Merge tag 'v3.10.86' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 9;
91
92 /* allocate extra bitmap */
93 if (status->vendor_radiotap_len)
94 len += 4;
95
96 if (ieee80211_have_rx_timestamp(status)) {
97 len = ALIGN(len, 8);
98 len += 8;
99 }
100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 len += 1;
102
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
105
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
108
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
112 }
113
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
117 }
118
119 if (status->vendor_radiotap_len) {
120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 status->vendor_radiotap_align = 1;
122 /* align standard part of vendor namespace */
123 len = ALIGN(len, 2);
124 /* allocate standard part of vendor namespace */
125 len += 6;
126 /* align vendor-defined part */
127 len = ALIGN(len, status->vendor_radiotap_align);
128 /* vendor-defined part is already in skb */
129 }
130
131 return len;
132 }
133
134 /*
135 * ieee80211_add_rx_radiotap_header - add radiotap header
136 *
137 * add a radiotap header containing all the fields which the hardware provided.
138 */
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 struct sk_buff *skb,
142 struct ieee80211_rate *rate,
143 int rtap_len, bool has_fcs)
144 {
145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 struct ieee80211_radiotap_header *rthdr;
147 unsigned char *pos;
148 u16 rx_flags = 0;
149 int mpdulen;
150
151 mpdulen = skb->len;
152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 mpdulen += FCS_LEN;
154
155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 memset(rthdr, 0, rtap_len);
157
158 /* radiotap header, set always present flags */
159 rthdr->it_present =
160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
165
166 pos = (unsigned char *)(rthdr + 1);
167
168 if (status->vendor_radiotap_len) {
169 rthdr->it_present |=
170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 pos += 4;
174 }
175
176 /* the order of the following fields is important */
177
178 /* IEEE80211_RADIOTAP_TSFT */
179 if (ieee80211_have_rx_timestamp(status)) {
180 /* padding */
181 while ((pos - (u8 *)rthdr) & 7)
182 *pos++ = 0;
183 put_unaligned_le64(
184 ieee80211_calculate_rx_timestamp(local, status,
185 mpdulen, 0),
186 pos);
187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 pos += 8;
189 }
190
191 /* IEEE80211_RADIOTAP_FLAGS */
192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 *pos |= IEEE80211_RADIOTAP_F_FCS;
194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 if (status->flag & RX_FLAG_SHORTPRE)
197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 pos++;
199
200 /* IEEE80211_RADIOTAP_RATE */
201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
202 /*
203 * Without rate information don't add it. If we have,
204 * MCS information is a separate field in radiotap,
205 * added below. The byte here is needed as padding
206 * for the channel though, so initialise it to 0.
207 */
208 *pos = 0;
209 } else {
210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 *pos = rate->bitrate / 5;
212 }
213 pos++;
214
215 /* IEEE80211_RADIOTAP_CHANNEL */
216 put_unaligned_le16(status->freq, pos);
217 pos += 2;
218 if (status->band == IEEE80211_BAND_5GHZ)
219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 pos);
221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 pos);
224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 pos);
227 else if (rate)
228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 pos);
230 else
231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 pos += 2;
233
234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 *pos = status->signal;
238 rthdr->it_present |=
239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 pos++;
241 }
242
243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
244
245 /* IEEE80211_RADIOTAP_ANTENNA */
246 *pos = status->antenna;
247 pos++;
248
249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
250
251 /* IEEE80211_RADIOTAP_RX_FLAGS */
252 /* ensure 2 byte alignment for the 2 byte field as required */
253 if ((pos - (u8 *)rthdr) & 1)
254 *pos++ = 0;
255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 put_unaligned_le16(rx_flags, pos);
258 pos += 2;
259
260 if (status->flag & RX_FLAG_HT) {
261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
262 *pos++ = local->hw.radiotap_mcs_details;
263 *pos = 0;
264 if (status->flag & RX_FLAG_SHORT_GI)
265 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
266 if (status->flag & RX_FLAG_40MHZ)
267 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
268 if (status->flag & RX_FLAG_HT_GF)
269 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
270 pos++;
271 *pos++ = status->rate_idx;
272 }
273
274 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
275 u16 flags = 0;
276
277 /* ensure 4 byte alignment */
278 while ((pos - (u8 *)rthdr) & 3)
279 pos++;
280 rthdr->it_present |=
281 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
282 put_unaligned_le32(status->ampdu_reference, pos);
283 pos += 4;
284 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
285 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
286 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
287 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
288 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
289 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
290 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
292 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
293 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
294 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
295 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
296 put_unaligned_le16(flags, pos);
297 pos += 2;
298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 *pos++ = status->ampdu_delimiter_crc;
300 else
301 *pos++ = 0;
302 *pos++ = 0;
303 }
304
305 if (status->flag & RX_FLAG_VHT) {
306 u16 known = local->hw.radiotap_vht_details;
307
308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
309 /* known field - how to handle 80+80? */
310 if (status->flag & RX_FLAG_80P80MHZ)
311 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
312 put_unaligned_le16(known, pos);
313 pos += 2;
314 /* flags */
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
317 pos++;
318 /* bandwidth */
319 if (status->flag & RX_FLAG_80MHZ)
320 *pos++ = 4;
321 else if (status->flag & RX_FLAG_80P80MHZ)
322 *pos++ = 0; /* marked not known above */
323 else if (status->flag & RX_FLAG_160MHZ)
324 *pos++ = 11;
325 else if (status->flag & RX_FLAG_40MHZ)
326 *pos++ = 1;
327 else /* 20 MHz */
328 *pos++ = 0;
329 /* MCS/NSS */
330 *pos = (status->rate_idx << 4) | status->vht_nss;
331 pos += 4;
332 /* coding field */
333 pos++;
334 /* group ID */
335 pos++;
336 /* partial_aid */
337 pos += 2;
338 }
339
340 if (status->vendor_radiotap_len) {
341 /* ensure 2 byte alignment for the vendor field as required */
342 if ((pos - (u8 *)rthdr) & 1)
343 *pos++ = 0;
344 *pos++ = status->vendor_radiotap_oui[0];
345 *pos++ = status->vendor_radiotap_oui[1];
346 *pos++ = status->vendor_radiotap_oui[2];
347 *pos++ = status->vendor_radiotap_subns;
348 put_unaligned_le16(status->vendor_radiotap_len, pos);
349 pos += 2;
350 /* align the actual payload as requested */
351 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
352 *pos++ = 0;
353 }
354 }
355
356 /*
357 * This function copies a received frame to all monitor interfaces and
358 * returns a cleaned-up SKB that no longer includes the FCS nor the
359 * radiotap header the driver might have added.
360 */
361 static struct sk_buff *
362 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
363 struct ieee80211_rate *rate)
364 {
365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
366 struct ieee80211_sub_if_data *sdata;
367 int needed_headroom;
368 struct sk_buff *skb, *skb2;
369 struct net_device *prev_dev = NULL;
370 int present_fcs_len = 0;
371
372 /*
373 * First, we may need to make a copy of the skb because
374 * (1) we need to modify it for radiotap (if not present), and
375 * (2) the other RX handlers will modify the skb we got.
376 *
377 * We don't need to, of course, if we aren't going to return
378 * the SKB because it has a bad FCS/PLCP checksum.
379 */
380
381 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
382 present_fcs_len = FCS_LEN;
383
384 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
385 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
386 dev_kfree_skb(origskb);
387 return NULL;
388 }
389
390 if (!local->monitors) {
391 if (should_drop_frame(origskb, present_fcs_len)) {
392 dev_kfree_skb(origskb);
393 return NULL;
394 }
395
396 return remove_monitor_info(local, origskb);
397 }
398
399 /* room for the radiotap header based on driver features */
400 needed_headroom = ieee80211_rx_radiotap_space(local, status);
401
402 if (should_drop_frame(origskb, present_fcs_len)) {
403 /* only need to expand headroom if necessary */
404 skb = origskb;
405 origskb = NULL;
406
407 /*
408 * This shouldn't trigger often because most devices have an
409 * RX header they pull before we get here, and that should
410 * be big enough for our radiotap information. We should
411 * probably export the length to drivers so that we can have
412 * them allocate enough headroom to start with.
413 */
414 if (skb_headroom(skb) < needed_headroom &&
415 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
416 dev_kfree_skb(skb);
417 return NULL;
418 }
419 } else {
420 /*
421 * Need to make a copy and possibly remove radiotap header
422 * and FCS from the original.
423 */
424 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
425
426 origskb = remove_monitor_info(local, origskb);
427
428 if (!skb)
429 return origskb;
430 }
431
432 /* prepend radiotap information */
433 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
434 true);
435
436 skb_reset_mac_header(skb);
437 skb->ip_summed = CHECKSUM_UNNECESSARY;
438 skb->pkt_type = PACKET_OTHERHOST;
439 skb->protocol = htons(ETH_P_802_2);
440
441 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
443 continue;
444
445 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
446 continue;
447
448 if (!ieee80211_sdata_running(sdata))
449 continue;
450
451 if (prev_dev) {
452 skb2 = skb_clone(skb, GFP_ATOMIC);
453 if (skb2) {
454 skb2->dev = prev_dev;
455 netif_receive_skb(skb2);
456 }
457 }
458
459 prev_dev = sdata->dev;
460 sdata->dev->stats.rx_packets++;
461 sdata->dev->stats.rx_bytes += skb->len;
462 }
463
464 if (prev_dev) {
465 skb->dev = prev_dev;
466 netif_receive_skb(skb);
467 } else
468 dev_kfree_skb(skb);
469
470 return origskb;
471 }
472
473 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
474 {
475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
477 int tid, seqno_idx, security_idx;
478
479 /* does the frame have a qos control field? */
480 if (ieee80211_is_data_qos(hdr->frame_control)) {
481 u8 *qc = ieee80211_get_qos_ctl(hdr);
482 /* frame has qos control */
483 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
484 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
485 status->rx_flags |= IEEE80211_RX_AMSDU;
486
487 seqno_idx = tid;
488 security_idx = tid;
489 } else {
490 /*
491 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
492 *
493 * Sequence numbers for management frames, QoS data
494 * frames with a broadcast/multicast address in the
495 * Address 1 field, and all non-QoS data frames sent
496 * by QoS STAs are assigned using an additional single
497 * modulo-4096 counter, [...]
498 *
499 * We also use that counter for non-QoS STAs.
500 */
501 seqno_idx = IEEE80211_NUM_TIDS;
502 security_idx = 0;
503 if (ieee80211_is_mgmt(hdr->frame_control))
504 security_idx = IEEE80211_NUM_TIDS;
505 tid = 0;
506 }
507
508 rx->seqno_idx = seqno_idx;
509 rx->security_idx = security_idx;
510 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
511 * For now, set skb->priority to 0 for other cases. */
512 rx->skb->priority = (tid > 7) ? 0 : tid;
513 }
514
515 /**
516 * DOC: Packet alignment
517 *
518 * Drivers always need to pass packets that are aligned to two-byte boundaries
519 * to the stack.
520 *
521 * Additionally, should, if possible, align the payload data in a way that
522 * guarantees that the contained IP header is aligned to a four-byte
523 * boundary. In the case of regular frames, this simply means aligning the
524 * payload to a four-byte boundary (because either the IP header is directly
525 * contained, or IV/RFC1042 headers that have a length divisible by four are
526 * in front of it). If the payload data is not properly aligned and the
527 * architecture doesn't support efficient unaligned operations, mac80211
528 * will align the data.
529 *
530 * With A-MSDU frames, however, the payload data address must yield two modulo
531 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
532 * push the IP header further back to a multiple of four again. Thankfully, the
533 * specs were sane enough this time around to require padding each A-MSDU
534 * subframe to a length that is a multiple of four.
535 *
536 * Padding like Atheros hardware adds which is between the 802.11 header and
537 * the payload is not supported, the driver is required to move the 802.11
538 * header to be directly in front of the payload in that case.
