mac80211: fix WPA with VLAN on AP side with ps-sta again
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/mac80211.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "rate.h"
25 #include "sta_info.h"
26 #include "debugfs_sta.h"
27 #include "mesh.h"
28 #include "wme.h"
29
30 /**
31 * DOC: STA information lifetime rules
32 *
33 * STA info structures (&struct sta_info) are managed in a hash table
34 * for faster lookup and a list for iteration. They are managed using
35 * RCU, i.e. access to the list and hash table is protected by RCU.
36 *
37 * Upon allocating a STA info structure with sta_info_alloc(), the caller
38 * owns that structure. It must then insert it into the hash table using
39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
40 * case (which acquires an rcu read section but must not be called from
41 * within one) will the pointer still be valid after the call. Note that
42 * the caller may not do much with the STA info before inserting it, in
43 * particular, it may not start any mesh peer link management or add
44 * encryption keys.
45 *
46 * When the insertion fails (sta_info_insert()) returns non-zero), the
47 * structure will have been freed by sta_info_insert()!
48 *
49 * Station entries are added by mac80211 when you establish a link with a
50 * peer. This means different things for the different type of interfaces
51 * we support. For a regular station this mean we add the AP sta when we
52 * receive an association response from the AP. For IBSS this occurs when
53 * get to know about a peer on the same IBSS. For WDS we add the sta for
54 * the peer immediately upon device open. When using AP mode we add stations
55 * for each respective station upon request from userspace through nl80211.
56 *
57 * In order to remove a STA info structure, various sta_info_destroy_*()
58 * calls are available.
59 *
60 * There is no concept of ownership on a STA entry, each structure is
61 * owned by the global hash table/list until it is removed. All users of
62 * the structure need to be RCU protected so that the structure won't be
63 * freed before they are done using it.
64 */
65
66 /* Caller must hold local->sta_mtx */
67 static int sta_info_hash_del(struct ieee80211_local *local,
68 struct sta_info *sta)
69 {
70 struct sta_info *s;
71
72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
73 lockdep_is_held(&local->sta_mtx));
74 if (!s)
75 return -ENOENT;
76 if (s == sta) {
77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
78 s->hnext);
79 return 0;
80 }
81
82 while (rcu_access_pointer(s->hnext) &&
83 rcu_access_pointer(s->hnext) != sta)
84 s = rcu_dereference_protected(s->hnext,
85 lockdep_is_held(&local->sta_mtx));
86 if (rcu_access_pointer(s->hnext)) {
87 rcu_assign_pointer(s->hnext, sta->hnext);
88 return 0;
89 }
90
91 return -ENOENT;
92 }
93
94 static void cleanup_single_sta(struct sta_info *sta)
95 {
96 int ac, i;
97 struct tid_ampdu_tx *tid_tx;
98 struct ieee80211_sub_if_data *sdata = sta->sdata;
99 struct ieee80211_local *local = sdata->local;
100 struct ps_data *ps;
101
102 /*
103 * At this point, when being called as call_rcu callback,
104 * neither mac80211 nor the driver can reference this
105 * sta struct any more except by still existing timers
106 * associated with this station that we clean up below.
107 *
108 * Note though that this still uses the sdata and even
109 * calls the driver in AP and mesh mode, so interfaces
110 * of those types mush use call sta_info_flush_cleanup()
111 * (typically via sta_info_flush()) before deconfiguring
112 * the driver.
113 *
114 * In station mode, nothing happens here so it doesn't
115 * have to (and doesn't) do that, this is intentional to
116 * speed up roaming.
117 */
118
119 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
120 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
121 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
122 ps = &sdata->bss->ps;
123 else if (ieee80211_vif_is_mesh(&sdata->vif))
124 ps = &sdata->u.mesh.ps;
125 else
126 return;
127
128 clear_sta_flag(sta, WLAN_STA_PS_STA);
129
130 atomic_dec(&ps->num_sta_ps);
131 sta_info_recalc_tim(sta);
132 }
133
134 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
135 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
136 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
137 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
138 }
139
140 if (ieee80211_vif_is_mesh(&sdata->vif))
141 mesh_sta_cleanup(sta);
142
143 cancel_work_sync(&sta->drv_unblock_wk);
144
145 /*
146 * Destroy aggregation state here. It would be nice to wait for the
147 * driver to finish aggregation stop and then clean up, but for now
148 * drivers have to handle aggregation stop being requested, followed
149 * directly by station destruction.
