ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / openvswitch / flow.c
1 /*
2 * Copyright (c) 2007-2011 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 static struct kmem_cache *flow_cache;
47
48 static int check_header(struct sk_buff *skb, int len)
49 {
50 if (unlikely(skb->len < len))
51 return -EINVAL;
52 if (unlikely(!pskb_may_pull(skb, len)))
53 return -ENOMEM;
54 return 0;
55 }
56
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59 return pskb_may_pull(skb, skb_network_offset(skb) +
60 sizeof(struct arp_eth_header));
61 }
62
63 static int check_iphdr(struct sk_buff *skb)
64 {
65 unsigned int nh_ofs = skb_network_offset(skb);
66 unsigned int ip_len;
67 int err;
68
69 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70 if (unlikely(err))
71 return err;
72
73 ip_len = ip_hdrlen(skb);
74 if (unlikely(ip_len < sizeof(struct iphdr) ||
75 skb->len < nh_ofs + ip_len))
76 return -EINVAL;
77
78 skb_set_transport_header(skb, nh_ofs + ip_len);
79 return 0;
80 }
81
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84 int th_ofs = skb_transport_offset(skb);
85 int tcp_len;
86
87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88 return false;
89
90 tcp_len = tcp_hdrlen(skb);
91 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92 skb->len < th_ofs + tcp_len))
93 return false;
94
95 return true;
96 }
97
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100 return pskb_may_pull(skb, skb_transport_offset(skb) +
101 sizeof(struct udphdr));
102 }
103
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106 return pskb_may_pull(skb, skb_transport_offset(skb) +
107 sizeof(struct icmphdr));
108 }
109
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112 struct timespec cur_ts;
113 u64 cur_ms, idle_ms;
114
115 ktime_get_ts(&cur_ts);
116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118 cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120 return cur_ms - idle_ms;
121 }
122
123 #define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
126
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128 int *key_lenp)
129 {
130 unsigned int nh_ofs = skb_network_offset(skb);
131 unsigned int nh_len;
132 int payload_ofs;
133 struct ipv6hdr *nh;
134 uint8_t nexthdr;
135 __be16 frag_off;
136 int err;
137
138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140 err = check_header(skb, nh_ofs + sizeof(*nh));
141 if (unlikely(err))
142 return err;
143
144 nh = ipv6_hdr(skb);
145 nexthdr = nh->nexthdr;
146 payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148 key->ip.proto = NEXTHDR_NONE;
149 key->ip.tos = ipv6_get_dsfield(nh);
150 key->ip.ttl = nh->hop_limit;
151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152 key->ipv6.addr.src = nh->saddr;
153 key->ipv6.addr.dst = nh->daddr;
154
155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156 if (unlikely(payload_ofs < 0))
157 return -EINVAL;
158
159 if (frag_off) {
160 if (frag_off & htons(~0x7))
161 key->ip.frag = OVS_FRAG_TYPE_LATER;
162 else
163 key->ip.frag = OVS_FRAG_TYPE_FIRST;
164 }
165
166 nh_len = payload_ofs - nh_ofs;
167 skb_set_transport_header(skb, nh_ofs + nh_len);
168 key->ip.proto = nexthdr;
169 return nh_len;
170 }
171
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174 return pskb_may_pull(skb, skb_transport_offset(skb) +
175 sizeof(struct icmp6hdr));
176 }
177
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183 u8 tcp_flags = 0;
184
185 if ((flow->key.eth.type == htons(ETH_P_IP) ||
186 flow->key.eth.type == htons(ETH_P_IPV6)) &&
187 flow->key.ip.proto == IPPROTO_TCP &&
188 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189 u8 *tcp = (u8 *)tcp_hdr(skb);
190 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191 }
192
193 spin_lock(&flow->lock);
194 flow->used = jiffies;
195 flow->packet_count++;
196 flow->byte_count += skb->len;
197 flow->tcp_flags |= tcp_flags;
198 spin_unlock(&flow->lock);
199 }
200
201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
202 {
203 int actions_len = nla_len(actions);
204 struct sw_flow_actions *sfa;
205
206 if (actions_len > MAX_ACTIONS_BUFSIZE)
207 return ERR_PTR(-EINVAL);
208
209 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
210 if (!sfa)
211 return ERR_PTR(-ENOMEM);
212
213 sfa->actions_len = actions_len;
214 memcpy(sfa->actions, nla_data(actions), actions_len);
215 return sfa;
216 }
217
218 struct sw_flow *ovs_flow_alloc(void)
219 {
220 struct sw_flow *flow;
221