539 */
540 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
541 {
542 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
543 WARN_ONCE((unsigned long)rx->skb->data & 1,
544 "unaligned packet at 0x%p\n", rx->skb->data);
545 #endif
546 }
547
548
549 /* rx handlers */
550
551 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
552 {
553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
554
555 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
556 return 0;
557
558 return ieee80211_is_robust_mgmt_frame(hdr);
559 }
560
561
562 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
563 {
564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
565
566 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
567 return 0;
568
569 return ieee80211_is_robust_mgmt_frame(hdr);
570 }
571
572
573 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
574 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
575 {
576 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
577 struct ieee80211_mmie *mmie;
578
579 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
580 return -1;
581
582 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
583 return -1; /* not a robust management frame */
584
585 mmie = (struct ieee80211_mmie *)
586 (skb->data + skb->len - sizeof(*mmie));
587 if (mmie->element_id != WLAN_EID_MMIE ||
588 mmie->length != sizeof(*mmie) - 2)
589 return -1;
590
591 return le16_to_cpu(mmie->key_id);
592 }
593
594 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 char *dev_addr = rx->sdata->vif.addr;
598
599 if (ieee80211_is_data(hdr->frame_control)) {
600 if (is_multicast_ether_addr(hdr->addr1)) {
601 if (ieee80211_has_tods(hdr->frame_control) ||
602 !ieee80211_has_fromds(hdr->frame_control))
603 return RX_DROP_MONITOR;
604 if (ether_addr_equal(hdr->addr3, dev_addr))
605 return RX_DROP_MONITOR;
606 } else {
607 if (!ieee80211_has_a4(hdr->frame_control))
608 return RX_DROP_MONITOR;
609 if (ether_addr_equal(hdr->addr4, dev_addr))
610 return RX_DROP_MONITOR;
611 }
612 }
613
614 /* If there is not an established peer link and this is not a peer link
615 * establisment frame, beacon or probe, drop the frame.
616 */
617
618 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
619 struct ieee80211_mgmt *mgmt;
620
621 if (!ieee80211_is_mgmt(hdr->frame_control))
622 return RX_DROP_MONITOR;
623
624 if (ieee80211_is_action(hdr->frame_control)) {
625 u8 category;
626
627 /* make sure category field is present */
628 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
629 return RX_DROP_MONITOR;
630
631 mgmt = (struct ieee80211_mgmt *)hdr;
632 category = mgmt->u.action.category;
633 if (category != WLAN_CATEGORY_MESH_ACTION &&
634 category != WLAN_CATEGORY_SELF_PROTECTED)
635 return RX_DROP_MONITOR;
636 return RX_CONTINUE;
637 }
638
639 if (ieee80211_is_probe_req(hdr->frame_control) ||
640 ieee80211_is_probe_resp(hdr->frame_control) ||
641 ieee80211_is_beacon(hdr->frame_control) ||
642 ieee80211_is_auth(hdr->frame_control))
643 return RX_CONTINUE;
644
645 return RX_DROP_MONITOR;
646 }
647
648 return RX_CONTINUE;
649 }
650
651 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
652 struct tid_ampdu_rx *tid_agg_rx,
653 int index,
654 struct sk_buff_head *frames)
655 {
656 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
657 struct ieee80211_rx_status *status;
658
659 lockdep_assert_held(&tid_agg_rx->reorder_lock);
660
661 if (!skb)
662 goto no_frame;
663
664 /* release the frame from the reorder ring buffer */
665 tid_agg_rx->stored_mpdu_num--;
666 tid_agg_rx->reorder_buf[index] = NULL;
667 status = IEEE80211_SKB_RXCB(skb);
668 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
669 __skb_queue_tail(frames, skb);
670
671 no_frame:
672 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
673 }
674
675 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
676 struct tid_ampdu_rx *tid_agg_rx,
677 u16 head_seq_num,
678 struct sk_buff_head *frames)
679 {
680 int index;
681
682 lockdep_assert_held(&tid_agg_rx->reorder_lock);
683
684 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
685 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
686 tid_agg_rx->ssn) %
687 tid_agg_rx->buf_size;
688 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
689 frames);
690 }
691 }
692
693 /*
694 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
695 * the skb was added to the buffer longer than this time ago, the earlier
696 * frames that have not yet been received are assumed to be lost and the skb
697 * can be released for processing. This may also release other skb's from the
698 * reorder buffer if there are no additional gaps between the frames.
699 *
700 * Callers must hold tid_agg_rx->reorder_lock.
701 */
702 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
703
704 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
705 struct tid_ampdu_rx *tid_agg_rx,
706 struct sk_buff_head *frames)
707 {
708 int index, j;
709
710 lockdep_assert_held(&tid_agg_rx->reorder_lock);
711
712 /* release the buffer until next missing frame */
713 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
714 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
715 if (!tid_agg_rx->reorder_buf[index] &&
716 tid_agg_rx->stored_mpdu_num) {
717 /*
718 * No buffers ready to be released, but check whether any
719 * frames in the reorder buffer have timed out.
720 */
721 int skipped = 1;
722 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
723 j = (j + 1) % tid_agg_rx->buf_size) {
724 if (!tid_agg_rx->reorder_buf[j]) {
725 skipped++;
726 continue;
727 }
728 if (skipped &&
729 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
730 HT_RX_REORDER_BUF_TIMEOUT))
731 goto set_release_timer;
732
733 ht_dbg_ratelimited(sdata,
734 "release an RX reorder frame due to timeout on earlier frames\n");
735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
736 frames);
737
738 /*
739 * Increment the head seq# also for the skipped slots.
740 */
741 tid_agg_rx->head_seq_num =
742 (tid_agg_rx->head_seq_num +
743 skipped) & IEEE80211_SN_MASK;
744 skipped = 0;
745 }
746 } else while (tid_agg_rx->reorder_buf[index]) {
747 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
748 frames);
749 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
750 tid_agg_rx->ssn) %
751 tid_agg_rx->buf_size;
752 }
753
754 if (tid_agg_rx->stored_mpdu_num) {
755 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
756 tid_agg_rx->ssn) %
757 tid_agg_rx->buf_size;
758
759 for (; j != (index - 1) % tid_agg_rx->buf_size;
760 j = (j + 1) % tid_agg_rx->buf_size) {
761 if (tid_agg_rx->reorder_buf[j])
762 break;
763 }
764
765 set_release_timer:
766
767 mod_timer(&tid_agg_rx->reorder_timer,
768 tid_agg_rx->reorder_time[j] + 1 +
769 HT_RX_REORDER_BUF_TIMEOUT);
770 } else {
771 del_timer(&tid_agg_rx->reorder_timer);
772 }
773 }
774
775 /*
776 * As this function belongs to the RX path it must be under
777 * rcu_read_lock protection. It returns false if the frame
778 * can be processed immediately, true if it was consumed.
779 */
780 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
781 struct tid_ampdu_rx *tid_agg_rx,
782 struct sk_buff *skb,
783 struct sk_buff_head *frames)
784 {
785 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
786 u16 sc = le16_to_cpu(hdr->seq_ctrl);
787 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
788 u16 head_seq_num, buf_size;
789 int index;
790 bool ret = true;
791
792 spin_lock(&tid_agg_rx->reorder_lock);
793
794 buf_size = tid_agg_rx->buf_size;
795 head_seq_num = tid_agg_rx->head_seq_num;
796
797 /* frame with out of date sequence number */
798 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
799 dev_kfree_skb(skb);
800 goto out;
801 }
802
803 /*
804 * If frame the sequence number exceeds our buffering window
805 * size release some previous frames to make room for this one.
806 */
807 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
808 head_seq_num = ieee80211_sn_inc(
809 ieee80211_sn_sub(mpdu_seq_num, buf_size));
810 /* release stored frames up to new head to stack */
811 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
812 head_seq_num, frames);
813 }
814
815 /* Now the new frame is always in the range of the reordering buffer */
816
817 index = ieee80211_sn_sub(mpdu_seq_num,
818 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
819
820 /* check if we already stored this frame */
821 if (tid_agg_rx->reorder_buf[index]) {
822 dev_kfree_skb(skb);
823 goto out;
824 }
825
826 /*
827 * If the current MPDU is in the right order and nothing else
828 * is stored we can process it directly, no need to buffer it.
829 * If it is first but there's something stored, we may be able
830 * to release frames after this one.
831 */
832 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
833 tid_agg_rx->stored_mpdu_num == 0) {
834 tid_agg_rx->head_seq_num =
835 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
836 ret = false;
837 goto out;
838 }
839
840 /* put the frame in the reordering buffer */
841 tid_agg_rx->reorder_buf[index] = skb;
842 tid_agg_rx->reorder_time[index] = jiffies;
843 tid_agg_rx->stored_mpdu_num++;
844 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
845
846 out:
847 spin_unlock(&tid_agg_rx->reorder_lock);
848 return ret;
849 }
850
851 /*
852 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
853 * true if the MPDU was buffered, false if it should be processed.
854 */
855 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
856 struct sk_buff_head *frames)
857 {
858 struct sk_buff *skb = rx->skb;
859 struct ieee80211_local *local = rx->local;
860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
861 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
862 struct sta_info *sta = rx->sta;
863 struct tid_ampdu_rx *tid_agg_rx;
864 u16 sc;
865 u8 tid, ack_policy;
866
867 if (!ieee80211_is_data_qos(hdr->frame_control) ||
868 is_multicast_ether_addr(hdr->addr1))
869 goto dont_reorder;
870
871 /*
872 * filter the QoS data rx stream according to
873 * STA/TID and check if this STA/TID is on aggregation
874 */
875
876 if (!sta)
877 goto dont_reorder;
878
879 ack_policy = *ieee80211_get_qos_ctl(hdr) &
880 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
881 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
882
883 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
884 if (!tid_agg_rx)
885 goto dont_reorder;
886
887 /* qos null data frames are excluded */
888 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
889 goto dont_reorder;
890
891 /* not part of a BA session */
892 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
893 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
894 goto dont_reorder;
895
896 /* not actually part of this BA session */
897 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
898 goto dont_reorder;
899
900 /* new, potentially un-ordered, ampdu frame - process it */
901
902 /* reset session timer */
903 if (tid_agg_rx->timeout)
904 tid_agg_rx->last_rx = jiffies;
905
906 /* if this mpdu is fragmented - terminate rx aggregation session */
907 sc = le16_to_cpu(hdr->seq_ctrl);
908 if (sc & IEEE80211_SCTL_FRAG) {
909 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
910 skb_queue_tail(&rx->sdata->skb_queue, skb);
911 ieee80211_queue_work(&local->hw, &rx->sdata->work);
912 return;
913 }
914
915 /*
916 * No locking needed -- we will only ever process one
917 * RX packet at a time, and thus own tid_agg_rx. All
918 * other code manipulating it needs to (and does) make
919 * sure that we cannot get to it any more before doing
920 * anything with it.
921 */
922 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
923 frames))
924 return;
925
926 dont_reorder:
927 __skb_queue_tail(frames, skb);
928 }
929
930 static ieee80211_rx_result debug_noinline
931 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
932 {
933 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
934 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
935
936 /*
937 * Drop duplicate 802.11 retransmissions
938 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
939 */
940 if (rx->skb->len >= 24 && rx->sta &&
941 !ieee80211_is_ctl(hdr->frame_control) &&
942 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
943 !is_multicast_ether_addr(hdr->addr1)) {
944 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
945 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
946 hdr->seq_ctrl)) {
947 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
948 rx->local->dot11FrameDuplicateCount++;
949 rx->sta->num_duplicates++;
950 }
951 return RX_DROP_UNUSABLE;
952 } else
953 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
954 }
955
956 if (unlikely(rx->skb->len < 16)) {
957 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
958 return RX_DROP_MONITOR;
959 }
960
961 /* Drop disallowed frame classes based on STA auth/assoc state;
962 * IEEE 802.11, Chap 5.5.