150 */
151 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
152 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
153 if (!tid_tx)
154 continue;
155 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
156 kfree(tid_tx);
157 }
158
159 sta_info_free(local, sta);
160 }
161
162 void ieee80211_cleanup_sdata_stas(struct ieee80211_sub_if_data *sdata)
163 {
164 struct sta_info *sta;
165
166 spin_lock_bh(&sdata->cleanup_stations_lock);
167 while (!list_empty(&sdata->cleanup_stations)) {
168 sta = list_first_entry(&sdata->cleanup_stations,
169 struct sta_info, list);
170 list_del(&sta->list);
171 spin_unlock_bh(&sdata->cleanup_stations_lock);
172
173 cleanup_single_sta(sta);
174
175 spin_lock_bh(&sdata->cleanup_stations_lock);
176 }
177
178 spin_unlock_bh(&sdata->cleanup_stations_lock);
179 }
180
181 static void free_sta_rcu(struct rcu_head *h)
182 {
183 struct sta_info *sta = container_of(h, struct sta_info, rcu_head);
184 struct ieee80211_sub_if_data *sdata = sta->sdata;
185
186 spin_lock(&sdata->cleanup_stations_lock);
187 list_add_tail(&sta->list, &sdata->cleanup_stations);
188 spin_unlock(&sdata->cleanup_stations_lock);
189
190 ieee80211_queue_work(&sdata->local->hw, &sdata->cleanup_stations_wk);
191 }
192
193 /* protected by RCU */
194 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
195 const u8 *addr)
196 {
197 struct ieee80211_local *local = sdata->local;
198 struct sta_info *sta;
199
200 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
201 lockdep_is_held(&local->sta_mtx));
202 while (sta) {
203 if (sta->sdata == sdata &&
204 ether_addr_equal(sta->sta.addr, addr))
205 break;
206 sta = rcu_dereference_check(sta->hnext,
207 lockdep_is_held(&local->sta_mtx));
208 }
209 return sta;
210 }
211
212 /*
213 * Get sta info either from the specified interface
214 * or from one of its vlans
215 */
216 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
217 const u8 *addr)
218 {
219 struct ieee80211_local *local = sdata->local;
220 struct sta_info *sta;
221
222 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
223 lockdep_is_held(&local->sta_mtx));
224 while (sta) {
225 if ((sta->sdata == sdata ||
226 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
227 ether_addr_equal(sta->sta.addr, addr))
228 break;
229 sta = rcu_dereference_check(sta->hnext,
230 lockdep_is_held(&local->sta_mtx));
231 }
232 return sta;
233 }
234
235 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
236 int idx)
237 {
238 struct ieee80211_local *local = sdata->local;
239 struct sta_info *sta;
240 int i = 0;
241
242 list_for_each_entry_rcu(sta, &local->sta_list, list) {
243 if (sdata != sta->sdata)
244 continue;
245 if (i < idx) {
246 ++i;
247 continue;
248 }
249 return sta;
250 }
251
252 return NULL;
253 }
254
255 /**
256 * sta_info_free - free STA
257 *
258 * @local: pointer to the global information
259 * @sta: STA info to free
260 *
261 * This function must undo everything done by sta_info_alloc()
262 * that may happen before sta_info_insert(). It may only be
263 * called when sta_info_insert() has not been attempted (and
264 * if that fails, the station is freed anyway.)
265 */
266 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
267 {
268 if (sta->rate_ctrl)
269 rate_control_free_sta(sta);
270
271 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
272
273 kfree(sta);
274 }
275
276 /* Caller must hold local->sta_mtx */
277 static void sta_info_hash_add(struct ieee80211_local *local,
278 struct sta_info *sta)
279 {
280 lockdep_assert_held(&local->sta_mtx);
281 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
282 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
283 }
284
285 static void sta_unblock(struct work_struct *wk)
286 {
287 struct sta_info *sta;
288
289 sta = container_of(wk, struct sta_info, drv_unblock_wk);
290
291 if (sta->dead)
292 return;
293
294 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
295 local_bh_disable();
296 ieee80211_sta_ps_deliver_wakeup(sta);
297 local_bh_enable();
298 } else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) {
299 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
300
301 local_bh_disable();
302 ieee80211_sta_ps_deliver_poll_response(sta);
303 local_bh_enable();
304 } else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) {
305 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
306
307 local_bh_disable();
308 ieee80211_sta_ps_deliver_uapsd(sta);
309 local_bh_enable();
310 } else
311 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
312 }
313
314 static int sta_prepare_rate_control(struct ieee80211_local *local,
315 struct sta_info *sta, gfp_t gfp)
316 {
317 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
318 return 0;
319
320 sta->rate_ctrl = local->rate_ctrl;
321 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
322 &sta->sta, gfp);
323 if (!sta->rate_ctrl_priv)
324 return -ENOMEM;
325
326 return 0;
327 }
328
329 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
330 const u8 *addr, gfp_t gfp)
331 {
332 struct ieee80211_local *local = sdata->local;
333 struct sta_info *sta;
334 struct timespec uptime;
335 int i;
336
337 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
338 if (!sta)
339 return NULL;
340
341 spin_lock_init(&sta->lock);
342 spin_lock_init(&sta->ps_lock);
343 INIT_WORK(&sta->drv_unblock_wk, sta_unblock);
344 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
345 mutex_init(&sta->ampdu_mlme.mtx);
346 #ifdef CONFIG_MAC80211_MESH
347 if (ieee80211_vif_is_mesh(&sdata->vif) &&
348 !sdata->u.mesh.user_mpm)
349 init_timer(&sta->plink_timer);
350 #endif
351
352 memcpy(sta->sta.addr, addr, ETH_ALEN);
353 sta->local = local;
354 sta->sdata = sdata;
355 sta->last_rx = jiffies;
356
357 sta->sta_state = IEEE80211_STA_NONE;
358
359 do_posix_clock_monotonic_gettime(&uptime);
360 sta->last_connected = uptime.tv_sec;
361 ewma_init(&sta->avg_signal, 1024, 8);
362
363 if (sta_prepare_rate_control(local, sta, gfp)) {
364 kfree(sta);
365 return NULL;
366 }
367
368 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
369 /*
370 * timer_to_tid must be initialized with identity mapping
371 * to enable session_timer's data differentiation. See
372 * sta_rx_agg_session_timer_expired for usage.
