Merge branch 'fixes' of git://git.infradead.org/users/vkoul/slave-dma
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <asm/cacheflush.h>
61
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 #include <net/scm.h>
65 #include <net/netlink.h>
66
67 #include "af_netlink.h"
68
69 struct listeners {
70 struct rcu_head rcu;
71 unsigned long masks[0];
72 };
73
74 /* state bits */
75 #define NETLINK_CONGESTED 0x0
76
77 /* flags */
78 #define NETLINK_KERNEL_SOCKET 0x1
79 #define NETLINK_RECV_PKTINFO 0x2
80 #define NETLINK_BROADCAST_SEND_ERROR 0x4
81 #define NETLINK_RECV_NO_ENOBUFS 0x8
82
83 static inline int netlink_is_kernel(struct sock *sk)
84 {
85 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
86 }
87
88 struct netlink_table *nl_table;
89 EXPORT_SYMBOL_GPL(nl_table);
90
91 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
92
93 static int netlink_dump(struct sock *sk);
94 static void netlink_skb_destructor(struct sk_buff *skb);
95
96 DEFINE_RWLOCK(nl_table_lock);
97 EXPORT_SYMBOL_GPL(nl_table_lock);
98 static atomic_t nl_table_users = ATOMIC_INIT(0);
99
100 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
101
102 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
103
104 static inline u32 netlink_group_mask(u32 group)
105 {
106 return group ? 1 << (group - 1) : 0;
107 }
108
109 static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid)
110 {
111 return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask];
112 }
113
114 static void netlink_overrun(struct sock *sk)
115 {
116 struct netlink_sock *nlk = nlk_sk(sk);
117
118 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
119 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
120 sk->sk_err = ENOBUFS;
121 sk->sk_error_report(sk);
122 }
123 }
124 atomic_inc(&sk->sk_drops);
125 }
126
127 static void netlink_rcv_wake(struct sock *sk)
128 {
129 struct netlink_sock *nlk = nlk_sk(sk);
130
131 if (skb_queue_empty(&sk->sk_receive_queue))
132 clear_bit(NETLINK_CONGESTED, &nlk->state);
133 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
134 wake_up_interruptible(&nlk->wait);
135 }
136
137 #ifdef CONFIG_NETLINK_MMAP
138 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
139 {
140 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
141 }
142
143 static bool netlink_rx_is_mmaped(struct sock *sk)
144 {
145 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
146 }
147
148 static bool netlink_tx_is_mmaped(struct sock *sk)
149 {
150 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
151 }
152
153 static __pure struct page *pgvec_to_page(const void *addr)
154 {
155 if (is_vmalloc_addr(addr))
156 return vmalloc_to_page(addr);
157 else
158 return virt_to_page(addr);
159 }
160
161 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
162 {
163 unsigned int i;
164
165 for (i = 0; i < len; i++) {
166 if (pg_vec[i] != NULL) {
167 if (is_vmalloc_addr(pg_vec[i]))
168 vfree(pg_vec[i]);
169 else
170 free_pages((unsigned long)pg_vec[i], order);
171 }
172 }
173 kfree(pg_vec);
174 }
175
176 static void *alloc_one_pg_vec_page(unsigned long order)
177 {
178 void *buffer;
179 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
180 __GFP_NOWARN | __GFP_NORETRY;
181
182 buffer = (void *)__get_free_pages(gfp_flags, order);
183 if (buffer != NULL)
184 return buffer;
185
186 buffer = vzalloc((1 << order) * PAGE_SIZE);
187 if (buffer != NULL)
188 return buffer;
189
190 gfp_flags &= ~__GFP_NORETRY;
191 return (void *)__get_free_pages(gfp_flags, order);
192 }
193
194 static void **alloc_pg_vec(struct netlink_sock *nlk,
195 struct nl_mmap_req *req, unsigned int order)
196 {
197 unsigned int block_nr = req->nm_block_nr;
198 unsigned int i;
199 void **pg_vec, *ptr;
200
201 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
202 if (pg_vec == NULL)
203 return NULL;
204
205 for (i = 0; i < block_nr; i++) {
206 pg_vec[i] = ptr = alloc_one_pg_vec_page(order);
207 if (pg_vec[i] == NULL)
208 goto err1;
209 }
210
211 return pg_vec;
212 err1:
213 free_pg_vec(pg_vec, order, block_nr);
214 return NULL;
215 }
216
217 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
218 bool closing, bool tx_ring)
219 {
220 struct netlink_sock *nlk = nlk_sk(sk);
221 struct netlink_ring *ring;
222 struct sk_buff_head *queue;
223 void **pg_vec = NULL;
224 unsigned int order = 0;
225 int err;
226
227 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
228 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
229
230 if (!closing) {
231 if (atomic_read(&nlk->mapped))
232 return -EBUSY;
233 if (atomic_read(&ring->pending))
234 return -EBUSY;
235 }
236
237 if (req->nm_block_nr) {
238 if (ring->pg_vec != NULL)
239 return -EBUSY;
240
241 if ((int)req->nm_block_size <= 0)
242 return -EINVAL;
243 if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE))
244 return -EINVAL;
245 if (req->nm_frame_size < NL_MMAP_HDRLEN)
246 return -EINVAL;
247 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
248 return -EINVAL;
249
250 ring->frames_per_block = req->nm_block_size /
251 req->nm_frame_size;
252 if (ring->frames_per_block == 0)
253 return -EINVAL;
254 if (ring->frames_per_block * req->nm_block_nr !=
255 req->nm_frame_nr)
256 return -EINVAL;
257
258 order = get_order(req->nm_block_size);
259 pg_vec = alloc_pg_vec(nlk, req, order);
260 if (pg_vec == NULL)
261 return -ENOMEM;
262 } else {
263 if (req->nm_frame_nr)
264 return -EINVAL;
265 }
266
267 err = -EBUSY;
268 mutex_lock(&nlk->pg_vec_lock);
269 if (closing || atomic_read(&nlk->mapped) == 0) {
270 err = 0;
271 spin_lock_bh(&queue->lock);
272
273 ring->frame_max = req->nm_frame_nr - 1;
274 ring->head = 0;
275 ring->frame_size = req->nm_frame_size;
276 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
277
278 swap(ring->pg_vec_len, req->nm_block_nr);
279 swap(ring->pg_vec_order, order);
280 swap(ring->pg_vec, pg_vec);
281
282 __skb_queue_purge(queue);
283 spin_unlock_bh(&queue->lock);
284
285 WARN_ON(atomic_read(&nlk->mapped));
286 }
287 mutex_unlock(&nlk->pg_vec_lock);
288
289 if (pg_vec)
290 free_pg_vec(pg_vec, order, req->nm_block_nr);
291 return err;
292 }
293
294 static void netlink_mm_open(struct vm_area_struct *vma)
295 {
296 struct file *file = vma->vm_file;
297 struct socket *sock = file->private_data;
298 struct sock *sk = sock->sk;
299
300 if (sk)
301 atomic_inc(&nlk_sk(sk)->mapped);
302 }
303
304 static void netlink_mm_close(struct vm_area_struct *vma)
305 {
306 struct file *file = vma->vm_file;
307 struct socket *sock = file->private_data;
308 struct sock *sk = sock->sk;
309
310 if (sk)
311 atomic_dec(&nlk_sk(sk)->mapped);
312 }
313
314 static const struct vm_operations_struct netlink_mmap_ops = {
315 .open = netlink_mm_open,
316 .close = netlink_mm_close,
317 };
318
319 static int netlink_mmap(struct file *file, struct socket *sock,
320 struct vm_area_struct *vma)
321 {
322 struct sock *sk = sock->sk;
323 struct netlink_sock *nlk = nlk_sk(sk);
324 struct netlink_ring *ring;
325 unsigned long start, size, expected;
326 unsigned int i;
327 int err = -EINVAL;
328
329 if (vma->vm_pgoff)
330 return -EINVAL;
331
332 mutex_lock(&nlk->pg_vec_lock);
333
334 expected = 0;
335 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
336 if (ring->pg_vec == NULL)
337 continue;
338 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
339 }
340
341 if (expected == 0)
342 goto out;
343
344 size = vma->vm_end - vma->vm_start;
345 if (size != expected)
346 goto out;
347
348 start = vma->vm_start;
349 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
350 if (ring->pg_vec == NULL)
351 continue;
352
353 for (i = 0; i < ring->pg_vec_len; i++) {
354 struct page *page;
355 void *kaddr = ring->pg_vec[i];
356 unsigned int pg_num;
357
358 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
359 page = pgvec_to_page(kaddr);
360 err = vm_insert_page(vma, start, page);
361 if (err < 0)
362 goto out;
363 start += PAGE_SIZE;
364 kaddr += PAGE_SIZE;
365 }
366 }
367 }
368
369 atomic_inc(&nlk->mapped);
370 vma->vm_ops = &netlink_mmap_ops;
371 err = 0;
372 out:
373 mutex_unlock(&nlk->pg_vec_lock);
374 return 0;
375 }
376
377 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
378 {
379 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
380 struct page *p_start, *p_end;
381
382 /* First page is flushed through netlink_{get,set}_status */
383 p_start = pgvec_to_page(hdr + PAGE_SIZE);
384 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
385 while (p_start <= p_end) {
386 flush_dcache_page(p_start);
387 p_start++;
388 }
389 #endif
390 }
391
392 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
393 {
394 smp_rmb();
395 flush_dcache_page(pgvec_to_page(hdr));
396 return hdr->nm_status;
397 }
398
399 static void netlink_set_status(struct nl_mmap_hdr *hdr,
400 enum nl_mmap_status status)
401 {
402 hdr->nm_status = status;
403 flush_dcache_page(pgvec_to_page(hdr));
404 smp_wmb();
405 }
406
407 static struct nl_mmap_hdr *
408 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
409 {
410 unsigned int pg_vec_pos, frame_off;
411
412 pg_vec_pos = pos / ring->frames_per_block;
413 frame_off = pos % ring->frames_per_block;
414
415 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
416 }
417
418 static struct nl_mmap_hdr *
419 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
420 enum nl_mmap_status status)
421 {
422 struct nl_mmap_hdr *hdr;
423
424 hdr = __netlink_lookup_frame(ring, pos);
425 if (netlink_get_status(hdr) != status)
426 return NULL;
427
428 return hdr;
429 }
430
431 static struct nl_mmap_hdr *
432 netlink_current_frame(const struct netlink_ring *ring,
433 enum nl_mmap_status status)
434 {
435 return netlink_lookup_frame(ring, ring->head, status);
436 }
437
438 static struct nl_mmap_hdr *
439 netlink_previous_frame(const struct netlink_ring *ring,
440 enum nl_mmap_status status)
441 {
442 unsigned int prev;
443
444 prev = ring->head ? ring->head - 1 : ring->frame_max;
445 return netlink_lookup_frame(ring, prev, status);
446 }
447
448 static void netlink_increment_head(struct netlink_ring *ring)
449 {
450 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
451 }
452
453 static void netlink_forward_ring(struct netlink_ring *ring)
454 {
455 unsigned int head = ring->head, pos = head;
456 const struct nl_mmap_hdr *hdr;
457
458 do {
459 hdr = __netlink_lookup_frame(ring, pos);
460 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
461 break;
462 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
463 break;
464 netlink_increment_head(ring);
465 } while (ring->head != head);
466 }
467
468 static bool netlink_dump_space(struct netlink_sock *nlk)
469 {
470 struct netlink_ring *ring = &nlk->rx_ring;
471 struct nl_mmap_hdr *hdr;
472 unsigned int n;
473
474 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
475 if (hdr == NULL)
476 return false;
477
478 n = ring->head + ring->frame_max / 2;
479 if (n > ring->frame_max)
480 n -= ring->frame_max;
481
482 hdr = __netlink_lookup_frame(ring, n);
483
484 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
485 }
486
487 static unsigned int netlink_poll(struct file *file, struct socket *sock,
488 poll_table *wait)
489 {
490 struct sock *sk = sock->sk;
491 struct netlink_sock *nlk = nlk_sk(sk);
492 unsigned int mask;
493 int err;
494
495 if (nlk->rx_ring.pg_vec != NULL) {
496 /* Memory mapped sockets don't call recvmsg(), so flow control
497 * for dumps is performed here. A dump is allowed to continue
498 * if at least half the ring is unused.
