, 0, 0);
627 hdr->h_ack = cpu_to_be64(seq);
628 hdr->h_credit = adv_credits;
629 rds_message_make_checksum(hdr);
630 ic->i_ack_queued = jiffies;
631
632 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
633 if (unlikely(ret)) {
634 /* Failed to send. Release the WR, and
635 * force another ACK.
636 */
637 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
638 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
639
640 rds_ib_stats_inc(s_ib_ack_send_failure);
641
642 rds_ib_conn_error(ic->conn, "sending ack failed\n");
643 } else
644 rds_ib_stats_inc(s_ib_ack_sent);
645 }
646
647 /*
648 * There are 3 ways of getting acknowledgements to the peer:
649 * 1. We call rds_ib_attempt_ack from the recv completion handler
650 * to send an ACK-only frame.
651 * However, there can be only one such frame in the send queue
652 * at any time, so we may have to postpone it.
653 * 2. When another (data) packet is transmitted while there's
654 * an ACK in the queue, we piggyback the ACK sequence number
655 * on the data packet.
656 * 3. If the ACK WR is done sending, we get called from the
657 * send queue completion handler, and check whether there's
658 * another ACK pending (postponed because the WR was on the
659 * queue). If so, we transmit it.
660 *
661 * We maintain 2 variables:
662 * - i_ack_flags, which keeps track of whether the ACK WR
663 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
664 * - i_ack_next, which is the last sequence number we received
665 *
666 * Potentially, send queue and receive queue handlers can run concurrently.
667 * It would be nice to not have to use a spinlock to synchronize things,
668 * but the one problem that rules this out is that 64bit updates are
669 * not atomic on all platforms. Things would be a lot simpler if
670 * we had atomic64 or maybe cmpxchg64 everywhere.
671 *
672 * Reconnecting complicates this picture just slightly. When we
673 * reconnect, we may be seeing duplicate packets. The peer
674 * is retransmitting them, because it hasn't seen an ACK for
675 * them. It is important that we ACK these.
676 *
677 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
678 * this flag set *MUST* be acknowledged immediately.
679 */
680
681 /*
682 * When we get here, we're called from the recv queue handler.
683 * Check whether we ought to transmit an ACK.
684 */
685 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
686 {
687 unsigned int adv_credits;
688
689 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
690 return;
691
692 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
693 rds_ib_stats_inc(s_ib_ack_send_delayed);
694 return;
695 }
696
697 /* Can we get a send credit? */
698 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
699 rds_ib_stats_inc(s_ib_tx_throttle);
700 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
701 return;
702 }
703
704 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
705 rds_ib_send_ack(ic, adv_credits);
706 }
707
708 /*
709 * We get here from the send completion handler, when the
710 * adapter tells us the ACK frame was sent.
711 */
712 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
713 {
714 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
715 rds_ib_attempt_ack(ic);
716 }
717
718 /*
719 * This is called by the regular xmit code when it wants to piggyback
720 * an ACK on an outgoing frame.
721 */
722 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
723 {
724 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
725 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
726 return rds_ib_get_ack(ic);
727 }
728
729 /*
730 * It's kind of lame that we're copying from the posted receive pages into
731 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
732 * them. But receiving new congestion bitmaps should be a *rare* event, so
733 * hopefully we won't need to invest that complexity in making it more
734 * efficient. By copying we can share a simpler core with TCP which has to
735 * copy.
736 */
737 static void rds_ib_cong_recv(struct rds_connection *conn,
738 struct rds_ib_incoming *ibinc)
739 {
740 struct rds_cong_map *map;
741 unsigned int map_off;
742 unsigned int map_page;
743 struct rds_page_frag *frag;
744 unsigned long frag_off;
745 unsigned long to_copy;
746 unsigned long copied;
747 uint64_t uncongested = 0;
748 void *addr;
749
750 /* catch completely corrupt packets */
751 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
752 return;
753
754 map = conn->c_fcong;
755 map_page = 0;
756 map_off = 0;
757
758 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
759 frag_off = 0;
760
761 copied = 0;
762
763 while (copied < RDS_CONG_MAP_BYTES) {
764 uint64_t *src, *dst;
765 unsigned int k;
766
767 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
768 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
769
770 addr = kmap_atomic(sg_page(&frag->f_sg));
771
772 src = addr + frag_off;
773 dst = (void *)map->m_page_addrs[map_page] + map_off;
774 for (k = 0; k < to_copy; k += 8) {
775 /* Record ports that became uncongested, ie
776 * bits that changed from 0 to 1. */
777 uncongested |= ~(*src) & *dst;
778 *dst++ = *src++;
779 }
780 kunmap_atomic(addr);
781
782 copied += to_copy;
783
784 map_off += to_copy;
785 if (map_off == PAGE_SIZE) {
786 map_off = 0;
787 map_page++;
788 }
789
790 frag_off += to_copy;
791 if (frag_off == RDS_FRAG_SIZE) {
792 frag = list_entry(frag->f_item.next,
793 struct rds_page_frag, f_item);
794 frag_off = 0;
795 }
796 }
797
798 /* the congestion map is in little endian order */
799 uncongested = le64_to_cpu(uncongested);
800
801 rds_cong_map_updated(map, uncongested);
802 }
803
804 /*
805 * Rings are posted with all the allocations they'll need to queue the
806 * incoming message to the receiving socket so this can't fail.
