mac80211: minstrel_ht: set default tx aggregation timeout to 0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 enum ieee80211_band band,
166 size_t frame_len,
167 struct ieee80211_rate *rate)
168 {
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[frame_txctl->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[frame_txctl->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 struct ieee80211_sub_if_data *sdata;
271 int n_acs = IEEE80211_NUM_ACS;
272
273 if (local->hw.queues < IEEE80211_NUM_ACS)
274 n_acs = 1;
275
276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 int ac;
278
279 if (!sdata->dev)
280 continue;
281
282 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 continue;
284
285 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 continue;
288
289 for (ac = 0; ac < n_acs; ac++) {
290 int ac_queue = sdata->vif.hw_queue[ac];
291
292 if (ac_queue == queue ||
293 (sdata->vif.cab_queue == queue &&
294 local->queue_stop_reasons[ac_queue] == 0 &&
295 skb_queue_empty(&local->pending[ac_queue])))
296 netif_wake_subqueue(sdata->dev, ac);
297 }
298 }
299 }
300
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 enum queue_stop_reason reason)
303 {
304 struct ieee80211_local *local = hw_to_local(hw);
305
306 trace_wake_queue(local, queue, reason);
307
308 if (WARN_ON(queue >= hw->queues))
309 return;
310
311 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 return;
313
314 __clear_bit(reason, &local->queue_stop_reasons[queue]);
315
316 if (local->queue_stop_reasons[queue] != 0)
317 /* someone still has this queue stopped */
318 return;
319
320 if (skb_queue_empty(&local->pending[queue])) {
321 rcu_read_lock();
322 ieee80211_propagate_queue_wake(local, queue);
323 rcu_read_unlock();
324 } else
325 tasklet_schedule(&local->tx_pending_tasklet);
326 }
327
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 enum queue_stop_reason reason)
330 {
331 struct ieee80211_local *local = hw_to_local(hw);
332 unsigned long flags;
333
334 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 __ieee80211_wake_queue(hw, queue, reason);
336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 ieee80211_wake_queue_by_reason(hw, queue,
342 IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 enum queue_stop_reason reason)
348 {
349 struct ieee80211_local *local = hw_to_local(hw);
350 struct ieee80211_sub_if_data *sdata;
351 int n_acs = IEEE80211_NUM_ACS;
352
353 trace_stop_queue(local, queue, reason);
354
355 if (WARN_ON(queue >= hw->queues))
356 return;
357
358 if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 return;
360
361 __set_bit(reason, &local->queue_stop_reasons[queue]);
362
363 if (local->hw.queues < IEEE80211_NUM_ACS)
364 n_acs = 1;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 int ac;
369
370 if (!sdata->dev)
371 continue;
372
373 for (ac = 0; ac < n_acs; ac++) {
374 if (sdata->vif.hw_queue[ac] == queue ||
375 sdata->vif.cab_queue == queue)
376 netif_stop_subqueue(sdata->dev, ac);
377 }
378 }
379 rcu_read_unlock();
380 }
381
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 enum queue_stop_reason reason)
384 {
385 struct ieee80211_local *local = hw_to_local(hw);
386 unsigned long flags;
387
388 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 __ieee80211_stop_queue(hw, queue, reason);
390 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 ieee80211_stop_queue_by_reason(hw, queue,
396 IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 struct sk_buff *skb)
402 {
403 struct ieee80211_hw *hw = &local->hw;
404 unsigned long flags;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 int queue = info->hw_queue;
407
408 if (WARN_ON(!info->control.vif)) {
409 ieee80211_free_txskb(&local->hw, skb);
410 return;
411 }
412
413 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 __skb_queue_tail(&local->pending[queue], skb);
416 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 struct sk_buff_head *skbs,
422 void (*fn)(void *data), void *data)
423 {
424 struct ieee80211_hw *hw = &local->hw;
425 struct sk_buff *skb;
426 unsigned long flags;
427 int queue, i;
428
429 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 while ((skb = skb_dequeue(skbs))) {
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432
433 if (WARN_ON(!info->control.vif)) {
434 ieee80211_free_txskb(&local->hw, skb);
435 continue;
436 }
437
438 queue = info->hw_queue;
439
440 __ieee80211_stop_queue(hw, queue,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442
443 __skb_queue_tail(&local->pending[queue], skb);
444 }
445
446 if (fn)
447 fn(data);
448
449 for (i = 0; i < hw->queues; i++)
450 __ieee80211_wake_queue(hw, i,
451 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 unsigned long queues,
457 enum queue_stop_reason reason)
458 {
459 struct ieee80211_local *local = hw_to_local(hw);
460 unsigned long flags;
461 int i;
462
463 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
464
465 for_each_set_bit(i, &queues, hw->queues)
466 __ieee80211_stop_queue(hw, i, reason);
467
468 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
469 }
470
471 void ieee80211_stop_queues(struct ieee80211_hw *hw)
472 {
473 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
474 IEEE80211_QUEUE_STOP_REASON_DRIVER);
475 }
476 EXPORT_SYMBOL(ieee80211_stop_queues);
477
478 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
479 {
480 struct ieee80211_local *local = hw_to_local(hw);
481 unsigned long flags;
482 int ret;
483
484 if (WARN_ON(queue >= hw->queues))
485 return true;
486
487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
488 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
489 &local->queue_stop_reasons[queue]);
490 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
491 return ret;
492 }
493 EXPORT_SYMBOL(ieee80211_queue_stopped);
494
495 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
496 unsigned long queues,
497 enum queue_stop_reason reason)
498 {
499 struct ieee80211_local *local = hw_to_local(hw);
500 unsigned long flags;
501 int i;
502
503 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
504
505 for_each_set_bit(i, &queues, hw->queues)
506 __ieee80211_wake_queue(hw, i, reason);
507
508 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
509 }
510
511 void ieee80211_wake_queues(struct ieee80211_hw *hw)
512 {
513 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
514 IEEE80211_QUEUE_STOP_REASON_DRIVER);
515 }
516 EXPORT_SYMBOL(ieee80211_wake_queues);
517
518 void ieee80211_flush_queues(struct ieee80211_local *local,
519 struct ieee80211_sub_if_data *sdata)
520 {
521 u32 queues;
522
523 if (!local->ops->flush)
524 return;
525
526 if (sdata && local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) {
527 int ac;
528
529 queues = 0;
530
531 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
532 queues |= BIT(sdata->vif.hw_queue[ac]);
533 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
534 queues |= BIT(sdata->vif.cab_queue);
535 } else {
536 /* all queues */
537 queues = BIT(local->hw.queues) - 1;
538 }
539
540 ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
541 IEEE80211_QUEUE_STOP_REASON_FLUSH);
542
543 drv_flush(local, queues, false);
544
545 ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
546 IEEE80211_QUEUE_STOP_REASON_FLUSH);
547 }
548
549 void ieee80211_iterate_active_interfaces(
550 struct ieee80211_hw *hw, u32 iter_flags,
551 void (*iterator)(void *data, u8 *mac,
552 struct ieee80211_vif *vif),
553 void *data)
554 {
555 struct ieee80211_local *local = hw_to_local(hw);
556 struct ieee80211_sub_if_data *sdata;
557
558 mutex_lock(&local->iflist_mtx);
559
560 list_for_each_entry(sdata, &local->interfaces, list) {
561 switch (sdata->vif.type) {
562 case NL80211_IFTYPE_MONITOR:
563 case NL80211_IFTYPE_AP_VLAN:
564 continue;
565 default:
566 break;
567 }
568 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
569 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
570 continue;
571 if (ieee80211_sdata_running(sdata))
572 iterator(data, sdata->vif.addr,
573 &sdata->vif);
574 }
575
576 sdata = rcu_dereference_protected(local->monitor_sdata,
577 lockdep_is_held(&local->iflist_mtx));
578 if (sdata &&
579 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
580 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
581 iterator(data, sdata->vif.addr, &sdata->vif);
582
583 mutex_unlock(&local->iflist_mtx);
584 }
585 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
586
587 void ieee80211_iterate_active_interfaces_atomic(
588 struct ieee80211_hw *hw, u32 iter_flags,
589 void (*iterator)(void *data, u8 *mac,
590 struct ieee80211_vif *vif),
591 void *data)
592 {
593 struct ieee80211_local *local = hw_to_local(hw);
594 struct ieee80211_sub_if_data *sdata;
595
596 rcu_read_lock();
597
598 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
599 switch (sdata->vif.type) {
600 case NL80211_IFTYPE_MONITOR:
601 case NL80211_IFTYPE_AP_VLAN:
602 continue;
603 default:
604 break;
605 }
606 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
607 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
608 continue;
609 if (ieee80211_sdata_running(sdata))
610 iterator(data, sdata->vif.addr,
611 &sdata->vif);
612 }
613
614 sdata = rcu_dereference(local->monitor_sdata);
615 if (sdata &&
616 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
617 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
618 iterator(data, sdata->vif.addr, &sdata->vif);
619
620 rcu_read_unlock();
621 }
622 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
623
624 /*
625 * Nothing should have been stuffed into the workqueue during
626 * the suspend->resume cycle. If this WARN is seen then there
627 * is a bug with either the driver suspend or something in
628 * mac80211 stuffing into the workqueue which we haven't yet
629 * cleared during mac80211's suspend cycle.