963 *
964 * mac80211 filters only based on association state, i.e. it drops
965 * Class 3 frames from not associated stations. hostapd sends
966 * deauth/disassoc frames when needed. In addition, hostapd is
967 * responsible for filtering on both auth and assoc states.
968 */
969
970 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
971 return ieee80211_rx_mesh_check(rx);
972
973 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
974 ieee80211_is_pspoll(hdr->frame_control)) &&
975 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
976 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
977 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
978 /*
979 * accept port control frames from the AP even when it's not
980 * yet marked ASSOC to prevent a race where we don't set the
981 * assoc bit quickly enough before it sends the first frame
982 */
983 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
984 ieee80211_is_data_present(hdr->frame_control)) {
985 unsigned int hdrlen;
986 __be16 ethertype;
987
988 hdrlen = ieee80211_hdrlen(hdr->frame_control);
989
990 if (rx->skb->len < hdrlen + 8)
991 return RX_DROP_MONITOR;
992
993 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
994 if (ethertype == rx->sdata->control_port_protocol)
995 return RX_CONTINUE;
996 }
997
998 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
999 cfg80211_rx_spurious_frame(rx->sdata->dev,
1000 hdr->addr2,
1001 GFP_ATOMIC))
1002 return RX_DROP_UNUSABLE;
1003
1004 return RX_DROP_MONITOR;
1005 }
1006
1007 return RX_CONTINUE;
1008 }
1009
1010
1011 static ieee80211_rx_result debug_noinline
1012 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1013 {
1014 struct sk_buff *skb = rx->skb;
1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1017 int keyidx;
1018 int hdrlen;
1019 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1020 struct ieee80211_key *sta_ptk = NULL;
1021 int mmie_keyidx = -1;
1022 __le16 fc;
1023
1024 /*
1025 * Key selection 101
1026 *
1027 * There are four types of keys:
1028 * - GTK (group keys)
1029 * - IGTK (group keys for management frames)
1030 * - PTK (pairwise keys)
1031 * - STK (station-to-station pairwise keys)
1032 *
1033 * When selecting a key, we have to distinguish between multicast
1034 * (including broadcast) and unicast frames, the latter can only
1035 * use PTKs and STKs while the former always use GTKs and IGTKs.
1036 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1037 * unicast frames can also use key indices like GTKs. Hence, if we
1038 * don't have a PTK/STK we check the key index for a WEP key.
1039 *
1040 * Note that in a regular BSS, multicast frames are sent by the
1041 * AP only, associated stations unicast the frame to the AP first
1042 * which then multicasts it on their behalf.
1043 *
1044 * There is also a slight problem in IBSS mode: GTKs are negotiated
1045 * with each station, that is something we don't currently handle.
1046 * The spec seems to expect that one negotiates the same key with
1047 * every station but there's no such requirement; VLANs could be
1048 * possible.
1049 */
1050
1051 /*
1052 * No point in finding a key and decrypting if the frame is neither
1053 * addressed to us nor a multicast frame.
1054 */
1055 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1056 return RX_CONTINUE;
1057
1058 /* start without a key */
1059 rx->key = NULL;
1060
1061 if (rx->sta)
1062 sta_ptk = rcu_dereference(rx->sta->ptk);
1063
1064 fc = hdr->frame_control;
1065
1066 if (!ieee80211_has_protected(fc))
1067 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1068
1069 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1070 rx->key = sta_ptk;
1071 if ((status->flag & RX_FLAG_DECRYPTED) &&
1072 (status->flag & RX_FLAG_IV_STRIPPED))
1073 return RX_CONTINUE;
1074 /* Skip decryption if the frame is not protected. */
1075 if (!ieee80211_has_protected(fc))
1076 return RX_CONTINUE;
1077 } else if (mmie_keyidx >= 0) {
1078 /* Broadcast/multicast robust management frame / BIP */
1079 if ((status->flag & RX_FLAG_DECRYPTED) &&
1080 (status->flag & RX_FLAG_IV_STRIPPED))
1081 return RX_CONTINUE;
1082
1083 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1084 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1085 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1086 if (rx->sta)
1087 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1088 if (!rx->key)
1089 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1090 } else if (!ieee80211_has_protected(fc)) {
1091 /*
1092 * The frame was not protected, so skip decryption. However, we
1093 * need to set rx->key if there is a key that could have been
1094 * used so that the frame may be dropped if encryption would
1095 * have been expected.
1096 */
1097 struct ieee80211_key *key = NULL;
1098 struct ieee80211_sub_if_data *sdata = rx->sdata;
1099 int i;
1100
1101 if (ieee80211_is_mgmt(fc) &&
1102 is_multicast_ether_addr(hdr->addr1) &&
1103 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1104 rx->key = key;
1105 else {
1106 if (rx->sta) {
1107 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1108 key = rcu_dereference(rx->sta->gtk[i]);
1109 if (key)
1110 break;
1111 }
1112 }
1113 if (!key) {
1114 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1115 key = rcu_dereference(sdata->keys[i]);
1116 if (key)
1117 break;
1118 }
1119 }
1120 if (key)
1121 rx->key = key;
1122 }
1123 return RX_CONTINUE;
1124 } else {
1125 u8 keyid;
1126 /*
1127 * The device doesn't give us the IV so we won't be
1128 * able to look up the key. That's ok though, we
1129 * don't need to decrypt the frame, we just won't
1130 * be able to keep statistics accurate.
1131 * Except for key threshold notifications, should
1132 * we somehow allow the driver to tell us which key
1133 * the hardware used if this flag is set?
1134 */
1135 if ((status->flag & RX_FLAG_DECRYPTED) &&
1136 (status->flag & RX_FLAG_IV_STRIPPED))
1137 return RX_CONTINUE;
1138
1139 hdrlen = ieee80211_hdrlen(fc);
1140
1141 if (rx->skb->len < 8 + hdrlen)
1142 return RX_DROP_UNUSABLE; /* TODO: count this? */
1143
1144 /*
1145 * no need to call ieee80211_wep_get_keyidx,
1146 * it verifies a bunch of things we've done already
1147 */
1148 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1149 keyidx = keyid >> 6;
1150
1151 /* check per-station GTK first, if multicast packet */
1152 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1153 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1154
1155 /* if not found, try default key */
1156 if (!rx->key) {
1157 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1158
1159 /*
1160 * RSNA-protected unicast frames should always be
1161 * sent with pairwise or station-to-station keys,
1162 * but for WEP we allow using a key index as well.
1163 */
1164 if (rx->key &&
1165 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1166 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1167 !is_multicast_ether_addr(hdr->addr1))
1168 rx->key = NULL;
1169 }
1170 }
1171
1172 if (rx->key) {
1173 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1174 return RX_DROP_MONITOR;
1175
1176 rx->key->tx_rx_count++;
1177 /* TODO: add threshold stuff again */
1178 } else {
1179 return RX_DROP_MONITOR;
1180 }
1181
1182 switch (rx->key->conf.cipher) {
1183 case WLAN_CIPHER_SUITE_WEP40:
1184 case WLAN_CIPHER_SUITE_WEP104:
1185 result = ieee80211_crypto_wep_decrypt(rx);
1186 break;
1187 case WLAN_CIPHER_SUITE_TKIP:
1188 result = ieee80211_crypto_tkip_decrypt(rx);
1189 break;
1190 case WLAN_CIPHER_SUITE_CCMP:
1191 result = ieee80211_crypto_ccmp_decrypt(rx);
1192 break;
1193 case WLAN_CIPHER_SUITE_AES_CMAC:
1194 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1195 break;
1196 default:
1197 /*
1198 * We can reach here only with HW-only algorithms
1199 * but why didn't it decrypt the frame?!
1200 */
1201 return RX_DROP_UNUSABLE;
1202 }
1203
1204 /* the hdr variable is invalid after the decrypt handlers */
1205
1206 /* either the frame has been decrypted or will be dropped */
1207 status->flag |= RX_FLAG_DECRYPTED;
1208
1209 return result;
1210 }
1211
1212 static ieee80211_rx_result debug_noinline
1213 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1214 {
1215 struct ieee80211_local *local;
1216 struct ieee80211_hdr *hdr;
1217 struct sk_buff *skb;
1218
1219 local = rx->local;
1220 skb = rx->skb;
1221 hdr = (struct ieee80211_hdr *) skb->data;
1222
1223 if (!local->pspolling)
1224 return RX_CONTINUE;
1225
1226 if (!ieee80211_has_fromds(hdr->frame_control))
1227 /* this is not from AP */
1228 return RX_CONTINUE;
1229
1230 if (!ieee80211_is_data(hdr->frame_control))
1231 return RX_CONTINUE;
1232
1233 if (!ieee80211_has_moredata(hdr->frame_control)) {
1234 /* AP has no more frames buffered for us */
1235 local->pspolling = false;
1236 return RX_CONTINUE;
1237 }
1238
1239 /* more data bit is set, let's request a new frame from the AP */
1240 ieee80211_send_pspoll(local, rx->sdata);
1241
1242 return RX_CONTINUE;
1243 }
1244
1245 static void sta_ps_start(struct sta_info *sta)
1246 {
1247 struct ieee80211_sub_if_data *sdata = sta->sdata;
1248 struct ieee80211_local *local = sdata->local;
1249 struct ps_data *ps;
1250
1251 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1252 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1253 ps = &sdata->bss->ps;
1254 else
1255 return;
1256
1257 atomic_inc(&ps->num_sta_ps);
1258 set_sta_flag(sta, WLAN_STA_PS_STA);
1259 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1260 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1261 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1262 sta->sta.addr, sta->sta.aid);
1263 }
1264
1265 static void sta_ps_end(struct sta_info *sta)
1266 {
1267 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1268 sta->sta.addr, sta->sta.aid);
1269
1270 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1271 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1272 sta->sta.addr, sta->sta.aid);
1273 return;
1274 }
1275
1276 ieee80211_sta_ps_deliver_wakeup(sta);
1277 }
1278
1279 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1280 {
1281 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1282 bool in_ps;
1283
1284 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1285
1286 /* Don't let the same PS state be set twice */
1287 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1288 if ((start && in_ps) || (!start && !in_ps))
1289 return -EINVAL;
1290
1291 if (start)
1292 sta_ps_start(sta_inf);
1293 else
1294 sta_ps_end(sta_inf);
1295
1296 return 0;
1297 }
1298 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1299
1300 static ieee80211_rx_result debug_noinline
1301 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1302 {
1303 struct ieee80211_sub_if_data *sdata = rx->sdata;
1304 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1305 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1306 int tid, ac;
1307
1308 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1309 return RX_CONTINUE;
1310
1311 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1312 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1313 return RX_CONTINUE;
1314
1315 /*
1316 * The device handles station powersave, so don't do anything about
1317 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1318 * it to mac80211 since they're handled.)
1319 */
1320 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1321 return RX_CONTINUE;
1322
1323 /*
1324 * Don't do anything if the station isn't already asleep. In
1325 * the uAPSD case, the station will probably be marked asleep,
1326 * in the PS-Poll case the station must be confused ...
1327 */
1328 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1329 return RX_CONTINUE;
1330
1331 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1332 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1333 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1334 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1335 else
1336 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1337 }
1338
1339 /* Free PS Poll skb here instead of returning RX_DROP that would
1340 * count as an dropped frame. */
1341 dev_kfree_skb(rx->skb);
1342
1343 return RX_QUEUED;
1344 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1345 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1346 ieee80211_has_pm(hdr->frame_control) &&
1347 (ieee80211_is_data_qos(hdr->frame_control) ||
1348 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1349 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1350 ac = ieee802_1d_to_ac[tid & 7];
1351
1352 /*
1353 * If this AC is not trigger-enabled do nothing.