373 */
374 sta->timer_to_tid[i] = i;
375 }
376 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
377 skb_queue_head_init(&sta->ps_tx_buf[i]);
378 skb_queue_head_init(&sta->tx_filtered[i]);
379 }
380
381 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
382 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
383
384 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
385
386 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
387
388 return sta;
389 }
390
391 static int sta_info_insert_check(struct sta_info *sta)
392 {
393 struct ieee80211_sub_if_data *sdata = sta->sdata;
394
395 /*
396 * Can't be a WARN_ON because it can be triggered through a race:
397 * something inserts a STA (on one CPU) without holding the RTNL
398 * and another CPU turns off the net device.
399 */
400 if (unlikely(!ieee80211_sdata_running(sdata)))
401 return -ENETDOWN;
402
403 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
404 is_multicast_ether_addr(sta->sta.addr)))
405 return -EINVAL;
406
407 return 0;
408 }
409
410 static int sta_info_insert_drv_state(struct ieee80211_local *local,
411 struct ieee80211_sub_if_data *sdata,
412 struct sta_info *sta)
413 {
414 enum ieee80211_sta_state state;
415 int err = 0;
416
417 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
418 err = drv_sta_state(local, sdata, sta, state, state + 1);
419 if (err)
420 break;
421 }
422
423 if (!err) {
424 /*
425 * Drivers using legacy sta_add/sta_remove callbacks only
426 * get uploaded set to true after sta_add is called.
427 */
428 if (!local->ops->sta_add)
429 sta->uploaded = true;
430 return 0;
431 }
432
433 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
434 sdata_info(sdata,
435 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
436 sta->sta.addr, state + 1, err);
437 err = 0;
438 }
439
440 /* unwind on error */
441 for (; state > IEEE80211_STA_NOTEXIST; state--)
442 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
443
444 return err;
445 }
446
447 /*
448 * should be called with sta_mtx locked
449 * this function replaces the mutex lock
450 * with a RCU lock
451 */
452 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
453 {
454 struct ieee80211_local *local = sta->local;
455 struct ieee80211_sub_if_data *sdata = sta->sdata;
456 struct station_info sinfo;
457 int err = 0;
458
459 lockdep_assert_held(&local->sta_mtx);
460
461 /* check if STA exists already */
462 if (sta_info_get_bss(sdata, sta->sta.addr)) {
463 err = -EEXIST;
464 goto out_err;
465 }
466
467 /* notify driver */
468 err = sta_info_insert_drv_state(local, sdata, sta);
469 if (err)
470 goto out_err;
471
472 local->num_sta++;
473 local->sta_generation++;
474 smp_mb();
475
476 /* make the station visible */
477 sta_info_hash_add(local, sta);
478
479 list_add_rcu(&sta->list, &local->sta_list);
480
481 set_sta_flag(sta, WLAN_STA_INSERTED);
482
483 ieee80211_sta_debugfs_add(sta);
484 rate_control_add_sta_debugfs(sta);
485
486 memset(&sinfo, 0, sizeof(sinfo));
487 sinfo.filled = 0;
488 sinfo.generation = local->sta_generation;
489 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
490
491 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
492
493 /* move reference to rcu-protected */
494 rcu_read_lock();
495 mutex_unlock(&local->sta_mtx);
496
497 if (ieee80211_vif_is_mesh(&sdata->vif))
498 mesh_accept_plinks_update(sdata);
499
500 return 0;
501 out_err:
502 mutex_unlock(&local->sta_mtx);
503 rcu_read_lock();
504 return err;
505 }
506
507 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
508 {
509 struct ieee80211_local *local = sta->local;
510 int err = 0;
511
512 might_sleep();
513
514 err = sta_info_insert_check(sta);
515 if (err) {
516 rcu_read_lock();
517 goto out_free;
518 }
519
520 mutex_lock(&local->sta_mtx);
521
522 err = sta_info_insert_finish(sta);
523 if (err)
524 goto out_free;
525
526 return 0;
527 out_free:
528 BUG_ON(!err);
529 sta_info_free(local, sta);
530 return err;
531 }
532
533 int sta_info_insert(struct sta_info *sta)
534 {
535 int err = sta_info_insert_rcu(sta);
536
537 rcu_read_unlock();
538
539 return err;
540 }
541
542 static inline void __bss_tim_set(u8 *tim, u16 id)
543 {
544 /*
545 * This format has been mandated by the IEEE specifications,
546 * so this line may not be changed to use the __set_bit() format.
547 */
548 tim[id / 8] |= (1 << (id % 8));
549 }
550
551 static inline void __bss_tim_clear(u8 *tim, u16 id)
552 {
553 /*
554 * This format has been mandated by the IEEE specifications,
555 * so this line may not be changed to use the __clear_bit() format.
556 */
557 tim[id / 8] &= ~(1 << (id % 8));
558 }
559
560 static inline bool __bss_tim_get(u8 *tim, u16 id)
561 {
562 /*
563 * This format has been mandated by the IEEE specifications,
564 * so this line may not be changed to use the test_bit() format.
