Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 enum ieee80211_band band,
166 size_t frame_len,
167 struct ieee80211_rate *rate)
168 {
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[frame_txctl->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[frame_txctl->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 struct ieee80211_sub_if_data *sdata;
271 int n_acs = IEEE80211_NUM_ACS;
272
273 if (local->hw.queues < IEEE80211_NUM_ACS)
274 n_acs = 1;
275
276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 int ac;
278
279 if (!sdata->dev)
280 continue;
281
282 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 continue;
284
285 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 continue;
288
289 for (ac = 0; ac < n_acs; ac++) {
290 int ac_queue = sdata->vif.hw_queue[ac];
291
292 if (ac_queue == queue ||
293 (sdata->vif.cab_queue == queue &&
294 local->queue_stop_reasons[ac_queue] == 0 &&
295 skb_queue_empty(&local->pending[ac_queue])))
296 netif_wake_subqueue(sdata->dev, ac);
297 }
298 }
299 }
300
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 enum queue_stop_reason reason)
303 {
304 struct ieee80211_local *local = hw_to_local(hw);
305
306 trace_wake_queue(local, queue, reason);
307
308 if (WARN_ON(queue >= hw->queues))
309 return;
310
311 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 return;
313
314 __clear_bit(reason, &local->queue_stop_reasons[queue]);
315
316 if (local->queue_stop_reasons[queue] != 0)
317 /* someone still has this queue stopped */
318 return;
319
320 if (skb_queue_empty(&local->pending[queue])) {
321 rcu_read_lock();
322 ieee80211_propagate_queue_wake(local, queue);
323 rcu_read_unlock();
324 } else
325 tasklet_schedule(&local->tx_pending_tasklet);
326 }
327
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 enum queue_stop_reason reason)
330 {
331 struct ieee80211_local *local = hw_to_local(hw);
332 unsigned long flags;
333
334 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 __ieee80211_wake_queue(hw, queue, reason);
336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 ieee80211_wake_queue_by_reason(hw, queue,
342 IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 enum queue_stop_reason reason)
348 {
349 struct ieee80211_local *local = hw_to_local(hw);
350 struct ieee80211_sub_if_data *sdata;
351 int n_acs = IEEE80211_NUM_ACS;
352
353 trace_stop_queue(local, queue, reason);
354
355 if (WARN_ON(queue >= hw->queues))
356 return;
357
358 if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 return;
360
361 __set_bit(reason, &local->queue_stop_reasons[queue]);
362
363 if (local->hw.queues < IEEE80211_NUM_ACS)
364 n_acs = 1;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 int ac;
369
370 if (!sdata->dev)
371 continue;
372
373 for (ac = 0; ac < n_acs; ac++) {
374 if (sdata->vif.hw_queue[ac] == queue ||
375 sdata->vif.cab_queue == queue)
376 netif_stop_subqueue(sdata->dev, ac);
377 }
378 }
379 rcu_read_unlock();
380 }
381
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 enum queue_stop_reason reason)
384 {
385 struct ieee80211_local *local = hw_to_local(hw);
386 unsigned long flags;
387
388 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 __ieee80211_stop_queue(hw, queue, reason);
390 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 ieee80211_stop_queue_by_reason(hw, queue,
396 IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 struct sk_buff *skb)
402 {
403 struct ieee80211_hw *hw = &local->hw;
404 unsigned long flags;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 int queue = info->hw_queue;
407
408 if (WARN_ON(!info->control.vif)) {
409 kfree_skb(skb);
410 return;
411 }
412
413 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 __skb_queue_tail(&local->pending[queue], skb);
416 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 struct sk_buff_head *skbs,
422 void (*fn)(void *data), void *data)
423 {
424 struct ieee80211_hw *hw = &local->hw;
425 struct sk_buff *skb;
426 unsigned long flags;
427 int queue, i;
428
429 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 while ((skb = skb_dequeue(skbs))) {
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432
433 if (WARN_ON(!info->control.vif)) {
434 kfree_skb(skb);
435 continue;
436 }
437
438 queue = info->hw_queue;
439
440 __ieee80211_stop_queue(hw, queue,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442
443 __skb_queue_tail(&local->pending[queue], skb);
444 }
445
446 if (fn)
447 fn(data);
448
449 for (i = 0; i < hw->queues; i++)
450 __ieee80211_wake_queue(hw, i,
451 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 enum queue_stop_reason reason)
457 {
458 struct ieee80211_local *local = hw_to_local(hw);
459 unsigned long flags;
460 int i;
461
462 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463
464 for (i = 0; i < hw->queues; i++)
465 __ieee80211_stop_queue(hw, i, reason);
466
467 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 ieee80211_stop_queues_by_reason(hw,
473 IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 struct ieee80211_local *local = hw_to_local(hw);
480 unsigned long flags;
481 int ret;
482
483 if (WARN_ON(queue >= hw->queues))
484 return true;
485
486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 ret = !!local->queue_stop_reasons[queue];
488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 enum queue_stop_reason reason)
495 {
496 struct ieee80211_local *local = hw_to_local(hw);
497 unsigned long flags;
498 int i;
499
500 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501
502 for (i = 0; i < hw->queues; i++)
503 __ieee80211_wake_queue(hw, i, reason);
504
505 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513
514 void ieee80211_iterate_active_interfaces(
515 struct ieee80211_hw *hw,
516 void (*iterator)(void *data, u8 *mac,
517 struct ieee80211_vif *vif),
518 void *data)
519 {
520 struct ieee80211_local *local = hw_to_local(hw);
521 struct ieee80211_sub_if_data *sdata;
522
523 mutex_lock(&local->iflist_mtx);
524
525 list_for_each_entry(sdata, &local->interfaces, list) {
526 switch (sdata->vif.type) {
527 case NL80211_IFTYPE_MONITOR:
528 case NL80211_IFTYPE_AP_VLAN:
529 continue;
530 default:
531 break;
532 }
533 if (ieee80211_sdata_running(sdata))
534 iterator(data, sdata->vif.addr,
535 &sdata->vif);
536 }
537
538 sdata = rcu_dereference_protected(local->monitor_sdata,
539 lockdep_is_held(&local->iflist_mtx));
540 if (sdata)
541 iterator(data, sdata->vif.addr, &sdata->vif);
542
543 mutex_unlock(&local->iflist_mtx);
544 }
545 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
546
547 void ieee80211_iterate_active_interfaces_atomic(
548 struct ieee80211_hw *hw,
549 void (*iterator)(void *data, u8 *mac,
550 struct ieee80211_vif *vif),
551 void *data)
552 {
553 struct ieee80211_local *local = hw_to_local(hw);
554 struct ieee80211_sub_if_data *sdata;
555
556 rcu_read_lock();
557
558 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
559 switch (sdata->vif.type) {
560 case NL80211_IFTYPE_MONITOR:
561 case NL80211_IFTYPE_AP_VLAN:
562 continue;
563 default:
564 break;
565 }
566 if (ieee80211_sdata_running(sdata))
567 iterator(data, sdata->vif.addr,
568 &sdata->vif);
569 }
570
571 sdata = rcu_dereference(local->monitor_sdata);
572 if (sdata)
573 iterator(data, sdata->vif.addr, &sdata->vif);
574
575 rcu_read_unlock();
576 }
577 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
578
579 /*
580 * Nothing should have been stuffed into the workqueue during
581 * the suspend->resume cycle. If this WARN is seen then there
582 * is a bug with either the driver suspend or something in
583 * mac80211 stuffing into the workqueue which we haven't yet
584 * cleared during mac80211's suspend cycle.