222 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
223 if (!flow)
224 return ERR_PTR(-ENOMEM);
225
226 spin_lock_init(&flow->lock);
227 flow->sf_acts = NULL;
228
229 return flow;
230 }
231
232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
233 {
234 hash = jhash_1word(hash, table->hash_seed);
235 return flex_array_get(table->buckets,
236 (hash & (table->n_buckets - 1)));
237 }
238
239 static struct flex_array *alloc_buckets(unsigned int n_buckets)
240 {
241 struct flex_array *buckets;
242 int i, err;
243
244 buckets = flex_array_alloc(sizeof(struct hlist_head *),
245 n_buckets, GFP_KERNEL);
246 if (!buckets)
247 return NULL;
248
249 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
250 if (err) {
251 flex_array_free(buckets);
252 return NULL;
253 }
254
255 for (i = 0; i < n_buckets; i++)
256 INIT_HLIST_HEAD((struct hlist_head *)
257 flex_array_get(buckets, i));
258
259 return buckets;
260 }
261
262 static void free_buckets(struct flex_array *buckets)
263 {
264 flex_array_free(buckets);
265 }
266
267 struct flow_table *ovs_flow_tbl_alloc(int new_size)
268 {
269 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
270
271 if (!table)
272 return NULL;
273
274 table->buckets = alloc_buckets(new_size);
275
276 if (!table->buckets) {
277 kfree(table);
278 return NULL;
279 }
280 table->n_buckets = new_size;
281 table->count = 0;
282 table->node_ver = 0;
283 table->keep_flows = false;
284 get_random_bytes(&table->hash_seed, sizeof(u32));
285
286 return table;
287 }
288
289 void ovs_flow_tbl_destroy(struct flow_table *table)
290 {
291 int i;
292
293 if (!table)
294 return;
295
296 if (table->keep_flows)
297 goto skip_flows;
298
299 for (i = 0; i < table->n_buckets; i++) {
300 struct sw_flow *flow;
301 struct hlist_head *head = flex_array_get(table->buckets, i);
302 struct hlist_node *n;
303 int ver = table->node_ver;
304
305 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
306 hlist_del_rcu(&flow->hash_node[ver]);
307 ovs_flow_free(flow);
308 }
309 }
310
311 skip_flows:
312 free_buckets(table->buckets);
313 kfree(table);
314 }
315
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
317 {
318 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
319
320 ovs_flow_tbl_destroy(table);
321 }
322
323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
324 {
325 if (!table)
326 return;
327
328 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
329 }
330
331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
332 {
333 struct sw_flow *flow;
334 struct hlist_head *head;
335 int ver;
336 int i;
337
338 ver = table->node_ver;
339 while (*bucket < table->n_buckets) {
340 i = 0;
341 head = flex_array_get(table->buckets, *bucket);
342 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
343 if (i < *last) {
344 i++;
345 continue;
346 }
347 *last = i + 1;
348 return flow;
349 }
350 (*bucket)++;
351 *last = 0;
352 }
353
354 return NULL;
355 }
356
357 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
358 {
359 int old_ver;
360 int i;
361
362 old_ver = old->node_ver;
363 new->node_ver = !old_ver;
364
365 /* Insert in new table. */
366 for (i = 0; i < old->n_buckets; i++) {
367 struct sw_flow *flow;
368 struct hlist_head *head;
369
370 head = flex_array_get(old->buckets, i);
371
372 hlist_for_each_entry(flow, head, hash_node[old_ver])
373 ovs_flow_tbl_insert(new, flow);
374 }
375 old->keep_flows = true;
376 }
377
378 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
379 {
380 struct flow_table *new_table;
381
382 new_table = ovs_flow_tbl_alloc(n_buckets);
383 if (!new_table)
384 return ERR_PTR(-ENOMEM);
385
386 flow_table_copy_flows(table, new_table);
387
388 return new_table;
389 }
390
391 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
392 {
393 return __flow_tbl_rehash(table, table->n_buckets);
394 }
395
396 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
397 {
398 return __flow_tbl_rehash(table, table->n_buckets * 2);
399 }
400
401 void ovs_flow_free(struct sw_flow *flow)
402 {
403 if (unlikely(!flow))
404 return;
405
406 kfree((struct sf_flow_acts __force *)flow->sf_acts);
407 kmem_cache_free(flow_cache, flow);
408 }
409
410 /* RCU callback used by ovs_flow_deferred_free. */
411 static void rcu_free_flow_callback(struct rcu_head *rcu)
412 {
413 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
414
415 ovs_flow_free(flow);
416 }
417
418 /* Schedules 'flow' to be freed after the next RCU grace period.