565 */
566 return tim[id / 8] & (1 << (id % 8));
567 }
568
569 static unsigned long ieee80211_tids_for_ac(int ac)
570 {
571 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
572 switch (ac) {
573 case IEEE80211_AC_VO:
574 return BIT(6) | BIT(7);
575 case IEEE80211_AC_VI:
576 return BIT(4) | BIT(5);
577 case IEEE80211_AC_BE:
578 return BIT(0) | BIT(3);
579 case IEEE80211_AC_BK:
580 return BIT(1) | BIT(2);
581 default:
582 WARN_ON(1);
583 return 0;
584 }
585 }
586
587 void sta_info_recalc_tim(struct sta_info *sta)
588 {
589 struct ieee80211_local *local = sta->local;
590 struct ps_data *ps;
591 bool indicate_tim = false;
592 u8 ignore_for_tim = sta->sta.uapsd_queues;
593 int ac;
594 u16 id;
595
596 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
597 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
598 if (WARN_ON_ONCE(!sta->sdata->bss))
599 return;
600
601 ps = &sta->sdata->bss->ps;
602 id = sta->sta.aid;
603 #ifdef CONFIG_MAC80211_MESH
604 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
605 ps = &sta->sdata->u.mesh.ps;
606 /* TIM map only for PLID <= IEEE80211_MAX_AID */
607 id = le16_to_cpu(sta->plid) % IEEE80211_MAX_AID;
608 #endif
609 } else {
610 return;
611 }
612
613 /* No need to do anything if the driver does all */
614 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
615 return;
616
617 if (sta->dead)
618 goto done;
619
620 /*
621 * If all ACs are delivery-enabled then we should build
622 * the TIM bit for all ACs anyway; if only some are then
623 * we ignore those and build the TIM bit using only the
624 * non-enabled ones.
625 */
626 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
627 ignore_for_tim = 0;
628
629 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
630 unsigned long tids;
631
632 if (ignore_for_tim & BIT(ac))
633 continue;
634
635 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
636 !skb_queue_empty(&sta->ps_tx_buf[ac]);
637 if (indicate_tim)
638 break;
639
640 tids = ieee80211_tids_for_ac(ac);
641
642 indicate_tim |=
643 sta->driver_buffered_tids & tids;
644 }
645
646 done:
647 spin_lock_bh(&local->tim_lock);
648
649 if (indicate_tim == __bss_tim_get(ps->tim, id))
650 goto out_unlock;
651
652 if (indicate_tim)
653 __bss_tim_set(ps->tim, id);
654 else
655 __bss_tim_clear(ps->tim, id);
656
657 if (local->ops->set_tim) {
658 local->tim_in_locked_section = true;
659 drv_set_tim(local, &sta->sta, indicate_tim);
660 local->tim_in_locked_section = false;
661 }
662
663 out_unlock:
664 spin_unlock_bh(&local->tim_lock);
665 }
666
667 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
668 {
669 struct ieee80211_tx_info *info;
670 int timeout;
671
672 if (!skb)
673 return false;
674
675 info = IEEE80211_SKB_CB(skb);
676
677 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
678 timeout = (sta->listen_interval *
679 sta->sdata->vif.bss_conf.beacon_int *
680 32 / 15625) * HZ;
681 if (timeout < STA_TX_BUFFER_EXPIRE)
682 timeout = STA_TX_BUFFER_EXPIRE;
683 return time_after(jiffies, info->control.jiffies + timeout);
684 }
685
686
687 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
688 struct sta_info *sta, int ac)
689 {
690 unsigned long flags;
691 struct sk_buff *skb;
692
693 /*
694 * First check for frames that should expire on the filtered
695 * queue. Frames here were rejected by the driver and are on
696 * a separate queue to avoid reordering with normal PS-buffered
697 * frames. They also aren't accounted for right now in the
698 * total_ps_buffered counter.
699 */
700 for (;;) {
701 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
702 skb = skb_peek(&sta->tx_filtered[ac]);
703 if (sta_info_buffer_expired(sta, skb))
704 skb = __skb_dequeue(&sta->tx_filtered[ac]);
705 else
706 skb = NULL;
707 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
708
709 /*
710 * Frames are queued in order, so if this one
711 * hasn't expired yet we can stop testing. If
712 * we actually reached the end of the queue we
713 * also need to stop, of course.
714 */
715 if (!skb)
716 break;
717 ieee80211_free_txskb(&local->hw, skb);
718 }
719
720 /*
721 * Now also check the normal PS-buffered queue, this will
722 * only find something if the filtered queue was emptied
723 * since the filtered frames are all before the normal PS
724 * buffered frames.
725 */
726 for (;;) {
727 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
728 skb = skb_peek(&sta->ps_tx_buf[ac]);
729 if (sta_info_buffer_expired(sta, skb))
730 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
731 else
732 skb = NULL;
733 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
734
735 /*
736 * frames are queued in order, so if this one
737 * hasn't expired yet (or we reached the end of
738 * the queue) we can stop testing
739 */
740 if (!skb)
741 break;
742
743 local->total_ps_buffered--;
744 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
745 sta->sta.addr);
746 ieee80211_free_txskb(&local->hw, skb);
747 }
748
749 /*
750 * Finally, recalculate the TIM bit for this station -- it might
751 * now be clear because the station was too slow to retrieve its
752 * frames.
753 */
754 sta_info_recalc_tim(sta);
755
756 /*
757 * Return whether there are any frames still buffered, this is
758 * used to check whether the cleanup timer still needs to run,
759 * if there are no frames we don't need to rearm the timer.