585 */
586 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
587 {
588 if (WARN(local->suspended && !local->resuming,
589 "queueing ieee80211 work while going to suspend\n"))
590 return false;
591
592 return true;
593 }
594
595 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
596 {
597 struct ieee80211_local *local = hw_to_local(hw);
598
599 if (!ieee80211_can_queue_work(local))
600 return;
601
602 queue_work(local->workqueue, work);
603 }
604 EXPORT_SYMBOL(ieee80211_queue_work);
605
606 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
607 struct delayed_work *dwork,
608 unsigned long delay)
609 {
610 struct ieee80211_local *local = hw_to_local(hw);
611
612 if (!ieee80211_can_queue_work(local))
613 return;
614
615 queue_delayed_work(local->workqueue, dwork, delay);
616 }
617 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
618
619 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
620 struct ieee802_11_elems *elems,
621 u64 filter, u32 crc)
622 {
623 size_t left = len;
624 u8 *pos = start;
625 bool calc_crc = filter != 0;
626 DECLARE_BITMAP(seen_elems, 256);
627
628 bitmap_zero(seen_elems, 256);
629 memset(elems, 0, sizeof(*elems));
630 elems->ie_start = start;
631 elems->total_len = len;
632
633 while (left >= 2) {
634 u8 id, elen;
635 bool elem_parse_failed;
636
637 id = *pos++;
638 elen = *pos++;
639 left -= 2;
640
641 if (elen > left) {
642 elems->parse_error = true;
643 break;
644 }
645
646 if (id != WLAN_EID_VENDOR_SPECIFIC &&
647 id != WLAN_EID_QUIET &&
648 test_bit(id, seen_elems)) {
649 elems->parse_error = true;
650 left -= elen;
651 pos += elen;
652 continue;
653 }
654
655 if (calc_crc && id < 64 && (filter & (1ULL << id)))
656 crc = crc32_be(crc, pos - 2, elen + 2);
657
658 elem_parse_failed = false;
659
660 switch (id) {
661 case WLAN_EID_SSID:
662 elems->ssid = pos;
663 elems->ssid_len = elen;
664 break;
665 case WLAN_EID_SUPP_RATES:
666 elems->supp_rates = pos;
667 elems->supp_rates_len = elen;
668 break;
669 case WLAN_EID_FH_PARAMS:
670 elems->fh_params = pos;
671 elems->fh_params_len = elen;
672 break;
673 case WLAN_EID_DS_PARAMS:
674 elems->ds_params = pos;
675 elems->ds_params_len = elen;
676 break;
677 case WLAN_EID_CF_PARAMS:
678 elems->cf_params = pos;
679 elems->cf_params_len = elen;
680 break;
681 case WLAN_EID_TIM:
682 if (elen >= sizeof(struct ieee80211_tim_ie)) {
683 elems->tim = (void *)pos;
684 elems->tim_len = elen;
685 } else
686 elem_parse_failed = true;
687 break;
688 case WLAN_EID_IBSS_PARAMS:
689 elems->ibss_params = pos;
690 elems->ibss_params_len = elen;
691 break;
692 case WLAN_EID_CHALLENGE:
693 elems->challenge = pos;
694 elems->challenge_len = elen;
695 break;
696 case WLAN_EID_VENDOR_SPECIFIC:
697 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
698 pos[2] == 0xf2) {
699 /* Microsoft OUI (00:50:F2) */
700
701 if (calc_crc)
702 crc = crc32_be(crc, pos - 2, elen + 2);
703
704 if (pos[3] == 1) {
705 /* OUI Type 1 - WPA IE */
706 elems->wpa = pos;
707 elems->wpa_len = elen;
708 } else if (elen >= 5 && pos[3] == 2) {
709 /* OUI Type 2 - WMM IE */
710 if (pos[4] == 0) {
711 elems->wmm_info = pos;
712 elems->wmm_info_len = elen;
713 } else if (pos[4] == 1) {
714 elems->wmm_param = pos;
715 elems->wmm_param_len = elen;
716 }
717 }
718 }
719 break;
720 case WLAN_EID_RSN:
721 elems->rsn = pos;
722 elems->rsn_len = elen;
723 break;
724 case WLAN_EID_ERP_INFO:
725 elems->erp_info = pos;
726 elems->erp_info_len = elen;
727 break;
728 case WLAN_EID_EXT_SUPP_RATES:
729 elems->ext_supp_rates = pos;
730 elems->ext_supp_rates_len = elen;
731 break;
732 case WLAN_EID_HT_CAPABILITY:
733 if (elen >= sizeof(struct ieee80211_ht_cap))
734 elems->ht_cap_elem = (void *)pos;
735 else
736 elem_parse_failed = true;
737 break;
738 case WLAN_EID_HT_OPERATION:
739 if (elen >= sizeof(struct ieee80211_ht_operation))
740 elems->ht_operation = (void *)pos;
741 else
742 elem_parse_failed = true;
743 break;
744 case WLAN_EID_MESH_ID:
745 elems->mesh_id = pos;
746 elems->mesh_id_len = elen;
747 break;
748 case WLAN_EID_MESH_CONFIG:
749 if (elen >= sizeof(struct ieee80211_meshconf_ie))
750 elems->mesh_config = (void *)pos;
751 else
752 elem_parse_failed = true;
753 break;
754 case WLAN_EID_PEER_MGMT:
755 elems->peering = pos;
756 elems->peering_len = elen;
757 break;
758 case WLAN_EID_PREQ:
759 elems->preq = pos;
760 elems->preq_len = elen;
761 break;
762 case WLAN_EID_PREP:
763 elems->prep = pos;
764 elems->prep_len = elen;
765 break;
766 case WLAN_EID_PERR:
767 elems->perr = pos;
768 elems->perr_len = elen;
769 break;
770 case WLAN_EID_RANN:
771 if (elen >= sizeof(struct ieee80211_rann_ie))
772 elems->rann = (void *)pos;
773 else
774 elem_parse_failed = true;
775 break;
776 case WLAN_EID_CHANNEL_SWITCH:
777 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
778 elem_parse_failed = true;
779 break;
780 }
781 elems->ch_switch_ie = (void *)pos;
782 break;
783 case WLAN_EID_QUIET:
784 if (!elems->quiet_elem) {
785 elems->quiet_elem = pos;
786 elems->quiet_elem_len = elen;
787 }
788 elems->num_of_quiet_elem++;
789 break;
790 case WLAN_EID_COUNTRY:
791 elems->country_elem = pos;
792 elems->country_elem_len = elen;
793 break;
794 case WLAN_EID_PWR_CONSTRAINT:
795 if (elen != 1) {
796 elem_parse_failed = true;
797 break;
798 }
799 elems->pwr_constr_elem = pos;
800 break;
801 case WLAN_EID_TIMEOUT_INTERVAL:
802 elems->timeout_int = pos;
803 elems->timeout_int_len = elen;
804 break;
805 default:
806 break;
807 }
808
809 if (elem_parse_failed)
810 elems->parse_error = true;
811 else
812 set_bit(id, seen_elems);
813
814 left -= elen;
815 pos += elen;
816 }
817
818 if (left != 0)
819 elems->parse_error = true;
820
821 return crc;
822 }
823
824 void ieee802_11_parse_elems(u8 *start, size_t len,
825 struct ieee802_11_elems *elems)
826 {
827 ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
828 }
829
830 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
831 bool bss_notify)
832 {
833 struct ieee80211_local *local = sdata->local;
834 struct ieee80211_tx_queue_params qparam;
835 int ac;
836 bool use_11b, enable_qos;
837 int aCWmin, aCWmax;
838
839 if (!local->ops->conf_tx)
840 return;
841
842 if (local->hw.queues < IEEE80211_NUM_ACS)
843 return;
844
845 memset(&qparam, 0, sizeof(qparam));
846
847 use_11b = (local->oper_channel->band == IEEE80211_BAND_2GHZ) &&
848 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
849
850 /*
851 * By default disable QoS in STA mode for old access points, which do
852 * not support 802.11e. New APs will provide proper queue parameters,
853 * that we will configure later.
854 */
855 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
856
857 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
858 /* Set defaults according to 802.11-2007 Table 7-37 */
859 aCWmax = 1023;
860 if (use_11b)
861 aCWmin = 31;
862 else
863 aCWmin = 15;
864
865 if (enable_qos) {
866 switch (ac) {
867 case IEEE80211_AC_BK:
868 qparam.cw_max = aCWmax;
869 qparam.cw_min = aCWmin;
870 qparam.txop = 0;
871 qparam.aifs = 7;
872 break;
873 /* never happens but let's not leave undefined */
874 default:
875 case IEEE80211_AC_BE:
876 qparam.cw_max = aCWmax;
877 qparam.cw_min = aCWmin;
878 qparam.txop = 0;
879 qparam.aifs = 3;
880 break;
881 case IEEE80211_AC_VI:
882 qparam.cw_max = aCWmin;
883 qparam.cw_min = (aCWmin + 1) / 2 - 1;
884 if (use_11b)
885 qparam.txop = 6016/32;
886 else
887 qparam.txop = 3008/32;
888 qparam.aifs = 2;
889 break;
890 case IEEE80211_AC_VO:
891 qparam.cw_max = (aCWmin + 1) / 2 - 1;
892 qparam.cw_min = (aCWmin + 1) / 4 - 1;
893 if (use_11b)
894 qparam.txop = 3264/32;
895 else
896 qparam.txop = 1504/32;
897 qparam.aifs = 2;
898 break;
899 }
900 } else {
901 /* Confiure old 802.11b/g medium access rules. */
902 qparam.cw_max = aCWmax;
903 qparam.cw_min = aCWmin;
904 qparam.txop = 0;
905 qparam.aifs = 2;
906 }
907
908 qparam.uapsd = false;
909
910 sdata->tx_conf[ac] = qparam;
911 drv_conf_tx(local, sdata, ac, &qparam);
912 }
913
914 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
915 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
916 sdata->vif.bss_conf.qos = enable_qos;
917 if (bss_notify)
918 ieee80211_bss_info_change_notify(sdata,
919 BSS_CHANGED_QOS);
920 }
921 }
922
923 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
924 const size_t supp_rates_len,
925 const u8 *supp_rates)
926 {
927 struct ieee80211_local *local = sdata->local;
928 int i, have_higher_than_11mbit = 0;
929
930 /* cf. IEEE 802.11 9.2.12 */
931 for (i = 0; i < supp_rates_len; i++)
932 if ((supp_rates[i] & 0x7f) * 5 > 110)
933 have_higher_than_11mbit = 1;
934
935 if (local->oper_channel->band == IEEE80211_BAND_2GHZ &&
936 have_higher_than_11mbit)
937 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
938 else
939 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
940
941 ieee80211_set_wmm_default(sdata, true);
942 }
943
944 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
945 enum ieee80211_band band)
946 {
947 struct ieee80211_supported_band *sband;
948 struct ieee80211_rate *bitrates;
949 u32 mandatory_rates;
950 enum ieee80211_rate_flags mandatory_flag;
951 int i;
952
953 sband = local->hw.wiphy->bands[band];
954 if (WARN_ON(!sband))
955 return 1;
956
957 if (band == IEEE80211_BAND_2GHZ)
958 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
959 else
960 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
961
962 bitrates = sband->bitrates;
963 mandatory_rates = 0;
964 for (i = 0; i < sband->n_bitrates; i++)
965 if (bitrates[i].flags & mandatory_flag)
966 mandatory_rates |= BIT(i);
967 return mandatory_rates;
968 }
969
970 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
971 u16 transaction, u16 auth_alg,
972 u8 *extra, size_t extra_len, const u8 *da,
973 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
974 {
975 struct ieee80211_local *local = sdata->local;