499 */
500 while (nlk->cb != NULL && netlink_dump_space(nlk)) {
501 err = netlink_dump(sk);
502 if (err < 0) {
503 sk->sk_err = err;
504 sk->sk_error_report(sk);
505 break;
506 }
507 }
508 netlink_rcv_wake(sk);
509 }
510
511 mask = datagram_poll(file, sock, wait);
512
513 spin_lock_bh(&sk->sk_receive_queue.lock);
514 if (nlk->rx_ring.pg_vec) {
515 netlink_forward_ring(&nlk->rx_ring);
516 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
517 mask |= POLLIN | POLLRDNORM;
518 }
519 spin_unlock_bh(&sk->sk_receive_queue.lock);
520
521 spin_lock_bh(&sk->sk_write_queue.lock);
522 if (nlk->tx_ring.pg_vec) {
523 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
524 mask |= POLLOUT | POLLWRNORM;
525 }
526 spin_unlock_bh(&sk->sk_write_queue.lock);
527
528 return mask;
529 }
530
531 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
532 {
533 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
534 }
535
536 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
537 struct netlink_ring *ring,
538 struct nl_mmap_hdr *hdr)
539 {
540 unsigned int size;
541 void *data;
542
543 size = ring->frame_size - NL_MMAP_HDRLEN;
544 data = (void *)hdr + NL_MMAP_HDRLEN;
545
546 skb->head = data;
547 skb->data = data;
548 skb_reset_tail_pointer(skb);
549 skb->end = skb->tail + size;
550 skb->len = 0;
551
552 skb->destructor = netlink_skb_destructor;
553 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
554 NETLINK_CB(skb).sk = sk;
555 }
556
557 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
558 u32 dst_portid, u32 dst_group,
559 struct sock_iocb *siocb)
560 {
561 struct netlink_sock *nlk = nlk_sk(sk);
562 struct netlink_ring *ring;
563 struct nl_mmap_hdr *hdr;
564 struct sk_buff *skb;
565 unsigned int maxlen;
566 bool excl = true;
567 int err = 0, len = 0;
568
569 /* Netlink messages are validated by the receiver before processing.
570 * In order to avoid userspace changing the contents of the message
571 * after validation, the socket and the ring may only be used by a
572 * single process, otherwise we fall back to copying.
573 */
574 if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 ||
575 atomic_read(&nlk->mapped) > 1)
576 excl = false;
577
578 mutex_lock(&nlk->pg_vec_lock);
579
580 ring = &nlk->tx_ring;
581 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
582
583 do {
584 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
585 if (hdr == NULL) {
586 if (!(msg->msg_flags & MSG_DONTWAIT) &&
587 atomic_read(&nlk->tx_ring.pending))
588 schedule();
589 continue;
590 }
591 if (hdr->nm_len > maxlen) {
592 err = -EINVAL;
593 goto out;
594 }
595
596 netlink_frame_flush_dcache(hdr);
597
598 if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
599 skb = alloc_skb_head(GFP_KERNEL);
600 if (skb == NULL) {
601 err = -ENOBUFS;
602 goto out;
603 }
604 sock_hold(sk);
605 netlink_ring_setup_skb(skb, sk, ring, hdr);
606 NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
607 __skb_put(skb, hdr->nm_len);
608 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
609 atomic_inc(&ring->pending);
610 } else {
611 skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
612 if (skb == NULL) {
613 err = -ENOBUFS;
614 goto out;
615 }
616 __skb_put(skb, hdr->nm_len);
617 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
618 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
619 }
620
621 netlink_increment_head(ring);
622
623 NETLINK_CB(skb).portid = nlk->portid;
624 NETLINK_CB(skb).dst_group = dst_group;
625 NETLINK_CB(skb).creds = siocb->scm->creds;
626
627 err = security_netlink_send(sk, skb);
628 if (err) {
629 kfree_skb(skb);
630 goto out;
631 }
632
633 if (unlikely(dst_group)) {
634 atomic_inc(&skb->users);
635 netlink_broadcast(sk, skb, dst_portid, dst_group,
636 GFP_KERNEL);
637 }
638 err = netlink_unicast(sk, skb, dst_portid,
639 msg->msg_flags & MSG_DONTWAIT);
640 if (err < 0)
641 goto out;
642 len += err;
643
644 } while (hdr != NULL ||
645 (!(msg->msg_flags & MSG_DONTWAIT) &&
646 atomic_read(&nlk->tx_ring.pending)));
647
648 if (len > 0)
649 err = len;
650 out:
651 mutex_unlock(&nlk->pg_vec_lock);
652 return err;
653 }
654
655 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
656 {
657 struct nl_mmap_hdr *hdr;
658
659 hdr = netlink_mmap_hdr(skb);
660 hdr->nm_len = skb->len;
661 hdr->nm_group = NETLINK_CB(skb).dst_group;
662 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
663 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
664 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
665 netlink_frame_flush_dcache(hdr);
666 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
667
668 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
669 kfree_skb(skb);
670 }
671
672 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
673 {
674 struct netlink_sock *nlk = nlk_sk(sk);
675 struct netlink_ring *ring = &nlk->rx_ring;
676 struct nl_mmap_hdr *hdr;
677
678 spin_lock_bh(&sk->sk_receive_queue.lock);
679 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
680 if (hdr == NULL) {
681 spin_unlock_bh(&sk->sk_receive_queue.lock);
682 kfree_skb(skb);
683 netlink_overrun(sk);
684 return;
685 }
686 netlink_increment_head(ring);
687 __skb_queue_tail(&sk->sk_receive_queue, skb);
688 spin_unlock_bh(&sk->sk_receive_queue.lock);
689
690 hdr->nm_len = skb->len;
691 hdr->nm_group = NETLINK_CB(skb).dst_group;
692 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
693 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
694 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
695 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
696 }
697
698 #else /* CONFIG_NETLINK_MMAP */
699 #define netlink_skb_is_mmaped(skb) false
700 #define netlink_rx_is_mmaped(sk) false
701 #define netlink_tx_is_mmaped(sk) false
702 #define netlink_mmap sock_no_mmap
703 #define netlink_poll datagram_poll
704 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
705 #endif /* CONFIG_NETLINK_MMAP */
706
707 static void netlink_destroy_callback(struct netlink_callback *cb)
708 {
709 kfree_skb(cb->skb);
710 kfree(cb);
711 }
712
713 static void netlink_consume_callback(struct netlink_callback *cb)
714 {
715 consume_skb(cb->skb);
716 kfree(cb);
717 }
718
719 static void netlink_skb_destructor(struct sk_buff *skb)
720 {
721 #ifdef CONFIG_NETLINK_MMAP
722 struct nl_mmap_hdr *hdr;
723 struct netlink_ring *ring;
724 struct sock *sk;
725
726 /* If a packet from the kernel to userspace was freed because of an
727 * error without being delivered to userspace, the kernel must reset
728 * the status. In the direction userspace to kernel, the status is
729 * always reset here after the packet was processed and freed.
730 */
731 if (netlink_skb_is_mmaped(skb)) {
732 hdr = netlink_mmap_hdr(skb);
733 sk = NETLINK_CB(skb).sk;
734
735 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
736 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
737 ring = &nlk_sk(sk)->tx_ring;
738 } else {
739 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
740 hdr->nm_len = 0;
741 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
742 }
743 ring = &nlk_sk(sk)->rx_ring;
744 }
745
746 WARN_ON(atomic_read(&ring->pending) == 0);
747 atomic_dec(&ring->pending);
748 sock_put(sk);
749
750 skb->head = NULL;
751 }
752 #endif
753 if (skb->sk != NULL)
754 sock_rfree(skb);
755 }
756
757 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
758 {
759 WARN_ON(skb->sk != NULL);
760 skb->sk = sk;
761 skb->destructor = netlink_skb_destructor;
762 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
763 sk_mem_charge(sk, skb->truesize);
764 }
765
766 static void netlink_sock_destruct(struct sock *sk)
767 {
768 struct netlink_sock *nlk = nlk_sk(sk);
769
770 if (nlk->cb) {
771 if (nlk->cb->done)
772 nlk->cb->done(nlk->cb);
773
774 module_put(nlk->cb->module);
775 netlink_destroy_callback(nlk->cb);
776 }
777
778 skb_queue_purge(&sk->sk_receive_queue);
779 #ifdef CONFIG_NETLINK_MMAP
780 if (1) {
781 struct nl_mmap_req req;
782
783 memset(&req, 0, sizeof(req));
784 if (nlk->rx_ring.pg_vec)
785 netlink_set_ring(sk, &req, true, false);
786 memset(&req, 0, sizeof(req));
787 if (nlk->tx_ring.pg_vec)
788 netlink_set_ring(sk, &req, true, true);
789 }
790 #endif /* CONFIG_NETLINK_MMAP */
791
792 if (!sock_flag(sk, SOCK_DEAD)) {
793 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
794 return;
795 }
796
797 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
798 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
799 WARN_ON(nlk_sk(sk)->groups);
800 }
801
802 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
803 * SMP. Look, when several writers sleep and reader wakes them up, all but one
804 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
805 * this, _but_ remember, it adds useless work on UP machines.