1354 *
1355 * NB: This could/should check a separate bitmap of trigger-
1356 * enabled queues, but for now we only implement uAPSD w/o
1357 * TSPEC changes to the ACs, so they're always the same.
1358 */
1359 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1360 return RX_CONTINUE;
1361
1362 /* if we are in a service period, do nothing */
1363 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1364 return RX_CONTINUE;
1365
1366 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1367 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1368 else
1369 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1370 }
1371
1372 return RX_CONTINUE;
1373 }
1374
1375 static ieee80211_rx_result debug_noinline
1376 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1377 {
1378 struct sta_info *sta = rx->sta;
1379 struct sk_buff *skb = rx->skb;
1380 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1381 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1382
1383 if (!sta)
1384 return RX_CONTINUE;
1385
1386 /*
1387 * Update last_rx only for IBSS packets which are for the current
1388 * BSSID and for station already AUTHORIZED to avoid keeping the
1389 * current IBSS network alive in cases where other STAs start
1390 * using different BSSID. This will also give the station another
1391 * chance to restart the authentication/authorization in case
1392 * something went wrong the first time.
1393 */
1394 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1395 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1396 NL80211_IFTYPE_ADHOC);
1397 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1398 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1399 sta->last_rx = jiffies;
1400 if (ieee80211_is_data(hdr->frame_control)) {
1401 sta->last_rx_rate_idx = status->rate_idx;
1402 sta->last_rx_rate_flag = status->flag;
1403 sta->last_rx_rate_vht_nss = status->vht_nss;
1404 }
1405 }
1406 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1407 /*
1408 * Mesh beacons will update last_rx when if they are found to
1409 * match the current local configuration when processed.
1410 */
1411 sta->last_rx = jiffies;
1412 if (ieee80211_is_data(hdr->frame_control)) {
1413 sta->last_rx_rate_idx = status->rate_idx;
1414 sta->last_rx_rate_flag = status->flag;
1415 sta->last_rx_rate_vht_nss = status->vht_nss;
1416 }
1417 }
1418
1419 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1420 return RX_CONTINUE;
1421
1422 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1423 ieee80211_sta_rx_notify(rx->sdata, hdr);
1424
1425 sta->rx_fragments++;
1426 sta->rx_bytes += rx->skb->len;
1427 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1428 sta->last_signal = status->signal;
1429 ewma_add(&sta->avg_signal, -status->signal);
1430 }
1431
1432 /*
1433 * Change STA power saving mode only at the end of a frame
1434 * exchange sequence.
1435 */
1436 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1437 !ieee80211_has_morefrags(hdr->frame_control) &&
1438 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1439 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1440 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1441 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1442 /*
1443 * Ignore doze->wake transitions that are
1444 * indicated by non-data frames, the standard
1445 * is unclear here, but for example going to
1446 * PS mode and then scanning would cause a
1447 * doze->wake transition for the probe request,
1448 * and that is clearly undesirable.
1449 */
1450 if (ieee80211_is_data(hdr->frame_control) &&
1451 !ieee80211_has_pm(hdr->frame_control))
1452 sta_ps_end(sta);
1453 } else {
1454 if (ieee80211_has_pm(hdr->frame_control))
1455 sta_ps_start(sta);
1456 }
1457 }
1458
1459 /* mesh power save support */
1460 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1461 ieee80211_mps_rx_h_sta_process(sta, hdr);
1462
1463 /*
1464 * Drop (qos-)data::nullfunc frames silently, since they
1465 * are used only to control station power saving mode.
1466 */
1467 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1468 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1469 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1470
1471 /*
1472 * If we receive a 4-addr nullfunc frame from a STA
1473 * that was not moved to a 4-addr STA vlan yet send
1474 * the event to userspace and for older hostapd drop
1475 * the frame to the monitor interface.
1476 */
1477 if (ieee80211_has_a4(hdr->frame_control) &&
1478 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1479 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1480 !rx->sdata->u.vlan.sta))) {
1481 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1482 cfg80211_rx_unexpected_4addr_frame(
1483 rx->sdata->dev, sta->sta.addr,
1484 GFP_ATOMIC);
1485 return RX_DROP_MONITOR;
1486 }
1487 /*
1488 * Update counter and free packet here to avoid
1489 * counting this as a dropped packed.
1490 */
1491 sta->rx_packets++;
1492 dev_kfree_skb(rx->skb);
1493 return RX_QUEUED;
1494 }
1495
1496 return RX_CONTINUE;
1497 } /* ieee80211_rx_h_sta_process */
1498
1499 static inline struct ieee80211_fragment_entry *
1500 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1501 unsigned int frag, unsigned int seq, int rx_queue,
1502 struct sk_buff **skb)
1503 {
1504 struct ieee80211_fragment_entry *entry;
1505
1506 entry = &sdata->fragments[sdata->fragment_next++];
1507 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1508 sdata->fragment_next = 0;
1509
1510 if (!skb_queue_empty(&entry->skb_list))
1511 __skb_queue_purge(&entry->skb_list);
1512
1513 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1514 *skb = NULL;
1515 entry->first_frag_time = jiffies;
1516 entry->seq = seq;
1517 entry->rx_queue = rx_queue;
1518 entry->last_frag = frag;
1519 entry->ccmp = 0;
1520 entry->extra_len = 0;
1521
1522 return entry;
1523 }
1524
1525 static inline struct ieee80211_fragment_entry *
1526 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1527 unsigned int frag, unsigned int seq,
1528 int rx_queue, struct ieee80211_hdr *hdr)
1529 {
1530 struct ieee80211_fragment_entry *entry;
1531 int i, idx;
1532
1533 idx = sdata->fragment_next;
1534 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1535 struct ieee80211_hdr *f_hdr;
1536
1537 idx--;
1538 if (idx < 0)
1539 idx = IEEE80211_FRAGMENT_MAX - 1;
1540
1541 entry = &sdata->fragments[idx];
1542 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1543 entry->rx_queue != rx_queue ||
1544 entry->last_frag + 1 != frag)
1545 continue;
1546
1547 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1548
1549 /*
1550 * Check ftype and addresses are equal, else check next fragment
1551 */
1552 if (((hdr->frame_control ^ f_hdr->frame_control) &
1553 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1554 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1555 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1556 continue;
1557
1558 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1559 __skb_queue_purge(&entry->skb_list);
1560 continue;
1561 }
1562 return entry;
1563 }
1564
1565 return NULL;
1566 }
1567
1568 static ieee80211_rx_result debug_noinline
1569 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1570 {
1571 struct ieee80211_hdr *hdr;
1572 u16 sc;
1573 __le16 fc;
1574 unsigned int frag, seq;
1575 struct ieee80211_fragment_entry *entry;
1576 struct sk_buff *skb;
1577 struct ieee80211_rx_status *status;
1578
1579 hdr = (struct ieee80211_hdr *)rx->skb->data;
1580 fc = hdr->frame_control;
1581
1582 if (ieee80211_is_ctl(fc))
1583 return RX_CONTINUE;
1584
1585 sc = le16_to_cpu(hdr->seq_ctrl);
1586 frag = sc & IEEE80211_SCTL_FRAG;
1587
1588 if (is_multicast_ether_addr(hdr->addr1)) {
1589 rx->local->dot11MulticastReceivedFrameCount++;
1590 goto out_no_led;
1591 }
1592
1593 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1594 goto out;
1595
1596 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1597
1598 if (skb_linearize(rx->skb))
1599 return RX_DROP_UNUSABLE;
1600
1601 /*
1602 * skb_linearize() might change the skb->data and
1603 * previously cached variables (in this case, hdr) need to
1604 * be refreshed with the new data.
1605 */
1606 hdr = (struct ieee80211_hdr *)rx->skb->data;
1607 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1608
1609 if (frag == 0) {
1610 /* This is the first fragment of a new frame. */
1611 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1612 rx->seqno_idx, &(rx->skb));
1613 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1614 ieee80211_has_protected(fc)) {
1615 int queue = rx->security_idx;
1616 /* Store CCMP PN so that we can verify that the next
1617 * fragment has a sequential PN value. */
1618 entry->ccmp = 1;
1619 memcpy(entry->last_pn,
1620 rx->key->u.ccmp.rx_pn[queue],
1621 CCMP_PN_LEN);
1622 }
1623 return RX_QUEUED;
1624 }
1625
1626 /* This is a fragment for a frame that should already be pending in
1627 * fragment cache. Add this fragment to the end of the pending entry.
1628 */
1629 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1630 rx->seqno_idx, hdr);
1631 if (!entry) {
1632 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1633 return RX_DROP_MONITOR;
1634 }
1635
1636 /* Verify that MPDUs within one MSDU have sequential PN values.
1637 * (IEEE 802.11i, 8.3.3.4.5) */
1638 if (entry->ccmp) {
1639 int i;
1640 u8 pn[CCMP_PN_LEN], *rpn;
1641 int queue;
1642 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1643 return RX_DROP_UNUSABLE;
1644 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1645 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1646 pn[i]++;
1647 if (pn[i])
1648 break;
1649 }
1650 queue = rx->security_idx;
1651 rpn = rx->key->u.ccmp.rx_pn[queue];
1652 if (memcmp(pn, rpn, CCMP_PN_LEN))
1653 return RX_DROP_UNUSABLE;
1654 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1655 }
1656
1657 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1658 __skb_queue_tail(&entry->skb_list, rx->skb);
1659 entry->last_frag = frag;
1660 entry->extra_len += rx->skb->len;
1661 if (ieee80211_has_morefrags(fc)) {
1662 rx->skb = NULL;
1663 return RX_QUEUED;
1664 }
1665
1666 rx->skb = __skb_dequeue(&entry->skb_list);
1667 if (skb_tailroom(rx->skb) < entry->extra_len) {
1668 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1669 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1670 GFP_ATOMIC))) {
1671 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1672 __skb_queue_purge(&entry->skb_list);
1673 return RX_DROP_UNUSABLE;
1674 }
1675 }
1676 while ((skb = __skb_dequeue(&entry->skb_list))) {
1677 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1678 dev_kfree_skb(skb);
1679 }
1680
1681 /* Complete frame has been reassembled - process it now */
1682 status = IEEE80211_SKB_RXCB(rx->skb);
1683 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1684
1685 out:
1686 ieee80211_led_rx(rx->local);
1687 out_no_led:
1688 if (rx->sta)
1689 rx->sta->rx_packets++;
1690 return RX_CONTINUE;
1691 }
1692
1693 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1694 {
1695 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1696 return -EACCES;
1697
1698 return 0;
1699 }
1700
1701 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1702 {
1703 struct sk_buff *skb = rx->skb;
1704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1705
1706 /*
1707 * Pass through unencrypted frames if the hardware has
1708 * decrypted them already.
1709 */
1710 if (status->flag & RX_FLAG_DECRYPTED)
1711 return 0;
1712
1713 /* Drop unencrypted frames if key is set. */
1714 if (unlikely(!ieee80211_has_protected(fc) &&
1715 !ieee80211_is_nullfunc(fc) &&
1716 ieee80211_is_data(fc) &&
1717 (rx->key || rx->sdata->drop_unencrypted)))
1718 return -EACCES;
1719
1720 return 0;
1721 }
1722
1723 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1724 {
1725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1727 __le16 fc = hdr->frame_control;
1728
1729 /*
1730 * Pass through unencrypted frames if the hardware has
1731 * decrypted them already.
