Merge branch 'fbdev-3.10-fixes' of git://gitorious.org/linux-omap-dss2/linux into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_l3proto.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <linux/netfilter/nf_nat.h>
31
32 static DEFINE_SPINLOCK(nf_nat_lock);
33
34 static DEFINE_MUTEX(nf_nat_proto_mutex);
35 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
36 __read_mostly;
37 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
38 __read_mostly;
39
40
41 inline const struct nf_nat_l3proto *
42 __nf_nat_l3proto_find(u8 family)
43 {
44 return rcu_dereference(nf_nat_l3protos[family]);
45 }
46
47 inline const struct nf_nat_l4proto *
48 __nf_nat_l4proto_find(u8 family, u8 protonum)
49 {
50 return rcu_dereference(nf_nat_l4protos[family][protonum]);
51 }
52 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
53
54 #ifdef CONFIG_XFRM
55 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
56 {
57 const struct nf_nat_l3proto *l3proto;
58 const struct nf_conn *ct;
59 enum ip_conntrack_info ctinfo;
60 enum ip_conntrack_dir dir;
61 unsigned long statusbit;
62 u8 family;
63
64 ct = nf_ct_get(skb, &ctinfo);
65 if (ct == NULL)
66 return;
67
68 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
69 rcu_read_lock();
70 l3proto = __nf_nat_l3proto_find(family);
71 if (l3proto == NULL)
72 goto out;
73
74 dir = CTINFO2DIR(ctinfo);
75 if (dir == IP_CT_DIR_ORIGINAL)
76 statusbit = IPS_DST_NAT;
77 else
78 statusbit = IPS_SRC_NAT;
79
80 l3proto->decode_session(skb, ct, dir, statusbit, fl);
81 out:
82 rcu_read_unlock();
83 }
84
85 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
86 {
87 struct flowi fl;
88 unsigned int hh_len;
89 struct dst_entry *dst;
90 int err;
91
92 err = xfrm_decode_session(skb, &fl, family);
93 if (err < 0)
94 return err;
95
96 dst = skb_dst(skb);
97 if (dst->xfrm)
98 dst = ((struct xfrm_dst *)dst)->route;
99 dst_hold(dst);
100
101 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
102 if (IS_ERR(dst))
103 return PTR_ERR(dst);
104
105 skb_dst_drop(skb);
106 skb_dst_set(skb, dst);
107
108 /* Change in oif may mean change in hh_len. */
109 hh_len = skb_dst(skb)->dev->hard_header_len;
110 if (skb_headroom(skb) < hh_len &&
111 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
112 return -ENOMEM;
113 return 0;
114 }
115 EXPORT_SYMBOL(nf_xfrm_me_harder);
116 #endif /* CONFIG_XFRM */
117
118 /* We keep an extra hash for each conntrack, for fast searching. */
119 static inline unsigned int
120 hash_by_src(const struct net *net, u16 zone,
121 const struct nf_conntrack_tuple *tuple)
122 {
123 unsigned int hash;
124
125 /* Original src, to ensure we map it consistently if poss. */
126 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
127 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
128 return ((u64)hash * net->ct.nat_htable_size) >> 32;
129 }
130
131 /* Is this tuple already taken? (not by us) */
132 int
133 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
134 const struct nf_conn *ignored_conntrack)
135 {
136 /* Conntrack tracking doesn't keep track of outgoing tuples; only
137 * incoming ones. NAT means they don't have a fixed mapping,
138 * so we invert the tuple and look for the incoming reply.
139 *
140 * We could keep a separate hash if this proves too slow.
141 */
142 struct nf_conntrack_tuple reply;
143
144 nf_ct_invert_tuplepr(&reply, tuple);
145 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
146 }
147 EXPORT_SYMBOL(nf_nat_used_tuple);
148
149 /* If we source map this tuple so reply looks like reply_tuple, will
150 * that meet the constraints of range.