630 */
631 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
632 {
633 if (WARN(local->suspended && !local->resuming,
634 "queueing ieee80211 work while going to suspend\n"))
635 return false;
636
637 return true;
638 }
639
640 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
641 {
642 struct ieee80211_local *local = hw_to_local(hw);
643
644 if (!ieee80211_can_queue_work(local))
645 return;
646
647 queue_work(local->workqueue, work);
648 }
649 EXPORT_SYMBOL(ieee80211_queue_work);
650
651 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
652 struct delayed_work *dwork,
653 unsigned long delay)
654 {
655 struct ieee80211_local *local = hw_to_local(hw);
656
657 if (!ieee80211_can_queue_work(local))
658 return;
659
660 queue_delayed_work(local->workqueue, dwork, delay);
661 }
662 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
663
664 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
665 struct ieee802_11_elems *elems,
666 u64 filter, u32 crc)
667 {
668 size_t left = len;
669 const u8 *pos = start;
670 bool calc_crc = filter != 0;
671 DECLARE_BITMAP(seen_elems, 256);
672 const u8 *ie;
673
674 bitmap_zero(seen_elems, 256);
675 memset(elems, 0, sizeof(*elems));
676 elems->ie_start = start;
677 elems->total_len = len;
678
679 while (left >= 2) {
680 u8 id, elen;
681 bool elem_parse_failed;
682
683 id = *pos++;
684 elen = *pos++;
685 left -= 2;
686
687 if (elen > left) {
688 elems->parse_error = true;
689 break;
690 }
691
692 switch (id) {
693 case WLAN_EID_SSID:
694 case WLAN_EID_SUPP_RATES:
695 case WLAN_EID_FH_PARAMS:
696 case WLAN_EID_DS_PARAMS:
697 case WLAN_EID_CF_PARAMS:
698 case WLAN_EID_TIM:
699 case WLAN_EID_IBSS_PARAMS:
700 case WLAN_EID_CHALLENGE:
701 case WLAN_EID_RSN:
702 case WLAN_EID_ERP_INFO:
703 case WLAN_EID_EXT_SUPP_RATES:
704 case WLAN_EID_HT_CAPABILITY:
705 case WLAN_EID_HT_OPERATION:
706 case WLAN_EID_VHT_CAPABILITY:
707 case WLAN_EID_VHT_OPERATION:
708 case WLAN_EID_MESH_ID:
709 case WLAN_EID_MESH_CONFIG:
710 case WLAN_EID_PEER_MGMT:
711 case WLAN_EID_PREQ:
712 case WLAN_EID_PREP:
713 case WLAN_EID_PERR:
714 case WLAN_EID_RANN:
715 case WLAN_EID_CHANNEL_SWITCH:
716 case WLAN_EID_EXT_CHANSWITCH_ANN:
717 case WLAN_EID_COUNTRY:
718 case WLAN_EID_PWR_CONSTRAINT:
719 case WLAN_EID_TIMEOUT_INTERVAL:
720 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
721 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
722 /*
723 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
724 * that if the content gets bigger it might be needed more than once
725 */
726 if (test_bit(id, seen_elems)) {
727 elems->parse_error = true;
728 left -= elen;
729 pos += elen;
730 continue;
731 }
732 break;
733 }
734
735 if (calc_crc && id < 64 && (filter & (1ULL << id)))
736 crc = crc32_be(crc, pos - 2, elen + 2);
737
738 elem_parse_failed = false;
739
740 switch (id) {
741 case WLAN_EID_SSID:
742 elems->ssid = pos;
743 elems->ssid_len = elen;
744 break;
745 case WLAN_EID_SUPP_RATES:
746 elems->supp_rates = pos;
747 elems->supp_rates_len = elen;
748 break;
749 case WLAN_EID_DS_PARAMS:
750 if (elen >= 1)
751 elems->ds_params = pos;
752 else
753 elem_parse_failed = true;
754 break;
755 case WLAN_EID_TIM:
756 if (elen >= sizeof(struct ieee80211_tim_ie)) {
757 elems->tim = (void *)pos;
758 elems->tim_len = elen;
759 } else
760 elem_parse_failed = true;
761 break;
762 case WLAN_EID_CHALLENGE:
763 elems->challenge = pos;
764 elems->challenge_len = elen;
765 break;
766 case WLAN_EID_VENDOR_SPECIFIC:
767 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
768 pos[2] == 0xf2) {
769 /* Microsoft OUI (00:50:F2) */
770
771 if (calc_crc)
772 crc = crc32_be(crc, pos - 2, elen + 2);
773
774 if (elen >= 5 && pos[3] == 2) {
775 /* OUI Type 2 - WMM IE */
776 if (pos[4] == 0) {
777 elems->wmm_info = pos;
778 elems->wmm_info_len = elen;
779 } else if (pos[4] == 1) {
780 elems->wmm_param = pos;
781 elems->wmm_param_len = elen;
782 }
783 }
784 }
785 break;
786 case WLAN_EID_RSN:
787 elems->rsn = pos;
788 elems->rsn_len = elen;
789 break;
790 case WLAN_EID_ERP_INFO:
791 if (elen >= 1)
792 elems->erp_info = pos;
793 else
794 elem_parse_failed = true;
795 break;
796 case WLAN_EID_EXT_SUPP_RATES:
797 elems->ext_supp_rates = pos;
798 elems->ext_supp_rates_len = elen;
799 break;
800 case WLAN_EID_HT_CAPABILITY:
801 if (elen >= sizeof(struct ieee80211_ht_cap))
802 elems->ht_cap_elem = (void *)pos;
803 else
804 elem_parse_failed = true;
805 break;
806 case WLAN_EID_HT_OPERATION:
807 if (elen >= sizeof(struct ieee80211_ht_operation))
808 elems->ht_operation = (void *)pos;
809 else
810 elem_parse_failed = true;
811 break;
812 case WLAN_EID_VHT_CAPABILITY:
813 if (elen >= sizeof(struct ieee80211_vht_cap))
814 elems->vht_cap_elem = (void *)pos;
815 else
816 elem_parse_failed = true;
817 break;
818 case WLAN_EID_VHT_OPERATION:
819 if (elen >= sizeof(struct ieee80211_vht_operation))
820 elems->vht_operation = (void *)pos;
821 else
822 elem_parse_failed = true;
823 break;
824 case WLAN_EID_OPMODE_NOTIF:
825 if (elen > 0)
826 elems->opmode_notif = pos;
827 else
828 elem_parse_failed = true;
829 break;
830 case WLAN_EID_MESH_ID:
831 elems->mesh_id = pos;
832 elems->mesh_id_len = elen;
833 break;
834 case WLAN_EID_MESH_CONFIG:
835 if (elen >= sizeof(struct ieee80211_meshconf_ie))
836 elems->mesh_config = (void *)pos;
837 else
838 elem_parse_failed = true;
839 break;
840 case WLAN_EID_PEER_MGMT:
841 elems->peering = pos;
842 elems->peering_len = elen;
843 break;
844 case WLAN_EID_MESH_AWAKE_WINDOW:
845 if (elen >= 2)
846 elems->awake_window = (void *)pos;
847 break;
848 case WLAN_EID_PREQ:
849 elems->preq = pos;
850 elems->preq_len = elen;
851 break;
852 case WLAN_EID_PREP:
853 elems->prep = pos;
854 elems->prep_len = elen;
855 break;
856 case WLAN_EID_PERR:
857 elems->perr = pos;
858 elems->perr_len = elen;
859 break;
860 case WLAN_EID_RANN:
861 if (elen >= sizeof(struct ieee80211_rann_ie))
862 elems->rann = (void *)pos;
863 else