419 * The caller must hold rcu_read_lock for this to be sensible. */
420 void ovs_flow_deferred_free(struct sw_flow *flow)
421 {
422 call_rcu(&flow->rcu, rcu_free_flow_callback);
423 }
424
425 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
426 * The caller must hold rcu_read_lock for this to be sensible. */
427 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
428 {
429 kfree_rcu(sf_acts, rcu);
430 }
431
432 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
433 {
434 struct qtag_prefix {
435 __be16 eth_type; /* ETH_P_8021Q */
436 __be16 tci;
437 };
438 struct qtag_prefix *qp;
439
440 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
441 return 0;
442
443 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
444 sizeof(__be16))))
445 return -ENOMEM;
446
447 qp = (struct qtag_prefix *) skb->data;
448 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
449 __skb_pull(skb, sizeof(struct qtag_prefix));
450
451 return 0;
452 }
453
454 static __be16 parse_ethertype(struct sk_buff *skb)
455 {
456 struct llc_snap_hdr {
457 u8 dsap; /* Always 0xAA */
458 u8 ssap; /* Always 0xAA */
459 u8 ctrl;
460 u8 oui[3];
461 __be16 ethertype;
462 };
463 struct llc_snap_hdr *llc;
464 __be16 proto;
465
466 proto = *(__be16 *) skb->data;
467 __skb_pull(skb, sizeof(__be16));
468
469 if (ntohs(proto) >= 1536)
470 return proto;
471
472 if (skb->len < sizeof(struct llc_snap_hdr))
473 return htons(ETH_P_802_2);
474
475 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
476 return htons(0);
477
478 llc = (struct llc_snap_hdr *) skb->data;
479 if (llc->dsap != LLC_SAP_SNAP ||
480 llc->ssap != LLC_SAP_SNAP ||
481 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
482 return htons(ETH_P_802_2);
483
484 __skb_pull(skb, sizeof(struct llc_snap_hdr));
485 return llc->ethertype;
486 }
487
488 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
489 int *key_lenp, int nh_len)
490 {
491 struct icmp6hdr *icmp = icmp6_hdr(skb);
492 int error = 0;
493 int key_len;
494
495 /* The ICMPv6 type and code fields use the 16-bit transport port
496 * fields, so we need to store them in 16-bit network byte order.
497 */
498 key->ipv6.tp.src = htons(icmp->icmp6_type);
499 key->ipv6.tp.dst = htons(icmp->icmp6_code);
500 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
501
502 if (icmp->icmp6_code == 0 &&
503 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
504 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
505 int icmp_len = skb->len - skb_transport_offset(skb);
506 struct nd_msg *nd;
507 int offset;
508
509 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
510
511 /* In order to process neighbor discovery options, we need the
512 * entire packet.
513 */
514 if (unlikely(icmp_len < sizeof(*nd)))
515 goto out;
516 if (unlikely(skb_linearize(skb))) {
517 error = -ENOMEM;
518 goto out;
519 }
520
521 nd = (struct nd_msg *)skb_transport_header(skb);
522 key->ipv6.nd.target = nd->target;
523 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
524
525 icmp_len -= sizeof(*nd);
526 offset = 0;
527 while (icmp_len >= 8) {
528 struct nd_opt_hdr *nd_opt =
529 (struct nd_opt_hdr *)(nd->opt + offset);
530 int opt_len = nd_opt->nd_opt_len * 8;
531
532 if (unlikely(!opt_len || opt_len > icmp_len))
533 goto invalid;
534
535 /* Store the link layer address if the appropriate
536 * option is provided. It is considered an error if
537 * the same link layer option is specified twice.