151 */
152 static int in_range(const struct nf_nat_l3proto *l3proto,
153 const struct nf_nat_l4proto *l4proto,
154 const struct nf_conntrack_tuple *tuple,
155 const struct nf_nat_range *range)
156 {
157 /* If we are supposed to map IPs, then we must be in the
158 * range specified, otherwise let this drag us onto a new src IP.
159 */
160 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
161 !l3proto->in_range(tuple, range))
162 return 0;
163
164 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
165 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
166 &range->min_proto, &range->max_proto))
167 return 1;
168
169 return 0;
170 }
171
172 static inline int
173 same_src(const struct nf_conn *ct,
174 const struct nf_conntrack_tuple *tuple)
175 {
176 const struct nf_conntrack_tuple *t;
177
178 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
179 return (t->dst.protonum == tuple->dst.protonum &&
180 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
181 t->src.u.all == tuple->src.u.all);
182 }
183
184 /* Only called for SRC manip */
185 static int
186 find_appropriate_src(struct net *net, u16 zone,
187 const struct nf_nat_l3proto *l3proto,
188 const struct nf_nat_l4proto *l4proto,
189 const struct nf_conntrack_tuple *tuple,
190 struct nf_conntrack_tuple *result,
191 const struct nf_nat_range *range)
192 {
193 unsigned int h = hash_by_src(net, zone, tuple);
194 const struct nf_conn_nat *nat;
195 const struct nf_conn *ct;
196
197 hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
198 ct = nat->ct;
199 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
200 /* Copy source part from reply tuple. */
201 nf_ct_invert_tuplepr(result,
202 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
203 result->dst = tuple->dst;
204
205 if (in_range(l3proto, l4proto, result, range))
206 return 1;
207 }
208 }
209 return 0;
210 }
211
212 /* For [FUTURE] fragmentation handling, we want the least-used
213 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
214 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
215 * 1-65535, we don't do pro-rata allocation based on ports; we choose
216 * the ip with the lowest src-ip/dst-ip/proto usage.
217 */
218 static void
219 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
220 const struct nf_nat_range *range,
221 const struct nf_conn *ct,
222 enum nf_nat_manip_type maniptype)
223 {
224 union nf_inet_addr *var_ipp;
225 unsigned int i, max;
226 /* Host order */
227 u32 minip, maxip, j, dist;
228 bool full_range;
229
230 /* No IP mapping? Do nothing. */
231 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
232 return;
233
234 if (maniptype == NF_NAT_MANIP_SRC)
235 var_ipp = &tuple->src.u3;
236 else
237 var_ipp = &tuple->dst.u3;
238
239 /* Fast path: only one choice. */
240 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
241 *var_ipp = range->min_addr;
242 return;
243 }
244
245 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
246 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
247 else
248 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
249
250 /* Hashing source and destination IPs gives a fairly even
251 * spread in practice (if there are a small number of IPs
252 * involved, there usually aren't that many connections
253 * anyway). The consistency means that servers see the same
254 * client coming from the same IP (some Internet Banking sites
255 * like this), even across reboots.
256 */
257 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
258 range->flags & NF_NAT_RANGE_PERSISTENT ?
259 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
260
261 full_range = false;
262 for (i = 0; i <= max; i++) {
263 /* If first bytes of the address are at the maximum, use the
264 * distance. Otherwise use the full range.
265 */
266 if (!full_range) {
267 minip = ntohl((__force __be32)range->min_addr.all[i]);
268 maxip = ntohl((__force __be32)range->max_addr.all[i]);
269 dist = maxip - minip + 1;
270 } else {
271 minip = 0;
272 dist = ~0;
273 }
274
275 var_ipp->all[i] = (__force __u32)
276 htonl(minip + (((u64)j * dist) >> 32));
277 if (var_ipp->all[i] != range->max_addr.all[i])
278 full_range = true;
279
280 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
281 j ^= (__force u32)tuple->dst.u3.all[i];
282 }
283 }
284
285 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
286 * we change the source to map into the range. For NF_INET_PRE_ROUTING
287 * and NF_INET_LOCAL_OUT, we change the destination to map into the
288 * range. It might not be possible to get a unique tuple, but we try.