864 elem_parse_failed = true;
865 break;
866 case WLAN_EID_CHANNEL_SWITCH:
867 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
868 elem_parse_failed = true;
869 break;
870 }
871 elems->ch_switch_ie = (void *)pos;
872 break;
873 case WLAN_EID_EXT_CHANSWITCH_ANN:
874 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
875 elem_parse_failed = true;
876 break;
877 }
878 elems->ext_chansw_ie = (void *)pos;
879 break;
880 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
881 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
882 elem_parse_failed = true;
883 break;
884 }
885 elems->sec_chan_offs = (void *)pos;
886 break;
887 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
888 if (!action ||
889 elen != sizeof(*elems->wide_bw_chansw_ie)) {
890 elem_parse_failed = true;
891 break;
892 }
893 elems->wide_bw_chansw_ie = (void *)pos;
894 break;
895 case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
896 if (action) {
897 elem_parse_failed = true;
898 break;
899 }
900 /*
901 * This is a bit tricky, but as we only care about
902 * the wide bandwidth channel switch element, so
903 * just parse it out manually.
904 */
905 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
906 pos, elen);
907 if (ie) {
908 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
909 elems->wide_bw_chansw_ie =
910 (void *)(ie + 2);
911 else
912 elem_parse_failed = true;
913 }
914 break;
915 case WLAN_EID_COUNTRY:
916 elems->country_elem = pos;
917 elems->country_elem_len = elen;
918 break;
919 case WLAN_EID_PWR_CONSTRAINT:
920 if (elen != 1) {
921 elem_parse_failed = true;
922 break;
923 }
924 elems->pwr_constr_elem = pos;
925 break;
926 case WLAN_EID_TIMEOUT_INTERVAL:
927 if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
928 elems->timeout_int = (void *)pos;
929 else
930 elem_parse_failed = true;
931 break;
932 default:
933 break;
934 }
935
936 if (elem_parse_failed)
937 elems->parse_error = true;
938 else
939 __set_bit(id, seen_elems);
940
941 left -= elen;
942 pos += elen;
943 }
944
945 if (left != 0)
946 elems->parse_error = true;
947
948 return crc;
949 }
950
951 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
952 bool bss_notify)
953 {
954 struct ieee80211_local *local = sdata->local;
955 struct ieee80211_tx_queue_params qparam;
956 struct ieee80211_chanctx_conf *chanctx_conf;
957 int ac;
958 bool use_11b, enable_qos;
959 int aCWmin, aCWmax;
960
961 if (!local->ops->conf_tx)
962 return;
963
964 if (local->hw.queues < IEEE80211_NUM_ACS)
965 return;
966
967 memset(&qparam, 0, sizeof(qparam));
968
969 rcu_read_lock();
970 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
971 use_11b = (chanctx_conf &&
972 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
973 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
974 rcu_read_unlock();
975
976 /*
977 * By default disable QoS in STA mode for old access points, which do
978 * not support 802.11e. New APs will provide proper queue parameters,
979 * that we will configure later.
980 */
981 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
982
983 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
984 /* Set defaults according to 802.11-2007 Table 7-37 */
985 aCWmax = 1023;
986 if (use_11b)
987 aCWmin = 31;
988 else
989 aCWmin = 15;
990
991 if (enable_qos) {
992 switch (ac) {
993 case IEEE80211_AC_BK:
994 qparam.cw_max = aCWmax;
995 qparam.cw_min = aCWmin;
996 qparam.txop = 0;
997 qparam.aifs = 7;
998 break;
999 /* never happens but let's not leave undefined */
1000 default:
1001 case IEEE80211_AC_BE:
1002 qparam.cw_max = aCWmax;
1003 qparam.cw_min = aCWmin;
1004 qparam.txop = 0;
1005 qparam.aifs = 3;
1006 break;
1007 case IEEE80211_AC_VI:
1008 qparam.cw_max = aCWmin;
1009 qparam.cw_min = (aCWmin + 1) / 2 - 1;
1010 if (use_11b)
1011 qparam.txop = 6016/32;
1012 else
1013 qparam.txop = 3008/32;
1014 qparam.aifs = 2;
1015 break;
1016 case IEEE80211_AC_VO:
1017 qparam.cw_max = (aCWmin + 1) / 2 - 1;
1018 qparam.cw_min = (aCWmin + 1) / 4 - 1;
1019 if (use_11b)
1020 qparam.txop = 3264/32;
1021 else
1022 qparam.txop = 1504/32;
1023 qparam.aifs = 2;
1024 break;
1025 }
1026 } else {
1027 /* Confiure old 802.11b/g medium access rules. */
1028 qparam.cw_max = aCWmax;
1029 qparam.cw_min = aCWmin;
1030 qparam.txop = 0;
1031 qparam.aifs = 2;
1032 }
1033
1034 qparam.uapsd = false;
1035
1036 sdata->tx_conf[ac] = qparam;
1037 drv_conf_tx(local, sdata, ac, &qparam);
1038 }
1039
1040 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1041 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
1042 sdata->vif.bss_conf.qos = enable_qos;
1043 if (bss_notify)
1044 ieee80211_bss_info_change_notify(sdata,
1045 BSS_CHANGED_QOS);
1046 }
1047 }
1048
1049 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
1050 const size_t supp_rates_len,
1051 const u8 *supp_rates)
1052 {
1053 struct ieee80211_chanctx_conf *chanctx_conf;
1054 int i, have_higher_than_11mbit = 0;
1055
1056 /* cf. IEEE 802.11 9.2.12 */
1057 for (i = 0; i < supp_rates_len; i++)
1058 if ((supp_rates[i] & 0x7f) * 5 > 110)
1059 have_higher_than_11mbit = 1;
1060
1061 rcu_read_lock();
1062 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1063
1064 if (chanctx_conf &&
1065 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
1066 have_higher_than_11mbit)
1067 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
1068 else
1069 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
1070 rcu_read_unlock();
1071
1072 ieee80211_set_wmm_default(sdata, true);
1073 }
1074
1075 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1076 enum ieee80211_band band)
1077 {
1078 struct ieee80211_supported_band *sband;
1079 struct ieee80211_rate *bitrates;
1080 u32 mandatory_rates;
1081 enum ieee80211_rate_flags mandatory_flag;
1082 int i;
1083
1084 sband = local->hw.wiphy->bands[band];
1085 if (WARN_ON(!sband))
1086 return 1;
1087
1088 if (band == IEEE80211_BAND_2GHZ)
1089 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1090 else