760 */
761 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
762 skb_queue_empty(&sta->tx_filtered[ac]));
763 }
764
765 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
766 struct sta_info *sta)
767 {
768 bool have_buffered = false;
769 int ac;
770
771 /* This is only necessary for stations on BSS/MBSS interfaces */
772 if (!sta->sdata->bss &&
773 !ieee80211_vif_is_mesh(&sta->sdata->vif))
774 return false;
775
776 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
777 have_buffered |=
778 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
779
780 return have_buffered;
781 }
782
783 int __must_check __sta_info_destroy(struct sta_info *sta)
784 {
785 struct ieee80211_local *local;
786 struct ieee80211_sub_if_data *sdata;
787 int ret;
788
789 might_sleep();
790
791 if (!sta)
792 return -ENOENT;
793
794 local = sta->local;
795 sdata = sta->sdata;
796
797 lockdep_assert_held(&local->sta_mtx);
798
799 /*
800 * Before removing the station from the driver and
801 * rate control, it might still start new aggregation
802 * sessions -- block that to make sure the tear-down
803 * will be sufficient.
804 */
805 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
806 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
807
808 ret = sta_info_hash_del(local, sta);
809 if (ret)
810 return ret;
811
812 list_del_rcu(&sta->list);
813
814 /* this always calls synchronize_net() */
815 ieee80211_free_sta_keys(local, sta);
816
817 sta->dead = true;
818
819 local->num_sta--;
820 local->sta_generation++;
821
822 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
823 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
824
825 while (sta->sta_state > IEEE80211_STA_NONE) {
826 ret = sta_info_move_state(sta, sta->sta_state - 1);
827 if (ret) {
828 WARN_ON_ONCE(1);
829 break;
830 }
831 }
832
833 if (sta->uploaded) {
834 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
835 IEEE80211_STA_NOTEXIST);
836 WARN_ON_ONCE(ret != 0);
837 }
838
839 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
840
841 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
842
843 rate_control_remove_sta_debugfs(sta);
844 ieee80211_sta_debugfs_remove(sta);
845
846 call_rcu(&sta->rcu_head, free_sta_rcu);
847
848 return 0;
849 }
850
851 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
852 {
853 struct sta_info *sta;
854 int ret;
855
856 mutex_lock(&sdata->local->sta_mtx);
857 sta = sta_info_get(sdata, addr);
858 ret = __sta_info_destroy(sta);
859 mutex_unlock(&sdata->local->sta_mtx);
860
861 return ret;
862 }
863
864 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
865 const u8 *addr)
866 {
867 struct sta_info *sta;
868 int ret;
869
870 mutex_lock(&sdata->local->sta_mtx);
871 sta = sta_info_get_bss(sdata, addr);
872 ret = __sta_info_destroy(sta);
873 mutex_unlock(&sdata->local->sta_mtx);
874
875 return ret;
876 }
877
878 static void sta_info_cleanup(unsigned long data)
879 {
880 struct ieee80211_local *local = (struct ieee80211_local *) data;
881 struct sta_info *sta;
882 bool timer_needed = false;
883
884 rcu_read_lock();
885 list_for_each_entry_rcu(sta, &local->sta_list, list)
886 if (sta_info_cleanup_expire_buffered(local, sta))
887 timer_needed = true;
888 rcu_read_unlock();
889
890 if (local->quiescing)
891 return;
892
893 if (!timer_needed)
894 return;
895
896 mod_timer(&local->sta_cleanup,
897 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
898 }
899
900 void sta_info_init(struct ieee80211_local *local)
901 {
902 spin_lock_init(&local->tim_lock);
903 mutex_init(&local->sta_mtx);
904 INIT_LIST_HEAD(&local->sta_list);
905
906 setup_timer(&local->sta_cleanup, sta_info_cleanup,
907 (unsigned long)local);
908 }
909
910 void sta_info_stop(struct ieee80211_local *local)
911 {
912 del_timer_sync(&local->sta_cleanup);
913 }
914
915
916 int sta_info_flush_defer(struct ieee80211_sub_if_data *sdata)
917 {
918 struct ieee80211_local *local = sdata->local;
919 struct sta_info *sta, *tmp;
920 int ret = 0;
921
922 might_sleep();
923
924 mutex_lock(&local->sta_mtx);
925 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
926 if (sdata == sta->sdata) {
927 WARN_ON(__sta_info_destroy(sta));
928 ret++;
929 }
930 }
931 mutex_unlock(&local->sta_mtx);
932
933 return ret;
934 }
935
936 void sta_info_flush_cleanup(struct ieee80211_sub_if_data *sdata)
937 {
938 ieee80211_cleanup_sdata_stas(sdata);
939 cancel_work_sync(&sdata->cleanup_stations_wk);
940 }
941
942 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
943 unsigned long exp_time)
944 {
945 struct ieee80211_local *local = sdata->local;
946 struct sta_info *sta, *tmp;
947
948 mutex_lock(&local->sta_mtx);
949
950 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
951 if (sdata != sta->sdata)
952 continue;
953
954 if (time_after(jiffies, sta->last_rx + exp_time)) {
955 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
956 sta->sta.addr);
957
958 if (ieee80211_vif_is_mesh(&sdata->vif) &&
959 test_sta_flag(sta, WLAN_STA_PS_STA))
960 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
961
962 WARN_ON(__sta_info_destroy(sta));
963 }
964 }
965
966 mutex_unlock(&local->sta_mtx);
967 }
968
969 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
970 const u8 *addr,
971 const u8 *localaddr)
972 {
973 struct sta_info *sta, *nxt;
974
975 /*
976 * Just return a random station if localaddr is NULL
977 * ... first in list.