289 * At worst (or if we race), we will end up with a final duplicate in
290 * __ip_conntrack_confirm and drop the packet. */
291 static void
292 get_unique_tuple(struct nf_conntrack_tuple *tuple,
293 const struct nf_conntrack_tuple *orig_tuple,
294 const struct nf_nat_range *range,
295 struct nf_conn *ct,
296 enum nf_nat_manip_type maniptype)
297 {
298 const struct nf_nat_l3proto *l3proto;
299 const struct nf_nat_l4proto *l4proto;
300 struct net *net = nf_ct_net(ct);
301 u16 zone = nf_ct_zone(ct);
302
303 rcu_read_lock();
304 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
305 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
306 orig_tuple->dst.protonum);
307
308 /* 1) If this srcip/proto/src-proto-part is currently mapped,
309 * and that same mapping gives a unique tuple within the given
310 * range, use that.
311 *
312 * This is only required for source (ie. NAT/masq) mappings.
313 * So far, we don't do local source mappings, so multiple
314 * manips not an issue.
315 */
316 if (maniptype == NF_NAT_MANIP_SRC &&
317 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
318 /* try the original tuple first */
319 if (in_range(l3proto, l4proto, orig_tuple, range)) {
320 if (!nf_nat_used_tuple(orig_tuple, ct)) {
321 *tuple = *orig_tuple;
322 goto out;
323 }
324 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
325 orig_tuple, tuple, range)) {
326 pr_debug("get_unique_tuple: Found current src map\n");
327 if (!nf_nat_used_tuple(tuple, ct))
328 goto out;
329 }
330 }
331
332 /* 2) Select the least-used IP/proto combination in the given range */
333 *tuple = *orig_tuple;
334 find_best_ips_proto(zone, tuple, range, ct, maniptype);
335
336 /* 3) The per-protocol part of the manip is made to map into
337 * the range to make a unique tuple.
338 */
339
340 /* Only bother mapping if it's not already in range and unique */
341 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
342 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
343 if (l4proto->in_range(tuple, maniptype,
344 &range->min_proto,
345 &range->max_proto) &&
346 (range->min_proto.all == range->max_proto.all ||
347 !nf_nat_used_tuple(tuple, ct)))
348 goto out;
349 } else if (!nf_nat_used_tuple(tuple, ct)) {
350 goto out;
351 }
352 }
353
354 /* Last change: get protocol to try to obtain unique tuple. */
355 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
356 out:
357 rcu_read_unlock();
358 }
359
360 unsigned int
361 nf_nat_setup_info(struct nf_conn *ct,
362 const struct nf_nat_range *range,
363 enum nf_nat_manip_type maniptype)
364 {
365 struct net *net = nf_ct_net(ct);
366 struct nf_conntrack_tuple curr_tuple, new_tuple;
367 struct nf_conn_nat *nat;
368
369 /* nat helper or nfctnetlink also setup binding */
370 nat = nfct_nat(ct);
371 if (!nat) {
372 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
373 if (nat == NULL) {
374 pr_debug("failed to add NAT extension\n");
375 return NF_ACCEPT;
376 }
377 }
378
379 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
380 maniptype == NF_NAT_MANIP_DST);
381 BUG_ON(nf_nat_initialized(ct, maniptype));
382
383 /* What we've got will look like inverse of reply. Normally
384 * this is what is in the conntrack, except for prior
385 * manipulations (future optimization: if num_manips == 0,
386 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
387 */
388 nf_ct_invert_tuplepr(&curr_tuple,
389 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
390
391 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
392
393 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
394 struct nf_conntrack_tuple reply;
395
396 /* Alter conntrack table so will recognize replies. */
397 nf_ct_invert_tuplepr(&reply, &new_tuple);
398 nf_conntrack_alter_reply(ct, &reply);
399