1091 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1092
1093 bitrates = sband->bitrates;
1094 mandatory_rates = 0;
1095 for (i = 0; i < sband->n_bitrates; i++)
1096 if (bitrates[i].flags & mandatory_flag)
1097 mandatory_rates |= BIT(i);
1098 return mandatory_rates;
1099 }
1100
1101 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1102 u16 transaction, u16 auth_alg, u16 status,
1103 const u8 *extra, size_t extra_len, const u8 *da,
1104 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1105 u32 tx_flags)
1106 {
1107 struct ieee80211_local *local = sdata->local;
1108 struct sk_buff *skb;
1109 struct ieee80211_mgmt *mgmt;
1110 int err;
1111
1112 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1113 sizeof(*mgmt) + 6 + extra_len);
1114 if (!skb)
1115 return;
1116
1117 skb_reserve(skb, local->hw.extra_tx_headroom);
1118
1119 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1120 memset(mgmt, 0, 24 + 6);
1121 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1122 IEEE80211_STYPE_AUTH);
1123 memcpy(mgmt->da, da, ETH_ALEN);
1124 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1125 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1126 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1127 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1128 mgmt->u.auth.status_code = cpu_to_le16(status);
1129 if (extra)
1130 memcpy(skb_put(skb, extra_len), extra, extra_len);
1131
1132 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1133 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1134 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1135 WARN_ON(err);
1136 }
1137
1138 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1139 tx_flags;
1140 ieee80211_tx_skb(sdata, skb);
1141 }
1142
1143 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1144 const u8 *bssid, u16 stype, u16 reason,
1145 bool send_frame, u8 *frame_buf)
1146 {
1147 struct ieee80211_local *local = sdata->local;
1148 struct sk_buff *skb;
1149 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1150
1151 /* build frame */
1152 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1153 mgmt->duration = 0; /* initialize only */
1154 mgmt->seq_ctrl = 0; /* initialize only */
1155 memcpy(mgmt->da, bssid, ETH_ALEN);
1156 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1157 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1158 /* u.deauth.reason_code == u.disassoc.reason_code */
1159 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1160
1161 if (send_frame) {
1162 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1163 IEEE80211_DEAUTH_FRAME_LEN);
1164 if (!skb)
1165 return;
1166
1167 skb_reserve(skb, local->hw.extra_tx_headroom);
1168
1169 /* copy in frame */
1170 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1171 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1172
1173 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1174 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1175 IEEE80211_SKB_CB(skb)->flags |=
1176 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1177
1178 ieee80211_tx_skb(sdata, skb);
1179 }
1180 }
1181
1182 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1183 size_t buffer_len, const u8 *ie, size_t ie_len,
1184 enum ieee80211_band band, u32 rate_mask,
1185 u8 channel)
1186 {
1187 struct ieee80211_supported_band *sband;
1188 u8 *pos = buffer, *end = buffer + buffer_len;
1189 size_t offset = 0, noffset;
1190 int supp_rates_len, i;
1191 u8 rates[32];
1192 int num_rates;
1193 int ext_rates_len;
1194
1195 sband = local->hw.wiphy->bands[band];
1196 if (WARN_ON_ONCE(!sband))
1197 return 0;
1198
1199 num_rates = 0;
1200 for (i = 0; i < sband->n_bitrates; i++) {
1201 if ((BIT(i) & rate_mask) == 0)
1202 continue; /* skip rate */
1203 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1204 }
1205
1206 supp_rates_len = min_t(int, num_rates, 8);
1207
1208 if (end - pos < 2 + supp_rates_len)
1209 goto out_err;
1210 *pos++ = WLAN_EID_SUPP_RATES;
1211 *pos++ = supp_rates_len;
1212 memcpy(pos, rates, supp_rates_len);
1213 pos += supp_rates_len;
1214
1215 /* insert "request information" if in custom IEs */
1216 if (ie && ie_len) {
1217 static const u8 before_extrates[] = {
1218 WLAN_EID_SSID,
1219 WLAN_EID_SUPP_RATES,
1220 WLAN_EID_REQUEST,
1221 };
1222 noffset = ieee80211_ie_split(ie, ie_len,
1223 before_extrates,
1224 ARRAY_SIZE(before_extrates),
1225 offset);
1226 if (end - pos < noffset - offset)
1227 goto out_err;
1228 memcpy(pos, ie + offset, noffset - offset);
1229 pos += noffset - offset;
1230 offset = noffset;
1231 }
1232
1233 ext_rates_len = num_rates - supp_rates_len;
1234 if (ext_rates_len > 0) {
1235 if (end - pos < 2 + ext_rates_len)
1236 goto out_err;
1237 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1238 *pos++ = ext_rates_len;
1239 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1240 pos += ext_rates_len;
1241 }
1242
1243 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1244 if (end - pos < 3)
1245 goto out_err;
1246 *pos++ = WLAN_EID_DS_PARAMS;
1247 *pos++ = 1;
1248 *pos++ = channel;
1249 }
1250
1251 /* insert custom IEs that go before HT */
1252 if (ie && ie_len) {
1253 static const u8 before_ht[] = {
1254 WLAN_EID_SSID,
1255 WLAN_EID_SUPP_RATES,
1256 WLAN_EID_REQUEST,
1257 WLAN_EID_EXT_SUPP_RATES,
1258 WLAN_EID_DS_PARAMS,
1259 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1260 };
1261 noffset = ieee80211_ie_split(ie, ie_len,
1262 before_ht, ARRAY_SIZE(before_ht),
1263 offset);
1264 if (end - pos < noffset - offset)
1265 goto out_err;
1266 memcpy(pos, ie + offset, noffset - offset);
1267 pos += noffset - offset;
1268 offset = noffset;
1269 }
1270
1271 if (sband->ht_cap.ht_supported) {
1272 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1273 goto out_err;
1274 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1275 sband->ht_cap.cap);
1276 }
1277
1278 /*
1279 * If adding more here, adjust code in main.c
1280 * that calculates local->scan_ies_len.