978 */
979 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
980 if (localaddr &&
981 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
982 continue;
983 if (!sta->uploaded)
984 return NULL;
985 return &sta->sta;
986 }
987
988 return NULL;
989 }
990 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
991
992 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
993 const u8 *addr)
994 {
995 struct sta_info *sta;
996
997 if (!vif)
998 return NULL;
999
1000 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1001 if (!sta)
1002 return NULL;
1003
1004 if (!sta->uploaded)
1005 return NULL;
1006
1007 return &sta->sta;
1008 }
1009 EXPORT_SYMBOL(ieee80211_find_sta);
1010
1011 static void clear_sta_ps_flags(void *_sta)
1012 {
1013 struct sta_info *sta = _sta;
1014 struct ieee80211_sub_if_data *sdata = sta->sdata;
1015 struct ps_data *ps;
1016
1017 if (sdata->vif.type == NL80211_IFTYPE_AP ||
1018 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1019 ps = &sdata->bss->ps;
1020 else if (ieee80211_vif_is_mesh(&sdata->vif))
1021 ps = &sdata->u.mesh.ps;
1022 else
1023 return;
1024
1025 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1026 if (test_and_clear_sta_flag(sta, WLAN_STA_PS_STA))
1027 atomic_dec(&ps->num_sta_ps);
1028 }
1029
1030 /* powersave support code */
1031 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1032 {
1033 struct ieee80211_sub_if_data *sdata = sta->sdata;
1034 struct ieee80211_local *local = sdata->local;
1035 struct sk_buff_head pending;
1036 int filtered = 0, buffered = 0, ac;
1037 unsigned long flags;
1038
1039 clear_sta_flag(sta, WLAN_STA_SP);
1040
1041 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1042 sta->driver_buffered_tids = 0;
1043
1044 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1045 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1046
1047 skb_queue_head_init(&pending);
1048
1049 /* sync with ieee80211_tx_h_unicast_ps_buf */
1050 spin_lock(&sta->ps_lock);
1051 /* Send all buffered frames to the station */
1052 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1053 int count = skb_queue_len(&pending), tmp;
1054
1055 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1056 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1057 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1058 tmp = skb_queue_len(&pending);
1059 filtered += tmp - count;
1060 count = tmp;
1061
1062 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1063 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1064 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1065 tmp = skb_queue_len(&pending);
1066 buffered += tmp - count;
1067 }
1068
1069 ieee80211_add_pending_skbs_fn(local, &pending, clear_sta_ps_flags, sta);
1070 spin_unlock(&sta->ps_lock);
1071
1072 local->total_ps_buffered -= buffered;
1073
1074 sta_info_recalc_tim(sta);
1075
1076 ps_dbg(sdata,
1077 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1078 sta->sta.addr, sta->sta.aid, filtered, buffered);
1079 }
1080
1081 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1082 struct sta_info *sta, int tid,
1083 enum ieee80211_frame_release_type reason)
1084 {
1085 struct ieee80211_local *local = sdata->local;
1086 struct ieee80211_qos_hdr *nullfunc;
1087 struct sk_buff *skb;
1088 int size = sizeof(*nullfunc);
1089 __le16 fc;
1090 bool qos = test_sta_flag(sta, WLAN_STA_WME);
1091 struct ieee80211_tx_info *info;
1092 struct ieee80211_chanctx_conf *chanctx_conf;
1093
1094 if (qos) {
1095 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1096 IEEE80211_STYPE_QOS_NULLFUNC |
1097 IEEE80211_FCTL_FROMDS);
1098 } else {
1099 size -= 2;
1100 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1101 IEEE80211_STYPE_NULLFUNC |
1102 IEEE80211_FCTL_FROMDS);
1103 }
1104
1105 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1106 if (!skb)
1107 return;
1108
1109 skb_reserve(skb, local->hw.extra_tx_headroom);
1110
1111 nullfunc = (void *) skb_put(skb, size);
1112 nullfunc->frame_control = fc;
1113 nullfunc->duration_id = 0;
1114 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1115 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1116 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1117 nullfunc->seq_ctrl = 0;
1118
1119 skb->priority = tid;
1120 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1121 if (qos) {
1122 nullfunc->qos_ctrl = cpu_to_le16(tid);
1123
1124 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1125 nullfunc->qos_ctrl |=
1126 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1127 }
1128
1129 info = IEEE80211_SKB_CB(skb);
1130
1131 /*
1132 * Tell TX path to send this frame even though the
1133 * STA may still remain is PS mode after this frame
1134 * exchange. Also set EOSP to indicate this packet
1135 * ends the poll/service period.