1732 */
1733 if (status->flag & RX_FLAG_DECRYPTED)
1734 return 0;
1735
1736 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1737 if (unlikely(!ieee80211_has_protected(fc) &&
1738 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1739 rx->key)) {
1740 if (ieee80211_is_deauth(fc))
1741 cfg80211_send_unprot_deauth(rx->sdata->dev,
1742 rx->skb->data,
1743 rx->skb->len);
1744 else if (ieee80211_is_disassoc(fc))
1745 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1746 rx->skb->data,
1747 rx->skb->len);
1748 return -EACCES;
1749 }
1750 /* BIP does not use Protected field, so need to check MMIE */
1751 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1752 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1753 if (ieee80211_is_deauth(fc))
1754 cfg80211_send_unprot_deauth(rx->sdata->dev,
1755 rx->skb->data,
1756 rx->skb->len);
1757 else if (ieee80211_is_disassoc(fc))
1758 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1759 rx->skb->data,
1760 rx->skb->len);
1761 return -EACCES;
1762 }
1763 /*
1764 * When using MFP, Action frames are not allowed prior to
1765 * having configured keys.
1766 */
1767 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1768 ieee80211_is_robust_mgmt_frame(
1769 (struct ieee80211_hdr *) rx->skb->data)))
1770 return -EACCES;
1771 }
1772
1773 return 0;
1774 }
1775
1776 static int
1777 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1778 {
1779 struct ieee80211_sub_if_data *sdata = rx->sdata;
1780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1781 bool check_port_control = false;
1782 struct ethhdr *ehdr;
1783 int ret;
1784
1785 *port_control = false;
1786 if (ieee80211_has_a4(hdr->frame_control) &&
1787 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1788 return -1;
1789
1790 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1791 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1792
1793 if (!sdata->u.mgd.use_4addr)
1794 return -1;
1795 else
1796 check_port_control = true;
1797 }
1798
1799 if (is_multicast_ether_addr(hdr->addr1) &&
1800 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1801 return -1;
1802
1803 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1804 if (ret < 0)
1805 return ret;
1806
1807 ehdr = (struct ethhdr *) rx->skb->data;
1808 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1809 *port_control = true;
1810 else if (check_port_control)
1811 return -1;
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * requires that rx->skb is a frame with ethernet header
1818 */
1819 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1820 {
1821 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1822 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1823 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1824
1825 /*
1826 * Allow EAPOL frames to us/the PAE group address regardless
1827 * of whether the frame was encrypted or not.
1828 */
1829 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1830 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1831 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1832 return true;
1833
1834 if (ieee80211_802_1x_port_control(rx) ||
1835 ieee80211_drop_unencrypted(rx, fc))
1836 return false;
1837
1838 return true;
1839 }
1840
1841 /*
1842 * requires that rx->skb is a frame with ethernet header
1843 */
1844 static void
1845 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1846 {
1847 struct ieee80211_sub_if_data *sdata = rx->sdata;
1848 struct net_device *dev = sdata->dev;
1849 struct sk_buff *skb, *xmit_skb;
1850 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1851 struct sta_info *dsta;
1852 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1853
1854 skb = rx->skb;
1855 xmit_skb = NULL;
1856
1857 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1858 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1859 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1860 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1861 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1862 if (is_multicast_ether_addr(ehdr->h_dest)) {
1863 /*
1864 * send multicast frames both to higher layers in
1865 * local net stack and back to the wireless medium
1866 */
1867 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1868 if (!xmit_skb)
1869 net_info_ratelimited("%s: failed to clone multicast frame\n",
1870 dev->name);
1871 } else {
1872 dsta = sta_info_get(sdata, skb->data);
1873 if (dsta) {
1874 /*
1875 * The destination station is associated to
1876 * this AP (in this VLAN), so send the frame
1877 * directly to it and do not pass it to local
1878 * net stack.
1879 */
1880 xmit_skb = skb;
1881 skb = NULL;
1882 }
1883 }
1884 }
1885
1886 if (skb) {
1887 int align __maybe_unused;
1888
1889 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1890 /*
1891 * 'align' will only take the values 0 or 2 here
1892 * since all frames are required to be aligned
1893 * to 2-byte boundaries when being passed to
1894 * mac80211; the code here works just as well if
1895 * that isn't true, but mac80211 assumes it can
1896 * access fields as 2-byte aligned (e.g. for
1897 * compare_ether_addr)
1898 */
1899 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1900 if (align) {
1901 if (WARN_ON(skb_headroom(skb) < 3)) {
1902 dev_kfree_skb(skb);
1903 skb = NULL;
1904 } else {
1905 u8 *data = skb->data;
1906 size_t len = skb_headlen(skb);
1907 skb->data -= align;
1908 memmove(skb->data, data, len);
1909 skb_set_tail_pointer(skb, len);
1910 }
1911 }
1912 #endif
1913
1914 if (skb) {
1915 /* deliver to local stack */
1916 skb->protocol = eth_type_trans(skb, dev);
1917 memset(skb->cb, 0, sizeof(skb->cb));
1918 netif_receive_skb(skb);
1919 }
1920 }
1921
1922 if (xmit_skb) {
1923 /*
1924 * Send to wireless media and increase priority by 256 to
1925 * keep the received priority instead of reclassifying
1926 * the frame (see cfg80211_classify8021d).
1927 */
1928 xmit_skb->priority += 256;
1929 xmit_skb->protocol = htons(ETH_P_802_3);
1930 skb_reset_network_header(xmit_skb);
1931 skb_reset_mac_header(xmit_skb);
1932 dev_queue_xmit(xmit_skb);
1933 }
1934 }
1935
1936 static ieee80211_rx_result debug_noinline
1937 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1938 {
1939 struct net_device *dev = rx->sdata->dev;
1940 struct sk_buff *skb = rx->skb;
1941 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1942 __le16 fc = hdr->frame_control;
1943 struct sk_buff_head frame_list;
1944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1945
1946 if (unlikely(!ieee80211_is_data(fc)))
1947 return RX_CONTINUE;
1948
1949 if (unlikely(!ieee80211_is_data_present(fc)))
1950 return RX_DROP_MONITOR;
1951
1952 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1953 return RX_CONTINUE;
1954
1955 if (ieee80211_has_a4(hdr->frame_control) &&
1956 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1957 !rx->sdata->u.vlan.sta)
1958 return RX_DROP_UNUSABLE;
1959
1960 if (is_multicast_ether_addr(hdr->addr1) &&
1961 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1962 rx->sdata->u.vlan.sta) ||
1963 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1964 rx->sdata->u.mgd.use_4addr)))
1965 return RX_DROP_UNUSABLE;
1966
1967 skb->dev = dev;
1968 __skb_queue_head_init(&frame_list);
1969
1970 if (skb_linearize(skb))
1971 return RX_DROP_UNUSABLE;
1972
1973 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1974 rx->sdata->vif.type,
1975 rx->local->hw.extra_tx_headroom, true);
1976
1977 while (!skb_queue_empty(&frame_list)) {
1978 rx->skb = __skb_dequeue(&frame_list);
1979
1980 if (!ieee80211_frame_allowed(rx, fc)) {
1981 dev_kfree_skb(rx->skb);
1982 continue;
1983 }
1984 dev->stats.rx_packets++;
1985 dev->stats.rx_bytes += rx->skb->len;
1986
1987 ieee80211_deliver_skb(rx);
1988 }
1989
1990 return RX_QUEUED;
1991 }
1992
1993 #ifdef CONFIG_MAC80211_MESH
1994 static ieee80211_rx_result
1995 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1996 {
1997 struct ieee80211_hdr *fwd_hdr, *hdr;
1998 struct ieee80211_tx_info *info;
1999 struct ieee80211s_hdr *mesh_hdr;
2000 struct sk_buff *skb = rx->skb, *fwd_skb;
2001 struct ieee80211_local *local = rx->local;
2002 struct ieee80211_sub_if_data *sdata = rx->sdata;
2003 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2004 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2005 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2006 u16 q, hdrlen;
2007
2008 hdr = (struct ieee80211_hdr *) skb->data;
2009 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2010
2011 /* make sure fixed part of mesh header is there, also checks skb len */
2012 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2013 return RX_DROP_MONITOR;
2014
2015 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2016
2017 /* make sure full mesh header is there, also checks skb len */
2018 if (!pskb_may_pull(rx->skb,
2019 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2020 return RX_DROP_MONITOR;
2021
2022 /* reload pointers */
2023 hdr = (struct ieee80211_hdr *) skb->data;
2024 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2025
2026 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2027 return RX_DROP_MONITOR;
2028
2029 /* frame is in RMC, don't forward */
2030 if (ieee80211_is_data(hdr->frame_control) &&
2031 is_multicast_ether_addr(hdr->addr1) &&
2032 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2033 return RX_DROP_MONITOR;
2034
2035 if (!ieee80211_is_data(hdr->frame_control) ||
2036 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2037 return RX_CONTINUE;
2038
2039 if (!mesh_hdr->ttl)
2040 return RX_DROP_MONITOR;
2041
2042 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2043 struct mesh_path *mppath;
2044 char *proxied_addr;
2045 char *mpp_addr;
2046
2047 if (is_multicast_ether_addr(hdr->addr1)) {
2048 mpp_addr = hdr->addr3;
2049 proxied_addr = mesh_hdr->eaddr1;
2050 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2051 /* has_a4 already checked in ieee80211_rx_mesh_check */
2052 mpp_addr = hdr->addr4;
2053 proxied_addr = mesh_hdr->eaddr2;
2054 } else {
2055 return RX_DROP_MONITOR;
2056 }
2057
2058 rcu_read_lock();
2059 mppath = mpp_path_lookup(sdata, proxied_addr);
2060 if (!mppath) {
2061 mpp_path_add(sdata, proxied_addr, mpp_addr);
2062 } else {
2063 spin_lock_bh(&mppath->state_lock);
2064 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2065 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2066 spin_unlock_bh(&mppath->state_lock);
2067 }
2068 rcu_read_unlock();
2069 }
2070
2071 /* Frame has reached destination. Don't forward */
2072 if (!is_multicast_ether_addr(hdr->addr1) &&
2073 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2074 return RX_CONTINUE;
2075
2076 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2077 if (ieee80211_queue_stopped(&local->hw, q)) {
2078 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2079 return RX_DROP_MONITOR;
2080 }
2081 skb_set_queue_mapping(skb, q);
2082
2083 if (!--mesh_hdr->ttl) {
2084 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2085 goto out;
2086 }
2087
2088 if (!ifmsh->mshcfg.dot11MeshForwarding)
2089 goto out;
2090
2091 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2092 if (!fwd_skb) {
2093 net_info_ratelimited("%s: failed to clone mesh frame\n",
2094 sdata->name);
2095 goto out;
2096 }
2097
2098 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2099 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2100 info = IEEE80211_SKB_CB(fwd_skb);
2101 memset(info, 0, sizeof(*info));
2102 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2103 info->control.vif = &rx->sdata->vif;
2104 info->control.jiffies = jiffies;
2105 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2106 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2107 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2108 /* update power mode indication when forwarding */
2109 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2110 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2111 /* mesh power mode flags updated in mesh_nexthop_lookup */
2112 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2113 } else {
2114 /* unable to resolve next hop */
2115 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2116 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2117 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2118 kfree_skb(fwd_skb);
2119 return RX_DROP_MONITOR;
2120 }
2121
2122 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2123 ieee80211_add_pending_skb(local, fwd_skb);
2124 out:
2125 if (is_multicast_ether_addr(hdr->addr1) ||
2126 sdata->dev->flags & IFF_PROMISC)
2127 return RX_CONTINUE;
2128 else
2129 return RX_DROP_MONITOR;
2130 }
2131 #endif
2132
2133 static ieee80211_rx_result debug_noinline
2134 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2135 {
2136 struct ieee80211_sub_if_data *sdata = rx->sdata;
2137 struct ieee80211_local *local = rx->local;
2138 struct net_device *dev = sdata->dev;
2139 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2140 __le16 fc = hdr->frame_control;
2141 bool port_control;
2142 int err;
2143
2144 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2145 return RX_CONTINUE;
2146
2147 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2148 return RX_DROP_MONITOR;
2149
2150 /*
2151 * Send unexpected-4addr-frame event to hostapd. For older versions,
2152 * also drop the frame to cooked monitor interfaces.