976 struct sk_buff *skb;
977 struct ieee80211_mgmt *mgmt;
978 int err;
979
980 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
981 sizeof(*mgmt) + 6 + extra_len);
982 if (!skb)
983 return;
984
985 skb_reserve(skb, local->hw.extra_tx_headroom);
986
987 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
988 memset(mgmt, 0, 24 + 6);
989 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
990 IEEE80211_STYPE_AUTH);
991 memcpy(mgmt->da, da, ETH_ALEN);
992 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
993 memcpy(mgmt->bssid, bssid, ETH_ALEN);
994 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
995 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
996 mgmt->u.auth.status_code = cpu_to_le16(0);
997 if (extra)
998 memcpy(skb_put(skb, extra_len), extra, extra_len);
999
1000 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1001 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1002 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1003 WARN_ON(err);
1004 }
1005
1006 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1007 ieee80211_tx_skb(sdata, skb);
1008 }
1009
1010 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1011 const u8 *bssid, u16 stype, u16 reason,
1012 bool send_frame, u8 *frame_buf)
1013 {
1014 struct ieee80211_local *local = sdata->local;
1015 struct sk_buff *skb;
1016 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1017
1018 /* build frame */
1019 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1020 mgmt->duration = 0; /* initialize only */
1021 mgmt->seq_ctrl = 0; /* initialize only */
1022 memcpy(mgmt->da, bssid, ETH_ALEN);
1023 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1024 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1025 /* u.deauth.reason_code == u.disassoc.reason_code */
1026 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1027
1028 if (send_frame) {
1029 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1030 IEEE80211_DEAUTH_FRAME_LEN);
1031 if (!skb)
1032 return;
1033
1034 skb_reserve(skb, local->hw.extra_tx_headroom);
1035
1036 /* copy in frame */
1037 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1038 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1039
1040 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1041 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1042 IEEE80211_SKB_CB(skb)->flags |=
1043 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1044
1045 ieee80211_tx_skb(sdata, skb);
1046 }
1047 }
1048
1049 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1050 const u8 *ie, size_t ie_len,
1051 enum ieee80211_band band, u32 rate_mask,
1052 u8 channel)
1053 {
1054 struct ieee80211_supported_band *sband;
1055 u8 *pos;
1056 size_t offset = 0, noffset;
1057 int supp_rates_len, i;
1058 u8 rates[32];
1059 int num_rates;
1060 int ext_rates_len;
1061
1062 sband = local->hw.wiphy->bands[band];
1063 if (WARN_ON_ONCE(!sband))
1064 return 0;
1065
1066 pos = buffer;
1067
1068 num_rates = 0;
1069 for (i = 0; i < sband->n_bitrates; i++) {
1070 if ((BIT(i) & rate_mask) == 0)
1071 continue; /* skip rate */
1072 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1073 }
1074
1075 supp_rates_len = min_t(int, num_rates, 8);
1076
1077 *pos++ = WLAN_EID_SUPP_RATES;
1078 *pos++ = supp_rates_len;
1079 memcpy(pos, rates, supp_rates_len);
1080 pos += supp_rates_len;
1081
1082 /* insert "request information" if in custom IEs */
1083 if (ie && ie_len) {
1084 static const u8 before_extrates[] = {
1085 WLAN_EID_SSID,
1086 WLAN_EID_SUPP_RATES,
1087 WLAN_EID_REQUEST,
1088 };
1089 noffset = ieee80211_ie_split(ie, ie_len,
1090 before_extrates,
1091 ARRAY_SIZE(before_extrates),
1092 offset);
1093 memcpy(pos, ie + offset, noffset - offset);
1094 pos += noffset - offset;
1095 offset = noffset;
1096 }
1097
1098 ext_rates_len = num_rates - supp_rates_len;
1099 if (ext_rates_len > 0) {
1100 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1101 *pos++ = ext_rates_len;
1102 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1103 pos += ext_rates_len;
1104 }
1105
1106 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1107 *pos++ = WLAN_EID_DS_PARAMS;
1108 *pos++ = 1;
1109 *pos++ = channel;
1110 }
1111
1112 /* insert custom IEs that go before HT */
1113 if (ie && ie_len) {
1114 static const u8 before_ht[] = {
1115 WLAN_EID_SSID,
1116 WLAN_EID_SUPP_RATES,
1117 WLAN_EID_REQUEST,
1118 WLAN_EID_EXT_SUPP_RATES,
1119 WLAN_EID_DS_PARAMS,
1120 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1121 };
1122 noffset = ieee80211_ie_split(ie, ie_len,
1123 before_ht, ARRAY_SIZE(before_ht),
1124 offset);
1125 memcpy(pos, ie + offset, noffset - offset);
1126 pos += noffset - offset;
1127 offset = noffset;
1128 }
1129
1130 if (sband->ht_cap.ht_supported)
1131 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1132 sband->ht_cap.cap);
1133
1134 /*
1135 * If adding more here, adjust code in main.c
1136 * that calculates local->scan_ies_len.