806 */
807
808 void netlink_table_grab(void)
809 __acquires(nl_table_lock)
810 {
811 might_sleep();
812
813 write_lock_irq(&nl_table_lock);
814
815 if (atomic_read(&nl_table_users)) {
816 DECLARE_WAITQUEUE(wait, current);
817
818 add_wait_queue_exclusive(&nl_table_wait, &wait);
819 for (;;) {
820 set_current_state(TASK_UNINTERRUPTIBLE);
821 if (atomic_read(&nl_table_users) == 0)
822 break;
823 write_unlock_irq(&nl_table_lock);
824 schedule();
825 write_lock_irq(&nl_table_lock);
826 }
827
828 __set_current_state(TASK_RUNNING);
829 remove_wait_queue(&nl_table_wait, &wait);
830 }
831 }
832
833 void netlink_table_ungrab(void)
834 __releases(nl_table_lock)
835 {
836 write_unlock_irq(&nl_table_lock);
837 wake_up(&nl_table_wait);
838 }
839
840 static inline void
841 netlink_lock_table(void)
842 {
843 /* read_lock() synchronizes us to netlink_table_grab */
844
845 read_lock(&nl_table_lock);
846 atomic_inc(&nl_table_users);
847 read_unlock(&nl_table_lock);
848 }
849
850 static inline void
851 netlink_unlock_table(void)
852 {
853 if (atomic_dec_and_test(&nl_table_users))
854 wake_up(&nl_table_wait);
855 }
856
857 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
858 {
859 struct nl_portid_hash *hash = &nl_table[protocol].hash;
860 struct hlist_head *head;
861 struct sock *sk;
862
863 read_lock(&nl_table_lock);
864 head = nl_portid_hashfn(hash, portid);
865 sk_for_each(sk, head) {
866 if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->portid == portid)) {
867 sock_hold(sk);
868 goto found;
869 }
870 }
871 sk = NULL;
872 found:
873 read_unlock(&nl_table_lock);
874 return sk;
875 }
876
877 static struct hlist_head *nl_portid_hash_zalloc(size_t size)
878 {
879 if (size <= PAGE_SIZE)
880 return kzalloc(size, GFP_ATOMIC);
881 else
882 return (struct hlist_head *)
883 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
884 get_order(size));
885 }
886
887 static void nl_portid_hash_free(struct hlist_head *table, size_t size)
888 {
889 if (size <= PAGE_SIZE)
890 kfree(table);
891 else
892 free_pages((unsigned long)table, get_order(size));
893 }
894
895 static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow)
896 {
897 unsigned int omask, mask, shift;
898 size_t osize, size;
899 struct hlist_head *otable, *table;
900 int i;
901
902 omask = mask = hash->mask;
903 osize = size = (mask + 1) * sizeof(*table);
904 shift = hash->shift;
905
906 if (grow) {
907 if (++shift > hash->max_shift)
908 return 0;
909 mask = mask * 2 + 1;
910 size *= 2;
911 }
912
913 table = nl_portid_hash_zalloc(size);
914 if (!table)
915 return 0;
916
917 otable = hash->table;
918 hash->table = table;
919 hash->mask = mask;
920 hash->shift = shift;
921 get_random_bytes(&hash->rnd, sizeof(hash->rnd));
922
923 for (i = 0; i <= omask; i++) {
924 struct sock *sk;
925 struct hlist_node *tmp;
926
927 sk_for_each_safe(sk, tmp, &otable[i])
928 __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid));
929 }
930
931 nl_portid_hash_free(otable, osize);
932 hash->rehash_time = jiffies + 10 * 60 * HZ;
933 return 1;
934 }
935
936 static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len)
937 {
938 int avg = hash->entries >> hash->shift;
939
940 if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1))
941 return 1;
942
943 if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
944 nl_portid_hash_rehash(hash, 0);
945 return 1;
946 }
947
948 return 0;
949 }
950
951 static const struct proto_ops netlink_ops;
952
953 static void
954 netlink_update_listeners(struct sock *sk)
955 {
956 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
957 unsigned long mask;
958 unsigned int i;
959 struct listeners *listeners;
960
961 listeners = nl_deref_protected(tbl->listeners);
962 if (!listeners)
963 return;
964
965 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
966 mask = 0;
967 sk_for_each_bound(sk, &tbl->mc_list) {
968 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
969 mask |= nlk_sk(sk)->groups[i];
970 }
971 listeners->masks[i] = mask;
972 }
973 /* this function is only called with the netlink table "grabbed", which
974 * makes sure updates are visible before bind or setsockopt return. */
975 }
976
977 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
978 {
979 struct nl_portid_hash *hash = &nl_table[sk->sk_protocol].hash;
980 struct hlist_head *head;
981 int err = -EADDRINUSE;
982 struct sock *osk;
983 int len;
984
985 netlink_table_grab();
986 head = nl_portid_hashfn(hash, portid);
987 len = 0;
988 sk_for_each(osk, head) {
989 if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->portid == portid))
990 break;
991 len++;
992 }
993 if (osk)
994 goto err;
995
996 err = -EBUSY;
997 if (nlk_sk(sk)->portid)
998 goto err;
999
1000 err = -ENOMEM;
1001 if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
1002 goto err;
1003
1004 if (len && nl_portid_hash_dilute(hash, len))
1005 head = nl_portid_hashfn(hash, portid);
1006 hash->entries++;
1007 nlk_sk(sk)->portid = portid;
1008 sk_add_node(sk, head);
1009 err = 0;
1010
1011 err:
1012 netlink_table_ungrab();
1013 return err;
1014 }
1015
1016 static void netlink_remove(struct sock *sk)
1017 {
1018 netlink_table_grab();
1019 if (sk_del_node_init(sk))
1020 nl_table[sk->sk_protocol].hash.entries--;
1021 if (nlk_sk(sk)->subscriptions)
1022 __sk_del_bind_node(sk);
1023 netlink_table_ungrab();
1024 }
1025
1026 static struct proto netlink_proto = {
1027 .name = "NETLINK",
1028 .owner = THIS_MODULE,
1029 .obj_size = sizeof(struct netlink_sock),
1030 };
1031
1032 static int __netlink_create(struct net *net, struct socket *sock,
1033 struct mutex *cb_mutex, int protocol)
1034 {
1035 struct sock *sk;
1036 struct netlink_sock *nlk;
1037
1038 sock->ops = &netlink_ops;
1039
1040 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1041 if (!sk)
1042 return -ENOMEM;
1043
1044 sock_init_data(sock, sk);
1045
1046 nlk = nlk_sk(sk);
1047 if (cb_mutex) {
1048 nlk->cb_mutex = cb_mutex;
1049 } else {
1050 nlk->cb_mutex = &nlk->cb_def_mutex;
1051 mutex_init(nlk->cb_mutex);
1052 }
1053 init_waitqueue_head(&nlk->wait);
1054 #ifdef CONFIG_NETLINK_MMAP
1055 mutex_init(&nlk->pg_vec_lock);
1056 #endif
1057
1058 sk->sk_destruct = netlink_sock_destruct;
1059 sk->sk_protocol = protocol;
1060 return 0;
1061 }
1062
1063 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1064 int kern)
1065 {
1066 struct module *module = NULL;
1067 struct mutex *cb_mutex;
1068 struct netlink_sock *nlk;
1069 void (*bind)(int group);
1070 int err = 0;
1071
1072 sock->state = SS_UNCONNECTED;
1073
1074 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1075 return -ESOCKTNOSUPPORT;
1076
1077 if (protocol < 0 || protocol >= MAX_LINKS)
1078 return -EPROTONOSUPPORT;
1079
1080 netlink_lock_table();
1081 #ifdef CONFIG_MODULES
1082 if (!nl_table[protocol].registered) {
1083 netlink_unlock_table();
1084 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1085 netlink_lock_table();
1086 }
1087 #endif
1088 if (nl_table[protocol].registered &&
1089 try_module_get(nl_table[protocol].module))
1090 module = nl_table[protocol].module;
1091 else
1092 err = -EPROTONOSUPPORT;
1093 cb_mutex = nl_table[protocol].cb_mutex;
1094 bind = nl_table[protocol].bind;
1095 netlink_unlock_table();
1096
1097 if (err < 0)
1098 goto out;
1099
1100 err = __netlink_create(net, sock, cb_mutex, protocol);
1101 if (err < 0)
1102 goto out_module;
1103
1104 local_bh_disable();
1105 sock_prot_inuse_add(net, &netlink_proto, 1);
1106 local_bh_enable();
1107
1108 nlk = nlk_sk(sock->sk);
1109 nlk->module = module;
1110 nlk->netlink_bind = bind;
1111 out:
1112 return err;
1113
1114 out_module:
1115 module_put(module);
1116 goto out;
1117 }
1118
1119 static int netlink_release(struct socket *sock)
1120 {
1121 struct sock *sk = sock->sk;
1122 struct netlink_sock *nlk;
1123
1124 if (!sk)
1125 return 0;
1126
1127 netlink_remove(sk);
1128 sock_orphan(sk);
1129 nlk = nlk_sk(sk);
1130
1131 /*
1132 * OK. Socket is unlinked, any packets that arrive now
1133 * will be purged.