807 * All fragments start with a header, so we can make sure we're not receiving
808 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
809 */
810 struct rds_ib_ack_state {
811 u64 ack_next;
812 u64 ack_recv;
813 unsigned int ack_required:1;
814 unsigned int ack_next_valid:1;
815 unsigned int ack_recv_valid:1;
816 };
817
818 static void rds_ib_process_recv(struct rds_connection *conn,
819 struct rds_ib_recv_work *recv, u32 data_len,
820 struct rds_ib_ack_state *state)
821 {
822 struct rds_ib_connection *ic = conn->c_transport_data;
823 struct rds_ib_incoming *ibinc = ic->i_ibinc;
824 struct rds_header *ihdr, *hdr;
825
826 /* XXX shut down the connection if port 0,0 are seen? */
827
828 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
829 data_len);
830
831 if (data_len < sizeof(struct rds_header)) {
832 rds_ib_conn_error(conn, "incoming message "
833 "from %pI4 didn't include a "
834 "header, disconnecting and "
835 "reconnecting\n",
836 &conn->c_faddr);
837 return;
838 }
839 data_len -= sizeof(struct rds_header);
840
841 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
842
843 /* Validate the checksum. */
844 if (!rds_message_verify_checksum(ihdr)) {
845 rds_ib_conn_error(conn, "incoming message "
846 "from %pI4 has corrupted header - "
847 "forcing a reconnect\n",
848 &conn->c_faddr);
849 rds_stats_inc(s_recv_drop_bad_checksum);
850 return;
851 }
852
853 /* Process the ACK sequence which comes with every packet */
854 state->ack_recv = be64_to_cpu(ihdr->h_ack);
855 state->ack_recv_valid = 1;
856
857 /* Process the credits update if there was one */
858 if (ihdr->h_credit)
859 rds_ib_send_add_credits(conn, ihdr->h_credit);
860
861 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
862 /* This is an ACK-only packet. The fact that it gets
863 * special treatment here is that historically, ACKs
864 * were rather special beasts.
865 */
866 rds_ib_stats_inc(s_ib_ack_received);
867
868 /*
869 * Usually the frags make their way on to incs and are then freed as
870 * the inc is freed. We don't go that route, so we have to drop the
871 * page ref ourselves. We can't just leave the page on the recv
872 * because that confuses the dma mapping of pages and each recv's use
873 * of a partial page.
874 *
875 * FIXME: Fold this into the code path below.
876 */
877 rds_ib_frag_free(ic, recv->r_frag);
878 recv->r_frag = NULL;
879 return;
880 }
881
882 /*
883 * If we don't already have an inc on the connection then this
884 * fragment has a header and starts a message.. copy its header
885 * into the inc and save the inc so we can hang upcoming fragments
886 * off its list.
887 */
888 if (!ibinc) {
889 ibinc = recv->r_ibinc;
890 recv->r_ibinc = NULL;
891 ic->i_ibinc = ibinc;
892
893 hdr = &ibinc->ii_inc.i_hdr;
894 memcpy(hdr, ihdr, sizeof(*hdr));
895 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
896
897 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
898 ic->i_recv_data_rem, hdr->h_flags);
899 } else {
900 hdr = &ibinc->ii_inc.i_hdr;
901 /* We can't just use memcmp here; fragments of a
902 * single message may carry different ACKs */
903 if (hdr->h_sequence != ihdr->h_sequence ||
904 hdr->h_len != ihdr->h_len ||
905 hdr->h_sport != ihdr->h_sport ||
906 hdr->h_dport != ihdr->h_dport) {
907 rds_ib_conn_error(conn,
908 "fragment header mismatch; forcing reconnect\n");
909 return;
910 }
911 }
912
913 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
914 recv->r_frag = NULL;
915
916 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
917 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
918 else {
919 ic->i_recv_data_rem = 0;
920 ic->i_ibinc = NULL;
921
922 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
923 rds_ib_cong_recv(conn, ibinc);
924 else {
925 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
926 &ibinc->ii_inc, GFP_ATOMIC);
927 state->ack_next = be64_to_cpu(hdr->h_sequence);
928 state->ack_next_valid = 1;
929 }
930
931 /* Evaluate the ACK_REQUIRED flag *after* we received
932 * the complete frame, and after bumping the next_rx
933 * sequence. */
934 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
935 rds_stats_inc(s_recv_ack_required);
936 state->ack_required = 1;
937 }
938
939 rds_inc_put(&ibinc->ii_inc);
940 }
941 }
942
943 /*
944 * Plucking the oldest entry from the ring can be done concurrently with
945 * the thread refilling the ring. Each ring operation is protected by
946 * spinlocks and the transient state of refilling doesn't change the
947 * recording of which entry is oldest.