400 /* Non-atomic: we own this at the moment. */
401 if (maniptype == NF_NAT_MANIP_SRC)
402 ct->status |= IPS_SRC_NAT;
403 else
404 ct->status |= IPS_DST_NAT;
405 }
406
407 if (maniptype == NF_NAT_MANIP_SRC) {
408 unsigned int srchash;
409
410 srchash = hash_by_src(net, nf_ct_zone(ct),
411 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
412 spin_lock_bh(&nf_nat_lock);
413 /* nf_conntrack_alter_reply might re-allocate extension aera */
414 nat = nfct_nat(ct);
415 nat->ct = ct;
416 hlist_add_head_rcu(&nat->bysource,
417 &net->ct.nat_bysource[srchash]);
418 spin_unlock_bh(&nf_nat_lock);
419 }
420
421 /* It's done. */
422 if (maniptype == NF_NAT_MANIP_DST)
423 ct->status |= IPS_DST_NAT_DONE;
424 else
425 ct->status |= IPS_SRC_NAT_DONE;
426
427 return NF_ACCEPT;
428 }
429 EXPORT_SYMBOL(nf_nat_setup_info);
430
431 /* Do packet manipulations according to nf_nat_setup_info. */
432 unsigned int nf_nat_packet(struct nf_conn *ct,
433 enum ip_conntrack_info ctinfo,
434 unsigned int hooknum,
435 struct sk_buff *skb)
436 {
437 const struct nf_nat_l3proto *l3proto;
438 const struct nf_nat_l4proto *l4proto;
439 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
440 unsigned long statusbit;
441 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
442
443 if (mtype == NF_NAT_MANIP_SRC)
444 statusbit = IPS_SRC_NAT;
445 else
446 statusbit = IPS_DST_NAT;
447
448 /* Invert if this is reply dir. */
449 if (dir == IP_CT_DIR_REPLY)
450 statusbit ^= IPS_NAT_MASK;
451
452 /* Non-atomic: these bits don't change. */
453 if (ct->status & statusbit) {
454 struct nf_conntrack_tuple target;
455
456 /* We are aiming to look like inverse of other direction. */
457 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
458
459 l3proto = __nf_nat_l3proto_find(target.src.l3num);
460 l4proto = __nf_nat_l4proto_find(target.src.l3num,
461 target.dst.protonum);
462 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
463 return NF_DROP;
464 }
465 return NF_ACCEPT;
466 }
467 EXPORT_SYMBOL_GPL(nf_nat_packet);
468
469 struct nf_nat_proto_clean {
470 u8 l3proto;
471 u8 l4proto;
472 };
473
474 /* kill conntracks with affected NAT section */
475 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
476 {
477 const struct nf_nat_proto_clean *clean = data;
478 struct nf_conn_nat *nat = nfct_nat(i);
479
480 if (!nat)
481 return 0;
482
483 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
484 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
485 return 0;
486
487 return i->status & IPS_NAT_MASK ? 1 : 0;
488 }
489
490 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
491 {
492 struct nf_nat_proto_clean clean = {
493 .l3proto = l3proto,
494 .l4proto = l4proto,
495 };
496 struct net *net;
497
498 rtnl_lock();
499 for_each_net(net)
500 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean);
501 rtnl_unlock();
502 }
503
504 static void nf_nat_l3proto_clean(u8 l3proto)
505 {
506 struct nf_nat_proto_clean clean = {
507 .l3proto = l3proto,
508 };
509 struct net *net;
510
511 rtnl_lock();
512
513 for_each_net(net)
514 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean);
515 rtnl_unlock();
516 }
517
518 /* Protocol registration. */
519 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
520 {
521 const struct nf_nat_l4proto **l4protos;
522 unsigned int i;
523 int ret = 0;
524
525 mutex_lock(&nf_nat_proto_mutex);
526 if (nf_nat_l4protos[l3proto] == NULL) {
527 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
528 GFP_KERNEL);
529 if (l4protos == NULL) {
530 ret = -ENOMEM;
531 goto out;
532 }
533
534 for (i = 0; i < IPPROTO_MAX; i++)
535 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
536
537 /* Before making proto_array visible to lockless readers,
538 * we must make sure its content is committed to memory.