1136 */
1137 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1138 IEEE80211_TX_STATUS_EOSP |
1139 IEEE80211_TX_CTL_REQ_TX_STATUS;
1140
1141 drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false);
1142
1143 skb->dev = sdata->dev;
1144
1145 rcu_read_lock();
1146 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1147 if (WARN_ON(!chanctx_conf)) {
1148 rcu_read_unlock();
1149 kfree_skb(skb);
1150 return;
1151 }
1152
1153 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band);
1154 rcu_read_unlock();
1155 }
1156
1157 static void
1158 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1159 int n_frames, u8 ignored_acs,
1160 enum ieee80211_frame_release_type reason)
1161 {
1162 struct ieee80211_sub_if_data *sdata = sta->sdata;
1163 struct ieee80211_local *local = sdata->local;
1164 bool found = false;
1165 bool more_data = false;
1166 int ac;
1167 unsigned long driver_release_tids = 0;
1168 struct sk_buff_head frames;
1169
1170 /* Service or PS-Poll period starts */
1171 set_sta_flag(sta, WLAN_STA_SP);
1172
1173 __skb_queue_head_init(&frames);
1174
1175 /*
1176 * Get response frame(s) and more data bit for it.
1177 */
1178 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1179 unsigned long tids;
1180
1181 if (ignored_acs & BIT(ac))
1182 continue;
1183
1184 tids = ieee80211_tids_for_ac(ac);
1185
1186 if (!found) {
1187 driver_release_tids = sta->driver_buffered_tids & tids;
1188 if (driver_release_tids) {
1189 found = true;
1190 } else {
1191 struct sk_buff *skb;
1192
1193 while (n_frames > 0) {
1194 skb = skb_dequeue(&sta->tx_filtered[ac]);
1195 if (!skb) {
1196 skb = skb_dequeue(
1197 &sta->ps_tx_buf[ac]);
1198 if (skb)
1199 local->total_ps_buffered--;
1200 }
1201 if (!skb)
1202 break;
1203 n_frames--;
1204 found = true;
1205 __skb_queue_tail(&frames, skb);
1206 }
1207 }
1208
1209 /*
1210 * If the driver has data on more than one TID then
1211 * certainly there's more data if we release just a
1212 * single frame now (from a single TID).
1213 */
1214 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1215 hweight16(driver_release_tids) > 1) {
1216 more_data = true;
1217 driver_release_tids =
1218 BIT(ffs(driver_release_tids) - 1);
1219 break;
1220 }
1221 }
1222
1223 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1224 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1225 more_data = true;
1226 break;
1227 }
1228 }
1229
1230 if (!found) {
1231 int tid;
1232
1233 /*
1234 * For PS-Poll, this can only happen due to a race condition
1235 * when we set the TIM bit and the station notices it, but
1236 * before it can poll for the frame we expire it.
1237 *
1238 * For uAPSD, this is said in the standard (11.2.1.5 h):
1239 * At each unscheduled SP for a non-AP STA, the AP shall
1240 * attempt to transmit at least one MSDU or MMPDU, but no
1241 * more than the value specified in the Max SP Length field
1242 * in the QoS Capability element from delivery-enabled ACs,
1243 * that are destined for the non-AP STA.
1244 *
1245 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1246 */
1247
1248 /* This will evaluate to 1, 3, 5 or 7. */
1249 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1250
1251 ieee80211_send_null_response(sdata, sta, tid, reason);
1252 return;
1253 }
1254
1255 if (!driver_release_tids) {
1256 struct sk_buff_head pending;
1257 struct sk_buff *skb;
1258 int num = 0;
1259 u16 tids = 0;
1260
1261 skb_queue_head_init(&pending);
1262
1263 while ((skb = __skb_dequeue(&frames))) {
1264 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1265 struct ieee80211_hdr *hdr = (void *) skb->data;
1266 u8 *qoshdr = NULL;
1267
1268 num++;
1269
1270 /*
1271 * Tell TX path to send this frame even though the
1272 * STA may still remain is PS mode after this frame
1273 * exchange.
1274 */
1275 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1276
1277 /*
1278 * Use MoreData flag to indicate whether there are
1279 * more buffered frames for this STA
1280 */
1281 if (more_data || !skb_queue_empty(&frames))
1282 hdr->frame_control |=
1283 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1284 else
1285 hdr->frame_control &=
1286 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1287
1288 if (ieee80211_is_data_qos(hdr->frame_control) ||
1289 ieee80211_is_qos_nullfunc(hdr->frame_control))
1290 qoshdr = ieee80211_get_qos_ctl(hdr);
1291
1292 /* end service period after last frame */
1293 if (skb_queue_empty(&frames)) {
1294 if (reason == IEEE80211_FRAME_RELEASE_UAPSD &&
1295 qoshdr)
1296 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1297
1298 info->flags |= IEEE80211_TX_STATUS_EOSP |
1299 IEEE80211_TX_CTL_REQ_TX_STATUS;
1300 }
1301
1302 if (qoshdr)
1303 tids |= BIT(*qoshdr & IEEE80211_QOS_CTL_TID_MASK);
1304 else
1305 tids |= BIT(0);
1306
1307 __skb_queue_tail(&pending, skb);
1308 }
1309
1310 drv_allow_buffered_frames(local, sta, tids, num,
1311 reason, more_data);
1312
1313 ieee80211_add_pending_skbs(local, &pending);
1314
1315 sta_info_recalc_tim(sta);
1316 } else {
1317 /*
1318 * We need to release a frame that is buffered somewhere in the
1319 * driver ... it'll have to handle that.
1320 * Note that, as per the comment above, it'll also have to see
1321 * if there is more than just one frame on the specific TID that
1322 * we're releasing from, and it needs to set the more-data bit
1323 * accordingly if we tell it that there's no more data. If we do
1324 * tell it there's more data, then of course the more-data bit
1325 * needs to be set anyway.