538 */
539 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
540 && opt_len == 8) {
541 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
542 goto invalid;
543 memcpy(key->ipv6.nd.sll,
544 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
545 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
546 && opt_len == 8) {
547 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
548 goto invalid;
549 memcpy(key->ipv6.nd.tll,
550 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
551 }
552
553 icmp_len -= opt_len;
554 offset += opt_len;
555 }
556 }
557
558 goto out;
559
560 invalid:
561 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
562 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
563 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
564
565 out:
566 *key_lenp = key_len;
567 return error;
568 }
569
570 /**
571 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
572 * @skb: sk_buff that contains the frame, with skb->data pointing to the
573 * Ethernet header
574 * @in_port: port number on which @skb was received.
575 * @key: output flow key
576 * @key_lenp: length of output flow key
577 *
578 * The caller must ensure that skb->len >= ETH_HLEN.
579 *
580 * Returns 0 if successful, otherwise a negative errno value.
581 *
582 * Initializes @skb header pointers as follows:
583 *
584 * - skb->mac_header: the Ethernet header.
585 *
586 * - skb->network_header: just past the Ethernet header, or just past the
587 * VLAN header, to the first byte of the Ethernet payload.
588 *
589 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
590 * on output, then just past the IP header, if one is present and
591 * of a correct length, otherwise the same as skb->network_header.
592 * For other key->dl_type values it is left untouched.
593 */
594 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
595 int *key_lenp)
596 {
597 int error = 0;
598 int key_len = SW_FLOW_KEY_OFFSET(eth);
599 struct ethhdr *eth;
600
601 memset(key, 0, sizeof(*key));
602
603 key->phy.priority = skb->priority;
604 key->phy.in_port = in_port;
605 key->phy.skb_mark = skb->mark;
606
607 skb_reset_mac_header(skb);
608
609 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
610 * header in the linear data area.
611 */
612 eth = eth_hdr(skb);
613 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
614 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
615
616 __skb_pull(skb, 2 * ETH_ALEN);
617
618 if (vlan_tx_tag_present(skb))
619 key->eth.tci = htons(skb->vlan_tci);
620 else if (eth->h_proto == htons(ETH_P_8021Q))
621 if (unlikely(parse_vlan(skb, key)))
622 return -ENOMEM;
623
624 key->eth.type = parse_ethertype(skb);
625 if (unlikely(key->eth.type == htons(0)))
626 return -ENOMEM;
627
628 skb_reset_network_header(skb);
629 __skb_push(skb, skb->data - skb_mac_header(skb));
630
631 /* Network layer. */
632 if (key->eth.type == htons(ETH_P_IP)) {
633 struct iphdr *nh;
634 __be16 offset;
635
636 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
637
638 error = check_iphdr(skb);
639 if (unlikely(error)) {
640 if (error == -EINVAL) {
641 skb->transport_header = skb->network_header;
642 error = 0;
643 }
644 goto out;
645 }
646
647 nh = ip_hdr(skb);
648 key->ipv4.addr.src = nh->saddr;
649 key->ipv4.addr.dst = nh->daddr;
650
651 key->ip.proto = nh->protocol;
652 key->ip.tos = nh->tos;
653 key->ip.ttl = nh->ttl;
654
655 offset = nh->frag_off & htons(IP_OFFSET);
656 if (offset) {
657 key->ip.frag = OVS_FRAG_TYPE_LATER;
658 goto out;
659 }
660 if (nh->frag_off & htons(IP_MF) ||
661 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
662 key->ip.frag = OVS_FRAG_TYPE_FIRST;
663
664 /* Transport layer. */
665 if (key->ip.proto == IPPROTO_TCP) {
666 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
667 if (tcphdr_ok(skb)) {
668 struct tcphdr *tcp = tcp_hdr(skb);
669 key->ipv4.tp.src = tcp->source;
670 key->ipv4.tp.dst = tcp->dest;
671 }
672 } else if (key->ip.proto == IPPROTO_UDP) {
673 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
674 if (udphdr_ok(skb)) {
675 struct udphdr *udp = udp_hdr(skb);
676 key->ipv4.tp.src = udp->source;
677 key->ipv4.tp.dst = udp->dest;
678 }
679 } else if (key->ip.proto == IPPROTO_ICMP) {
680 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
681 if (icmphdr_ok(skb)) {
682 struct icmphdr *icmp = icmp_hdr(skb);
683 /* The ICMP type and code fields use the 16-bit
684 * transport port fields, so we need to store
685 * them in 16-bit network byte order. */
686 key->ipv4.tp.src = htons(icmp->type);
687 key->ipv4.tp.dst = htons(icmp->code);
688 }
689 }
690
691 } else if ((key->eth.type == htons(ETH_P_ARP) ||
692 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
693 struct arp_eth_header *arp;
694
695 arp = (struct arp_eth_header *)skb_network_header(skb);
696
697 if (arp->ar_hrd == htons(ARPHRD_ETHER)
698 && arp->ar_pro == htons(ETH_P_IP)
699 && arp->ar_hln == ETH_ALEN
700 && arp->ar_pln == 4) {
701
702 /* We only match on the lower 8 bits of the opcode. */
703 if (ntohs(arp->ar_op) <= 0xff)
704 key->ip.proto = ntohs(arp->ar_op);
705 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
706 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