1281 */
1282
1283 /* add any remaining custom IEs */
1284 if (ie && ie_len) {
1285 noffset = ie_len;
1286 if (end - pos < noffset - offset)
1287 goto out_err;
1288 memcpy(pos, ie + offset, noffset - offset);
1289 pos += noffset - offset;
1290 }
1291
1292 if (sband->vht_cap.vht_supported) {
1293 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1294 goto out_err;
1295 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1296 sband->vht_cap.cap);
1297 }
1298
1299 return pos - buffer;
1300 out_err:
1301 WARN_ONCE(1, "not enough space for preq IEs\n");
1302 return pos - buffer;
1303 }
1304
1305 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1306 u8 *dst, u32 ratemask,
1307 struct ieee80211_channel *chan,
1308 const u8 *ssid, size_t ssid_len,
1309 const u8 *ie, size_t ie_len,
1310 bool directed)
1311 {
1312 struct ieee80211_local *local = sdata->local;
1313 struct sk_buff *skb;
1314 struct ieee80211_mgmt *mgmt;
1315 u8 chan_no;
1316 int ies_len;
1317
1318 /*
1319 * Do not send DS Channel parameter for directed probe requests
1320 * in order to maximize the chance that we get a response. Some
1321 * badly-behaved APs don't respond when this parameter is included.
1322 */
1323 if (directed)
1324 chan_no = 0;
1325 else
1326 chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1327
1328 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1329 ssid, ssid_len, 100 + ie_len);
1330 if (!skb)
1331 return NULL;
1332
1333 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1334 skb_tailroom(skb),
1335 ie, ie_len, chan->band,
1336 ratemask, chan_no);
1337 skb_put(skb, ies_len);
1338
1339 if (dst) {
1340 mgmt = (struct ieee80211_mgmt *) skb->data;
1341 memcpy(mgmt->da, dst, ETH_ALEN);
1342 memcpy(mgmt->bssid, dst, ETH_ALEN);
1343 }
1344
1345 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1346
1347 return skb;
1348 }
1349
1350 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1351 const u8 *ssid, size_t ssid_len,
1352 const u8 *ie, size_t ie_len,
1353 u32 ratemask, bool directed, u32 tx_flags,
1354 struct ieee80211_channel *channel, bool scan)
1355 {
1356 struct sk_buff *skb;
1357
1358 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1359 ssid, ssid_len,
1360 ie, ie_len, directed);
1361 if (skb) {
1362 IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1363 if (scan)
1364 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1365 else
1366 ieee80211_tx_skb(sdata, skb);
1367 }
1368 }
1369
1370 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1371 struct ieee802_11_elems *elems,
1372 enum ieee80211_band band, u32 *basic_rates)
1373 {
1374 struct ieee80211_supported_band *sband;
1375 struct ieee80211_rate *bitrates;
1376 size_t num_rates;
1377 u32 supp_rates;
1378 int i, j;
1379 sband = local->hw.wiphy->bands[band];
1380
1381 if (WARN_ON(!sband))
1382 return 1;
1383
1384 bitrates = sband->bitrates;
1385 num_rates = sband->n_bitrates;
1386 supp_rates = 0;
1387 for (i = 0; i < elems->supp_rates_len +
1388 elems->ext_supp_rates_len; i++) {
1389 u8 rate = 0;
1390 int own_rate;
1391 bool is_basic;
1392 if (i < elems->supp_rates_len)
1393 rate = elems->supp_rates[i];
1394 else if (elems->ext_supp_rates)
1395 rate = elems->ext_supp_rates
1396 [i - elems->supp_rates_len];
1397 own_rate = 5 * (rate & 0x7f);
1398 is_basic = !!(rate & 0x80);
1399
1400 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1401 continue;
1402
1403 for (j = 0; j < num_rates; j++) {
1404 if (bitrates[j].bitrate == own_rate) {
1405 supp_rates |= BIT(j);
1406 if (basic_rates && is_basic)
1407 *basic_rates |= BIT(j);
1408 }
1409 }
1410 }
1411 return supp_rates;
1412 }
1413
1414 void ieee80211_stop_device(struct ieee80211_local *local)
1415 {
1416 ieee80211_led_radio(local, false);
1417 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1418
1419 cancel_work_sync(&local->reconfig_filter);
1420
1421 flush_workqueue(local->workqueue);
1422 drv_stop(local);
1423 }
1424
1425 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1426 struct ieee80211_sub_if_data *sdata)
1427 {
1428 struct ieee80211_chanctx_conf *conf;
1429 struct ieee80211_chanctx *ctx;
1430
1431 if (!local->use_chanctx)
1432 return;
1433
1434 mutex_lock(&local->chanctx_mtx);
1435 conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1436 lockdep_is_held(&local->chanctx_mtx));
1437 if (conf) {
1438 ctx = container_of(conf, struct ieee80211_chanctx, conf);
1439 drv_assign_vif_chanctx(local, sdata, ctx);
1440 }
1441 mutex_unlock(&local->chanctx_mtx);
1442 }
1443
1444 int ieee80211_reconfig(struct ieee80211_local *local)
1445 {
1446 struct ieee80211_hw *hw = &local->hw;
1447 struct ieee80211_sub_if_data *sdata;
1448 struct ieee80211_chanctx *ctx;
1449 struct sta_info *sta;
1450 int res, i;
1451 bool reconfig_due_to_wowlan = false;
1452
1453 #ifdef CONFIG_PM
1454 if (local->suspended)
1455 local->resuming = true;
1456
1457 if (local->wowlan) {
1458 local->wowlan = false;
1459 res = drv_resume(local);
1460 if (res < 0) {
1461 local->resuming = false;
1462 return res;
1463 }
1464 if (res == 0)
1465 goto wake_up;
1466 WARN_ON(res > 1);
1467 /*
1468 * res is 1, which means the driver requested
1469 * to go through a regular reset on wakeup.
1470 */
1471 reconfig_due_to_wowlan = true;
1472 }
1473 #endif
1474 /* everything else happens only if HW was up & running */
1475 if (!local->open_count)
1476 goto wake_up;
1477
1478 /*
1479 * Upon resume hardware can sometimes be goofy due to
1480 * various platform / driver / bus issues, so restarting
1481 * the device may at times not work immediately. Propagate
1482 * the error.