948 *
949 * This relies on IB only calling one cq comp_handler for each cq so that
950 * there will only be one caller of rds_recv_incoming() per RDS connection.
951 */
952 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
953 {
954 struct rds_connection *conn = context;
955 struct rds_ib_connection *ic = conn->c_transport_data;
956
957 rdsdebug("conn %p cq %p\n", conn, cq);
958
959 rds_ib_stats_inc(s_ib_rx_cq_call);
960
961 tasklet_schedule(&ic->i_recv_tasklet);
962 }
963
964 static inline void rds_poll_cq(struct rds_ib_connection *ic,
965 struct rds_ib_ack_state *state)
966 {
967 struct rds_connection *conn = ic->conn;
968 struct ib_wc wc;
969 struct rds_ib_recv_work *recv;
970
971 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
972 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
973 (unsigned long long)wc.wr_id, wc.status,
974 rds_ib_wc_status_str(wc.status), wc.byte_len,
975 be32_to_cpu(wc.ex.imm_data));
976 rds_ib_stats_inc(s_ib_rx_cq_event);
977
978 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
979
980 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
981
982 /*
983 * Also process recvs in connecting state because it is possible
984 * to get a recv completion _before_ the rdmacm ESTABLISHED
985 * event is processed.
986 */
987 if (wc.status == IB_WC_SUCCESS) {
988 rds_ib_process_recv(conn, recv, wc.byte_len, state);
989 } else {
990 /* We expect errors as the qp is drained during shutdown */
991 if (rds_conn_up(conn) || rds_conn_connecting(conn))
992 rds_ib_conn_error(conn, "recv completion on %pI4 had "
993 "status %u (%s), disconnecting and "
994 "reconnecting\n", &conn->c_faddr,
995 wc.status,
996 rds_ib_wc_status_str(wc.status));
997 }
998
999 /*
1000 * It's very important that we only free this ring entry if we've truly
1001 * freed the resources allocated to the entry. The refilling path can
1002 * leak if we don't.
1003 */
1004 rds_ib_ring_free(&ic->i_recv_ring, 1);
1005 }
1006 }
1007
1008 void rds_ib_recv_tasklet_fn(unsigned long data)
1009 {
1010 struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1011 struct rds_connection *conn = ic->conn;
1012 struct rds_ib_ack_state state = { 0, };
1013
1014 rds_poll_cq(ic, &state);
1015 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1016 rds_poll_cq(ic, &state);
1017
1018 if (state.ack_next_valid)
1019 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1020 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1021 rds_send_drop_acked(conn, state.ack_recv, NULL);
1022 ic->i_ack_recv = state.ack_recv;
1023 }
1024 if (rds_conn_up(conn))
1025 rds_ib_attempt_ack(ic);
1026
1027 /* If we ever end up with a really empty receive ring, we're
1028 * in deep trouble, as the sender will definitely see RNR
1029 * timeouts. */
1030 if (rds_ib_ring_empty(&ic->i_recv_ring))
1031 rds_ib_stats_inc(s_ib_rx_ring_empty);
1032
1033 if (rds_ib_ring_low(&ic->i_recv_ring))
1034 rds_ib_recv_refill(conn, 0);
1035 }
1036
1037 int rds_ib_recv(struct rds_connection *conn)
1038 {
1039 struct rds_ib_connection *ic = conn->c_transport_data;
1040 int ret = 0;
1041
1042 rdsdebug("conn %p\n", conn);
1043 if (rds_conn_up(conn))
1044 rds_ib_attempt_ack(ic);
1045
1046 return ret;
1047 }
1048
1049 int rds_ib_recv_init(void)
1050 {
1051 struct sysinfo si;
1052 int ret = -ENOMEM;
1053
1054 /* Default to 30% of all available RAM for recv memory */
1055 si_meminfo(&si);
1056 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1057
1058 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1059 sizeof(struct rds_ib_incoming),
1060 0, SLAB_HWCACHE_ALIGN, NULL);
1061 if (!rds_ib_incoming_slab)
1062 goto out;
1063
1064 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1065 sizeof(struct rds_page_frag),
1066 0, SLAB_HWCACHE_ALIGN, NULL);
1067 if (!rds_ib_frag_slab)
1068 kmem_cache_destroy(rds_ib_incoming_slab);
1069 else
1070 ret = 0;
1071 out:
1072 return ret;
1073 }
1074
1075 void rds_ib_recv_exit(void)
1076 {
1077 kmem_cache_destroy(rds_ib_incoming_slab);
1078 kmem_cache_destroy(rds_ib_frag_slab);
1079 }