707 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
708 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
709 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
710 }
711 } else if (key->eth.type == htons(ETH_P_IPV6)) {
712 int nh_len; /* IPv6 Header + Extensions */
713
714 nh_len = parse_ipv6hdr(skb, key, &key_len);
715 if (unlikely(nh_len < 0)) {
716 if (nh_len == -EINVAL)
717 skb->transport_header = skb->network_header;
718 else
719 error = nh_len;
720 goto out;
721 }
722
723 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
724 goto out;
725 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
726 key->ip.frag = OVS_FRAG_TYPE_FIRST;
727
728 /* Transport layer. */
729 if (key->ip.proto == NEXTHDR_TCP) {
730 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
731 if (tcphdr_ok(skb)) {
732 struct tcphdr *tcp = tcp_hdr(skb);
733 key->ipv6.tp.src = tcp->source;
734 key->ipv6.tp.dst = tcp->dest;
735 }
736 } else if (key->ip.proto == NEXTHDR_UDP) {
737 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
738 if (udphdr_ok(skb)) {
739 struct udphdr *udp = udp_hdr(skb);
740 key->ipv6.tp.src = udp->source;
741 key->ipv6.tp.dst = udp->dest;
742 }
743 } else if (key->ip.proto == NEXTHDR_ICMP) {
744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745 if (icmp6hdr_ok(skb)) {
746 error = parse_icmpv6(skb, key, &key_len, nh_len);
747 if (error < 0)
748 goto out;
749 }
750 }
751 }
752
753 out:
754 *key_lenp = key_len;
755 return error;
756 }
757
758 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
759 {
760 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
761 }
762
763 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
764 struct sw_flow_key *key, int key_len)
765 {
766 struct sw_flow *flow;
767 struct hlist_head *head;
768 u32 hash;
769
770 hash = ovs_flow_hash(key, key_len);
771
772 head = find_bucket(table, hash);
773 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
774
775 if (flow->hash == hash &&
776 !memcmp(&flow->key, key, key_len)) {
777 return flow;
778 }
779 }
780 return NULL;
781 }
782
783 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
784 {
785 struct hlist_head *head;
786
787 head = find_bucket(table, flow->hash);
788 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
789 table->count++;
790 }
791
792 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
793 {
794 hlist_del_rcu(&flow->hash_node[table->node_ver]);
795 table->count--;
796 BUG_ON(table->count < 0);
797 }
798
799 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
800 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
801 [OVS_KEY_ATTR_ENCAP] = -1,
802 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
803 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
804 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
805 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
806 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
807 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
808 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
809 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
810 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
811 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
812 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
813 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
814 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
815 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
816 };
817
818 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
819 const struct nlattr *a[], u32 *attrs)
820 {
821 const struct ovs_key_icmp *icmp_key;
822 const struct ovs_key_tcp *tcp_key;
823 const struct ovs_key_udp *udp_key;
824
825 switch (swkey->ip.proto) {
826 case IPPROTO_TCP:
827 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
828 return -EINVAL;
829 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
830
831 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
832 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
833 swkey->ipv4.tp.src = tcp_key->tcp_src;
834 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
835 break;
836
837 case IPPROTO_UDP:
838 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
839 return -EINVAL;
840 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
841
842 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
843 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
844 swkey->ipv4.tp.src = udp_key->udp_src;
845 swkey->ipv4.tp.dst = udp_key->udp_dst;
846 break;
847
848 case IPPROTO_ICMP:
849 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
850 return -EINVAL;
851 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
852
853 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
854 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
855 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
856 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
857 break;
858 }
859
860 return 0;
861 }
862
863 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
864 const struct nlattr *a[], u32 *attrs)
865 {
866 const struct ovs_key_icmpv6 *icmpv6_key;
867 const struct ovs_key_tcp *tcp_key;
868 const struct ovs_key_udp *udp_key;
869
870 switch (swkey->ip.proto) {
871 case IPPROTO_TCP:
872 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
873 return -EINVAL;
874 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
875
876 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
877 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
878 swkey->ipv6.tp.src = tcp_key->tcp_src;
879 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
880 break;
881
882 case IPPROTO_UDP:
883 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
884 return -EINVAL;
885 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
886
887 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
888 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
889 swkey->ipv6.tp.src = udp_key->udp_src;
890 swkey->ipv6.tp.dst = udp_key->udp_dst;
891 break;
892
893 case IPPROTO_ICMPV6:
894 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
895 return -EINVAL;
896 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
897
898 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
899 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
900 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
901 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
902
903 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
904 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
905 const struct ovs_key_nd *nd_key;
906
907 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
908 return -EINVAL;
909 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
910
911 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
912 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
913 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
914 sizeof(swkey->ipv6.nd.target));
915 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
916 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
917 }
918 break;
919 }
920
921 return 0;
922 }
923
924 static int parse_flow_nlattrs(const struct nlattr *attr,
925 const struct nlattr *a[], u32 *attrsp)
926 {
927 const struct nlattr *nla;
928 u32 attrs;
929 int rem;
930
931 attrs = 0;
932 nla_for_each_nested(nla, attr, rem) {
933 u16 type = nla_type(nla);
934 int expected_len;
935
936 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
937 return -EINVAL;
938
939 expected_len = ovs_key_lens[type];
940 if (nla_len(nla) != expected_len && expected_len != -1)
941 return -EINVAL;
942
943 attrs |= 1 << type;
944 a[type] = nla;
945 }
946 if (rem)
947 return -EINVAL;
948
949 *attrsp = attrs;
950 return 0;
951 }
952
953 /**
954 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
955 * @swkey: receives the extracted flow key.
956 * @key_lenp: number of bytes used in @swkey.
957 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
958 * sequence.
959 */
960 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
961 const struct nlattr *attr)
962 {
963 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
964 const struct ovs_key_ethernet *eth_key;
965 int key_len;
966 u32 attrs;
967 int err;
968
969 memset(swkey, 0, sizeof(struct sw_flow_key));
970 key_len = SW_FLOW_KEY_OFFSET(eth);
971
972 err = parse_flow_nlattrs(attr, a, &attrs);
973 if (err)
974 return err;
975
976 /* Metadata attributes. */
977 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
978 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
979 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
980 }
981 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
982 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
983 if (in_port >= DP_MAX_PORTS)
984 return -EINVAL;
985 swkey->phy.in_port = in_port;
986 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
987 } else {
988 swkey->phy.in_port = DP_MAX_PORTS;
989 }
990 if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
991 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
992 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
993 }
994
995 /* Data attributes. */
996 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
997 return -EINVAL;
998 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
999
1000 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1001 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1002 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1003
1004 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1005 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1006 const struct nlattr *encap;
1007 __be16 tci;
1008
1009 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1010 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1011 (1 << OVS_KEY_ATTR_ENCAP)))
1012 return -EINVAL;
1013
1014 encap = a[OVS_KEY_ATTR_ENCAP];
1015 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1016 if (tci & htons(VLAN_TAG_PRESENT)) {
1017 swkey->eth.tci = tci;
1018
1019 err = parse_flow_nlattrs(encap, a, &attrs);
1020 if (err)
1021 return err;
1022 } else if (!tci) {
1023 /* Corner case for truncated 802.1Q header. */
1024 if (nla_len(encap))
1025 return -EINVAL;
1026
1027 swkey->eth.type = htons(ETH_P_8021Q);
1028 *key_lenp = key_len;
1029 return 0;
1030 } else {
1031 return -EINVAL;
1032 }
1033 }
1034
1035 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1036 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1037 if (ntohs(swkey->eth.type) < 1536)
1038 return -EINVAL;