1137 */
1138
1139 /* add any remaining custom IEs */
1140 if (ie && ie_len) {
1141 noffset = ie_len;
1142 memcpy(pos, ie + offset, noffset - offset);
1143 pos += noffset - offset;
1144 }
1145
1146 if (sband->vht_cap.vht_supported)
1147 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1148 sband->vht_cap.cap);
1149
1150 return pos - buffer;
1151 }
1152
1153 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1154 u8 *dst, u32 ratemask,
1155 struct ieee80211_channel *chan,
1156 const u8 *ssid, size_t ssid_len,
1157 const u8 *ie, size_t ie_len,
1158 bool directed)
1159 {
1160 struct ieee80211_local *local = sdata->local;
1161 struct sk_buff *skb;
1162 struct ieee80211_mgmt *mgmt;
1163 size_t buf_len;
1164 u8 *buf;
1165 u8 chan_no;
1166
1167 /* FIXME: come up with a proper value */
1168 buf = kmalloc(200 + ie_len, GFP_KERNEL);
1169 if (!buf)
1170 return NULL;
1171
1172 /*
1173 * Do not send DS Channel parameter for directed probe requests
1174 * in order to maximize the chance that we get a response. Some
1175 * badly-behaved APs don't respond when this parameter is included.
1176 */
1177 if (directed)
1178 chan_no = 0;
1179 else
1180 chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1181
1182 buf_len = ieee80211_build_preq_ies(local, buf, ie, ie_len, chan->band,
1183 ratemask, chan_no);
1184
1185 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1186 ssid, ssid_len,
1187 buf, buf_len);
1188 if (!skb)
1189 goto out;
1190
1191 if (dst) {
1192 mgmt = (struct ieee80211_mgmt *) skb->data;
1193 memcpy(mgmt->da, dst, ETH_ALEN);
1194 memcpy(mgmt->bssid, dst, ETH_ALEN);
1195 }
1196
1197 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1198
1199 out:
1200 kfree(buf);
1201
1202 return skb;
1203 }
1204
1205 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1206 const u8 *ssid, size_t ssid_len,
1207 const u8 *ie, size_t ie_len,
1208 u32 ratemask, bool directed, bool no_cck,
1209 struct ieee80211_channel *channel)
1210 {
1211 struct sk_buff *skb;
1212
1213 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1214 ssid, ssid_len,
1215 ie, ie_len, directed);
1216 if (skb) {
1217 if (no_cck)
1218 IEEE80211_SKB_CB(skb)->flags |=
1219 IEEE80211_TX_CTL_NO_CCK_RATE;
1220 ieee80211_tx_skb(sdata, skb);
1221 }
1222 }
1223
1224 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1225 struct ieee802_11_elems *elems,
1226 enum ieee80211_band band, u32 *basic_rates)
1227 {
1228 struct ieee80211_supported_band *sband;
1229 struct ieee80211_rate *bitrates;
1230 size_t num_rates;
1231 u32 supp_rates;
1232 int i, j;
1233 sband = local->hw.wiphy->bands[band];
1234
1235 if (WARN_ON(!sband))
1236 return 1;
1237
1238 bitrates = sband->bitrates;
1239 num_rates = sband->n_bitrates;
1240 supp_rates = 0;
1241 for (i = 0; i < elems->supp_rates_len +
1242 elems->ext_supp_rates_len; i++) {
1243 u8 rate = 0;
1244 int own_rate;
1245 bool is_basic;
1246 if (i < elems->supp_rates_len)
1247 rate = elems->supp_rates[i];
1248 else if (elems->ext_supp_rates)
1249 rate = elems->ext_supp_rates
1250 [i - elems->supp_rates_len];
1251 own_rate = 5 * (rate & 0x7f);
1252 is_basic = !!(rate & 0x80);
1253
1254 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1255 continue;
1256
1257 for (j = 0; j < num_rates; j++) {
1258 if (bitrates[j].bitrate == own_rate) {
1259 supp_rates |= BIT(j);
1260 if (basic_rates && is_basic)
1261 *basic_rates |= BIT(j);
1262 }
1263 }
1264 }
1265 return supp_rates;
1266 }
1267
1268 void ieee80211_stop_device(struct ieee80211_local *local)
1269 {
1270 ieee80211_led_radio(local, false);
1271 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1272
1273 cancel_work_sync(&local->reconfig_filter);
1274
1275 flush_workqueue(local->workqueue);
1276 drv_stop(local);
1277 }
1278
1279 int ieee80211_reconfig(struct ieee80211_local *local)
1280 {
1281 struct ieee80211_hw *hw = &local->hw;
1282 struct ieee80211_sub_if_data *sdata;
1283 struct sta_info *sta;
1284 int res, i;
1285
1286 #ifdef CONFIG_PM
1287 if (local->suspended)
1288 local->resuming = true;
1289
1290 if (local->wowlan) {
1291 local->wowlan = false;
1292 res = drv_resume(local);
1293 if (res < 0) {
1294 local->resuming = false;
1295 return res;
1296 }
1297 if (res == 0)
1298 goto wake_up;
1299 WARN_ON(res > 1);
1300 /*
1301 * res is 1, which means the driver requested
1302 * to go through a regular reset on wakeup.
1303 */
1304 }
1305 #endif
1306 /* everything else happens only if HW was up & running */
1307 if (!local->open_count)
1308 goto wake_up;
1309
1310 /*
1311 * Upon resume hardware can sometimes be goofy due to
1312 * various platform / driver / bus issues, so restarting
1313 * the device may at times not work immediately. Propagate
1314 * the error.