1326 */
1327 drv_release_buffered_frames(local, sta, driver_release_tids,
1328 n_frames, reason, more_data);
1329
1330 /*
1331 * Note that we don't recalculate the TIM bit here as it would
1332 * most likely have no effect at all unless the driver told us
1333 * that the TID became empty before returning here from the
1334 * release function.
1335 * Either way, however, when the driver tells us that the TID
1336 * became empty we'll do the TIM recalculation.
1337 */
1338 }
1339 }
1340
1341 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1342 {
1343 u8 ignore_for_response = sta->sta.uapsd_queues;
1344
1345 /*
1346 * If all ACs are delivery-enabled then we should reply
1347 * from any of them, if only some are enabled we reply
1348 * only from the non-enabled ones.
1349 */
1350 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1351 ignore_for_response = 0;
1352
1353 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1354 IEEE80211_FRAME_RELEASE_PSPOLL);
1355 }
1356
1357 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1358 {
1359 int n_frames = sta->sta.max_sp;
1360 u8 delivery_enabled = sta->sta.uapsd_queues;
1361
1362 /*
1363 * If we ever grow support for TSPEC this might happen if
1364 * the TSPEC update from hostapd comes in between a trigger
1365 * frame setting WLAN_STA_UAPSD in the RX path and this
1366 * actually getting called.
1367 */
1368 if (!delivery_enabled)
1369 return;
1370
1371 switch (sta->sta.max_sp) {
1372 case 1:
1373 n_frames = 2;
1374 break;
1375 case 2:
1376 n_frames = 4;
1377 break;
1378 case 3:
1379 n_frames = 6;
1380 break;
1381 case 0:
1382 /* XXX: what is a good value? */
1383 n_frames = 8;
1384 break;
1385 }
1386
1387 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1388 IEEE80211_FRAME_RELEASE_UAPSD);
1389 }
1390
1391 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1392 struct ieee80211_sta *pubsta, bool block)
1393 {
1394 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1395
1396 trace_api_sta_block_awake(sta->local, pubsta, block);
1397
1398 if (block)
1399 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1400 else if (test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1401 ieee80211_queue_work(hw, &sta->drv_unblock_wk);
1402 }
1403 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1404
1405 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1406 {
1407 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1408 struct ieee80211_local *local = sta->local;
1409
1410 trace_api_eosp(local, pubsta);
1411
1412 clear_sta_flag(sta, WLAN_STA_SP);
1413 }
1414 EXPORT_SYMBOL(ieee80211_sta_eosp);
1415
1416 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1417 u8 tid, bool buffered)
1418 {
1419 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1420
1421 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1422 return;
1423
1424 if (buffered)
1425 set_bit(tid, &sta->driver_buffered_tids);
1426 else
1427 clear_bit(tid, &sta->driver_buffered_tids);
1428
1429 sta_info_recalc_tim(sta);
1430 }
1431 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1432
1433 int sta_info_move_state(struct sta_info *sta,
1434 enum ieee80211_sta_state new_state)
1435 {
1436 might_sleep();
1437
1438 if (sta->sta_state == new_state)
1439 return 0;
1440
1441 /* check allowed transitions first */
1442
1443 switch (new_state) {
1444 case IEEE80211_STA_NONE:
1445 if (sta->sta_state != IEEE80211_STA_AUTH)
1446 return -EINVAL;
1447 break;
1448 case IEEE80211_STA_AUTH:
1449 if (sta->sta_state != IEEE80211_STA_NONE &&
1450 sta->sta_state != IEEE80211_STA_ASSOC)
1451 return -EINVAL;
1452 break;
1453 case IEEE80211_STA_ASSOC:
1454 if (sta->sta_state != IEEE80211_STA_AUTH &&
1455 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1456 return -EINVAL;
1457 break;
1458 case IEEE80211_STA_AUTHORIZED:
1459 if (sta->sta_state != IEEE80211_STA_ASSOC)
1460 return -EINVAL;
1461 break;
1462 default:
1463 WARN(1, "invalid state %d", new_state);
1464 return -EINVAL;
1465 }
1466
1467 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1468 sta->sta.addr, new_state);
1469
1470 /*
1471 * notify the driver before the actual changes so it can
1472 * fail the transition
1473 */
1474 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1475 int err = drv_sta_state(sta->local, sta->sdata, sta,
1476 sta->sta_state, new_state);
1477 if (err)
1478 return err;
1479 }
1480
1481 /* reflect the change in all state variables */
1482
1483 switch (new_state) {
1484 case IEEE80211_STA_NONE:
1485 if (sta->sta_state == IEEE80211_STA_AUTH)
1486 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1487 break;
1488 case IEEE80211_STA_AUTH:
1489 if (sta->sta_state == IEEE80211_STA_NONE)
1490 set_bit(WLAN_STA_AUTH, &sta->_flags);
1491 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1492 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1493 break;
1494 case IEEE80211_STA_ASSOC:
1495 if (sta->sta_state == IEEE80211_STA_AUTH) {
1496 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1497 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1498 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1499 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1500 !sta->sdata->u.vlan.sta))
1501 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1502 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1503 }
1504 break;
1505 case IEEE80211_STA_AUTHORIZED:
1506 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1507 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1508 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1509 !sta->sdata->u.vlan.sta))
1510 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1511 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1512 }
1513 break;
1514 default:
1515 break;
1516 }
1517
1518 sta->sta_state = new_state;
1519
1520 return 0;
1521 }