1134 */
1135
1136 sock->sk = NULL;
1137 wake_up_interruptible_all(&nlk->wait);
1138
1139 skb_queue_purge(&sk->sk_write_queue);
1140
1141 if (nlk->portid) {
1142 struct netlink_notify n = {
1143 .net = sock_net(sk),
1144 .protocol = sk->sk_protocol,
1145 .portid = nlk->portid,
1146 };
1147 atomic_notifier_call_chain(&netlink_chain,
1148 NETLINK_URELEASE, &n);
1149 }
1150
1151 module_put(nlk->module);
1152
1153 netlink_table_grab();
1154 if (netlink_is_kernel(sk)) {
1155 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1156 if (--nl_table[sk->sk_protocol].registered == 0) {
1157 struct listeners *old;
1158
1159 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1160 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1161 kfree_rcu(old, rcu);
1162 nl_table[sk->sk_protocol].module = NULL;
1163 nl_table[sk->sk_protocol].bind = NULL;
1164 nl_table[sk->sk_protocol].flags = 0;
1165 nl_table[sk->sk_protocol].registered = 0;
1166 }
1167 } else if (nlk->subscriptions) {
1168 netlink_update_listeners(sk);
1169 }
1170 netlink_table_ungrab();
1171
1172 kfree(nlk->groups);
1173 nlk->groups = NULL;
1174
1175 local_bh_disable();
1176 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1177 local_bh_enable();
1178 sock_put(sk);
1179 return 0;
1180 }
1181
1182 static int netlink_autobind(struct socket *sock)
1183 {
1184 struct sock *sk = sock->sk;
1185 struct net *net = sock_net(sk);
1186 struct nl_portid_hash *hash = &nl_table[sk->sk_protocol].hash;
1187 struct hlist_head *head;
1188 struct sock *osk;
1189 s32 portid = task_tgid_vnr(current);
1190 int err;
1191 static s32 rover = -4097;
1192
1193 retry:
1194 cond_resched();
1195 netlink_table_grab();
1196 head = nl_portid_hashfn(hash, portid);
1197 sk_for_each(osk, head) {
1198 if (!net_eq(sock_net(osk), net))
1199 continue;
1200 if (nlk_sk(osk)->portid == portid) {
1201 /* Bind collision, search negative portid values. */
1202 portid = rover--;
1203 if (rover > -4097)
1204 rover = -4097;
1205 netlink_table_ungrab();
1206 goto retry;
1207 }
1208 }
1209 netlink_table_ungrab();
1210
1211 err = netlink_insert(sk, net, portid);
1212 if (err == -EADDRINUSE)
1213 goto retry;
1214
1215 /* If 2 threads race to autobind, that is fine. */
1216 if (err == -EBUSY)
1217 err = 0;
1218
1219 return err;
1220 }
1221
1222 static inline int netlink_capable(const struct socket *sock, unsigned int flag)
1223 {
1224 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1225 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1226 }
1227
1228 static void
1229 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1230 {
1231 struct netlink_sock *nlk = nlk_sk(sk);
1232
1233 if (nlk->subscriptions && !subscriptions)
1234 __sk_del_bind_node(sk);
1235 else if (!nlk->subscriptions && subscriptions)
1236 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1237 nlk->subscriptions = subscriptions;
1238 }
1239
1240 static int netlink_realloc_groups(struct sock *sk)
1241 {
1242 struct netlink_sock *nlk = nlk_sk(sk);
1243 unsigned int groups;
1244 unsigned long *new_groups;
1245 int err = 0;
1246
1247 netlink_table_grab();
1248
1249 groups = nl_table[sk->sk_protocol].groups;
1250 if (!nl_table[sk->sk_protocol].registered) {
1251 err = -ENOENT;
1252 goto out_unlock;
1253 }
1254
1255 if (nlk->ngroups >= groups)
1256 goto out_unlock;
1257
1258 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1259 if (new_groups == NULL) {
1260 err = -ENOMEM;
1261 goto out_unlock;
1262 }
1263 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1264 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1265
1266 nlk->groups = new_groups;
1267 nlk->ngroups = groups;
1268 out_unlock:
1269 netlink_table_ungrab();
1270 return err;
1271 }
1272
1273 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1274 int addr_len)
1275 {
1276 struct sock *sk = sock->sk;
1277 struct net *net = sock_net(sk);
1278 struct netlink_sock *nlk = nlk_sk(sk);
1279 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1280 int err;
1281
1282 if (addr_len < sizeof(struct sockaddr_nl))
1283 return -EINVAL;
1284
1285 if (nladdr->nl_family != AF_NETLINK)
1286 return -EINVAL;
1287
1288 /* Only superuser is allowed to listen multicasts */
1289 if (nladdr->nl_groups) {
1290 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
1291 return -EPERM;
1292 err = netlink_realloc_groups(sk);
1293 if (err)
1294 return err;
1295 }
1296
1297 if (nlk->portid) {
1298 if (nladdr->nl_pid != nlk->portid)
1299 return -EINVAL;
1300 } else {
1301 err = nladdr->nl_pid ?
1302 netlink_insert(sk, net, nladdr->nl_pid) :
1303 netlink_autobind(sock);
1304 if (err)
1305 return err;
1306 }
1307
1308 if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1309 return 0;
1310
1311 netlink_table_grab();
1312 netlink_update_subscriptions(sk, nlk->subscriptions +
1313 hweight32(nladdr->nl_groups) -
1314 hweight32(nlk->groups[0]));
1315 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
1316 netlink_update_listeners(sk);
1317 netlink_table_ungrab();
1318
1319 if (nlk->netlink_bind && nlk->groups[0]) {
1320 int i;
1321
1322 for (i=0; i<nlk->ngroups; i++) {
1323 if (test_bit(i, nlk->groups))
1324 nlk->netlink_bind(i);
1325 }
1326 }
1327
1328 return 0;
1329 }
1330
1331 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1332 int alen, int flags)
1333 {
1334 int err = 0;
1335 struct sock *sk = sock->sk;
1336 struct netlink_sock *nlk = nlk_sk(sk);
1337 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1338
1339 if (alen < sizeof(addr->sa_family))
1340 return -EINVAL;
1341
1342 if (addr->sa_family == AF_UNSPEC) {
1343 sk->sk_state = NETLINK_UNCONNECTED;
1344 nlk->dst_portid = 0;
1345 nlk->dst_group = 0;
1346 return 0;
1347 }
1348 if (addr->sa_family != AF_NETLINK)
1349 return -EINVAL;
1350
1351 /* Only superuser is allowed to send multicasts */
1352 if (nladdr->nl_groups && !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
1353 return -EPERM;
1354
1355 if (!nlk->portid)
1356 err = netlink_autobind(sock);
1357
1358 if (err == 0) {
1359 sk->sk_state = NETLINK_CONNECTED;
1360 nlk->dst_portid = nladdr->nl_pid;
1361 nlk->dst_group = ffs(nladdr->nl_groups);
1362 }
1363
1364 return err;
1365 }
1366
1367 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1368 int *addr_len, int peer)
1369 {
1370 struct sock *sk = sock->sk;
1371 struct netlink_sock *nlk = nlk_sk(sk);
1372 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1373
1374 nladdr->nl_family = AF_NETLINK;
1375 nladdr->nl_pad = 0;
1376 *addr_len = sizeof(*nladdr);
1377
1378 if (peer) {
1379 nladdr->nl_pid = nlk->dst_portid;
1380 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1381 } else {
1382 nladdr->nl_pid = nlk->portid;
1383 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1384 }
1385 return 0;
1386 }
1387
1388 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1389 {
1390 struct sock *sock;
1391 struct netlink_sock *nlk;
1392
1393 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1394 if (!sock)
1395 return ERR_PTR(-ECONNREFUSED);
1396
1397 /* Don't bother queuing skb if kernel socket has no input function */
1398 nlk = nlk_sk(sock);
1399 if (sock->sk_state == NETLINK_CONNECTED &&
1400 nlk->dst_portid != nlk_sk(ssk)->portid) {
1401 sock_put(sock);
1402 return ERR_PTR(-ECONNREFUSED);
1403 }
1404 return sock;
1405 }
1406
1407 struct sock *netlink_getsockbyfilp(struct file *filp)
1408 {
1409 struct inode *inode = file_inode(filp);
1410 struct sock *sock;
1411
1412 if (!S_ISSOCK(inode->i_mode))
1413 return ERR_PTR(-ENOTSOCK);
1414
1415 sock = SOCKET_I(inode)->sk;
1416 if (sock->sk_family != AF_NETLINK)
1417 return ERR_PTR(-EINVAL);
1418
1419 sock_hold(sock);
1420 return sock;
1421 }
1422
1423 /*
1424 * Attach a skb to a netlink socket.
1425 * The caller must hold a reference to the destination socket. On error, the
1426 * reference is dropped. The skb is not send to the destination, just all
1427 * all error checks are performed and memory in the queue is reserved.
1428 * Return values:
1429 * < 0: error. skb freed, reference to sock dropped.
1430 * 0: continue
1431 * 1: repeat lookup - reference dropped while waiting for socket memory.