1483 */
1484 res = drv_start(local);
1485 if (res) {
1486 WARN(local->suspended, "Hardware became unavailable "
1487 "upon resume. This could be a software issue "
1488 "prior to suspend or a hardware issue.\n");
1489 return res;
1490 }
1491
1492 /* setup fragmentation threshold */
1493 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1494
1495 /* setup RTS threshold */
1496 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1497
1498 /* reset coverage class */
1499 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1500
1501 ieee80211_led_radio(local, true);
1502 ieee80211_mod_tpt_led_trig(local,
1503 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1504
1505 /* add interfaces */
1506 sdata = rtnl_dereference(local->monitor_sdata);
1507 if (sdata) {
1508 /* in HW restart it exists already */
1509 WARN_ON(local->resuming);
1510 res = drv_add_interface(local, sdata);
1511 if (WARN_ON(res)) {
1512 rcu_assign_pointer(local->monitor_sdata, NULL);
1513 synchronize_net();
1514 kfree(sdata);
1515 }
1516 }
1517
1518 list_for_each_entry(sdata, &local->interfaces, list) {
1519 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1520 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1521 ieee80211_sdata_running(sdata))
1522 res = drv_add_interface(local, sdata);
1523 }
1524
1525 /* add channel contexts */
1526 if (local->use_chanctx) {
1527 mutex_lock(&local->chanctx_mtx);
1528 list_for_each_entry(ctx, &local->chanctx_list, list)
1529 WARN_ON(drv_add_chanctx(local, ctx));
1530 mutex_unlock(&local->chanctx_mtx);
1531 }
1532
1533 list_for_each_entry(sdata, &local->interfaces, list) {
1534 if (!ieee80211_sdata_running(sdata))
1535 continue;
1536 ieee80211_assign_chanctx(local, sdata);
1537 }
1538
1539 sdata = rtnl_dereference(local->monitor_sdata);
1540 if (sdata && ieee80211_sdata_running(sdata))
1541 ieee80211_assign_chanctx(local, sdata);
1542
1543 /* add STAs back */
1544 mutex_lock(&local->sta_mtx);
1545 list_for_each_entry(sta, &local->sta_list, list) {
1546 enum ieee80211_sta_state state;
1547
1548 if (!sta->uploaded)
1549 continue;
1550
1551 /* AP-mode stations will be added later */
1552 if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1553 continue;
1554
1555 for (state = IEEE80211_STA_NOTEXIST;
1556 state < sta->sta_state; state++)
1557 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1558 state + 1));
1559 }
1560 mutex_unlock(&local->sta_mtx);
1561
1562 /* reconfigure tx conf */
1563 if (hw->queues >= IEEE80211_NUM_ACS) {
1564 list_for_each_entry(sdata, &local->interfaces, list) {
1565 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1566 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1567 !ieee80211_sdata_running(sdata))
1568 continue;
1569
1570 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1571 drv_conf_tx(local, sdata, i,
1572 &sdata->tx_conf[i]);
1573 }
1574 }
1575
1576 /* reconfigure hardware */
1577 ieee80211_hw_config(local, ~0);
1578
1579 ieee80211_configure_filter(local);
1580
1581 /* Finally also reconfigure all the BSS information */
1582 list_for_each_entry(sdata, &local->interfaces, list) {
1583 u32 changed;
1584
1585 if (!ieee80211_sdata_running(sdata))
1586 continue;
1587
1588 /* common change flags for all interface types */
1589 changed = BSS_CHANGED_ERP_CTS_PROT |
1590 BSS_CHANGED_ERP_PREAMBLE |
1591 BSS_CHANGED_ERP_SLOT |
1592 BSS_CHANGED_HT |
1593 BSS_CHANGED_BASIC_RATES |
1594 BSS_CHANGED_BEACON_INT |
1595 BSS_CHANGED_BSSID |
1596 BSS_CHANGED_CQM |
1597 BSS_CHANGED_QOS |
1598 BSS_CHANGED_IDLE |
1599 BSS_CHANGED_TXPOWER;
1600
1601 switch (sdata->vif.type) {
1602 case NL80211_IFTYPE_STATION:
1603 changed |= BSS_CHANGED_ASSOC |
1604 BSS_CHANGED_ARP_FILTER |
1605 BSS_CHANGED_PS;
1606
1607 if (sdata->u.mgd.dtim_period)
1608 changed |= BSS_CHANGED_DTIM_PERIOD;
1609
1610 mutex_lock(&sdata->u.mgd.mtx);
1611 ieee80211_bss_info_change_notify(sdata, changed);
1612 mutex_unlock(&sdata->u.mgd.mtx);
1613 break;
1614 case NL80211_IFTYPE_ADHOC:
1615 changed |= BSS_CHANGED_IBSS;
1616 /* fall through */
1617 case NL80211_IFTYPE_AP:
1618 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1619
1620 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1621 changed |= BSS_CHANGED_AP_PROBE_RESP;
1622
1623 if (rcu_access_pointer(sdata->u.ap.beacon))
1624 drv_start_ap(local, sdata);
1625 }
1626
1627 /* fall through */
1628 case NL80211_IFTYPE_MESH_POINT:
1629 if (sdata->vif.bss_conf.enable_beacon) {
1630 changed |= BSS_CHANGED_BEACON |
1631 BSS_CHANGED_BEACON_ENABLED;
1632 ieee80211_bss_info_change_notify(sdata, changed);
1633 }
1634 break;
1635 case NL80211_IFTYPE_WDS:
1636 break;
1637 case NL80211_IFTYPE_AP_VLAN:
1638 case NL80211_IFTYPE_MONITOR:
1639 /* ignore virtual */
1640 break;
1641 case NL80211_IFTYPE_P2P_DEVICE:
1642 changed = BSS_CHANGED_IDLE;
1643 break;
1644 case NL80211_IFTYPE_UNSPECIFIED:
1645 case NUM_NL80211_IFTYPES:
1646 case NL80211_IFTYPE_P2P_CLIENT:
1647 case NL80211_IFTYPE_P2P_GO:
1648 WARN_ON(1);
1649 break;
1650 }
1651 }
1652
1653 ieee80211_recalc_ps(local, -1);
1654
1655 /*
1656 * The sta might be in psm against the ap (e.g. because
1657 * this was the state before a hw restart), so we
1658 * explicitly send a null packet in order to make sure
1659 * it'll sync against the ap (and get out of psm).
1660 */
1661 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1662 list_for_each_entry(sdata, &local->interfaces, list) {
1663 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1664 continue;
1665 if (!sdata->u.mgd.associated)
1666 continue;
1667
1668 ieee80211_send_nullfunc(local, sdata, 0);
1669 }
1670 }
1671
1672 /* APs are now beaconing, add back stations */
1673 mutex_lock(&local->sta_mtx);
1674 list_for_each_entry(sta, &local->sta_list, list) {
1675 enum ieee80211_sta_state state;
1676
1677 if (!sta->uploaded)
1678 continue;
1679
1680 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1681 continue;
1682
1683 for (state = IEEE80211_STA_NOTEXIST;
1684 state < sta->sta_state; state++)
1685 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1686 state + 1));
1687 }
1688 mutex_unlock(&local->sta_mtx);
1689
1690 /* add back keys */
1691 list_for_each_entry(sdata, &local->interfaces, list)
1692 if (ieee80211_sdata_running(sdata))
1693 ieee80211_enable_keys(sdata);
1694
1695 wake_up:
1696 local->in_reconfig = false;
1697 barrier();
1698
1699 if (local->monitors == local->open_count && local->monitors > 0)
1700 ieee80211_add_virtual_monitor(local);
1701
1702 /*
1703 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1704 * sessions can be established after a resume.
1705 *
1706 * Also tear down aggregation sessions since reconfiguring
1707 * them in a hardware restart scenario is not easily done
1708 * right now, and the hardware will have lost information
1709 * about the sessions, but we and the AP still think they
1710 * are active. This is really a workaround though.
1711 */
1712 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1713 mutex_lock(&local->sta_mtx);
1714
1715 list_for_each_entry(sta, &local->sta_list, list) {
1716 ieee80211_sta_tear_down_BA_sessions(
1717 sta, AGG_STOP_LOCAL_REQUEST);
1718 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1719 }
1720
1721 mutex_unlock(&local->sta_mtx);
1722 }
1723
1724 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
1725 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1726
1727 /*
1728 * If this is for hw restart things are still running.
1729 * We may want to change that later, however.