1039 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1040 } else {
1041 swkey->eth.type = htons(ETH_P_802_2);
1042 }
1043
1044 if (swkey->eth.type == htons(ETH_P_IP)) {
1045 const struct ovs_key_ipv4 *ipv4_key;
1046
1047 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1048 return -EINVAL;
1049 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1050
1051 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1052 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1053 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1054 return -EINVAL;
1055 swkey->ip.proto = ipv4_key->ipv4_proto;
1056 swkey->ip.tos = ipv4_key->ipv4_tos;
1057 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1058 swkey->ip.frag = ipv4_key->ipv4_frag;
1059 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1060 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1061
1062 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1063 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1064 if (err)
1065 return err;
1066 }
1067 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1068 const struct ovs_key_ipv6 *ipv6_key;
1069
1070 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1071 return -EINVAL;
1072 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1073
1074 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1075 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1076 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1077 return -EINVAL;
1078 swkey->ipv6.label = ipv6_key->ipv6_label;
1079 swkey->ip.proto = ipv6_key->ipv6_proto;
1080 swkey->ip.tos = ipv6_key->ipv6_tclass;
1081 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1082 swkey->ip.frag = ipv6_key->ipv6_frag;
1083 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1084 sizeof(swkey->ipv6.addr.src));
1085 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1086 sizeof(swkey->ipv6.addr.dst));
1087
1088 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1089 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1090 if (err)
1091 return err;
1092 }
1093 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1094 swkey->eth.type == htons(ETH_P_RARP)) {
1095 const struct ovs_key_arp *arp_key;
1096
1097 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1098 return -EINVAL;
1099 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1100
1101 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1102 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1103 swkey->ipv4.addr.src = arp_key->arp_sip;
1104 swkey->ipv4.addr.dst = arp_key->arp_tip;
1105 if (arp_key->arp_op & htons(0xff00))
1106 return -EINVAL;
1107 swkey->ip.proto = ntohs(arp_key->arp_op);
1108 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1109 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1110 }
1111
1112 if (attrs)
1113 return -EINVAL;
1114 *key_lenp = key_len;
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1121 * @priority: receives the skb priority
1122 * @mark: receives the skb mark
1123 * @in_port: receives the extracted input port.
1124 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1125 * sequence.
1126 *
1127 * This parses a series of Netlink attributes that form a flow key, which must
1128 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1129 * get the metadata, that is, the parts of the flow key that cannot be
1130 * extracted from the packet itself.
1131 */
1132 int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port,
1133 const struct nlattr *attr)
1134 {
1135 const struct nlattr *nla;
1136 int rem;
1137
1138 *in_port = DP_MAX_PORTS;
1139 *priority = 0;
1140 *mark = 0;
1141
1142 nla_for_each_nested(nla, attr, rem) {
1143 int type = nla_type(nla);
1144
1145 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1146 if (nla_len(nla) != ovs_key_lens[type])
1147 return -EINVAL;
1148
1149 switch (type) {
1150 case OVS_KEY_ATTR_PRIORITY:
1151 *priority = nla_get_u32(nla);
1152 break;
1153
1154 case OVS_KEY_ATTR_IN_PORT:
1155 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1156 return -EINVAL;
1157 *in_port = nla_get_u32(nla);
1158 break;
1159
1160 case OVS_KEY_ATTR_SKB_MARK:
1161 *mark = nla_get_u32(nla);
1162 break;
1163 }
1164 }
1165 }
1166 if (rem)
1167 return -EINVAL;
1168 return 0;
1169 }
1170
1171 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1172 {
1173 struct ovs_key_ethernet *eth_key;
1174 struct nlattr *nla, *encap;
1175
1176 if (swkey->phy.priority &&
1177 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1178 goto nla_put_failure;
1179
1180 if (swkey->phy.in_port != DP_MAX_PORTS &&
1181 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1182 goto nla_put_failure;
1183
1184 if (swkey->phy.skb_mark &&
1185 nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
1186 goto nla_put_failure;
1187
1188 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1189 if (!nla)
1190 goto nla_put_failure;
1191 eth_key = nla_data(nla);
1192 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1193 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1194
1195 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1196 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1197 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1198 goto nla_put_failure;