1432 */
1433 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1434 long *timeo, struct sock *ssk)
1435 {
1436 struct netlink_sock *nlk;
1437
1438 nlk = nlk_sk(sk);
1439
1440 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1441 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1442 !netlink_skb_is_mmaped(skb)) {
1443 DECLARE_WAITQUEUE(wait, current);
1444 if (!*timeo) {
1445 if (!ssk || netlink_is_kernel(ssk))
1446 netlink_overrun(sk);
1447 sock_put(sk);
1448 kfree_skb(skb);
1449 return -EAGAIN;
1450 }
1451
1452 __set_current_state(TASK_INTERRUPTIBLE);
1453 add_wait_queue(&nlk->wait, &wait);
1454
1455 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1456 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1457 !sock_flag(sk, SOCK_DEAD))
1458 *timeo = schedule_timeout(*timeo);
1459
1460 __set_current_state(TASK_RUNNING);
1461 remove_wait_queue(&nlk->wait, &wait);
1462 sock_put(sk);
1463
1464 if (signal_pending(current)) {
1465 kfree_skb(skb);
1466 return sock_intr_errno(*timeo);
1467 }
1468 return 1;
1469 }
1470 netlink_skb_set_owner_r(skb, sk);
1471 return 0;
1472 }
1473
1474 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1475 {
1476 int len = skb->len;
1477
1478 #ifdef CONFIG_NETLINK_MMAP
1479 if (netlink_skb_is_mmaped(skb))
1480 netlink_queue_mmaped_skb(sk, skb);
1481 else if (netlink_rx_is_mmaped(sk))
1482 netlink_ring_set_copied(sk, skb);
1483 else
1484 #endif /* CONFIG_NETLINK_MMAP */
1485 skb_queue_tail(&sk->sk_receive_queue, skb);
1486 sk->sk_data_ready(sk, len);
1487 return len;
1488 }
1489
1490 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1491 {
1492 int len = __netlink_sendskb(sk, skb);
1493
1494 sock_put(sk);
1495 return len;
1496 }
1497
1498 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 kfree_skb(skb);
1501 sock_put(sk);
1502 }
1503
1504 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1505 {
1506 int delta;
1507
1508 WARN_ON(skb->sk != NULL);
1509 if (netlink_skb_is_mmaped(skb))
1510 return skb;
1511
1512 delta = skb->end - skb->tail;
1513 if (delta * 2 < skb->truesize)
1514 return skb;
1515
1516 if (skb_shared(skb)) {
1517 struct sk_buff *nskb = skb_clone(skb, allocation);
1518 if (!nskb)
1519 return skb;
1520 consume_skb(skb);
1521 skb = nskb;
1522 }
1523
1524 if (!pskb_expand_head(skb, 0, -delta, allocation))
1525 skb->truesize -= delta;
1526
1527 return skb;
1528 }
1529
1530 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1531 struct sock *ssk)
1532 {
1533 int ret;
1534 struct netlink_sock *nlk = nlk_sk(sk);
1535
1536 ret = -ECONNREFUSED;
1537 if (nlk->netlink_rcv != NULL) {
1538 ret = skb->len;
1539 netlink_skb_set_owner_r(skb, sk);
1540 NETLINK_CB(skb).sk = ssk;
1541 nlk->netlink_rcv(skb);
1542 consume_skb(skb);
1543 } else {
1544 kfree_skb(skb);
1545 }
1546 sock_put(sk);
1547 return ret;
1548 }
1549
1550 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1551 u32 portid, int nonblock)
1552 {
1553 struct sock *sk;
1554 int err;
1555 long timeo;
1556
1557 skb = netlink_trim(skb, gfp_any());
1558
1559 timeo = sock_sndtimeo(ssk, nonblock);
1560 retry:
1561 sk = netlink_getsockbyportid(ssk, portid);
1562 if (IS_ERR(sk)) {
1563 kfree_skb(skb);
1564 return PTR_ERR(sk);
1565 }
1566 if (netlink_is_kernel(sk))
1567 return netlink_unicast_kernel(sk, skb, ssk);
1568
1569 if (sk_filter(sk, skb)) {
1570 err = skb->len;
1571 kfree_skb(skb);
1572 sock_put(sk);
1573 return err;
1574 }
1575
1576 err = netlink_attachskb(sk, skb, &timeo, ssk);
1577 if (err == 1)
1578 goto retry;
1579 if (err)
1580 return err;
1581
1582 return netlink_sendskb(sk, skb);
1583 }
1584 EXPORT_SYMBOL(netlink_unicast);
1585
1586 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1587 u32 dst_portid, gfp_t gfp_mask)
1588 {
1589 #ifdef CONFIG_NETLINK_MMAP
1590 struct sock *sk = NULL;
1591 struct sk_buff *skb;
1592 struct netlink_ring *ring;
1593 struct nl_mmap_hdr *hdr;
1594 unsigned int maxlen;
1595
1596 sk = netlink_getsockbyportid(ssk, dst_portid);
1597 if (IS_ERR(sk))
1598 goto out;
1599
1600 ring = &nlk_sk(sk)->rx_ring;
1601 /* fast-path without atomic ops for common case: non-mmaped receiver */
1602 if (ring->pg_vec == NULL)
1603 goto out_put;
1604
1605 skb = alloc_skb_head(gfp_mask);
1606 if (skb == NULL)
1607 goto err1;
1608
1609 spin_lock_bh(&sk->sk_receive_queue.lock);
1610 /* check again under lock */
1611 if (ring->pg_vec == NULL)
1612 goto out_free;
1613
1614 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1615 if (maxlen < size)
1616 goto out_free;
1617
1618 netlink_forward_ring(ring);
1619 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1620 if (hdr == NULL)
1621 goto err2;
1622 netlink_ring_setup_skb(skb, sk, ring, hdr);
1623 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1624 atomic_inc(&ring->pending);
1625 netlink_increment_head(ring);
1626
1627 spin_unlock_bh(&sk->sk_receive_queue.lock);
1628 return skb;
1629
1630 err2:
1631 kfree_skb(skb);
1632 spin_unlock_bh(&sk->sk_receive_queue.lock);
1633 netlink_overrun(sk);
1634 err1:
1635 sock_put(sk);
1636 return NULL;
1637
1638 out_free:
1639 kfree_skb(skb);
1640 spin_unlock_bh(&sk->sk_receive_queue.lock);
1641 out_put:
1642 sock_put(sk);
1643 out:
1644 #endif
1645 return alloc_skb(size, gfp_mask);
1646 }
1647 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1648
1649 int netlink_has_listeners(struct sock *sk, unsigned int group)
1650 {
1651 int res = 0;
1652 struct listeners *listeners;
1653
1654 BUG_ON(!netlink_is_kernel(sk));
1655
1656 rcu_read_lock();
1657 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1658
1659 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1660 res = test_bit(group - 1, listeners->masks);
1661
1662 rcu_read_unlock();
1663
1664 return res;
1665 }
1666 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1667
1668 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1669 {
1670 struct netlink_sock *nlk = nlk_sk(sk);
1671
1672 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1673 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1674 netlink_skb_set_owner_r(skb, sk);
1675 __netlink_sendskb(sk, skb);
1676 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1677 }
1678 return -1;
1679 }
1680
1681 struct netlink_broadcast_data {
1682 struct sock *exclude_sk;
1683 struct net *net;
1684 u32 portid;
1685 u32 group;
1686 int failure;
1687 int delivery_failure;
1688 int congested;
1689 int delivered;
1690 gfp_t allocation;
1691 struct sk_buff *skb, *skb2;
1692 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1693 void *tx_data;
1694 };
1695
1696 static int do_one_broadcast(struct sock *sk,
1697 struct netlink_broadcast_data *p)
1698 {
1699 struct netlink_sock *nlk = nlk_sk(sk);
1700 int val;
1701
1702 if (p->exclude_sk == sk)
1703 goto out;
1704
1705 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1706 !test_bit(p->group - 1, nlk->groups))
1707 goto out;
1708
1709 if (!net_eq(sock_net(sk), p->net))
1710 goto out;
1711
1712 if (p->failure) {
1713 netlink_overrun(sk);
1714 goto out;
1715 }
1716
1717 sock_hold(sk);
1718 if (p->skb2 == NULL) {
1719 if (skb_shared(p->skb)) {
1720 p->skb2 = skb_clone(p->skb, p->allocation);
1721 } else {
1722 p->skb2 = skb_get(p->skb);
1723 /*
1724 * skb ownership may have been set when
1725 * delivered to a previous socket.
1726 */
1727 skb_orphan(p->skb2);
1728 }
1729 }
1730 if (p->skb2 == NULL) {
1731 netlink_overrun(sk);
1732 /* Clone failed. Notify ALL listeners. */
1733 p->failure = 1;
1734 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1735 p->delivery_failure = 1;
1736 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1737 kfree_skb(p->skb2);
1738 p->skb2 = NULL;
1739 } else if (sk_filter(sk, p->skb2)) {
1740 kfree_skb(p->skb2);
1741 p->skb2 = NULL;
1742 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1743 netlink_overrun(sk);
1744 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1745 p->delivery_failure = 1;
1746 } else {
1747 p->congested |= val;
1748 p->delivered = 1;
1749 p->skb2 = NULL;
1750 }
1751 sock_put(sk);
1752
1753 out:
1754 return 0;
1755 }
1756
1757 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1758 u32 group, gfp_t allocation,
1759 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1760 void *filter_data)
1761 {
1762 struct net *net = sock_net(ssk);
1763 struct netlink_broadcast_data info;
1764 struct sock *sk;
1765
1766 skb = netlink_trim(skb, allocation);
1767
1768 info.exclude_sk = ssk;
1769 info.net = net;
1770 info.portid = portid;
1771 info.group = group;
1772 info.failure = 0;
1773 info.delivery_failure = 0;
1774 info.congested = 0;
1775 info.delivered = 0;
1776 info.allocation = allocation;
1777 info.skb = skb;
1778 info.skb2 = NULL;
1779 info.tx_filter = filter;
1780 info.tx_data = filter_data;
1781
1782 /* While we sleep in clone, do not allow to change socket list */
1783
1784 netlink_lock_table();
1785
1786 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1787 do_one_broadcast(sk, &info);
1788
1789 consume_skb(skb);
1790
1791 netlink_unlock_table();
1792
1793 if (info.delivery_failure) {
1794 kfree_skb(info.skb2);
1795 return -ENOBUFS;
1796 }
1797 consume_skb(info.skb2);
1798
1799 if (info.delivered) {
1800 if (info.congested && (allocation & __GFP_WAIT))
1801 yield();
1802 return 0;
1803 }
1804 return -ESRCH;
1805 }
1806 EXPORT_SYMBOL(netlink_broadcast_filtered);
1807
1808 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
1809 u32 group, gfp_t allocation)
1810 {
1811 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
1812 NULL, NULL);
1813 }
1814 EXPORT_SYMBOL(netlink_broadcast);
1815
1816 struct netlink_set_err_data {
1817 struct sock *exclude_sk;
1818 u32 portid;
1819 u32 group;
1820 int code;
1821 };
1822
1823 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
1824 {
1825 struct netlink_sock *nlk = nlk_sk(sk);
1826 int ret = 0;
1827
1828 if (sk == p->exclude_sk)
1829 goto out;
1830
1831 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
1832 goto out;
1833
1834 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1835 !test_bit(p->group - 1, nlk->groups))
1836 goto out;
1837
1838 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
1839 ret = 1;
1840 goto out;
1841 }
1842
1843 sk->sk_err = p->code;
1844 sk->sk_error_report(sk);
1845 out:
1846 return ret;
1847 }
1848
1849 /**
1850 * netlink_set_err - report error to broadcast listeners
1851 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
1852 * @portid: the PORTID of a process that we want to skip (if any)
1853 * @groups: the broadcast group that will notice the error
1854 * @code: error code, must be negative (as usual in kernelspace)
1855 *
1856 * This function returns the number of broadcast listeners that have set the
1857 * NETLINK_RECV_NO_ENOBUFS socket option.