1730 */
1731 if (!local->suspended || reconfig_due_to_wowlan)
1732 drv_restart_complete(local);
1733
1734 if (!local->suspended)
1735 return 0;
1736
1737 #ifdef CONFIG_PM
1738 /* first set suspended false, then resuming */
1739 local->suspended = false;
1740 mb();
1741 local->resuming = false;
1742
1743 list_for_each_entry(sdata, &local->interfaces, list) {
1744 if (!ieee80211_sdata_running(sdata))
1745 continue;
1746 if (sdata->vif.type == NL80211_IFTYPE_STATION)
1747 ieee80211_sta_restart(sdata);
1748 }
1749
1750 mod_timer(&local->sta_cleanup, jiffies + 1);
1751 #else
1752 WARN_ON(1);
1753 #endif
1754 return 0;
1755 }
1756
1757 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1758 {
1759 struct ieee80211_sub_if_data *sdata;
1760 struct ieee80211_local *local;
1761 struct ieee80211_key *key;
1762
1763 if (WARN_ON(!vif))
1764 return;
1765
1766 sdata = vif_to_sdata(vif);
1767 local = sdata->local;
1768
1769 if (WARN_ON(!local->resuming))
1770 return;
1771
1772 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1773 return;
1774
1775 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1776
1777 mutex_lock(&local->key_mtx);
1778 list_for_each_entry(key, &sdata->key_list, list)
1779 key->flags |= KEY_FLAG_TAINTED;
1780 mutex_unlock(&local->key_mtx);
1781 }
1782 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1783
1784 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1785 {
1786 struct ieee80211_local *local = sdata->local;
1787 struct ieee80211_chanctx_conf *chanctx_conf;
1788 struct ieee80211_chanctx *chanctx;
1789
1790 mutex_lock(&local->chanctx_mtx);
1791
1792 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1793 lockdep_is_held(&local->chanctx_mtx));
1794
1795 if (WARN_ON_ONCE(!chanctx_conf))
1796 goto unlock;
1797
1798 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1799 ieee80211_recalc_smps_chanctx(local, chanctx);
1800 unlock:
1801 mutex_unlock(&local->chanctx_mtx);
1802 }
1803
1804 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1805 {
1806 int i;
1807
1808 for (i = 0; i < n_ids; i++)
1809 if (ids[i] == id)
1810 return true;
1811 return false;
1812 }
1813
1814 /**
1815 * ieee80211_ie_split - split an IE buffer according to ordering
1816 *
1817 * @ies: the IE buffer
1818 * @ielen: the length of the IE buffer
1819 * @ids: an array with element IDs that are allowed before
1820 * the split
1821 * @n_ids: the size of the element ID array
1822 * @offset: offset where to start splitting in the buffer
1823 *
1824 * This function splits an IE buffer by updating the @offset
1825 * variable to point to the location where the buffer should be
1826 * split.
1827 *
1828 * It assumes that the given IE buffer is well-formed, this
1829 * has to be guaranteed by the caller!
1830 *
1831 * It also assumes that the IEs in the buffer are ordered
1832 * correctly, if not the result of using this function will not
1833 * be ordered correctly either, i.e. it does no reordering.
1834 *
1835 * The function returns the offset where the next part of the
1836 * buffer starts, which may be @ielen if the entire (remainder)
1837 * of the buffer should be used.
1838 */
1839 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1840 const u8 *ids, int n_ids, size_t offset)
1841 {
1842 size_t pos = offset;
1843
1844 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1845 pos += 2 + ies[pos + 1];
1846
1847 return pos;
1848 }
1849
1850 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1851 {
1852 size_t pos = offset;
1853
1854 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1855 pos += 2 + ies[pos + 1];
1856
1857 return pos;
1858 }
1859
1860 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1861 int rssi_min_thold,
1862 int rssi_max_thold)
1863 {
1864 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1865
1866 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1867 return;
1868
1869 /*
1870 * Scale up threshold values before storing it, as the RSSI averaging
1871 * algorithm uses a scaled up value as well. Change this scaling
1872 * factor if the RSSI averaging algorithm changes.
1873 */
1874 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1875 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1876 }
1877
1878 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1879 int rssi_min_thold,
1880 int rssi_max_thold)
1881 {
1882 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1883
1884 WARN_ON(rssi_min_thold == rssi_max_thold ||
1885 rssi_min_thold > rssi_max_thold);
1886
1887 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1888 rssi_max_thold);
1889 }
1890 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1891
1892 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1893 {
1894 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1895
1896 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1897 }
1898 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1899
1900 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1901 u16 cap)
1902 {
1903 __le16 tmp;
1904
1905 *pos++ = WLAN_EID_HT_CAPABILITY;
1906 *pos++ = sizeof(struct ieee80211_ht_cap);
1907 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1908
1909 /* capability flags */
1910 tmp = cpu_to_le16(cap);
1911 memcpy(pos, &tmp, sizeof(u16));
1912 pos += sizeof(u16);
1913
1914 /* AMPDU parameters */
1915 *pos++ = ht_cap->ampdu_factor |
1916 (ht_cap->ampdu_density <<
1917 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1918
1919 /* MCS set */
1920 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1921 pos += sizeof(ht_cap->mcs);
1922
1923 /* extended capabilities */
1924 pos += sizeof(__le16);
1925
1926 /* BF capabilities */
1927 pos += sizeof(__le32);
1928
1929 /* antenna selection */
1930 pos += sizeof(u8);
1931
1932 return pos;
1933 }
1934
1935 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1936 u32 cap)
1937 {
1938 __le32 tmp;
1939
1940 *pos++ = WLAN_EID_VHT_CAPABILITY;
1941 *pos++ = sizeof(struct ieee80211_vht_cap);
1942 memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1943
1944 /* capability flags */
1945 tmp = cpu_to_le32(cap);
1946 memcpy(pos, &tmp, sizeof(u32));
1947 pos += sizeof(u32);
1948
1949 /* VHT MCS set */
1950 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1951 pos += sizeof(vht_cap->vht_mcs);
1952
1953 return pos;
1954 }
1955
1956 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1957 const struct cfg80211_chan_def *chandef,
1958 u16 prot_mode)
1959 {
1960 struct ieee80211_ht_operation *ht_oper;
1961 /* Build HT Information */
1962 *pos++ = WLAN_EID_HT_OPERATION;
1963 *pos++ = sizeof(struct ieee80211_ht_operation);
1964 ht_oper = (struct ieee80211_ht_operation *)pos;
1965 ht_oper->primary_chan = ieee80211_frequency_to_channel(
1966 chandef->chan->center_freq);
1967 switch (chandef->width) {
1968 case NL80211_CHAN_WIDTH_160:
1969 case NL80211_CHAN_WIDTH_80P80:
1970 case NL80211_CHAN_WIDTH_80:
1971 case NL80211_CHAN_WIDTH_40:
1972 if (chandef->center_freq1 > chandef->chan->center_freq)
1973 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1974 else
1975 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1976 break;
1977 default:
1978 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1979 break;
1980 }
1981 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1982 chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1983 chandef->width != NL80211_CHAN_WIDTH_20)
1984 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1985