539 */
540 smp_wmb();
541
542 nf_nat_l4protos[l3proto] = l4protos;
543 }
544
545 if (rcu_dereference_protected(
546 nf_nat_l4protos[l3proto][l4proto->l4proto],
547 lockdep_is_held(&nf_nat_proto_mutex)
548 ) != &nf_nat_l4proto_unknown) {
549 ret = -EBUSY;
550 goto out;
551 }
552 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
553 out:
554 mutex_unlock(&nf_nat_proto_mutex);
555 return ret;
556 }
557 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
558
559 /* No one stores the protocol anywhere; simply delete it. */
560 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
561 {
562 mutex_lock(&nf_nat_proto_mutex);
563 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
564 &nf_nat_l4proto_unknown);
565 mutex_unlock(&nf_nat_proto_mutex);
566 synchronize_rcu();
567
568 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
569 }
570 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
571
572 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
573 {
574 int err;
575
576 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
577 if (err < 0)
578 return err;
579
580 mutex_lock(&nf_nat_proto_mutex);
581 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
582 &nf_nat_l4proto_tcp);
583 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
584 &nf_nat_l4proto_udp);
585 mutex_unlock(&nf_nat_proto_mutex);
586
587 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
588 return 0;
589 }
590 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
591
592 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
593 {
594 mutex_lock(&nf_nat_proto_mutex);
595 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
596 mutex_unlock(&nf_nat_proto_mutex);
597 synchronize_rcu();
598
599 nf_nat_l3proto_clean(l3proto->l3proto);
600 nf_ct_l3proto_module_put(l3proto->l3proto);
601 }
602 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
603
604 /* No one using conntrack by the time this called. */
605 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
606 {
607 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
608
609 if (nat == NULL || nat->ct == NULL)
610 return;
611
612 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
613
614 spin_lock_bh(&nf_nat_lock);
615 hlist_del_rcu(&nat->bysource);
616 spin_unlock_bh(&nf_nat_lock);
617 }
618
619 static void nf_nat_move_storage(void *new, void *old)
620 {
621 struct nf_conn_nat *new_nat = new;
622 struct nf_conn_nat *old_nat = old;
623 struct nf_conn *ct = old_nat->ct;
624
625 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
626 return;
627
628 spin_lock_bh(&nf_nat_lock);
629 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
630 spin_unlock_bh(&nf_nat_lock);
631 }
632
633 static struct nf_ct_ext_type nat_extend __read_mostly = {
634 .len = sizeof(struct nf_conn_nat),
635 .align = __alignof__(struct nf_conn_nat),
636 .destroy = nf_nat_cleanup_conntrack,
637 .move = nf_nat_move_storage,
638 .id = NF_CT_EXT_NAT,
639 .flags = NF_CT_EXT_F_PREALLOC,
640 };
641
642 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
643
644 #include <linux/netfilter/nfnetlink.h>
645 #include <linux/netfilter/nfnetlink_conntrack.h>
646
647 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
648 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
649 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
650 };
651
652 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
653 const struct nf_conn *ct,
654 struct nf_nat_range *range)
655 {
656 struct nlattr *tb[CTA_PROTONAT_MAX+1];
657 const struct nf_nat_l4proto *l4proto;
658 int err;
659
660 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
661 if (err < 0)
662 return err;
663
664 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
665 if (l4proto->nlattr_to_range)
666 err = l4proto->nlattr_to_range(tb, range);
667
668 return err;
669 }
670
671 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
672 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
673 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
674 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
675 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
676 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