1858 */
1859 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
1860 {
1861 struct netlink_set_err_data info;
1862 struct sock *sk;
1863 int ret = 0;
1864
1865 info.exclude_sk = ssk;
1866 info.portid = portid;
1867 info.group = group;
1868 /* sk->sk_err wants a positive error value */
1869 info.code = -code;
1870
1871 read_lock(&nl_table_lock);
1872
1873 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1874 ret += do_one_set_err(sk, &info);
1875
1876 read_unlock(&nl_table_lock);
1877 return ret;
1878 }
1879 EXPORT_SYMBOL(netlink_set_err);
1880
1881 /* must be called with netlink table grabbed */
1882 static void netlink_update_socket_mc(struct netlink_sock *nlk,
1883 unsigned int group,
1884 int is_new)
1885 {
1886 int old, new = !!is_new, subscriptions;
1887
1888 old = test_bit(group - 1, nlk->groups);
1889 subscriptions = nlk->subscriptions - old + new;
1890 if (new)
1891 __set_bit(group - 1, nlk->groups);
1892 else
1893 __clear_bit(group - 1, nlk->groups);
1894 netlink_update_subscriptions(&nlk->sk, subscriptions);
1895 netlink_update_listeners(&nlk->sk);
1896 }
1897
1898 static int netlink_setsockopt(struct socket *sock, int level, int optname,
1899 char __user *optval, unsigned int optlen)
1900 {
1901 struct sock *sk = sock->sk;
1902 struct netlink_sock *nlk = nlk_sk(sk);
1903 unsigned int val = 0;
1904 int err;
1905
1906 if (level != SOL_NETLINK)
1907 return -ENOPROTOOPT;
1908
1909 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
1910 optlen >= sizeof(int) &&
1911 get_user(val, (unsigned int __user *)optval))
1912 return -EFAULT;
1913
1914 switch (optname) {
1915 case NETLINK_PKTINFO:
1916 if (val)
1917 nlk->flags |= NETLINK_RECV_PKTINFO;
1918 else
1919 nlk->flags &= ~NETLINK_RECV_PKTINFO;
1920 err = 0;
1921 break;
1922 case NETLINK_ADD_MEMBERSHIP:
1923 case NETLINK_DROP_MEMBERSHIP: {
1924 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
1925 return -EPERM;
1926 err = netlink_realloc_groups(sk);
1927 if (err)
1928 return err;
1929 if (!val || val - 1 >= nlk->ngroups)
1930 return -EINVAL;
1931 netlink_table_grab();
1932 netlink_update_socket_mc(nlk, val,
1933 optname == NETLINK_ADD_MEMBERSHIP);
1934 netlink_table_ungrab();
1935
1936 if (nlk->netlink_bind)
1937 nlk->netlink_bind(val);
1938
1939 err = 0;
1940 break;
1941 }
1942 case NETLINK_BROADCAST_ERROR:
1943 if (val)
1944 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
1945 else
1946 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
1947 err = 0;
1948 break;
1949 case NETLINK_NO_ENOBUFS:
1950 if (val) {
1951 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
1952 clear_bit(NETLINK_CONGESTED, &nlk->state);
1953 wake_up_interruptible(&nlk->wait);
1954 } else {
1955 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
1956 }
1957 err = 0;
1958 break;
1959 #ifdef CONFIG_NETLINK_MMAP
1960 case NETLINK_RX_RING:
1961 case NETLINK_TX_RING: {
1962 struct nl_mmap_req req;
1963
1964 /* Rings might consume more memory than queue limits, require
1965 * CAP_NET_ADMIN.
1966 */
1967 if (!capable(CAP_NET_ADMIN))
1968 return -EPERM;
1969 if (optlen < sizeof(req))
1970 return -EINVAL;
1971 if (copy_from_user(&req, optval, sizeof(req)))
1972 return -EFAULT;
1973 err = netlink_set_ring(sk, &req, false,
1974 optname == NETLINK_TX_RING);
1975 break;
1976 }
1977 #endif /* CONFIG_NETLINK_MMAP */
1978 default:
1979 err = -ENOPROTOOPT;
1980 }
1981 return err;
1982 }
1983
1984 static int netlink_getsockopt(struct socket *sock, int level, int optname,
1985 char __user *optval, int __user *optlen)
1986 {
1987 struct sock *sk = sock->sk;
1988 struct netlink_sock *nlk = nlk_sk(sk);
1989 int len, val, err;
1990
1991 if (level != SOL_NETLINK)
1992 return -ENOPROTOOPT;
1993
1994 if (get_user(len, optlen))
1995 return -EFAULT;
1996 if (len < 0)
1997 return -EINVAL;
1998
1999 switch (optname) {
2000 case NETLINK_PKTINFO:
2001 if (len < sizeof(int))
2002 return -EINVAL;
2003 len = sizeof(int);
2004 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2005 if (put_user(len, optlen) ||
2006 put_user(val, optval))
2007 return -EFAULT;
2008 err = 0;
2009 break;
2010 case NETLINK_BROADCAST_ERROR:
2011 if (len < sizeof(int))
2012 return -EINVAL;
2013 len = sizeof(int);
2014 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2015 if (put_user(len, optlen) ||
2016 put_user(val, optval))
2017 return -EFAULT;
2018 err = 0;
2019 break;
2020 case NETLINK_NO_ENOBUFS:
2021 if (len < sizeof(int))
2022 return -EINVAL;
2023 len = sizeof(int);
2024 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2025 if (put_user(len, optlen) ||
2026 put_user(val, optval))
2027 return -EFAULT;
2028 err = 0;
2029 break;
2030 default:
2031 err = -ENOPROTOOPT;
2032 }
2033 return err;
2034 }
2035
2036 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2037 {
2038 struct nl_pktinfo info;
2039
2040 info.group = NETLINK_CB(skb).dst_group;
2041 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2042 }
2043
2044 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2045 struct msghdr *msg, size_t len)
2046 {
2047 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2048 struct sock *sk = sock->sk;
2049 struct netlink_sock *nlk = nlk_sk(sk);
2050 struct sockaddr_nl *addr = msg->msg_name;
2051 u32 dst_portid;
2052 u32 dst_group;
2053 struct sk_buff *skb;
2054 int err;
2055 struct scm_cookie scm;
2056
2057 if (msg->msg_flags&MSG_OOB)
2058 return -EOPNOTSUPP;
2059
2060 if (NULL == siocb->scm)
2061 siocb->scm = &scm;
2062
2063 err = scm_send(sock, msg, siocb->scm, true);
2064 if (err < 0)
2065 return err;
2066
2067 if (msg->msg_namelen) {
2068 err = -EINVAL;
2069 if (addr->nl_family != AF_NETLINK)
2070 goto out;
2071 dst_portid = addr->nl_pid;
2072 dst_group = ffs(addr->nl_groups);
2073 err = -EPERM;
2074 if ((dst_group || dst_portid) &&
2075 !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
2076 goto out;
2077 } else {
2078 dst_portid = nlk->dst_portid;
2079 dst_group = nlk->dst_group;
2080 }
2081
2082 if (!nlk->portid) {
2083 err = netlink_autobind(sock);
2084 if (err)
2085 goto out;
2086 }
2087
2088 if (netlink_tx_is_mmaped(sk) &&
2089 msg->msg_iov->iov_base == NULL) {
2090 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2091 siocb);
2092 goto out;
2093 }
2094
2095 err = -EMSGSIZE;
2096 if (len > sk->sk_sndbuf - 32)
2097 goto out;
2098 err = -ENOBUFS;
2099 skb = alloc_skb(len, GFP_KERNEL);
2100 if (skb == NULL)
2101 goto out;
2102
2103 NETLINK_CB(skb).portid = nlk->portid;
2104 NETLINK_CB(skb).dst_group = dst_group;
2105 NETLINK_CB(skb).creds = siocb->scm->creds;
2106
2107 err = -EFAULT;
2108 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2109 kfree_skb(skb);
2110 goto out;
2111 }
2112
2113 err = security_netlink_send(sk, skb);
2114 if (err) {
2115 kfree_skb(skb);
2116 goto out;
2117 }
2118
2119 if (dst_group) {
2120 atomic_inc(&skb->users);
2121 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2122 }
2123 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2124
2125 out:
2126 scm_destroy(siocb->scm);
2127 return err;
2128 }
2129
2130 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2131 struct msghdr *msg, size_t len,
2132 int flags)
2133 {
2134 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2135 struct scm_cookie scm;
2136 struct sock *sk = sock->sk;
2137 struct netlink_sock *nlk = nlk_sk(sk);
2138 int noblock = flags&MSG_DONTWAIT;
2139 size_t copied;
2140 struct sk_buff *skb, *data_skb;
2141 int err, ret;
2142
2143 if (flags&MSG_OOB)
2144 return -EOPNOTSUPP;
2145
2146 copied = 0;
2147
2148 skb = skb_recv_datagram(sk, flags, noblock, &err);
2149 if (skb == NULL)
2150 goto out;
2151
2152 data_skb = skb;
2153
2154 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2155 if (unlikely(skb_shinfo(skb)->frag_list)) {
2156 /*
2157 * If this skb has a frag_list, then here that means that we
2158 * will have to use the frag_list skb's data for compat tasks
2159 * and the regular skb's data for normal (non-compat) tasks.
2160 *
2161 * If we need to send the compat skb, assign it to the
2162 * 'data_skb' variable so that it will be used below for data
2163 * copying. We keep 'skb' for everything else, including
2164 * freeing both later.
2165 */
2166 if (flags & MSG_CMSG_COMPAT)
2167 data_skb = skb_shinfo(skb)->frag_list;
2168 }
2169 #endif
2170
2171 msg->msg_namelen = 0;
2172
2173 copied = data_skb->len;
2174 if (len < copied) {
2175 msg->msg_flags |= MSG_TRUNC;
2176 copied = len;
2177 }
2178
2179 skb_reset_transport_header(data_skb);
2180 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
2181
2182 if (msg->msg_name) {
2183 struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
2184 addr->nl_family = AF_NETLINK;
2185 addr->nl_pad = 0;
2186 addr->nl_pid = NETLINK_CB(skb).portid;
2187 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2188 msg->msg_namelen = sizeof(*addr);
2189 }
2190
2191 if (nlk->flags & NETLINK_RECV_PKTINFO)
2192 netlink_cmsg_recv_pktinfo(msg, skb);
2193
2194 if (NULL == siocb->scm) {
2195 memset(&scm, 0, sizeof(scm));
2196 siocb->scm = &scm;
2197 }
2198 siocb->scm->creds = *NETLINK_CREDS(skb);
2199 if (flags & MSG_TRUNC)
2200 copied = data_skb->len;
2201
2202 skb_free_datagram(sk, skb);
2203
2204 if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2205 ret = netlink_dump(sk);
2206 if (ret) {
2207 sk->sk_err = ret;
2208 sk->sk_error_report(sk);
2209 }
2210 }
2211
2212 scm_recv(sock, msg, siocb->scm, flags);
2213 out:
2214 netlink_rcv_wake(sk);
2215 return err ? : copied;
2216 }
2217
2218 static void netlink_data_ready(struct sock *sk, int len)
2219 {
2220 BUG();
2221 }
2222
2223 /*
2224 * We export these functions to other modules. They provide a
2225 * complete set of kernel non-blocking support for message
2226 * queueing.