2153 */
2154 if (ieee80211_has_a4(hdr->frame_control) &&
2155 sdata->vif.type == NL80211_IFTYPE_AP) {
2156 if (rx->sta &&
2157 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2158 cfg80211_rx_unexpected_4addr_frame(
2159 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2160 return RX_DROP_MONITOR;
2161 }
2162
2163 err = __ieee80211_data_to_8023(rx, &port_control);
2164 if (unlikely(err))
2165 return RX_DROP_UNUSABLE;
2166
2167 if (!ieee80211_frame_allowed(rx, fc))
2168 return RX_DROP_MONITOR;
2169
2170 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2171 unlikely(port_control) && sdata->bss) {
2172 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2173 u.ap);
2174 dev = sdata->dev;
2175 rx->sdata = sdata;
2176 }
2177
2178 rx->skb->dev = dev;
2179
2180 dev->stats.rx_packets++;
2181 dev->stats.rx_bytes += rx->skb->len;
2182
2183 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2184 !is_multicast_ether_addr(
2185 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2186 (!local->scanning &&
2187 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2188 mod_timer(&local->dynamic_ps_timer, jiffies +
2189 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2190 }
2191
2192 ieee80211_deliver_skb(rx);
2193
2194 return RX_QUEUED;
2195 }
2196
2197 static ieee80211_rx_result debug_noinline
2198 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2199 {
2200 struct sk_buff *skb = rx->skb;
2201 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2202 struct tid_ampdu_rx *tid_agg_rx;
2203 u16 start_seq_num;
2204 u16 tid;
2205
2206 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2207 return RX_CONTINUE;
2208
2209 if (ieee80211_is_back_req(bar->frame_control)) {
2210 struct {
2211 __le16 control, start_seq_num;
2212 } __packed bar_data;
2213
2214 if (!rx->sta)
2215 return RX_DROP_MONITOR;
2216
2217 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2218 &bar_data, sizeof(bar_data)))
2219 return RX_DROP_MONITOR;
2220
2221 tid = le16_to_cpu(bar_data.control) >> 12;
2222
2223 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2224 if (!tid_agg_rx)
2225 return RX_DROP_MONITOR;
2226
2227 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2228
2229 /* reset session timer */
2230 if (tid_agg_rx->timeout)
2231 mod_timer(&tid_agg_rx->session_timer,
2232 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2233
2234 spin_lock(&tid_agg_rx->reorder_lock);
2235 /* release stored frames up to start of BAR */
2236 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2237 start_seq_num, frames);
2238 spin_unlock(&tid_agg_rx->reorder_lock);
2239
2240 kfree_skb(skb);
2241 return RX_QUEUED;
2242 }
2243
2244 /*
2245 * After this point, we only want management frames,
2246 * so we can drop all remaining control frames to
2247 * cooked monitor interfaces.
2248 */
2249 return RX_DROP_MONITOR;
2250 }
2251
2252 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2253 struct ieee80211_mgmt *mgmt,
2254 size_t len)
2255 {
2256 struct ieee80211_local *local = sdata->local;
2257 struct sk_buff *skb;
2258 struct ieee80211_mgmt *resp;
2259
2260 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2261 /* Not to own unicast address */
2262 return;
2263 }
2264
2265 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2266 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2267 /* Not from the current AP or not associated yet. */
2268 return;
2269 }
2270
2271 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2272 /* Too short SA Query request frame */
2273 return;
2274 }
2275
2276 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2277 if (skb == NULL)
2278 return;
2279
2280 skb_reserve(skb, local->hw.extra_tx_headroom);
2281 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2282 memset(resp, 0, 24);
2283 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2284 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2285 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2286 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2287 IEEE80211_STYPE_ACTION);
2288 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2289 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2290 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2291 memcpy(resp->u.action.u.sa_query.trans_id,
2292 mgmt->u.action.u.sa_query.trans_id,
2293 WLAN_SA_QUERY_TR_ID_LEN);
2294
2295 ieee80211_tx_skb(sdata, skb);
2296 }
2297
2298 static ieee80211_rx_result debug_noinline
2299 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2300 {
2301 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2303
2304 /*
2305 * From here on, look only at management frames.
2306 * Data and control frames are already handled,
2307 * and unknown (reserved) frames are useless.
2308 */
2309 if (rx->skb->len < 24)
2310 return RX_DROP_MONITOR;
2311
2312 if (!ieee80211_is_mgmt(mgmt->frame_control))
2313 return RX_DROP_MONITOR;
2314
2315 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2316 ieee80211_is_beacon(mgmt->frame_control) &&
2317 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2318 int sig = 0;
2319
2320 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2321 sig = status->signal;
2322
2323 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2324 rx->skb->data, rx->skb->len,
2325 status->freq, sig);
2326 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2327 }
2328
2329 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2330 return RX_DROP_MONITOR;
2331
2332 if (ieee80211_drop_unencrypted_mgmt(rx))
2333 return RX_DROP_UNUSABLE;
2334
2335 return RX_CONTINUE;
2336 }
2337
2338 static ieee80211_rx_result debug_noinline
2339 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2340 {
2341 struct ieee80211_local *local = rx->local;
2342 struct ieee80211_sub_if_data *sdata = rx->sdata;
2343 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2344 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2345 int len = rx->skb->len;
2346
2347 if (!ieee80211_is_action(mgmt->frame_control))
2348 return RX_CONTINUE;
2349
2350 /* drop too small frames */
2351 if (len < IEEE80211_MIN_ACTION_SIZE)
2352 return RX_DROP_UNUSABLE;
2353
2354 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2355 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2356 return RX_DROP_UNUSABLE;
2357
2358 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2359 return RX_DROP_UNUSABLE;
2360
2361 switch (mgmt->u.action.category) {
2362 case WLAN_CATEGORY_HT:
2363 /* reject HT action frames from stations not supporting HT */
2364 if (!rx->sta->sta.ht_cap.ht_supported)
2365 goto invalid;
2366
2367 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2368 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2369 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2370 sdata->vif.type != NL80211_IFTYPE_AP &&
2371 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2372 break;
2373
2374 /* verify action & smps_control/chanwidth are present */
2375 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2376 goto invalid;
2377
2378 switch (mgmt->u.action.u.ht_smps.action) {
2379 case WLAN_HT_ACTION_SMPS: {
2380 struct ieee80211_supported_band *sband;
2381 enum ieee80211_smps_mode smps_mode;
2382
2383 /* convert to HT capability */
2384 switch (mgmt->u.action.u.ht_smps.smps_control) {
2385 case WLAN_HT_SMPS_CONTROL_DISABLED:
2386 smps_mode = IEEE80211_SMPS_OFF;
2387 break;
2388 case WLAN_HT_SMPS_CONTROL_STATIC:
2389 smps_mode = IEEE80211_SMPS_STATIC;
2390 break;
2391 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2392 smps_mode = IEEE80211_SMPS_DYNAMIC;
2393 break;
2394 default:
2395 goto invalid;
2396 }
2397
2398 /* if no change do nothing */
2399 if (rx->sta->sta.smps_mode == smps_mode)
2400 goto handled;
2401 rx->sta->sta.smps_mode = smps_mode;
2402
2403 sband = rx->local->hw.wiphy->bands[status->band];
2404
2405 rate_control_rate_update(local, sband, rx->sta,
2406 IEEE80211_RC_SMPS_CHANGED);
2407 goto handled;
2408 }
2409 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2410 struct ieee80211_supported_band *sband;
2411 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2412 enum ieee80211_sta_rx_bandwidth new_bw;
2413
2414 /* If it doesn't support 40 MHz it can't change ... */
2415 if (!(rx->sta->sta.ht_cap.cap &
2416 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2417 goto handled;
2418
2419 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2420 new_bw = IEEE80211_STA_RX_BW_20;
2421 else
2422 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2423
2424 if (rx->sta->sta.bandwidth == new_bw)
2425 goto handled;
2426
2427 sband = rx->local->hw.wiphy->bands[status->band];
2428
2429 rate_control_rate_update(local, sband, rx->sta,
2430 IEEE80211_RC_BW_CHANGED);
2431 goto handled;
2432 }
2433 default:
2434 goto invalid;
2435 }
2436
2437 break;
2438 case WLAN_CATEGORY_PUBLIC:
2439 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2440 goto invalid;
2441 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2442 break;
2443 if (!rx->sta)
2444 break;
2445 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2446 break;
2447 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2448 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2449 break;
2450 if (len < offsetof(struct ieee80211_mgmt,
2451 u.action.u.ext_chan_switch.variable))
2452 goto invalid;
2453 goto queue;
2454 case WLAN_CATEGORY_VHT:
2455 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2456 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2457 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2458 sdata->vif.type != NL80211_IFTYPE_AP &&
2459 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2460 break;
2461
2462 /* verify action code is present */
2463 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2464 goto invalid;
2465
2466 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2467 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2468 u8 opmode;
2469
2470 /* verify opmode is present */
2471 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2472 goto invalid;
2473
2474 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2475
2476 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2477 opmode, status->band,
2478 false);
2479 goto handled;
2480 }
2481 default:
2482 break;
2483 }
2484 break;
2485 case WLAN_CATEGORY_BACK:
2486 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2487 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2488 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2489 sdata->vif.type != NL80211_IFTYPE_AP &&
2490 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2491 break;
2492
2493 /* verify action_code is present */
2494 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2495 break;
2496
2497 switch (mgmt->u.action.u.addba_req.action_code) {
2498 case WLAN_ACTION_ADDBA_REQ:
2499 if (len < (IEEE80211_MIN_ACTION_SIZE +
2500 sizeof(mgmt->u.action.u.addba_req)))
2501 goto invalid;
2502 break;
2503 case WLAN_ACTION_ADDBA_RESP:
2504 if (len < (IEEE80211_MIN_ACTION_SIZE +
2505 sizeof(mgmt->u.action.u.addba_resp)))
2506 goto invalid;
2507 break;
2508 case WLAN_ACTION_DELBA:
2509 if (len < (IEEE80211_MIN_ACTION_SIZE +
2510 sizeof(mgmt->u.action.u.delba)))
2511 goto invalid;
2512 break;
2513 default:
2514 goto invalid;
2515 }
2516
2517 goto queue;
2518 case WLAN_CATEGORY_SPECTRUM_MGMT:
2519 if (status->band != IEEE80211_BAND_5GHZ)
2520 break;
2521
2522 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2523 break;
2524
2525 /* verify action_code is present */
2526 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2527 break;
2528
2529 switch (mgmt->u.action.u.measurement.action_code) {
2530 case WLAN_ACTION_SPCT_MSR_REQ:
2531 if (len < (IEEE80211_MIN_ACTION_SIZE +
2532 sizeof(mgmt->u.action.u.measurement)))
2533 break;
2534 ieee80211_process_measurement_req(sdata, mgmt, len);
2535 goto handled;
2536 case WLAN_ACTION_SPCT_CHL_SWITCH:
2537 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2538 break;
2539
2540 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2541 break;
2542
2543 goto queue;
2544 }
2545 break;
2546 case WLAN_CATEGORY_SA_QUERY:
2547 if (len < (IEEE80211_MIN_ACTION_SIZE +
2548 sizeof(mgmt->u.action.u.sa_query)))
2549 break;
2550
2551 switch (mgmt->u.action.u.sa_query.action) {
2552 case WLAN_ACTION_SA_QUERY_REQUEST:
2553 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2554 break;
2555 ieee80211_process_sa_query_req(sdata, mgmt, len);
2556 goto handled;
2557 }
2558 break;
2559 case WLAN_CATEGORY_SELF_PROTECTED:
2560 if (len < (IEEE80211_MIN_ACTION_SIZE +
2561 sizeof(mgmt->u.action.u.self_prot.action_code)))
2562 break;
2563
2564 switch (mgmt->u.action.u.self_prot.action_code) {
2565 case WLAN_SP_MESH_PEERING_OPEN:
2566 case WLAN_SP_MESH_PEERING_CLOSE:
2567 case WLAN_SP_MESH_PEERING_CONFIRM:
2568 if (!ieee80211_vif_is_mesh(&sdata->vif))
2569 goto invalid;
2570 if (sdata->u.mesh.user_mpm)
2571 /* userspace handles this frame */
2572 break;
2573 goto queue;
2574 case WLAN_SP_MGK_INFORM:
2575 case WLAN_SP_MGK_ACK:
2576 if (!ieee80211_vif_is_mesh(&sdata->vif))
2577 goto invalid;
2578 break;
2579 }
2580 break;
2581 case WLAN_CATEGORY_MESH_ACTION:
2582 if (len < (IEEE80211_MIN_ACTION_SIZE +
2583 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2584 break;
2585
2586 if (!ieee80211_vif_is_mesh(&sdata->vif))
2587 break;
2588 if (mesh_action_is_path_sel(mgmt) &&
2589 !mesh_path_sel_is_hwmp(sdata))
2590 break;
2591 goto queue;
2592 }
2593
2594 return RX_CONTINUE;
2595
2596 invalid:
2597 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2598 /* will return in the next handlers */
2599 return RX_CONTINUE;
2600
2601 handled:
2602 if (rx->sta)
2603 rx->sta->rx_packets++;
2604 dev_kfree_skb(rx->skb);
2605 return RX_QUEUED;
2606
2607 queue:
2608 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2609 skb_queue_tail(&sdata->skb_queue, rx->skb);
2610 ieee80211_queue_work(&local->hw, &sdata->work);
2611 if (rx->sta)
2612 rx->sta->rx_packets++;
2613 return RX_QUEUED;
2614 }
2615
2616 static ieee80211_rx_result debug_noinline
2617 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2618 {
2619 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2620 int sig = 0;
2621
2622 /* skip known-bad action frames and return them in the next handler */
2623 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2624 return RX_CONTINUE;
2625
2626 /*
2627 * Getting here means the kernel doesn't know how to handle
2628 * it, but maybe userspace does ... include returned frames
2629 * so userspace can register for those to know whether ones
2630 * it transmitted were processed or returned.