677 };
678
679 static int
680 nfnetlink_parse_nat(const struct nlattr *nat,
681 const struct nf_conn *ct, struct nf_nat_range *range)
682 {
683 const struct nf_nat_l3proto *l3proto;
684 struct nlattr *tb[CTA_NAT_MAX+1];
685 int err;
686
687 memset(range, 0, sizeof(*range));
688
689 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
690 if (err < 0)
691 return err;
692
693 rcu_read_lock();
694 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
695 if (l3proto == NULL) {
696 err = -EAGAIN;
697 goto out;
698 }
699 err = l3proto->nlattr_to_range(tb, range);
700 if (err < 0)
701 goto out;
702
703 if (!tb[CTA_NAT_PROTO])
704 goto out;
705
706 err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
707 out:
708 rcu_read_unlock();
709 return err;
710 }
711
712 static int
713 nfnetlink_parse_nat_setup(struct nf_conn *ct,
714 enum nf_nat_manip_type manip,
715 const struct nlattr *attr)
716 {
717 struct nf_nat_range range;
718 int err;
719
720 err = nfnetlink_parse_nat(attr, ct, &range);
721 if (err < 0)
722 return err;
723 if (nf_nat_initialized(ct, manip))
724 return -EEXIST;
725
726 return nf_nat_setup_info(ct, &range, manip);
727 }
728 #else
729 static int
730 nfnetlink_parse_nat_setup(struct nf_conn *ct,
731 enum nf_nat_manip_type manip,
732 const struct nlattr *attr)
733 {
734 return -EOPNOTSUPP;
735 }
736 #endif
737
738 static int __net_init nf_nat_net_init(struct net *net)
739 {
740 /* Leave them the same for the moment. */
741 net->ct.nat_htable_size = net->ct.htable_size;
742 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
743 if (!net->ct.nat_bysource)
744 return -ENOMEM;
745 return 0;
746 }
747
748 static void __net_exit nf_nat_net_exit(struct net *net)
749 {
750 struct nf_nat_proto_clean clean = {};
751
752 nf_ct_iterate_cleanup(net, &nf_nat_proto_remove, &clean);
753 synchronize_rcu();
754 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
755 }
756
757 static struct pernet_operations nf_nat_net_ops = {
758 .init = nf_nat_net_init,
759 .exit = nf_nat_net_exit,
760 };
761
762 static struct nf_ct_helper_expectfn follow_master_nat = {
763 .name = "nat-follow-master",
764 .expectfn = nf_nat_follow_master,
765 };
766
767 static struct nfq_ct_nat_hook nfq_ct_nat = {
768 .seq_adjust = nf_nat_tcp_seq_adjust,
769 };
770
771 static int __init nf_nat_init(void)
772 {
773 int ret;
774
775 ret = nf_ct_extend_register(&nat_extend);
776 if (ret < 0) {
777 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
778 return ret;
779 }
780
781 ret = register_pernet_subsys(&nf_nat_net_ops);
782 if (ret < 0)
783 goto cleanup_extend;
784
785 nf_ct_helper_expectfn_register(&follow_master_nat);
786
787 /* Initialize fake conntrack so that NAT will skip it */
788 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
789
790 BUG_ON(nf_nat_seq_adjust_hook != NULL);
791 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
792 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
793 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
794 nfnetlink_parse_nat_setup);
795 BUG_ON(nf_ct_nat_offset != NULL);
796 RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
797 RCU_INIT_POINTER(nfq_ct_nat_hook, &nfq_ct_nat);
798 #ifdef CONFIG_XFRM
799 BUG_ON(nf_nat_decode_session_hook != NULL);
800 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
801 #endif
802 return 0;
803
804 cleanup_extend:
805 nf_ct_extend_unregister(&nat_extend);
806 return ret;
807 }
808
809 static void __exit nf_nat_cleanup(void)
810 {
811 unsigned int i;
812
813 unregister_pernet_subsys(&nf_nat_net_ops);
814 nf_ct_extend_unregister(&nat_extend);
815 nf_ct_helper_expectfn_unregister(&follow_master_nat);
816 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
817 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
818 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
819 RCU_INIT_POINTER(nfq_ct_nat_hook, NULL);
820 #ifdef CONFIG_XFRM
821 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
822 #endif
823 for (i = 0; i < NFPROTO_NUMPROTO; i++)
824 kfree(nf_nat_l4protos[i]);
825 synchronize_net();
826 }
827
828 MODULE_LICENSE("GPL");
829
830 module_init(nf_nat_init);
831 module_exit(nf_nat_cleanup);