2227 */
2228
2229 struct sock *
2230 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2231 struct netlink_kernel_cfg *cfg)
2232 {
2233 struct socket *sock;
2234 struct sock *sk;
2235 struct netlink_sock *nlk;
2236 struct listeners *listeners = NULL;
2237 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2238 unsigned int groups;
2239
2240 BUG_ON(!nl_table);
2241
2242 if (unit < 0 || unit >= MAX_LINKS)
2243 return NULL;
2244
2245 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2246 return NULL;
2247
2248 /*
2249 * We have to just have a reference on the net from sk, but don't
2250 * get_net it. Besides, we cannot get and then put the net here.
2251 * So we create one inside init_net and the move it to net.
2252 */
2253
2254 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2255 goto out_sock_release_nosk;
2256
2257 sk = sock->sk;
2258 sk_change_net(sk, net);
2259
2260 if (!cfg || cfg->groups < 32)
2261 groups = 32;
2262 else
2263 groups = cfg->groups;
2264
2265 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2266 if (!listeners)
2267 goto out_sock_release;
2268
2269 sk->sk_data_ready = netlink_data_ready;
2270 if (cfg && cfg->input)
2271 nlk_sk(sk)->netlink_rcv = cfg->input;
2272
2273 if (netlink_insert(sk, net, 0))
2274 goto out_sock_release;
2275
2276 nlk = nlk_sk(sk);
2277 nlk->flags |= NETLINK_KERNEL_SOCKET;
2278
2279 netlink_table_grab();
2280 if (!nl_table[unit].registered) {
2281 nl_table[unit].groups = groups;
2282 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2283 nl_table[unit].cb_mutex = cb_mutex;
2284 nl_table[unit].module = module;
2285 if (cfg) {
2286 nl_table[unit].bind = cfg->bind;
2287 nl_table[unit].flags = cfg->flags;
2288 }
2289 nl_table[unit].registered = 1;
2290 } else {
2291 kfree(listeners);
2292 nl_table[unit].registered++;
2293 }
2294 netlink_table_ungrab();
2295 return sk;
2296
2297 out_sock_release:
2298 kfree(listeners);
2299 netlink_kernel_release(sk);
2300 return NULL;
2301
2302 out_sock_release_nosk:
2303 sock_release(sock);
2304 return NULL;
2305 }
2306 EXPORT_SYMBOL(__netlink_kernel_create);
2307
2308 void
2309 netlink_kernel_release(struct sock *sk)
2310 {
2311 sk_release_kernel(sk);
2312 }
2313 EXPORT_SYMBOL(netlink_kernel_release);
2314
2315 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2316 {
2317 struct listeners *new, *old;
2318 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2319
2320 if (groups < 32)
2321 groups = 32;
2322
2323 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2324 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2325 if (!new)
2326 return -ENOMEM;
2327 old = nl_deref_protected(tbl->listeners);
2328 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2329 rcu_assign_pointer(tbl->listeners, new);
2330
2331 kfree_rcu(old, rcu);
2332 }
2333 tbl->groups = groups;
2334
2335 return 0;
2336 }
2337
2338 /**
2339 * netlink_change_ngroups - change number of multicast groups
2340 *
2341 * This changes the number of multicast groups that are available
2342 * on a certain netlink family. Note that it is not possible to
2343 * change the number of groups to below 32. Also note that it does
2344 * not implicitly call netlink_clear_multicast_users() when the
2345 * number of groups is reduced.
2346 *
2347 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2348 * @groups: The new number of groups.
2349 */
2350 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2351 {
2352 int err;
2353
2354 netlink_table_grab();
2355 err = __netlink_change_ngroups(sk, groups);
2356 netlink_table_ungrab();
2357
2358 return err;
2359 }
2360
2361 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2362 {
2363 struct sock *sk;
2364 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2365
2366 sk_for_each_bound(sk, &tbl->mc_list)
2367 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2368 }
2369
2370 /**
2371 * netlink_clear_multicast_users - kick off multicast listeners
2372 *
2373 * This function removes all listeners from the given group.
2374 * @ksk: The kernel netlink socket, as returned by
2375 * netlink_kernel_create().
2376 * @group: The multicast group to clear.
2377 */
2378 void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2379 {
2380 netlink_table_grab();
2381 __netlink_clear_multicast_users(ksk, group);
2382 netlink_table_ungrab();
2383 }
2384
2385 struct nlmsghdr *
2386 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2387 {
2388 struct nlmsghdr *nlh;
2389 int size = nlmsg_msg_size(len);
2390
2391 nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
2392 nlh->nlmsg_type = type;
2393 nlh->nlmsg_len = size;
2394 nlh->nlmsg_flags = flags;
2395 nlh->nlmsg_pid = portid;
2396 nlh->nlmsg_seq = seq;
2397 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2398 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2399 return nlh;
2400 }
2401 EXPORT_SYMBOL(__nlmsg_put);
2402
2403 /*
2404 * It looks a bit ugly.
2405 * It would be better to create kernel thread.
2406 */
2407
2408 static int netlink_dump(struct sock *sk)
2409 {
2410 struct netlink_sock *nlk = nlk_sk(sk);
2411 struct netlink_callback *cb;
2412 struct sk_buff *skb = NULL;
2413 struct nlmsghdr *nlh;
2414 int len, err = -ENOBUFS;
2415 int alloc_size;
2416
2417 mutex_lock(nlk->cb_mutex);
2418
2419 cb = nlk->cb;
2420 if (cb == NULL) {
2421 err = -EINVAL;
2422 goto errout_skb;
2423 }
2424
2425 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2426
2427 if (!netlink_rx_is_mmaped(sk) &&
2428 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2429 goto errout_skb;
2430 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, GFP_KERNEL);
2431 if (!skb)
2432 goto errout_skb;
2433 netlink_skb_set_owner_r(skb, sk);
2434
2435 len = cb->dump(skb, cb);
2436
2437 if (len > 0) {
2438 mutex_unlock(nlk->cb_mutex);
2439
2440 if (sk_filter(sk, skb))
2441 kfree_skb(skb);
2442 else
2443 __netlink_sendskb(sk, skb);
2444 return 0;
2445 }
2446
2447 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2448 if (!nlh)
2449 goto errout_skb;
2450
2451 nl_dump_check_consistent(cb, nlh);
2452
2453 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2454
2455 if (sk_filter(sk, skb))
2456 kfree_skb(skb);
2457 else
2458 __netlink_sendskb(sk, skb);
2459
2460 if (cb->done)
2461 cb->done(cb);
2462 nlk->cb = NULL;
2463 mutex_unlock(nlk->cb_mutex);
2464
2465 module_put(cb->module);
2466 netlink_consume_callback(cb);
2467 return 0;
2468
2469 errout_skb:
2470 mutex_unlock(nlk->cb_mutex);
2471 kfree_skb(skb);
2472 return err;
2473 }
2474
2475 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2476 const struct nlmsghdr *nlh,
2477 struct netlink_dump_control *control)
2478 {
2479 struct netlink_callback *cb;
2480 struct sock *sk;
2481 struct netlink_sock *nlk;
2482 int ret;
2483
2484 cb = kzalloc(sizeof(*cb), GFP_KERNEL);
2485 if (cb == NULL)
2486 return -ENOBUFS;
2487
2488 /* Memory mapped dump requests need to be copied to avoid looping
2489 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2490 * a reference to the skb.
2491 */
2492 if (netlink_skb_is_mmaped(skb)) {
2493 skb = skb_copy(skb, GFP_KERNEL);
2494 if (skb == NULL) {
2495 kfree(cb);
2496 return -ENOBUFS;
2497 }
2498 } else
2499 atomic_inc(&skb->users);
2500
2501 cb->dump = control->dump;
2502 cb->done = control->done;
2503 cb->nlh = nlh;
2504 cb->data = control->data;
2505 cb->module = control->module;
2506 cb->min_dump_alloc = control->min_dump_alloc;
2507 cb->skb = skb;
2508
2509 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2510 if (sk == NULL) {
2511 netlink_destroy_callback(cb);
2512 return -ECONNREFUSED;
2513 }
2514 nlk = nlk_sk(sk);
2515
2516 mutex_lock(nlk->cb_mutex);
2517 /* A dump is in progress... */
2518 if (nlk->cb) {
2519 mutex_unlock(nlk->cb_mutex);
2520 netlink_destroy_callback(cb);
2521 ret = -EBUSY;
2522 goto out;
2523 }
2524 /* add reference of module which cb->dump belongs to */
2525 if (!try_module_get(cb->module)) {
2526 mutex_unlock(nlk->cb_mutex);
2527 netlink_destroy_callback(cb);
2528 ret = -EPROTONOSUPPORT;
2529 goto out;
2530 }
2531
2532 nlk->cb = cb;
2533 mutex_unlock(nlk->cb_mutex);
2534
2535 ret = netlink_dump(sk);
2536 out:
2537 sock_put(sk);
2538
2539 if (ret)
2540 return ret;
2541
2542 /* We successfully started a dump, by returning -EINTR we
2543 * signal not to send ACK even if it was requested.