1315 */
1316 res = drv_start(local);
1317 if (res) {
1318 WARN(local->suspended, "Hardware became unavailable "
1319 "upon resume. This could be a software issue "
1320 "prior to suspend or a hardware issue.\n");
1321 return res;
1322 }
1323
1324 /* setup fragmentation threshold */
1325 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1326
1327 /* setup RTS threshold */
1328 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1329
1330 /* reset coverage class */
1331 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1332
1333 ieee80211_led_radio(local, true);
1334 ieee80211_mod_tpt_led_trig(local,
1335 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1336
1337 /* add interfaces */
1338 sdata = rtnl_dereference(local->monitor_sdata);
1339 if (sdata) {
1340 res = drv_add_interface(local, sdata);
1341 if (WARN_ON(res)) {
1342 rcu_assign_pointer(local->monitor_sdata, NULL);
1343 synchronize_net();
1344 kfree(sdata);
1345 }
1346 }
1347
1348 list_for_each_entry(sdata, &local->interfaces, list) {
1349 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1350 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1351 ieee80211_sdata_running(sdata))
1352 res = drv_add_interface(local, sdata);
1353 }
1354
1355 /* add STAs back */
1356 mutex_lock(&local->sta_mtx);
1357 list_for_each_entry(sta, &local->sta_list, list) {
1358 enum ieee80211_sta_state state;
1359
1360 if (!sta->uploaded)
1361 continue;
1362
1363 /* AP-mode stations will be added later */
1364 if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1365 continue;
1366
1367 for (state = IEEE80211_STA_NOTEXIST;
1368 state < sta->sta_state; state++)
1369 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1370 state + 1));
1371 }
1372 mutex_unlock(&local->sta_mtx);
1373
1374 /* reconfigure tx conf */
1375 if (hw->queues >= IEEE80211_NUM_ACS) {
1376 list_for_each_entry(sdata, &local->interfaces, list) {
1377 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1378 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1379 !ieee80211_sdata_running(sdata))
1380 continue;
1381
1382 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1383 drv_conf_tx(local, sdata, i,
1384 &sdata->tx_conf[i]);
1385 }
1386 }
1387
1388 /* reconfigure hardware */
1389 ieee80211_hw_config(local, ~0);
1390
1391 ieee80211_configure_filter(local);
1392
1393 /* Finally also reconfigure all the BSS information */
1394 list_for_each_entry(sdata, &local->interfaces, list) {
1395 u32 changed;
1396
1397 if (!ieee80211_sdata_running(sdata))
1398 continue;
1399
1400 /* common change flags for all interface types */
1401 changed = BSS_CHANGED_ERP_CTS_PROT |
1402 BSS_CHANGED_ERP_PREAMBLE |
1403 BSS_CHANGED_ERP_SLOT |
1404 BSS_CHANGED_HT |
1405 BSS_CHANGED_BASIC_RATES |
1406 BSS_CHANGED_BEACON_INT |
1407 BSS_CHANGED_BSSID |
1408 BSS_CHANGED_CQM |
1409 BSS_CHANGED_QOS |
1410 BSS_CHANGED_IDLE;
1411
1412 switch (sdata->vif.type) {
1413 case NL80211_IFTYPE_STATION:
1414 changed |= BSS_CHANGED_ASSOC |
1415 BSS_CHANGED_ARP_FILTER |
1416 BSS_CHANGED_PS;
1417 mutex_lock(&sdata->u.mgd.mtx);
1418 ieee80211_bss_info_change_notify(sdata, changed);
1419 mutex_unlock(&sdata->u.mgd.mtx);
1420 break;
1421 case NL80211_IFTYPE_ADHOC:
1422 changed |= BSS_CHANGED_IBSS;
1423 /* fall through */
1424 case NL80211_IFTYPE_AP:
1425 changed |= BSS_CHANGED_SSID;
1426
1427 if (sdata->vif.type == NL80211_IFTYPE_AP)
1428 changed |= BSS_CHANGED_AP_PROBE_RESP;
1429
1430 /* fall through */
1431 case NL80211_IFTYPE_MESH_POINT:
1432 changed |= BSS_CHANGED_BEACON |
1433 BSS_CHANGED_BEACON_ENABLED;
1434 ieee80211_bss_info_change_notify(sdata, changed);
1435 break;
1436 case NL80211_IFTYPE_WDS:
1437 break;
1438 case NL80211_IFTYPE_AP_VLAN:
1439 case NL80211_IFTYPE_MONITOR:
1440 /* ignore virtual */
1441 break;
1442 case NL80211_IFTYPE_P2P_DEVICE:
1443 changed = BSS_CHANGED_IDLE;
1444 break;
1445 case NL80211_IFTYPE_UNSPECIFIED:
1446 case NUM_NL80211_IFTYPES:
1447 case NL80211_IFTYPE_P2P_CLIENT:
1448 case NL80211_IFTYPE_P2P_GO:
1449 WARN_ON(1);
1450 break;
1451 }
1452 }
1453
1454 ieee80211_recalc_ps(local, -1);
1455
1456 /*
1457 * The sta might be in psm against the ap (e.g. because
1458 * this was the state before a hw restart), so we
1459 * explicitly send a null packet in order to make sure
1460 * it'll sync against the ap (and get out of psm).
1461 */
1462 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1463 list_for_each_entry(sdata, &local->interfaces, list) {
1464 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1465 continue;
1466
1467 ieee80211_send_nullfunc(local, sdata, 0);
1468 }
1469 }
1470
1471 /* APs are now beaconing, add back stations */
1472 mutex_lock(&local->sta_mtx);
1473 list_for_each_entry(sta, &local->sta_list, list) {
1474 enum ieee80211_sta_state state;
1475
1476 if (!sta->uploaded)
1477 continue;
1478
1479 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1480 continue;
1481
1482 for (state = IEEE80211_STA_NOTEXIST;
1483 state < sta->sta_state; state++)
1484 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1485 state + 1));
1486 }
1487 mutex_unlock(&local->sta_mtx);
1488
1489 /* add back keys */
1490 list_for_each_entry(sdata, &local->interfaces, list)
1491 if (ieee80211_sdata_running(sdata))
1492 ieee80211_enable_keys(sdata);
1493
1494 wake_up:
1495 local->in_reconfig = false;
1496 barrier();
1497
1498 /*
1499 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1500 * sessions can be established after a resume.
1501 *
1502 * Also tear down aggregation sessions since reconfiguring
1503 * them in a hardware restart scenario is not easily done
1504 * right now, and the hardware will have lost information
1505 * about the sessions, but we and the AP still think they
1506 * are active. This is really a workaround though.
1507 */
1508 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1509 mutex_lock(&local->sta_mtx);
1510
1511 list_for_each_entry(sta, &local->sta_list, list) {
1512 ieee80211_sta_tear_down_BA_sessions(sta, true);
1513 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1514 }
1515
1516 mutex_unlock(&local->sta_mtx);
1517 }
1518
1519 ieee80211_wake_queues_by_reason(hw,
1520 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1521
1522 /*
1523 * If this is for hw restart things are still running.
1524 * We may want to change that later, however.