2631 */
2632
2633 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2634 sig = status->signal;
2635
2636 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2637 rx->skb->data, rx->skb->len,
2638 GFP_ATOMIC)) {
2639 if (rx->sta)
2640 rx->sta->rx_packets++;
2641 dev_kfree_skb(rx->skb);
2642 return RX_QUEUED;
2643 }
2644
2645 return RX_CONTINUE;
2646 }
2647
2648 static ieee80211_rx_result debug_noinline
2649 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2650 {
2651 struct ieee80211_local *local = rx->local;
2652 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2653 struct sk_buff *nskb;
2654 struct ieee80211_sub_if_data *sdata = rx->sdata;
2655 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2656
2657 if (!ieee80211_is_action(mgmt->frame_control))
2658 return RX_CONTINUE;
2659
2660 /*
2661 * For AP mode, hostapd is responsible for handling any action
2662 * frames that we didn't handle, including returning unknown
2663 * ones. For all other modes we will return them to the sender,
2664 * setting the 0x80 bit in the action category, as required by
2665 * 802.11-2012 9.24.4.
2666 * Newer versions of hostapd shall also use the management frame
2667 * registration mechanisms, but older ones still use cooked
2668 * monitor interfaces so push all frames there.
2669 */
2670 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2671 (sdata->vif.type == NL80211_IFTYPE_AP ||
2672 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2673 return RX_DROP_MONITOR;
2674
2675 if (is_multicast_ether_addr(mgmt->da))
2676 return RX_DROP_MONITOR;
2677
2678 /* do not return rejected action frames */
2679 if (mgmt->u.action.category & 0x80)
2680 return RX_DROP_UNUSABLE;
2681
2682 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2683 GFP_ATOMIC);
2684 if (nskb) {
2685 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2686
2687 nmgmt->u.action.category |= 0x80;
2688 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2689 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2690
2691 memset(nskb->cb, 0, sizeof(nskb->cb));
2692
2693 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2694 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2695
2696 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2697 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2698 IEEE80211_TX_CTL_NO_CCK_RATE;
2699 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2700 info->hw_queue =
2701 local->hw.offchannel_tx_hw_queue;
2702 }
2703
2704 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2705 status->band);
2706 }
2707 dev_kfree_skb(rx->skb);
2708 return RX_QUEUED;
2709 }
2710
2711 static ieee80211_rx_result debug_noinline
2712 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2713 {
2714 struct ieee80211_sub_if_data *sdata = rx->sdata;
2715 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2716 __le16 stype;
2717
2718 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2719
2720 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2721 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2722 sdata->vif.type != NL80211_IFTYPE_STATION)
2723 return RX_DROP_MONITOR;
2724
2725 switch (stype) {
2726 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2727 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2728 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2729 /* process for all: mesh, mlme, ibss */
2730 break;
2731 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2732 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2733 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2734 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2735 if (is_multicast_ether_addr(mgmt->da) &&
2736 !is_broadcast_ether_addr(mgmt->da))
2737 return RX_DROP_MONITOR;
2738
2739 /* process only for station */
2740 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2741 return RX_DROP_MONITOR;
2742 break;
2743 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2744 /* process only for ibss and mesh */
2745 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2746 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2747 return RX_DROP_MONITOR;
2748 break;
2749 default:
2750 return RX_DROP_MONITOR;
2751 }
2752
2753 /* queue up frame and kick off work to process it */
2754 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2755 skb_queue_tail(&sdata->skb_queue, rx->skb);
2756 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2757 if (rx->sta)
2758 rx->sta->rx_packets++;
2759
2760 return RX_QUEUED;
2761 }
2762
2763 /* TODO: use IEEE80211_RX_FRAGMENTED */
2764 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2765 struct ieee80211_rate *rate)
2766 {
2767 struct ieee80211_sub_if_data *sdata;
2768 struct ieee80211_local *local = rx->local;
2769 struct sk_buff *skb = rx->skb, *skb2;
2770 struct net_device *prev_dev = NULL;
2771 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2772 int needed_headroom;
2773
2774 /*
2775 * If cooked monitor has been processed already, then
2776 * don't do it again. If not, set the flag.
2777 */
2778 if (rx->flags & IEEE80211_RX_CMNTR)
2779 goto out_free_skb;
2780 rx->flags |= IEEE80211_RX_CMNTR;
2781
2782 /* If there are no cooked monitor interfaces, just free the SKB */
2783 if (!local->cooked_mntrs)
2784 goto out_free_skb;
2785
2786 /* room for the radiotap header based on driver features */
2787 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2788
2789 if (skb_headroom(skb) < needed_headroom &&
2790 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2791 goto out_free_skb;
2792
2793 /* prepend radiotap information */
2794 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2795 false);
2796
2797 skb_set_mac_header(skb, 0);
2798 skb->ip_summed = CHECKSUM_UNNECESSARY;
2799 skb->pkt_type = PACKET_OTHERHOST;
2800 skb->protocol = htons(ETH_P_802_2);
2801
2802 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2803 if (!ieee80211_sdata_running(sdata))
2804 continue;
2805
2806 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2807 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2808 continue;
2809
2810 if (prev_dev) {
2811 skb2 = skb_clone(skb, GFP_ATOMIC);
2812 if (skb2) {
2813 skb2->dev = prev_dev;
2814 netif_receive_skb(skb2);
2815 }
2816 }
2817
2818 prev_dev = sdata->dev;
2819 sdata->dev->stats.rx_packets++;
2820 sdata->dev->stats.rx_bytes += skb->len;
2821 }
2822
2823 if (prev_dev) {
2824 skb->dev = prev_dev;
2825 netif_receive_skb(skb);
2826 return;
2827 }
2828
2829 out_free_skb:
2830 dev_kfree_skb(skb);
2831 }
2832
2833 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2834 ieee80211_rx_result res)
2835 {
2836 switch (res) {
2837 case RX_DROP_MONITOR:
2838 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2839 if (rx->sta)
2840 rx->sta->rx_dropped++;
2841 /* fall through */
2842 case RX_CONTINUE: {
2843 struct ieee80211_rate *rate = NULL;
2844 struct ieee80211_supported_band *sband;
2845 struct ieee80211_rx_status *status;
2846
2847 status = IEEE80211_SKB_RXCB((rx->skb));
2848
2849 sband = rx->local->hw.wiphy->bands[status->band];
2850 if (!(status->flag & RX_FLAG_HT) &&
2851 !(status->flag & RX_FLAG_VHT))
2852 rate = &sband->bitrates[status->rate_idx];
2853
2854 ieee80211_rx_cooked_monitor(rx, rate);
2855 break;
2856 }
2857 case RX_DROP_UNUSABLE:
2858 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2859 if (rx->sta)
2860 rx->sta->rx_dropped++;
2861 dev_kfree_skb(rx->skb);
2862 break;
2863 case RX_QUEUED:
2864 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2865 break;
2866 }
2867 }
2868
2869 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2870 struct sk_buff_head *frames)
2871 {
2872 ieee80211_rx_result res = RX_DROP_MONITOR;
2873 struct sk_buff *skb;
2874
2875 #define CALL_RXH(rxh) \
2876 do { \
2877 res = rxh(rx); \
2878 if (res != RX_CONTINUE) \
2879 goto rxh_next; \
2880 } while (0);
2881
2882 spin_lock_bh(&rx->local->rx_path_lock);
2883
2884 while ((skb = __skb_dequeue(frames))) {
2885 /*
2886 * all the other fields are valid across frames
2887 * that belong to an aMPDU since they are on the
2888 * same TID from the same station
2889 */
2890 rx->skb = skb;
2891
2892 CALL_RXH(ieee80211_rx_h_decrypt)
2893 CALL_RXH(ieee80211_rx_h_check_more_data)
2894 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2895 CALL_RXH(ieee80211_rx_h_sta_process)
2896 CALL_RXH(ieee80211_rx_h_defragment)
2897 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2898 /* must be after MMIC verify so header is counted in MPDU mic */
2899 #ifdef CONFIG_MAC80211_MESH
2900 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2901 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2902 #endif
2903 CALL_RXH(ieee80211_rx_h_amsdu)
2904 CALL_RXH(ieee80211_rx_h_data)
2905
2906 /* special treatment -- needs the queue */
2907 res = ieee80211_rx_h_ctrl(rx, frames);
2908 if (res != RX_CONTINUE)
2909 goto rxh_next;
2910
2911 CALL_RXH(ieee80211_rx_h_mgmt_check)
2912 CALL_RXH(ieee80211_rx_h_action)
2913 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2914 CALL_RXH(ieee80211_rx_h_action_return)
2915 CALL_RXH(ieee80211_rx_h_mgmt)
2916
2917 rxh_next:
2918 ieee80211_rx_handlers_result(rx, res);
2919
2920 #undef CALL_RXH
2921 }
2922
2923 spin_unlock_bh(&rx->local->rx_path_lock);
2924 }
2925
2926 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2927 {
2928 struct sk_buff_head reorder_release;
2929 ieee80211_rx_result res = RX_DROP_MONITOR;
2930
2931 __skb_queue_head_init(&reorder_release);
2932
2933 #define CALL_RXH(rxh) \
2934 do { \
2935 res = rxh(rx); \
2936 if (res != RX_CONTINUE) \
2937 goto rxh_next; \
2938 } while (0);
2939
2940 CALL_RXH(ieee80211_rx_h_check)
2941
2942 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2943
2944 ieee80211_rx_handlers(rx, &reorder_release);
2945 return;
2946
2947 rxh_next:
2948 ieee80211_rx_handlers_result(rx, res);
2949
2950 #undef CALL_RXH
2951 }
2952
2953 /*
2954 * This function makes calls into the RX path, therefore
2955 * it has to be invoked under RCU read lock.