2544 */
2545 return -EINTR;
2546 }
2547 EXPORT_SYMBOL(__netlink_dump_start);
2548
2549 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2550 {
2551 struct sk_buff *skb;
2552 struct nlmsghdr *rep;
2553 struct nlmsgerr *errmsg;
2554 size_t payload = sizeof(*errmsg);
2555
2556 /* error messages get the original request appened */
2557 if (err)
2558 payload += nlmsg_len(nlh);
2559
2560 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2561 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2562 if (!skb) {
2563 struct sock *sk;
2564
2565 sk = netlink_lookup(sock_net(in_skb->sk),
2566 in_skb->sk->sk_protocol,
2567 NETLINK_CB(in_skb).portid);
2568 if (sk) {
2569 sk->sk_err = ENOBUFS;
2570 sk->sk_error_report(sk);
2571 sock_put(sk);
2572 }
2573 return;
2574 }
2575
2576 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2577 NLMSG_ERROR, payload, 0);
2578 errmsg = nlmsg_data(rep);
2579 errmsg->error = err;
2580 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2581 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2582 }
2583 EXPORT_SYMBOL(netlink_ack);
2584
2585 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2586 struct nlmsghdr *))
2587 {
2588 struct nlmsghdr *nlh;
2589 int err;
2590
2591 while (skb->len >= nlmsg_total_size(0)) {
2592 int msglen;
2593
2594 nlh = nlmsg_hdr(skb);
2595 err = 0;
2596
2597 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2598 return 0;
2599
2600 /* Only requests are handled by the kernel */
2601 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2602 goto ack;
2603
2604 /* Skip control messages */
2605 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2606 goto ack;
2607
2608 err = cb(skb, nlh);
2609 if (err == -EINTR)
2610 goto skip;
2611
2612 ack:
2613 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2614 netlink_ack(skb, nlh, err);
2615
2616 skip:
2617 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2618 if (msglen > skb->len)
2619 msglen = skb->len;
2620 skb_pull(skb, msglen);
2621 }
2622
2623 return 0;
2624 }
2625 EXPORT_SYMBOL(netlink_rcv_skb);
2626
2627 /**
2628 * nlmsg_notify - send a notification netlink message
2629 * @sk: netlink socket to use
2630 * @skb: notification message
2631 * @portid: destination netlink portid for reports or 0
2632 * @group: destination multicast group or 0
2633 * @report: 1 to report back, 0 to disable
2634 * @flags: allocation flags
2635 */
2636 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2637 unsigned int group, int report, gfp_t flags)
2638 {
2639 int err = 0;
2640
2641 if (group) {
2642 int exclude_portid = 0;
2643
2644 if (report) {
2645 atomic_inc(&skb->users);
2646 exclude_portid = portid;
2647 }
2648
2649 /* errors reported via destination sk->sk_err, but propagate
2650 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2651 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2652 }
2653
2654 if (report) {
2655 int err2;
2656
2657 err2 = nlmsg_unicast(sk, skb, portid);
2658 if (!err || err == -ESRCH)
2659 err = err2;
2660 }
2661
2662 return err;
2663 }
2664 EXPORT_SYMBOL(nlmsg_notify);
2665
2666 #ifdef CONFIG_PROC_FS
2667 struct nl_seq_iter {
2668 struct seq_net_private p;
2669 int link;
2670 int hash_idx;
2671 };
2672
2673 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2674 {
2675 struct nl_seq_iter *iter = seq->private;
2676 int i, j;
2677 struct sock *s;
2678 loff_t off = 0;
2679
2680 for (i = 0; i < MAX_LINKS; i++) {
2681 struct nl_portid_hash *hash = &nl_table[i].hash;
2682
2683 for (j = 0; j <= hash->mask; j++) {
2684 sk_for_each(s, &hash->table[j]) {
2685 if (sock_net(s) != seq_file_net(seq))
2686 continue;
2687 if (off == pos) {
2688 iter->link = i;
2689 iter->hash_idx = j;
2690 return s;
2691 }
2692 ++off;
2693 }
2694 }
2695 }
2696 return NULL;
2697 }
2698
2699 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2700 __acquires(nl_table_lock)
2701 {
2702 read_lock(&nl_table_lock);
2703 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2704 }
2705
2706 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2707 {
2708 struct sock *s;
2709 struct nl_seq_iter *iter;
2710 int i, j;
2711
2712 ++*pos;
2713
2714 if (v == SEQ_START_TOKEN)
2715 return netlink_seq_socket_idx(seq, 0);
2716
2717 iter = seq->private;
2718 s = v;
2719 do {
2720 s = sk_next(s);
2721 } while (s && sock_net(s) != seq_file_net(seq));
2722 if (s)
2723 return s;
2724
2725 i = iter->link;
2726 j = iter->hash_idx + 1;
2727
2728 do {
2729 struct nl_portid_hash *hash = &nl_table[i].hash;
2730
2731 for (; j <= hash->mask; j++) {
2732 s = sk_head(&hash->table[j]);
2733 while (s && sock_net(s) != seq_file_net(seq))
2734 s = sk_next(s);
2735 if (s) {
2736 iter->link = i;
2737 iter->hash_idx = j;
2738 return s;
2739 }
2740 }
2741
2742 j = 0;
2743 } while (++i < MAX_LINKS);
2744
2745 return NULL;
2746 }
2747
2748 static void netlink_seq_stop(struct seq_file *seq, void *v)
2749 __releases(nl_table_lock)
2750 {
2751 read_unlock(&nl_table_lock);
2752 }
2753
2754
2755 static int netlink_seq_show(struct seq_file *seq, void *v)
2756 {
2757 if (v == SEQ_START_TOKEN) {
2758 seq_puts(seq,
2759 "sk Eth Pid Groups "
2760 "Rmem Wmem Dump Locks Drops Inode\n");
2761 } else {
2762 struct sock *s = v;
2763 struct netlink_sock *nlk = nlk_sk(s);
2764
2765 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
2766 s,
2767 s->sk_protocol,
2768 nlk->portid,
2769 nlk->groups ? (u32)nlk->groups[0] : 0,
2770 sk_rmem_alloc_get(s),
2771 sk_wmem_alloc_get(s),
2772 nlk->cb,
2773 atomic_read(&s->sk_refcnt),
2774 atomic_read(&s->sk_drops),
2775 sock_i_ino(s)
2776 );
2777
2778 }
2779 return 0;
2780 }
2781
2782 static const struct seq_operations netlink_seq_ops = {
2783 .start = netlink_seq_start,
2784 .next = netlink_seq_next,
2785 .stop = netlink_seq_stop,
2786 .show = netlink_seq_show,
2787 };
2788
2789
2790 static int netlink_seq_open(struct inode *inode, struct file *file)
2791 {
2792 return seq_open_net(inode, file, &netlink_seq_ops,
2793 sizeof(struct nl_seq_iter));
2794 }
2795
2796 static const struct file_operations netlink_seq_fops = {
2797 .owner = THIS_MODULE,
2798 .open = netlink_seq_open,
2799 .read = seq_read,
2800 .llseek = seq_lseek,
2801 .release = seq_release_net,
2802 };
2803
2804 #endif
2805
2806 int netlink_register_notifier(struct notifier_block *nb)
2807 {
2808 return atomic_notifier_chain_register(&netlink_chain, nb);
2809 }
2810 EXPORT_SYMBOL(netlink_register_notifier);
2811
2812 int netlink_unregister_notifier(struct notifier_block *nb)
2813 {
2814 return atomic_notifier_chain_unregister(&netlink_chain, nb);
2815 }
2816 EXPORT_SYMBOL(netlink_unregister_notifier);
2817
2818 static const struct proto_ops netlink_ops = {
2819 .family = PF_NETLINK,
2820 .owner = THIS_MODULE,
2821 .release = netlink_release,
2822 .bind = netlink_bind,
2823 .connect = netlink_connect,
2824 .socketpair = sock_no_socketpair,
2825 .accept = sock_no_accept,
2826 .getname = netlink_getname,
2827 .poll = netlink_poll,
2828 .ioctl = sock_no_ioctl,
2829 .listen = sock_no_listen,
2830 .shutdown = sock_no_shutdown,
2831 .setsockopt = netlink_setsockopt,
2832 .getsockopt = netlink_getsockopt,
2833 .sendmsg = netlink_sendmsg,
2834 .recvmsg = netlink_recvmsg,
2835 .mmap = netlink_mmap,
2836 .sendpage = sock_no_sendpage,
2837 };
2838
2839 static const struct net_proto_family netlink_family_ops = {
2840 .family = PF_NETLINK,
2841 .create = netlink_create,
2842 .owner = THIS_MODULE, /* for consistency 8) */
2843 };
2844
2845 static int __net_init netlink_net_init(struct net *net)
2846 {
2847 #ifdef CONFIG_PROC_FS
2848 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
2849 return -ENOMEM;
2850 #endif
2851 return 0;
2852 }
2853
2854 static void __net_exit netlink_net_exit(struct net *net)
2855 {
2856 #ifdef CONFIG_PROC_FS
2857 remove_proc_entry("netlink", net->proc_net);
2858 #endif
2859 }
2860
2861 static void __init netlink_add_usersock_entry(void)
2862 {
2863 struct listeners *listeners;
2864 int groups = 32;
2865
2866 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2867 if (!listeners)
2868 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
2869
2870 netlink_table_grab();
2871
2872 nl_table[NETLINK_USERSOCK].groups = groups;
2873 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
2874 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
2875 nl_table[NETLINK_USERSOCK].registered = 1;
2876 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
2877
2878 netlink_table_ungrab();
2879 }
2880
2881 static struct pernet_operations __net_initdata netlink_net_ops = {
2882 .init = netlink_net_init,
2883 .exit = netlink_net_exit,
2884 };
2885
2886 static int __init netlink_proto_init(void)
2887 {
2888 int i;
2889 unsigned long limit;
2890 unsigned int order;
2891 int err = proto_register(&netlink_proto, 0);
2892
2893 if (err != 0)
2894 goto out;
2895
2896 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
2897
2898 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
2899 if (!nl_table)
2900 goto panic;
2901
2902 if (totalram_pages >= (128 * 1024))
2903 limit = totalram_pages >> (21 - PAGE_SHIFT);
2904 else
2905 limit = totalram_pages >> (23 - PAGE_SHIFT);
2906
2907 order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
2908 limit = (1UL << order) / sizeof(struct hlist_head);
2909 order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
2910
2911 for (i = 0; i < MAX_LINKS; i++) {
2912 struct nl_portid_hash *hash = &nl_table[i].hash;
2913
2914 hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table));
2915 if (!hash->table) {
2916 while (i-- > 0)
2917 nl_portid_hash_free(nl_table[i].hash.table,
2918 1 * sizeof(*hash->table));
2919 kfree(nl_table);
2920 goto panic;
2921 }
2922 hash->max_shift = order;
2923 hash->shift = 0;
2924 hash->mask = 0;
2925 hash->rehash_time = jiffies;
2926 }
2927
2928 netlink_add_usersock_entry();
2929
2930 sock_register(&netlink_family_ops);
2931 register_pernet_subsys(&netlink_net_ops);
2932 /* The netlink device handler may be needed early. */
2933 rtnetlink_init();
2934 out:
2935 return err;
2936 panic:
2937 panic("netlink_init: Cannot allocate nl_table\n");
2938 }
2939
2940 core_initcall(netlink_proto_init);