1199 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1200 if (!swkey->eth.tci)
1201 goto unencap;
1202 } else {
1203 encap = NULL;
1204 }
1205
1206 if (swkey->eth.type == htons(ETH_P_802_2))
1207 goto unencap;
1208
1209 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1210 goto nla_put_failure;
1211
1212 if (swkey->eth.type == htons(ETH_P_IP)) {
1213 struct ovs_key_ipv4 *ipv4_key;
1214
1215 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1216 if (!nla)
1217 goto nla_put_failure;
1218 ipv4_key = nla_data(nla);
1219 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1220 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1221 ipv4_key->ipv4_proto = swkey->ip.proto;
1222 ipv4_key->ipv4_tos = swkey->ip.tos;
1223 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1224 ipv4_key->ipv4_frag = swkey->ip.frag;
1225 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1226 struct ovs_key_ipv6 *ipv6_key;
1227
1228 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1229 if (!nla)
1230 goto nla_put_failure;
1231 ipv6_key = nla_data(nla);
1232 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1233 sizeof(ipv6_key->ipv6_src));
1234 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1235 sizeof(ipv6_key->ipv6_dst));
1236 ipv6_key->ipv6_label = swkey->ipv6.label;
1237 ipv6_key->ipv6_proto = swkey->ip.proto;
1238 ipv6_key->ipv6_tclass = swkey->ip.tos;
1239 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1240 ipv6_key->ipv6_frag = swkey->ip.frag;
1241 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1242 swkey->eth.type == htons(ETH_P_RARP)) {
1243 struct ovs_key_arp *arp_key;
1244
1245 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1246 if (!nla)
1247 goto nla_put_failure;
1248 arp_key = nla_data(nla);
1249 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1250 arp_key->arp_sip = swkey->ipv4.addr.src;
1251 arp_key->arp_tip = swkey->ipv4.addr.dst;
1252 arp_key->arp_op = htons(swkey->ip.proto);
1253 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1254 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1255 }
1256
1257 if ((swkey->eth.type == htons(ETH_P_IP) ||
1258 swkey->eth.type == htons(ETH_P_IPV6)) &&
1259 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1260
1261 if (swkey->ip.proto == IPPROTO_TCP) {
1262 struct ovs_key_tcp *tcp_key;
1263
1264 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1265 if (!nla)
1266 goto nla_put_failure;
1267 tcp_key = nla_data(nla);
1268 if (swkey->eth.type == htons(ETH_P_IP)) {
1269 tcp_key->tcp_src = swkey->ipv4.tp.src;
1270 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1271 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1272 tcp_key->tcp_src = swkey->ipv6.tp.src;
1273 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1274 }
1275 } else if (swkey->ip.proto == IPPROTO_UDP) {
1276 struct ovs_key_udp *udp_key;
1277
1278 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1279 if (!nla)
1280 goto nla_put_failure;
1281 udp_key = nla_data(nla);
1282 if (swkey->eth.type == htons(ETH_P_IP)) {
1283 udp_key->udp_src = swkey->ipv4.tp.src;
1284 udp_key->udp_dst = swkey->ipv4.tp.dst;
1285 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1286 udp_key->udp_src = swkey->ipv6.tp.src;
1287 udp_key->udp_dst = swkey->ipv6.tp.dst;
1288 }
1289 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1290 swkey->ip.proto == IPPROTO_ICMP) {
1291 struct ovs_key_icmp *icmp_key;
1292
1293 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1294 if (!nla)
1295 goto nla_put_failure;
1296 icmp_key = nla_data(nla);
1297 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1298 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1299 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1300 swkey->ip.proto == IPPROTO_ICMPV6) {
1301 struct ovs_key_icmpv6 *icmpv6_key;
1302
1303 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1304 sizeof(*icmpv6_key));
1305 if (!nla)
1306 goto nla_put_failure;
1307 icmpv6_key = nla_data(nla);
1308 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1309 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1310
1311 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1312 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1313 struct ovs_key_nd *nd_key;
1314
1315 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1316 if (!nla)
1317 goto nla_put_failure;
1318 nd_key = nla_data(nla);
1319 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1320 sizeof(nd_key->nd_target));
1321 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1322 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1323 }
1324 }
1325 }
1326
1327 unencap:
1328 if (encap)
1329 nla_nest_end(skb, encap);
1330
1331 return 0;
1332
1333 nla_put_failure:
1334 return -EMSGSIZE;
1335 }
1336
1337 /* Initializes the flow module.
1338 * Returns zero if successful or a negative error code. */
1339 int ovs_flow_init(void)
1340 {
1341 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1342 0, NULL);
1343 if (flow_cache == NULL)
1344 return -ENOMEM;
1345
1346 return 0;
1347 }
1348
1349 /* Uninitializes the flow module. */
1350 void ovs_flow_exit(void)
1351 {
1352 kmem_cache_destroy(flow_cache);
1353 }