1525 */
1526 if (!local->suspended)
1527 return 0;
1528
1529 #ifdef CONFIG_PM
1530 /* first set suspended false, then resuming */
1531 local->suspended = false;
1532 mb();
1533 local->resuming = false;
1534
1535 list_for_each_entry(sdata, &local->interfaces, list) {
1536 switch(sdata->vif.type) {
1537 case NL80211_IFTYPE_STATION:
1538 ieee80211_sta_restart(sdata);
1539 break;
1540 case NL80211_IFTYPE_ADHOC:
1541 ieee80211_ibss_restart(sdata);
1542 break;
1543 case NL80211_IFTYPE_MESH_POINT:
1544 ieee80211_mesh_restart(sdata);
1545 break;
1546 default:
1547 break;
1548 }
1549 }
1550
1551 mod_timer(&local->sta_cleanup, jiffies + 1);
1552
1553 mutex_lock(&local->sta_mtx);
1554 list_for_each_entry(sta, &local->sta_list, list)
1555 mesh_plink_restart(sta);
1556 mutex_unlock(&local->sta_mtx);
1557 #else
1558 WARN_ON(1);
1559 #endif
1560 return 0;
1561 }
1562
1563 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1564 {
1565 struct ieee80211_sub_if_data *sdata;
1566 struct ieee80211_local *local;
1567 struct ieee80211_key *key;
1568
1569 if (WARN_ON(!vif))
1570 return;
1571
1572 sdata = vif_to_sdata(vif);
1573 local = sdata->local;
1574
1575 if (WARN_ON(!local->resuming))
1576 return;
1577
1578 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1579 return;
1580
1581 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1582
1583 mutex_lock(&local->key_mtx);
1584 list_for_each_entry(key, &sdata->key_list, list)
1585 key->flags |= KEY_FLAG_TAINTED;
1586 mutex_unlock(&local->key_mtx);
1587 }
1588 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1589
1590 static int check_mgd_smps(struct ieee80211_if_managed *ifmgd,
1591 enum ieee80211_smps_mode *smps_mode)
1592 {
1593 if (ifmgd->associated) {
1594 *smps_mode = ifmgd->ap_smps;
1595
1596 if (*smps_mode == IEEE80211_SMPS_AUTOMATIC) {
1597 if (ifmgd->powersave)
1598 *smps_mode = IEEE80211_SMPS_DYNAMIC;
1599 else
1600 *smps_mode = IEEE80211_SMPS_OFF;
1601 }
1602
1603 return 1;
1604 }
1605
1606 return 0;
1607 }
1608
1609 void ieee80211_recalc_smps(struct ieee80211_local *local)
1610 {
1611 struct ieee80211_sub_if_data *sdata;
1612 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_OFF;
1613 int count = 0;
1614
1615 mutex_lock(&local->iflist_mtx);
1616
1617 /*
1618 * This function could be improved to handle multiple
1619 * interfaces better, but right now it makes any
1620 * non-station interfaces force SM PS to be turned
1621 * off. If there are multiple station interfaces it
1622 * could also use the best possible mode, e.g. if
1623 * one is in static and the other in dynamic then
1624 * dynamic is ok.
1625 */
1626
1627 list_for_each_entry(sdata, &local->interfaces, list) {
1628 if (!ieee80211_sdata_running(sdata))
1629 continue;
1630 if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE)
1631 continue;
1632 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1633 goto set;
1634
1635 count += check_mgd_smps(&sdata->u.mgd, &smps_mode);
1636
1637 if (count > 1) {
1638 smps_mode = IEEE80211_SMPS_OFF;
1639 break;
1640 }
1641 }
1642
1643 if (smps_mode == local->smps_mode)
1644 goto unlock;
1645
1646 set:
1647 local->smps_mode = smps_mode;
1648 /* changed flag is auto-detected for this */
1649 ieee80211_hw_config(local, 0);
1650 unlock:
1651 mutex_unlock(&local->iflist_mtx);
1652 }
1653
1654 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1655 {
1656 int i;
1657
1658 for (i = 0; i < n_ids; i++)
1659 if (ids[i] == id)
1660 return true;
1661 return false;
1662 }
1663
1664 /**
1665 * ieee80211_ie_split - split an IE buffer according to ordering
1666 *
1667 * @ies: the IE buffer
1668 * @ielen: the length of the IE buffer
1669 * @ids: an array with element IDs that are allowed before
1670 * the split
1671 * @n_ids: the size of the element ID array
1672 * @offset: offset where to start splitting in the buffer
1673 *
1674 * This function splits an IE buffer by updating the @offset
1675 * variable to point to the location where the buffer should be
1676 * split.
1677 *
1678 * It assumes that the given IE buffer is well-formed, this
1679 * has to be guaranteed by the caller!
1680 *
1681 * It also assumes that the IEs in the buffer are ordered
1682 * correctly, if not the result of using this function will not
1683 * be ordered correctly either, i.e. it does no reordering.
1684 *
1685 * The function returns the offset where the next part of the
1686 * buffer starts, which may be @ielen if the entire (remainder)
1687 * of the buffer should be used.
1688 */
1689 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1690 const u8 *ids, int n_ids, size_t offset)
1691 {
1692 size_t pos = offset;
1693
1694 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1695 pos += 2 + ies[pos + 1];
1696
1697 return pos;
1698 }
1699
1700 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1701 {
1702 size_t pos = offset;
1703
1704 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1705 pos += 2 + ies[pos + 1];
1706
1707 return pos;
1708 }
1709
1710 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1711 int rssi_min_thold,
1712 int rssi_max_thold)
1713 {
1714 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1715
1716 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1717 return;
1718
1719 /*
1720 * Scale up threshold values before storing it, as the RSSI averaging
1721 * algorithm uses a scaled up value as well. Change this scaling
1722 * factor if the RSSI averaging algorithm changes.