2956 */
2957 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2958 {
2959 struct sk_buff_head frames;
2960 struct ieee80211_rx_data rx = {
2961 .sta = sta,
2962 .sdata = sta->sdata,
2963 .local = sta->local,
2964 /* This is OK -- must be QoS data frame */
2965 .security_idx = tid,
2966 .seqno_idx = tid,
2967 .flags = 0,
2968 };
2969 struct tid_ampdu_rx *tid_agg_rx;
2970
2971 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2972 if (!tid_agg_rx)
2973 return;
2974
2975 __skb_queue_head_init(&frames);
2976
2977 spin_lock(&tid_agg_rx->reorder_lock);
2978 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2979 spin_unlock(&tid_agg_rx->reorder_lock);
2980
2981 ieee80211_rx_handlers(&rx, &frames);
2982 }
2983
2984 /* main receive path */
2985
2986 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2987 struct ieee80211_hdr *hdr)
2988 {
2989 struct ieee80211_sub_if_data *sdata = rx->sdata;
2990 struct sk_buff *skb = rx->skb;
2991 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2992 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2993 int multicast = is_multicast_ether_addr(hdr->addr1);
2994
2995 switch (sdata->vif.type) {
2996 case NL80211_IFTYPE_STATION:
2997 if (!bssid && !sdata->u.mgd.use_4addr)
2998 return 0;
2999 if (!multicast &&
3000 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3001 if (!(sdata->dev->flags & IFF_PROMISC) ||
3002 sdata->u.mgd.use_4addr)
3003 return 0;
3004 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3005 }
3006 break;
3007 case NL80211_IFTYPE_ADHOC:
3008 if (!bssid)
3009 return 0;
3010 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3011 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3012 return 0;
3013 if (ieee80211_is_beacon(hdr->frame_control)) {
3014 return 1;
3015 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3016 return 0;
3017 } else if (!multicast &&
3018 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3019 if (!(sdata->dev->flags & IFF_PROMISC))
3020 return 0;
3021 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3022 } else if (!rx->sta) {
3023 int rate_idx;
3024 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3025 rate_idx = 0; /* TODO: HT/VHT rates */
3026 else
3027 rate_idx = status->rate_idx;
3028 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3029 BIT(rate_idx));
3030 }
3031 break;
3032 case NL80211_IFTYPE_MESH_POINT:
3033 if (!multicast &&
3034 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3035 if (!(sdata->dev->flags & IFF_PROMISC))
3036 return 0;
3037
3038 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3039 }
3040 break;
3041 case NL80211_IFTYPE_AP_VLAN:
3042 case NL80211_IFTYPE_AP:
3043 if (!bssid) {
3044 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3045 return 0;
3046 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3047 /*
3048 * Accept public action frames even when the
3049 * BSSID doesn't match, this is used for P2P
3050 * and location updates. Note that mac80211
3051 * itself never looks at these frames.
3052 */
3053 if (!multicast &&
3054 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3055 return 0;
3056 if (ieee80211_is_public_action(hdr, skb->len))
3057 return 1;
3058 if (!ieee80211_is_beacon(hdr->frame_control))
3059 return 0;
3060 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3061 }
3062 break;
3063 case NL80211_IFTYPE_WDS:
3064 if (bssid || !ieee80211_is_data(hdr->frame_control))
3065 return 0;
3066 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3067 return 0;
3068 break;
3069 case NL80211_IFTYPE_P2P_DEVICE:
3070 if (!ieee80211_is_public_action(hdr, skb->len) &&
3071 !ieee80211_is_probe_req(hdr->frame_control) &&
3072 !ieee80211_is_probe_resp(hdr->frame_control) &&
3073 !ieee80211_is_beacon(hdr->frame_control))
3074 return 0;
3075 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3076 !multicast)
3077 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3078 break;
3079 default:
3080 /* should never get here */
3081 WARN_ON_ONCE(1);
3082 break;
3083 }
3084
3085 return 1;
3086 }
3087
3088 /*
3089 * This function returns whether or not the SKB
3090 * was destined for RX processing or not, which,
3091 * if consume is true, is equivalent to whether
3092 * or not the skb was consumed.
3093 */
3094 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3095 struct sk_buff *skb, bool consume)
3096 {
3097 struct ieee80211_local *local = rx->local;
3098 struct ieee80211_sub_if_data *sdata = rx->sdata;
3099 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3100 struct ieee80211_hdr *hdr = (void *)skb->data;
3101 int prepares;
3102
3103 rx->skb = skb;
3104 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3105 prepares = prepare_for_handlers(rx, hdr);
3106
3107 if (!prepares)
3108 return false;
3109
3110 if (!consume) {
3111 skb = skb_copy(skb, GFP_ATOMIC);
3112 if (!skb) {
3113 if (net_ratelimit())
3114 wiphy_debug(local->hw.wiphy,
3115 "failed to copy skb for %s\n",
3116 sdata->name);
3117 return true;
3118 }
3119
3120 rx->skb = skb;
3121 }
3122
3123 ieee80211_invoke_rx_handlers(rx);
3124 return true;
3125 }
3126
3127 /*
3128 * This is the actual Rx frames handler. as it blongs to Rx path it must
3129 * be called with rcu_read_lock protection.
3130 */
3131 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3132 struct sk_buff *skb)
3133 {
3134 struct ieee80211_local *local = hw_to_local(hw);
3135 struct ieee80211_sub_if_data *sdata;
3136 struct ieee80211_hdr *hdr;
3137 __le16 fc;
3138 struct ieee80211_rx_data rx;
3139 struct ieee80211_sub_if_data *prev;
3140 struct sta_info *sta, *tmp, *prev_sta;
3141 int err = 0;
3142
3143 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3144 memset(&rx, 0, sizeof(rx));
3145 rx.skb = skb;
3146 rx.local = local;
3147
3148 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3149 local->dot11ReceivedFragmentCount++;
3150
3151 if (ieee80211_is_mgmt(fc)) {
3152 /* drop frame if too short for header */
3153 if (skb->len < ieee80211_hdrlen(fc))
3154 err = -ENOBUFS;
3155 else
3156 err = skb_linearize(skb);
3157 } else {
3158 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3159 }
3160
3161 if (err) {
3162 dev_kfree_skb(skb);
3163 return;
3164 }
3165
3166 hdr = (struct ieee80211_hdr *)skb->data;
3167 ieee80211_parse_qos(&rx);
3168 ieee80211_verify_alignment(&rx);
3169
3170 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3171 ieee80211_is_beacon(hdr->frame_control)))
3172 ieee80211_scan_rx(local, skb);
3173
3174 if (ieee80211_is_data(fc)) {
3175 prev_sta = NULL;
3176
3177 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3178 if (!prev_sta) {
3179 prev_sta = sta;
3180 continue;
3181 }
3182
3183 rx.sta = prev_sta;
3184 rx.sdata = prev_sta->sdata;
3185 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3186
3187 prev_sta = sta;
3188 }
3189
3190 if (prev_sta) {
3191 rx.sta = prev_sta;
3192 rx.sdata = prev_sta->sdata;
3193
3194 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3195 return;
3196 goto out;
3197 }
3198 }
3199
3200 prev = NULL;
3201
3202 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3203 if (!ieee80211_sdata_running(sdata))
3204 continue;
3205
3206 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3207 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3208 continue;
3209
3210 /*
3211 * frame is destined for this interface, but if it's
3212 * not also for the previous one we handle that after
3213 * the loop to avoid copying the SKB once too much
3214 */
3215
3216 if (!prev) {
3217 prev = sdata;
3218 continue;
3219 }
3220
3221 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3222 rx.sdata = prev;
3223 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3224
3225 prev = sdata;
3226 }
3227
3228 if (prev) {
3229 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3230 rx.sdata = prev;
3231
3232 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3233 return;
3234 }
3235
3236 out:
3237 dev_kfree_skb(skb);
3238 }
3239
3240 /*
3241 * This is the receive path handler. It is called by a low level driver when an
3242 * 802.11 MPDU is received from the hardware.
3243 */
3244 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3245 {
3246 struct ieee80211_local *local = hw_to_local(hw);
3247 struct ieee80211_rate *rate = NULL;
3248 struct ieee80211_supported_band *sband;
3249 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3250
3251 WARN_ON_ONCE(softirq_count() == 0);
3252
3253 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3254 goto drop;
3255
3256 sband = local->hw.wiphy->bands[status->band];
3257 if (WARN_ON(!sband))
3258 goto drop;
3259
3260 /*
3261 * If we're suspending, it is possible although not too likely
3262 * that we'd be receiving frames after having already partially
3263 * quiesced the stack. We can't process such frames then since
3264 * that might, for example, cause stations to be added or other
3265 * driver callbacks be invoked.
3266 */
3267 if (unlikely(local->quiescing || local->suspended))
3268 goto drop;
3269
3270 /* We might be during a HW reconfig, prevent Rx for the same reason */
3271 if (unlikely(local->in_reconfig))
3272 goto drop;
3273
3274 /*
3275 * The same happens when we're not even started,
3276 * but that's worth a warning.
3277 */
3278 if (WARN_ON(!local->started))
3279 goto drop;
3280
3281 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3282 /*
3283 * Validate the rate, unless a PLCP error means that
3284 * we probably can't have a valid rate here anyway.
3285 */
3286
3287 if (status->flag & RX_FLAG_HT) {
3288 /*
3289 * rate_idx is MCS index, which can be [0-76]
3290 * as documented on:
3291 *
3292 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3293 *
3294 * Anything else would be some sort of driver or
3295 * hardware error. The driver should catch hardware
3296 * errors.
3297 */
3298 if (WARN(status->rate_idx > 76,
3299 "Rate marked as an HT rate but passed "
3300 "status->rate_idx is not "
3301 "an MCS index [0-76]: %d (0x%02x)\n",
3302 status->rate_idx,
3303 status->rate_idx))
3304 goto drop;
3305 } else if (status->flag & RX_FLAG_VHT) {
3306 if (WARN_ONCE(status->rate_idx > 9 ||
3307 !status->vht_nss ||
3308 status->vht_nss > 8,
3309 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3310 status->rate_idx, status->vht_nss))
3311 goto drop;
3312 } else {
3313 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3314 goto drop;
3315 rate = &sband->bitrates[status->rate_idx];
3316 }
3317 }
3318
3319 status->rx_flags = 0;
3320
3321 /*
3322 * key references and virtual interfaces are protected using RCU
3323 * and this requires that we are in a read-side RCU section during
3324 * receive processing
3325 */
3326 rcu_read_lock();
3327
3328 /*
3329 * Frames with failed FCS/PLCP checksum are not returned,
3330 * all other frames are returned without radiotap header
3331 * if it was previously present.
3332 * Also, frames with less than 16 bytes are dropped.
3333 */
3334 skb = ieee80211_rx_monitor(local, skb, rate);
3335 if (!skb) {
3336 rcu_read_unlock();
3337 return;
3338 }
3339
3340 ieee80211_tpt_led_trig_rx(local,
3341 ((struct ieee80211_hdr *)skb->data)->frame_control,
3342 skb->len);
3343 __ieee80211_rx_handle_packet(hw, skb);
3344
3345 rcu_read_unlock();
3346
3347 return;
3348 drop:
3349 kfree_skb(skb);
3350 }
3351 EXPORT_SYMBOL(ieee80211_rx);
3352
3353 /* This is a version of the rx handler that can be called from hard irq
3354 * context. Post the skb on the queue and schedule the tasklet */
3355 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3356 {
3357 struct ieee80211_local *local = hw_to_local(hw);
3358
3359 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3360
3361 skb->pkt_type = IEEE80211_RX_MSG;
3362 skb_queue_tail(&local->skb_queue, skb);
3363 tasklet_schedule(&local->tasklet);
3364 }
3365 EXPORT_SYMBOL(ieee80211_rx_irqsafe);