1986 ht_oper->operation_mode = cpu_to_le16(prot_mode);
1987 ht_oper->stbc_param = 0x0000;
1988
1989 /* It seems that Basic MCS set and Supported MCS set
1990 are identical for the first 10 bytes */
1991 memset(&ht_oper->basic_set, 0, 16);
1992 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1993
1994 return pos + sizeof(struct ieee80211_ht_operation);
1995 }
1996
1997 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1998 const struct ieee80211_ht_operation *ht_oper,
1999 struct cfg80211_chan_def *chandef)
2000 {
2001 enum nl80211_channel_type channel_type;
2002
2003 if (!ht_oper) {
2004 cfg80211_chandef_create(chandef, control_chan,
2005 NL80211_CHAN_NO_HT);
2006 return;
2007 }
2008
2009 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
2010 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
2011 channel_type = NL80211_CHAN_HT20;
2012 break;
2013 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
2014 channel_type = NL80211_CHAN_HT40PLUS;
2015 break;
2016 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
2017 channel_type = NL80211_CHAN_HT40MINUS;
2018 break;
2019 default:
2020 channel_type = NL80211_CHAN_NO_HT;
2021 }
2022
2023 cfg80211_chandef_create(chandef, control_chan, channel_type);
2024 }
2025
2026 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
2027 struct sk_buff *skb, bool need_basic,
2028 enum ieee80211_band band)
2029 {
2030 struct ieee80211_local *local = sdata->local;
2031 struct ieee80211_supported_band *sband;
2032 int rate;
2033 u8 i, rates, *pos;
2034 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2035
2036 sband = local->hw.wiphy->bands[band];
2037 rates = sband->n_bitrates;
2038 if (rates > 8)
2039 rates = 8;
2040
2041 if (skb_tailroom(skb) < rates + 2)
2042 return -ENOMEM;
2043
2044 pos = skb_put(skb, rates + 2);
2045 *pos++ = WLAN_EID_SUPP_RATES;
2046 *pos++ = rates;
2047 for (i = 0; i < rates; i++) {
2048 u8 basic = 0;
2049 if (need_basic && basic_rates & BIT(i))
2050 basic = 0x80;
2051 rate = sband->bitrates[i].bitrate;
2052 *pos++ = basic | (u8) (rate / 5);
2053 }
2054
2055 return 0;
2056 }
2057
2058 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2059 struct sk_buff *skb, bool need_basic,
2060 enum ieee80211_band band)
2061 {
2062 struct ieee80211_local *local = sdata->local;
2063 struct ieee80211_supported_band *sband;
2064 int rate;
2065 u8 i, exrates, *pos;
2066 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2067
2068 sband = local->hw.wiphy->bands[band];
2069 exrates = sband->n_bitrates;
2070 if (exrates > 8)
2071 exrates -= 8;
2072 else
2073 exrates = 0;
2074
2075 if (skb_tailroom(skb) < exrates + 2)
2076 return -ENOMEM;
2077
2078 if (exrates) {
2079 pos = skb_put(skb, exrates + 2);
2080 *pos++ = WLAN_EID_EXT_SUPP_RATES;
2081 *pos++ = exrates;
2082 for (i = 8; i < sband->n_bitrates; i++) {
2083 u8 basic = 0;
2084 if (need_basic && basic_rates & BIT(i))
2085 basic = 0x80;
2086 rate = sband->bitrates[i].bitrate;
2087 *pos++ = basic | (u8) (rate / 5);
2088 }
2089 }
2090 return 0;
2091 }
2092
2093 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2094 {
2095 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2096 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2097
2098 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2099 /* non-managed type inferfaces */
2100 return 0;
2101 }
2102 return ifmgd->ave_beacon_signal / 16;
2103 }
2104 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2105
2106 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2107 {
2108 if (!mcs)
2109 return 1;
2110
2111 /* TODO: consider rx_highest */
2112
2113 if (mcs->rx_mask[3])
2114 return 4;
2115 if (mcs->rx_mask[2])
2116 return 3;
2117 if (mcs->rx_mask[1])
2118 return 2;
2119 return 1;
2120 }
2121
2122 /**
2123 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2124 * @local: mac80211 hw info struct
2125 * @status: RX status
2126 * @mpdu_len: total MPDU length (including FCS)
2127 * @mpdu_offset: offset into MPDU to calculate timestamp at
2128 *
2129 * This function calculates the RX timestamp at the given MPDU offset, taking
2130 * into account what the RX timestamp was. An offset of 0 will just normalize
2131 * the timestamp to TSF at beginning of MPDU reception.
2132 */
2133 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2134 struct ieee80211_rx_status *status,
2135 unsigned int mpdu_len,
2136 unsigned int mpdu_offset)
2137 {
2138 u64 ts = status->mactime;
2139 struct rate_info ri;
2140 u16 rate;
2141
2142 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2143 return 0;
2144
2145 memset(&ri, 0, sizeof(ri));
2146
2147 /* Fill cfg80211 rate info */
2148 if (status->flag & RX_FLAG_HT) {
2149 ri.mcs = status->rate_idx;
2150 ri.flags |= RATE_INFO_FLAGS_MCS;
2151 if (status->flag & RX_FLAG_40MHZ)
2152 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2153 if (status->flag & RX_FLAG_SHORT_GI)
2154 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2155 } else if (status->flag & RX_FLAG_VHT) {
2156 ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2157 ri.mcs = status->rate_idx;
2158 ri.nss = status->vht_nss;
2159 if (status->flag & RX_FLAG_40MHZ)
2160 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2161 if (status->flag & RX_FLAG_80MHZ)
2162 ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2163 if (status->flag & RX_FLAG_80P80MHZ)
2164 ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2165 if (status->flag & RX_FLAG_160MHZ)
2166 ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2167 if (status->flag & RX_FLAG_SHORT_GI)
2168 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2169 } else {
2170 struct ieee80211_supported_band *sband;
2171
2172 sband = local->hw.wiphy->bands[status->band];
2173 ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2174 }
2175
2176 rate = cfg80211_calculate_bitrate(&ri);
2177 if (WARN_ONCE(!rate,
2178 "Invalid bitrate: flags=0x%x, idx=%d, vht_nss=%d\n",
2179 status->flag, status->rate_idx, status->vht_nss))
2180 return 0;
2181
2182 /* rewind from end of MPDU */
2183 if (status->flag & RX_FLAG_MACTIME_END)
2184 ts -= mpdu_len * 8 * 10 / rate;
2185
2186 ts += mpdu_offset * 8 * 10 / rate;
2187
2188 return ts;
2189 }
2190
2191 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2192 {
2193 struct ieee80211_sub_if_data *sdata;
2194
2195 mutex_lock(&local->iflist_mtx);
2196 list_for_each_entry(sdata, &local->interfaces, list) {
2197 cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
2198
2199 if (sdata->wdev.cac_started) {
2200 ieee80211_vif_release_channel(sdata);
2201 cfg80211_cac_event(sdata->dev,
2202 NL80211_RADAR_CAC_ABORTED,
2203 GFP_KERNEL);
2204 }
2205 }
2206 mutex_unlock(&local->iflist_mtx);
2207 }
2208
2209 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2210 {
2211 struct ieee80211_local *local =
2212 container_of(work, struct ieee80211_local, radar_detected_work);
2213 struct cfg80211_chan_def chandef;
2214
2215 ieee80211_dfs_cac_cancel(local);
2216
2217 if (local->use_chanctx)
2218 /* currently not handled */
2219 WARN_ON(1);
2220 else {
2221 chandef = local->hw.conf.chandef;
2222 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2223 }
2224 }
2225
2226 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2227 {
2228 struct ieee80211_local *local = hw_to_local(hw);
2229
2230 trace_api_radar_detected(local);
2231
2232 ieee80211_queue_work(hw, &local->radar_detected_work);
2233 }
2234 EXPORT_SYMBOL(ieee80211_radar_detected);