1723 */
1724 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1725 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1726 }
1727
1728 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1729 int rssi_min_thold,
1730 int rssi_max_thold)
1731 {
1732 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1733
1734 WARN_ON(rssi_min_thold == rssi_max_thold ||
1735 rssi_min_thold > rssi_max_thold);
1736
1737 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1738 rssi_max_thold);
1739 }
1740 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1741
1742 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1743 {
1744 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1745
1746 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1747 }
1748 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1749
1750 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1751 u16 cap)
1752 {
1753 __le16 tmp;
1754
1755 *pos++ = WLAN_EID_HT_CAPABILITY;
1756 *pos++ = sizeof(struct ieee80211_ht_cap);
1757 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1758
1759 /* capability flags */
1760 tmp = cpu_to_le16(cap);
1761 memcpy(pos, &tmp, sizeof(u16));
1762 pos += sizeof(u16);
1763
1764 /* AMPDU parameters */
1765 *pos++ = ht_cap->ampdu_factor |
1766 (ht_cap->ampdu_density <<
1767 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1768
1769 /* MCS set */
1770 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1771 pos += sizeof(ht_cap->mcs);
1772
1773 /* extended capabilities */
1774 pos += sizeof(__le16);
1775
1776 /* BF capabilities */
1777 pos += sizeof(__le32);
1778
1779 /* antenna selection */
1780 pos += sizeof(u8);
1781
1782 return pos;
1783 }
1784
1785 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1786 u32 cap)
1787 {
1788 __le32 tmp;
1789
1790 *pos++ = WLAN_EID_VHT_CAPABILITY;
1791 *pos++ = sizeof(struct ieee80211_vht_capabilities);
1792 memset(pos, 0, sizeof(struct ieee80211_vht_capabilities));
1793
1794 /* capability flags */
1795 tmp = cpu_to_le32(cap);
1796 memcpy(pos, &tmp, sizeof(u32));
1797 pos += sizeof(u32);
1798
1799 /* VHT MCS set */
1800 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1801 pos += sizeof(vht_cap->vht_mcs);
1802
1803 return pos;
1804 }
1805
1806 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1807 struct ieee80211_channel *channel,
1808 enum nl80211_channel_type channel_type,
1809 u16 prot_mode)
1810 {
1811 struct ieee80211_ht_operation *ht_oper;
1812 /* Build HT Information */
1813 *pos++ = WLAN_EID_HT_OPERATION;
1814 *pos++ = sizeof(struct ieee80211_ht_operation);
1815 ht_oper = (struct ieee80211_ht_operation *)pos;
1816 ht_oper->primary_chan =
1817 ieee80211_frequency_to_channel(channel->center_freq);
1818 switch (channel_type) {
1819 case NL80211_CHAN_HT40MINUS:
1820 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1821 break;
1822 case NL80211_CHAN_HT40PLUS:
1823 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1824 break;
1825 case NL80211_CHAN_HT20:
1826 default:
1827 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1828 break;
1829 }
1830 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1831 channel_type != NL80211_CHAN_NO_HT &&
1832 channel_type != NL80211_CHAN_HT20)
1833 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1834
1835 ht_oper->operation_mode = cpu_to_le16(prot_mode);
1836 ht_oper->stbc_param = 0x0000;
1837
1838 /* It seems that Basic MCS set and Supported MCS set
1839 are identical for the first 10 bytes */
1840 memset(&ht_oper->basic_set, 0, 16);
1841 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1842
1843 return pos + sizeof(struct ieee80211_ht_operation);
1844 }
1845
1846 enum nl80211_channel_type
1847 ieee80211_ht_oper_to_channel_type(struct ieee80211_ht_operation *ht_oper)
1848 {
1849 enum nl80211_channel_type channel_type;
1850
1851 if (!ht_oper)
1852 return NL80211_CHAN_NO_HT;
1853
1854 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1855 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1856 channel_type = NL80211_CHAN_HT20;
1857 break;
1858 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1859 channel_type = NL80211_CHAN_HT40PLUS;
1860 break;
1861 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1862 channel_type = NL80211_CHAN_HT40MINUS;
1863 break;
1864 default:
1865 channel_type = NL80211_CHAN_NO_HT;
1866 }
1867
1868 return channel_type;
1869 }
1870
1871 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1872 struct sk_buff *skb, bool need_basic,
1873 enum ieee80211_band band)
1874 {
1875 struct ieee80211_local *local = sdata->local;
1876 struct ieee80211_supported_band *sband;
1877 int rate;
1878 u8 i, rates, *pos;
1879 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1880
1881 sband = local->hw.wiphy->bands[band];
1882 rates = sband->n_bitrates;
1883 if (rates > 8)
1884 rates = 8;
1885
1886 if (skb_tailroom(skb) < rates + 2)
1887 return -ENOMEM;
1888
1889 pos = skb_put(skb, rates + 2);
1890 *pos++ = WLAN_EID_SUPP_RATES;
1891 *pos++ = rates;
1892 for (i = 0; i < rates; i++) {
1893 u8 basic = 0;
1894 if (need_basic && basic_rates & BIT(i))
1895 basic = 0x80;
1896 rate = sband->bitrates[i].bitrate;
1897 *pos++ = basic | (u8) (rate / 5);
1898 }
1899
1900 return 0;
1901 }
1902
1903 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
1904 struct sk_buff *skb, bool need_basic,
1905 enum ieee80211_band band)
1906 {
1907 struct ieee80211_local *local = sdata->local;
1908 struct ieee80211_supported_band *sband;
1909 int rate;
1910 u8 i, exrates, *pos;
1911 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1912
1913 sband = local->hw.wiphy->bands[band];
1914 exrates = sband->n_bitrates;
1915 if (exrates > 8)
1916 exrates -= 8;
1917 else
1918 exrates = 0;
1919
1920 if (skb_tailroom(skb) < exrates + 2)
1921 return -ENOMEM;
1922
1923 if (exrates) {
1924 pos = skb_put(skb, exrates + 2);
1925 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1926 *pos++ = exrates;
1927 for (i = 8; i < sband->n_bitrates; i++) {
1928 u8 basic = 0;
1929 if (need_basic && basic_rates & BIT(i))
1930 basic = 0x80;
1931 rate = sband->bitrates[i].bitrate;
1932 *pos++ = basic | (u8) (rate / 5);
1933 }
1934 }
1935 return 0;
1936 }
1937
1938 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
1939 {
1940 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1941 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
1942
1943 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
1944 /* non-managed type inferfaces */
1945 return 0;
1946 }
1947 return ifmgd->ave_beacon_signal;
1948 }
1949 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);